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Abstract

Dictionaries remain the most well studied class of data structures. A dictionary supports insertions,
deletions, queries, and usually successor, predecessor, and extract-min. In a RAM, all such operations
take O(logN) time on N elements.

Dictionaries are often cross-referenced as follows. Consider a set of tuples {〈ai, bi, ci . . .〉}. A
database might include more than one dictionary on such a set, for example, one indexed on the a’s, an-
other on the b’s, and so on. Once again, in a RAM, inserting into a set of L cross-referenced dictionaries
takes O(L logN) time, as does deleting.

The situation is more interesting in external memory. On a Disk Access Machine (DAM), B-trees
achieveO(logB N) I/Os for insertions and deletions on a single dictionary andK-element range queries
take optimalO(logB N +K/B) I/Os. These bounds are also achievable by a B-tree on cross-referenced
dictionaries, with a slowdown of an L factor on insertion and deletions.

In recent years, both the theory and practice of external-memory dictionaries has been revolutionized
by write-optimization techniques. The best (and optimal) dictionaries achieve a substantially improved
insertion and deletion cost of O(

log1+Bε N

B1−ε ), 0 ≤ ε ≤ 1, amortized I/Os on a single dictionary while
maintaining optimal O(log1+Bε N +K/B)-I/O range queries.

Although write optimization still helps for insertions into cross-referenced dictionaries, its value for
deletions is greatly reduced. A deletion into a cross-referenced dictionary only specifies a key a. It
seems to be necessary to look up the associated values b, c . . . in order to delete them from the other
dictionaries. This takes Ω(logB N) I/Os, well above the per-dictionary write-optimization budget of
O(

log1+Bε N

B1−ε ) I/Os. So the total deletion cost is O(logB N + L
log1+Bε N

B1−ε ) I/Os.
In short, for deletions, write optimization offers an advantage over B-trees in that L multiplies a

lower order term, but when L = 2, write optimization seems to offer no asymptotic advantage over
B-trees. That is, no known solution for pairs of cross-referenced dictionaries seem to beat B-trees for
deletions.

In this paper, we show a lower bound establishing that a pair of cross-referenced dictionaries that
supports deletions cannot match the write optimization bound available to insert-only dictionaries.

This result thus establishes a limit to the applicability of write-optimization techniques, which are
the basis of many new databases and file systems.
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1 Introduction

Dictionaries remain the most well studied class of data structure. A dictionary supports insertions, dele-
tions, queries, and usually successor, predecessor, and extract-min. But surprisingly basic questions about
dictionaries remain unanswered.

These questions arose in the pre-computer era whenever peopled indexed large collections of data. The
library of Alexandria is thought to have contained over 600,000 volumes, partitioned first into seven broad
topics and then shelved alphabetically by author [12, 27]. Each volume is thought to have had tags called
pinakes,1 which contained metadata. Pinakes were also compiled into a separate volume, which is thought
to have been the first library catalog. Thus, people could search for books using the pinakes, but only by
scanning through the pinakes in 〈subject, author〉 order. It was many centuries before there were any libraries
of size comparable to that of Alexandria after that library was destroyed, and during that time, libraries were
indexed using content-addressable-memory systems— that is, “curators, slaves or freedmen” [14, 17].

Circa 1295, the library at the Collège de Sorbonne at the Université de Paris introduced indexes [23],
in the sense that there were volumes compiled for the purpose of locating books according to a variety
of criteria. For the first time it became possible to search the content of a library according to distinct
orders (by author, subject, or collection2), while the books themselves were stored on the shelves in any
convenient order. In 1791, Enlightenment thinkers of the French Revolution introduced card catalogs as
indexes, making it easier for the indexes to track the changing collection [13].

Today books are stored on the shelves according to a subject-classification scheme (usually the Dewey
Decimal System [9] or the Library of Congress Classification System (LC) [19]) to allow for browsing, but
they are also indexed in other orders (author, title, subject, keyword). Each particular index on the books is
a dictionary ordered by a different key.

Specifying the Required Operations of a Dictionary. The actual data structure at work organizing a
library is not merely a set of dictionaries, but a system of cross-referenced dictionaries, which we call a
compound dictionary. We call a compound dictionary an L-dictionary if it consists of L cross-referenced
dictionaries. A compound dictionary maintains a cross-reference invariant, where each dictionary—which
we sometimes call an index—stores the same set of items but orders them according to a different compar-
ison function. Thus, every time that a book is inserted into or deleted from the library, each index needs to
be updated.

An abstraction of a compound dictionary is as follows. The L-dictionary maintains a set S ⊆ U1×U2×
· · · × UL. Each (potentially infinite) key space Ui is totally ordered. Items can be inserted, deleted, and
queried:

• INSERT(x): S ←− S ∪ {x}. That is, add x to S.

• DELETE(i, x): S ←− S − U1 × · · · × Ui−1 × {x} × Ui+1 × · · · × UL.
That is, remove all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉 whose ith component is x.

• LOOKUP(i, x): return S ∩ U1 × · · · × Ui−1 × {x} × Ui+1 × · · · × UL.
That is, return all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉 whose ith component is x.

1“Pinakes” is ancient Greek for “tables”, and is thus consistent with modern database nomenclature.
2No title indexes were compiled, since titles were not fixed at that time [22].
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• RANGE(i, r1, r2): return S ∩ U1 × · · · × Ui−1 × [r1, r2] × Ui+1 × · · · × UL, where [r1, r2] =
{x | r1 < x < r2}.
That is, return all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉 in S for which r1 < x < r2.

We refer to the index on Ui as Ii.
Observe that compound dictionaries are distinct from multi-dimensional indexes because delete and

query operations on compound dictionaries specify only a single coordinate, whereas delete and query
operations on a multi-dimensional dictionary might allow all or some of the coordinates of the deleted item
or queried rectangle to be specified.

Compound Dictionaries in Databases. The compound dictionary is one of the most (if not the most)
widely used data-structural abstractions, because it appears in essentially every relational database manage-
ment system (RDBMS). In database terminology, indexes are sometimes also called tables, and the elements
that are inserted and deleted are typically called rows.

The actual specification of a database is slightly different: indexes can be defined on tuples of fields;
deletions can only be specified on so-called primary keys; and in some databases, only U1 can be primary;
some fields may not have any index associated with them; etc. Our version of the problem is similar enough
to capture the essential algorithmic challenge of compound dictionaries.

The Complexity of Deletes in a Compound Dictionary. Considering that compound dictionaries have
been around for 720 years and are the basic data structure of databases, it may seem surprising that the
algorithmic literature is largely silent on this data structure.

On the other hand, at first glance, there’s not that much to say. Insertions, for example, into an L-
dictionary are simply L times slower than an insertion into a single dictionary, on both a RAM and in
external memory.

Now consider deletes. On a RAM, deletions take O(logN) on a dictionary and O(L logN) on an
L-dictionary. As with insertions, simply decompose one deletion into L such operations.

Even in external memory, the problem seemed trivial until recently. The B-tree [2] achieves optimal
O(logB N + K/B) I/Os for range queries on K elements, and insertion and deletion cost of O(logB N)
on a dictionary. On an L-dictionary, the cost of deletions is O(L logB N). Once again, a deletion to the
compound dictionary is a deletion into each dictionary.

But a little bit more is actually going on, because a deletion seems to require a search. Consider a
2-dictionary on U1 × U2. An insertion of 〈u, v〉 consists of adding 〈u, v〉 to I1 ordered by u and into I2

ordered by v. A deletion DELETE(1, u) seems to require LOOKUP(1, u) to fetch the pair 〈u, v〉, followed by
removing 〈u, v〉 from both I1 and I2. In short, an actual delete from a constituent index requires knowing
the key to be deleted. But this seems to require a query to find all the necessary keys.

For a B-tree, this is not a problem. We get the desired bounds by noting that deletions take the same
amount of time as searches. One query to get all keys does not slow down the L deletions into individual
dictionaries.

Compound Dictionaries and Write Optimization. In recent years, both the theory and practice of
external-memory dictionaries have been revolutionized by write-optimization techniques. The best (and op-
timal) dictionaries achieve a substantially improved insertion and deletion cost of O(

log1+Bε N

B1−ε ) amortized
I/Os, for 0 ≤ ε ≤ 1, while maintaining optimal O(log1+Bε N +K/B) I/Os for range queries [3, 5–7, 20].

Such techniques are now widespread in the database world [1, 8, 11, 18, 24, 25] and are starting to have
an impact on file systems [10, 15, 16, 21, 28].
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Deletes and Write Optimization. These systems show a marked asymmetry between insertions/deletions
and queries. This asymmetry introduces an algorithmic issue with compound dictionaries.

An L-dictionary composed of a write-optimized dictionaries (WODs) will take time O(L
log1+Bε N

B1−ε ) to
insert into all indexes. However, consider the deletion algorithm, which includes a search. Searches are
much slower than insertions, and so the time to delete is O(log1+Bε N + L

log1+Bε N

B1−ε ). Write optimization
does help, because the L multiplies a low-order term, but deletions do not enjoy the full benefits of write
optimization.

The alternative is to push the slowdown to the query: one could keep a data structure of all the deletions.
Suppose that there is a set D = {d1, d2, ..., d`} of deletion DELETE(1, di). A query RANGE(2, x, y) consid-
ers a sequence 〈ai, bi〉, where x < bi < y. Some of these ai might belong to D, and any such pair would
need to be filtered out of the answer. These lookups in a data structure on D would slow down the queries,
thus yielding deletions that match the write-optimization bound but suboptimal queries.

In either case, the crux of the difficulty seems to be the jump from a single dictionary to a 2-dictionary.
In the remainder of the paper, we will therefore restrict our attention to 2-dictionaries when talking about
compound dictionaries.

Deletes and Databases. So far, we have described the problem of deletes in write-optimized indexes. This
problem is of algorithmic interest, certainly, because the run-time of deletes is a big gap in our understanding
of indexing. However, we did not come to this problem originally from a consideration of algorithmic issues.
Instead, while building TokuDB [26], we had to deal with the issue of deletions. Deletions are a big problem
in the design of write-optimized storage systems. What is particularly interesting to us in this problem is
that the pragmatics of building a database so exactly line up with the algorithmics of compound dictionaries.

Warming up. Before we consider the problem of deletes in 2-dictionaries, we begin with the simpler
count problem on single dictionaries. In its simplest version, the count of a dictionary returns the cardinality
of the set S being indexed.

In many instantiations of a dictionary, such as in a database, dictionaries support overwrite insertions,
in which a new insertion with the same key replaces the old key. (Actually, the value associated with the
key replaces the old value). In RAM, such operations takes O(logN) time, and counts can be computed
in O(logN) time. In a B-tree, such operations take O(logB N) I/Os, and counts can be computed in
O(logB N) I/Os.

In a WOD, however, insertions take very few I/Os compared to queries. There are not enough I/Os in an
insertion to resolve whether a particular insertion is a new insertion or an overwrite. It seems that we need
a query to resolve this issue, either at the time of insertion or at query time, in order to achieve an accurate
count. Once again, the asymmetry between the cost of insertions and the cost of queries in a WOD seems
to cause some algorithmic problems for some operations.

Our results. In this paper, we warm up by showing that the count operation is slow if insertions are write
optimized. Specifically, we show that it is impossible to achieve O(logB N) I/Os for count in the external-
memory comparison model unless insertions take Ω(logB N). That is, no write optimization is possible at
all for this problem. This result serves as both a first proof on the limits of write optimization and as an
simplified proof that shows some of the techniques of the main result. The details can be found in Section 2.

In Section 3, we establish limits on write optimization for deletions on 2-dictionaries. We prove that
one may either achieve write-optimized deletes or optimal range queries but not both. Our result is not as
general as the count result, because our lower bound establishes that some parts of the write-optimization
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tradeoff curve are not achievable, whereas in the count lower bound, we show that no write optimization at
all is achievable. We conjecture that if range queries are optimal, then deletes takes Ω(logB N) (in the I/O
comparison model). We leave this conjecture for future work.

2 Counts and Dictionaries

We define 1-D count problem as follows:

• Static Insertion Phase: Preprocess set S = {a1, a2, . . . , aN}.

• Dynamic Insertion Phase: Insert a sequence of
√
N elements D = {d1, d2, . . . , d√N}.

• Counting Phase: Output the count, |S ∪ D|.

Theorem 1. In the comparison-based external-memory model, for any algorithm that solves the 1-D count
problem usingO(N logB N) I/Os for the static insertion phase, there is a constant c <! so that if it performs
at most c

√
N logB N I/Os for the dynamic insertion phase, it must perform Ω(

√
N logB N) I/Os to output

the count, |S ∪ D|, in the worst case.

Proof. Let the sorted order of S be a1 < a2 < . . . < aN . Suppose the adversary reveals that each dk is in
a disjoint subrange of S as follows: a1 ≤ d1 ≤ a√N , a

√
N+1 ≤ d2 ≤ a2

√
N , . . . , a(

√
N−1)

√
N+1 ≤ d√N ≤

aN . In the comparison-based model, the only information that the algorithm can learn about dk is the set
of possible ai that might match dk, i.e. that dk = ai, for some i, or that there it lies in some open interval
(ai, aj), but the relative order of ai+1 and dk is unknown, (and symmetrically with aj−1). We say that dk is
resolved if we know that dk = ai or dk ∈ (ai, ai+1), for some i. Otherwise it is unresolved on some interval
(ai, aj), j > i+ 1. We note here that in this setting, the algorithm knows that d1 < d2 < · · · < d√N , so no
extra information can be inferred by comparing pairs of elements in D.

Suppose that the adversary reveals to the algorithm the additional information |S ∪D| is eitherN +
√
N

or N +
√
N − 1. That means at most one member of D matches some member of S.

To distinguish between the two cases, the algorithm needs to identify the predecessors and successors
for the each dk. To see this, suppose some dk is unresolved interval (ai, aj), j > i+1, after all the pre-count
I/Os are performed. For all resolved members of D, the adversary can choose to have those elements be
distinct from those of S. Thus we must be able to determine if dk belongs to S. At this point, we therefore
must know if dk = ai+1 < aj or not.

Therefore, we do not know if dk ∈ S if dk is unresolved. But if dk is resolved, we know the successor
and predecessor of dk. Hence, to report the count, the algorithm needs to identify the predecessors and
successors for each dk. It is known that finding the predecessors for each dk requires Ω(

√
N logB N) (say,

at least c+
√
N logB N ) I/Os [4, Theorem 7]. Since the I/Os spent on the second phase is c

√
N logB N , the

third phase must pay off the difference c+
√
N logB N − c

√
N logB N = Ω(

√
N logB N), hence proving

the theorem.

3 Deletes and 2-Dictionaries

In this section we show that a 2-dictionary supporting optimal range queries cannot achieve the write-
optimization bound (O(

log1+Bε N

B1−ε )) for ε > 2/3. Brodal and Fagerberg [6] established that external memory
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dictionaries could not surpass the write-optimization tradeoff bounds, but here we show that compound
dictionaries they cannot meet the optimal write-only tradeoff bound in general for deletes.

Specifically, we show a lower bound for 2-Dictionary Deletion Problem (2DD), which we define as the
problem of satisfying the following set of compound-dictionary commands:

• Phase 1: A set S = {〈ai, bj〉} of N insertions INSERT(ai, bj). Define π by ai = π(bj). LetA = {ai}
and B = {bi}.

• Phase 2: A set D = {di} ⊆ A of
√
N deletions DELETE(1, di) on the first coordinate.

• Phase 3: A range query RANGE(2, b`, br) on the second coordinate.

Note that the insertions and deletions can be performed in any order, rather than in order by ai and di.
Our main result is the following theorem:

Theorem 2. For any data structure that solves the 2DD problem, if insertion takes amortized O(logB N)
I/Os and deletion takes amortized O(logB N/B

α) I/Os for any constant α > 2/3, then some range query
RANGE(2, b`, br) requires ω(logB N + K/B) I/Os, where K = |B ∩ [b`, br]| is the number of b’s inserted
in the range [b`, br].

3.1 Proof Outline

As in the proof of Theorem 1, we specify that the members of D come from disjoint ranges of A, each of
size
√
N . We perform the allowed I/Os and find the uncertainty ranges for all the deletions. In this proof,

we need to more carefully quantity the uncertainty that remains in all the deletions, because we need this
uncertainty to be large enough to increase the I/Os of a range query.

In other words, counts take O(logB N) I/Os, whereas range queries take O(logB N + K/B). If K is
large, then this term dominates the I/O complexity of a range query, and K can be as large as N . Therefore,
we need to prove a much higher lower bound to establish our theorem. Specifically, it is not enough to simply
figure out that there are unresolved deletions. We need to make sure that the I/Os required to completely
resolve the deletion cannot be amortized against those used to answer the range query.

To begin, we need to replace Theorem 7 from [4], which states that not all searches can fully resolve
in less than c logB N per query, for some constant c, with a more quantitative bound, which quantifies the
amount of uncertainty of the deletions at the end of the deletion phase. (See Lemma 4.)

Because the remaining uncertainty is large, there are many tuples in I2 that might be deleted. We want to
find a range query that has many such potential deletions. We show that such hot regions exist in Lemma 6.
We need to show that there exists such a hot region that involves a sufficient number of different di’s. In
addition, not too many of these di’s can be fetched into memory as a byproduct when the algorithm fetches
other di’s. To guarantee this, we require π to satisfy two conditions, CA and CB, where Lemma 3 guarantees
the existence with the probabilistic method and Turán theorem.

3.2 Preliminaries

We assume that every I/O can read/write a disk page capable of storing B = logτ N tuples for some
sufficiently large constant τ , the physical memory can store M = O(Nµ) tuples, and the range query is of
size K = N δ and µ < δ < 1/4 are constants.
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Specifying the insertions and deletions. Let a1, . . . , aN be the sorted order of A and b1, . . . , bN the
sorted order of B. We assume that ai 6= ai+1 and bi 6= bi+1, for 1 ≤ i < N , that is, A and B each have
N distinct values. Recall that the N inserted tuples be (π(bi), bi) for i ∈ [N ], where π is a mapping from
{b1, . . . , bN} to {a1, . . . , aN}.

We will break A into blocks of size
√
N as we did in the proof of Theorem 1. We say that ai has color

k, abbreviated as c(ai) = k, if di/
√
Ne = k. We say bi has color k if π(bi) has color k and overload the

color function so that c(T ) = {c(bi) : bi ∈ T}. For every fixed constant r ∈ (0, 1), we define the sets

St,Nr = {bi : di/N re = t}.

Not every π admits a range query that requires superlinear number of I/Os. Consider, for example, the
degenerate case that π(bi) = ai for all i ∈ [N ]. If π(bi) is directly computable from ai with no I/Os, then
the theorem does not hold. We can insert a deletion message into both indices and write optimization works
just fine.

Hence, to prove the theorem, we cannot choose π arbitrarily. We will pick a π that satisfies the following
two conditions.

CA. c(bi) 6= c(bj) if bi 6= bj and bi, bj ∈ St,√N for some t ∈ [
√
N ].

In other words, the permutation must be compatible with the following: Break B into blocks of size
√
N

in order. Take the elements of each of these blocks and map them to some element in A, so that no two
elements in the same block of B fall within the same block of size

√
N in A.

CB. |c(St,Nδ) ∩ c(St′,Nδ)| = O(1) for every t 6= t′ ∈ [N1−δ], for some fixed constant δ ∈ (0, 1/4).

We note here that |c(St,N1/2) ∩ c(St,N1/2)| =
√
N given CA. However, if we break B into finer blocks of

size N δ, then the pairwise intersection can have size as small as a constant, and in fact, we require it to. The
following lemma shows the existence of such a π.

Lemma 3. For every N and δ ∈ (0, 1/4), there exists some π that satisfies both CA and CB.

Proof. To satisfy CA, it is required that c(St,
√
N ) = {1, 2, . . . ,

√
N} for every t ∈ [

√
N ]. Hence,

c(b1), c(b2), . . . , c(bN ) is a concatenation of
√
N permutations of 1, 2, . . . ,

√
N .

There are (
√
N)! such permutations but, to satisfy CB, some permutations cannot be placed together

in the concatenation. We construct a graph G = (V,E) to describe which permutations cannot be placed
together. Each node in G denotes a permutation and thus |V | = (

√
N)!. If two permutations cannot

be placed together in the concatenation due to CB, then we connect the representative nodes by an edge.
Because of symmetry, the graph is regular.

Here we upper bound the degree of each node. Let π0 be a permutation specified by some fixed node and
πrand be a permutation specified by the node picked uniformly at random. Let T be the threshold constant
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in CB (i.e. |c(St,Nδ) ∩ c(St′,Nδ)| < T ). Then, each node in G has degree

d =
(√

N
)

! · Pr[π0 and πrand cannot be placed together]

≤
(√

N
)

!
∑

i1,i2,...,iT∈[
√
N ]

i1 6=i2 6=···6=iT

Pr[i1, i2, . . . , iT fall in the same chunk of size N δ in π0 and πrand]

=
(√

N
)

!
(
N1/2−δ

)(N δ

T

)(
1

N1/2−δ

)T
≤
(√

N
)

!
(
N1/2−δ−T (1/2−2δ)

)
(note that δ < 1/4)

≤
(√

N
)

!/N (pick a sufficiently large T )

By Turán Theorem, the graph G = (V,E) has an independent set of size at least

|V |2

|V |+ 2|E|
≥

((√
N
)

!
)2

(√
N
)

! +
((√

N
)

!
)2
/N

= N − o(1),

meaning that some carefully chosen
√
N permutations can be placed together in the concatenation without

violating CB. As a result, the desired π exists.

Given a mapping π that satisfies the both conditions, the adversary conducts the following adversarial
sequence of insertions and deletions:

• Insertion Phase: The adversary inserts, in any order, N tuples (π(bi), bi) for every i ∈ [N ].

• Deletion Phase: The adversary deletes, in any order,
√
N tuples (dk, ∗) for every k ∈ [

√
N ], where

dk = ai for some ai whose color is k.

At the beginning of the deletion phase, each dk, for k ∈ [
√
N ], might match any ai whose color is k.

We say that dk has uncertainty u, abbreviated as U(dk) = u, if the number of ai’s that can match dk equals
u. While performing the I/Os for deletions, some comparisons between a’s and d’s are made and thus the
uncertainly U(dk) of any dk might shrink, but we claim that not by too much, in aggregate, of all k. Here
we prove a quantitative bound for the sum of the U(dk) at the end of the deletion phase.

Lemma 4. Any algorithm for 2DD over an adversarial sequence using amortized O(logB N) I/Os per
insertion and O(logB N/B

α) I/Os per deletion, for any constant α > 2/3, has∑
k∈[
√
N ],U(dk)>1

U(dk) = Ω(N/B1−α)

at the end of the deletion phase.

Proof. It suffices to show that the desired lower bound holds even if the adversary reveals some information
for each dk at the beginning of the deletion phase. For each k ∈ [

√
N ], the adversary partitions the range

[(k− 1)
√
N + 1, k

√
N ] into Br equal-sized consecutive subranges for some constant r determined later. It

then randomly picks a subrange and reveals to the algorithm that dk equals some ai in the subrange. After
such a revelation, ∑

k∈[
√
N ],U(dk)>1

U(dk) = Ω(N/Br).
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Claim 5. For some combination of randomly picked subranges and r < 1/3, the sum of uncertainty
Ω(N/Br) cannot be further narrowed down by any superconstant factor at the end of the deletion phase.

Proof. Let us consider the I/Os performed during the deletion phase. These I/Os can bring a’s from disk
to memory for subsequent comparisons with d’s, and thus the uncertainty of d’s can be reduced. For each
a that is brought into memory, it is only possible to reduce the uncertainty of one d. We assume that the
adversary reduces the uncertainty of the appropriate d, even if that d isn’t in memory. Thus, we give the
algorithm more power than any actual algorithm could have.

We say that some a is fresh if it has not yet been brought into memory since the beginning of the deletion
phase, and therefore only fresh a’s can be used to reduce the uncertainty further given the assumption. We
note that only fetching the disk pages written in the insertion phase can give the algorithm fresh a’s. Those
written in the deletion phase cannot, since all uncertainty is maximally reduced when an a is fetched during
the deletion phase. There are O(N logB N) disk pages written in the insertion phase, and therefore the
number of disk pages that can contain some fresh a’s is O(N logB N).

Let Pi ⊆ {aj : j ∈ [N ]} denote the aj’s contained in the ith disk page written in the insertion phase.
Note that |Pi| ≤ B. Let Pi,k = {aj ∈ Pi : c(aj) = k}. We partition Pi into two disjoint sets Hi and Li,
where Li = Pi \Hi and

Hi = {aj ∈ Pi : |Pi,c(aj)| ≥ B
r}.

That is Hi is the set of elements in Pi whose color is frequently represented in Pi. Let Rk be the randomly
picked subrange for dk. Let Xi,k denote the random variable |Rk ∩ Pi|. Then Xi,k ∈ [0, |Pi,k|], E [Xi,k] =
|Pi,k|/Br, and all Xi,k’s are independent for every fixed i. Let

Yi =
∑

k∈[
√
N ],Pi,k⊆Li

Xi,k,

and from linearity of expectation

E [Yi] =
∑

k∈[
√
N ],Pi,k⊆Li

E [Xi,k] =
|Li|
Br

.

By Hoeffding’s inequality, we have

Pr
[
Yi − E [Yi] ≥ B1−r] ≤ exp

(
− 2(B1−r)2∑

k∈[
√
N ],Pi,k⊆Li |Pi,k|

2

)
≤ e−Ω

(
B2−2r

B1+r

)
,

which is e−B
Ω(1)

= e− logΩ(τ)N = 1/N2 if we pick any constant r < 1/3 and pick τ to be sufficiently large.
By the union bound, we know that for some combination of Rk for k ∈ [

√
N ],

Yi ≤ E [Yi] +B1−r ≤ 2B1−r for every disk page written in the insertion phase.

The adversary picks some such combination of Rk, and reveals the information to the algorithm. No
matter whatO(

√
N logB N/B

α) I/Os are fetched by the algorithm in the deletion phase — w.l.o.g. let them
be P1, P2, . . . , PT for T = O(

√
N logB N/B

α) — we have:

• The number of colors contributed by Hi for i ∈ [T ] is at most (
√
N logB N/B

α)(B/Br).

• The number of aj’s contributed by Li for i ∈ [T ] is at most (
√
N logB N/B

α)(2B1−r).
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• The number of aj’s is in memory at the beginning of the deletion phase is at most M = o(N δ).

If we pick α > 1 − r, there are o(
√
N) dk’s whose uncertainty can be further narrowed down by the aj’s

fetched by some Hi. Furthermore, the number of aj’s contained in some Li and in memory at the beginning
of the deletion phase is bounded by o(

√
N), which means that few dk’s can have a comparison with aj in

some Li to further narrow down the uncertainty. Since r can be any constant < 1/3, then α can be any
constant > 2/3.

By Claim 5, we complete the proof of Lemma 4.

After performing all deletions, the number of disk pages that contain some di for i ∈ [
√
N ] is at most

(
√
N logB N)/Bα (i.e. no more than the budget of I/Os for deletions).
We are now in a position to prove the existence of a range query that requires superlinear number of

I/Os. Observe that if a range query contains some bj whose π(bj) still might match some di, to answer the
range query correctly, the algorithm must, due to CA: (1) fetch some disk page that contains di, and (2)
compare bj with di to see whether bj is deleted. By Lemma 4, we know that there are Ω(N/B1−α) such bj’s
and thus some range query of size N δ has Ω(N δ/B1−α) such bj’s, which is more than the claimed budget
O(logB N + N δ/B). We note here that the number of d’s that are already in memory at the beginning of
the range query phase is M = O(Nµ) = o(N δ/B1−α), and thus are insufficient to change the bound. By
the Markov inequality, we can say something stronger:

Lemma 6. There are Ω(N1−δ/B1−α) range queries of size N δ so that, to answer any of the queries cor-
rectly, any algorithm needs to fetch Ω(N δ/B1−α) different di’s for the required comparisons.

However, the observation is not sufficient to prove Theorem 2 because a single I/O might fetch back
multiple di’s for the required comparisons. That is the reason why we need CB. Observe further that every
such expensive query RANGE(2, (i − 1)N δ + 1, iN δ) needs the existence of some disk page that contain
Ω(Bα) different dj’s for required comparisons, denoted by the set Di. Note that c(Di) ⊆ c(Si,Nδ) and
therefore |c(Di) ∩ c(Dj)| ≤ |c(Si,Nδ) ∩ c(Sj,Nδ)| = O(1) for every i 6= j. Since there are at most o(

√
N)

disk pages containing some di, and each of the disk page can be a superset of O(B1−α) different Di’s
because |c(Di) ∩ c(Dj)| = O(1) for i 6= j, Bα > B2/3 >

√
B and the following lemma:

Lemma 7. Let T1, T2, . . . , TC be the subsets of S, where |Ti ∩ Tj | = O(1) for every i 6= j ∈ [C] and
|Ti| = ∆ = ω(

√
|S|) for each i ∈ [C], then C = O(|S|/∆).

Proof. We prove this by a counting argument. Consider the elements inDi = Ti\
⋃
j<i Tj . Since |Ti∩Tj | =

O(1) for every j < i, |Di| = ∆−O(i). We are done because

|S| ≥
∑
i∈[C]

|Di| =
∑
i∈[C]

|Ti| − O(i) and thus C = O(|S|/∆),

where the last equality holds due to the fact that ∆ = ω(
√
|S|).

The Di’s supply is only o(N1/2B1−α). However, the Di’s demand is Ω(N1−δ/B1−α), implying that
some range query requires ω(logB N +K/B) I/Os.

This establishes Theorem 2.
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4 Conclusion

In this paper, we consider issues of both practical and theoretical importance in implementations of and
algorithms for dictionaries. The development of write optimization has reduced the cost of insertions and
deletions. As this tide of insertion/deletion cost recedes, the cost of queries becomes significant in many
settings.

We show that natural operations, including count in single dictionaries and delete in compound dictio-
naries, limit the applicability of write optimization. Our lower bounds correspond to our experience, that
these operations do, in fact, mitigate the benefits of write optimization and become bottlenecks of actual
systems.

In addition to showing lower bounds that start to put a boundary around the applicability of write opti-
mization and that provide an explanation for the difficulty of implementing fast versions of some operations
in databases and file systems, we consider one of our contributions to be the introduction of a set of problems
around compound dictionaries, which are a heretofore poorly studied aspects of dictionaries, despite being
one of the most common ways in which they are used.

We leave one major open question: can the lower bound for deletes in 2-dictionaries be extended to
the entire write-optimization range and raised to show that deletes take Ω(logB N) time, in compound
dictionaries with optimal range queries? In other words, can it be shown that each delete requires a search?
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