
Permuting and Batched Geometric Lower Bounds
in the I/O model
Peyman Afshani1 and Ingo van Duijn1

1 MADALGO∗, Department of Computer Science, Aarhus University, Aarhus,
Denmark
{peyman,ivd}@cs.au.dk

Abstract
We study permuting and batched orthogonal geometric reporting problems in the External
Memory Model (EM), assuming indivisibility of the input records. Our main results are twofold.
First, we prove a general simulation result that essentially shows that any permutation algorithm
(resp. duplicate removal algorithm) that does αN/B I/Os (resp. to remove a fraction of the ex-
isting duplicates) can be simulated with an algorithm that does α phases where each phase reads
and writes each element once, but using a factor α smaller block size.

Second, we prove two lower bounds for batched rectangle stabbing and batched orthogonal
range reporting queries. Assuming a short cache, we prove very high lower bounds that currently
are not possible with the existing techniques under the tall cache assumption.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

The I/O model [7] is the well-established model to design and analyze algorithms for massive
data. In this model, the internal memory has sizeM and the input data is stored in a disk of
infinite size that is divided into blocks of size B. The transfer of data between disk and the
memory is done via I/Os where each I/O can read or write one block. We define m = M/B.
All computation must take place in the internal memory. The goal is to minimize the total
number of I/Os. This is an elegant model for problems where the size of the input data far
exceeds the size of the available memory. Sometimes, algorithms require that M ≥ B1+ε for
a constant ε and this is known as the tall cache assumption (and the converse as the short
cache assumption).

The I/O model has been extensively studied [9, 8, 23]. In this paper, we will focus on
proving lower bounds for batched geometric problems as well as engaging in a more in-depth
study of the permutation algorithms. The two important batched problems that we study
are the following.

I Problem 1 (Batched rectangle stabbing (BRS)). The input comprises a set I of N axis-
aligned rectangles and a query set Q of N points in Rd.

I Problem 2 (Batched orthogonal range reporting (BORR)). The input comprises a set P of
N points and a query set R of N axis-aligned rectangles in Rd.

Output Format. In a batched query problem, often it is required that the output should
consist of all the pairs (ei, qj) where ei is an input element that matches the query qj . We
call this paired output format. In this paper, we consider a different query output format:

∗ A center of Danish National Research Foundation.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Permuting and Batched Geometric Lower Bounds in the I/O model

for every query qj , we require that all the input elements that match qj must be placed
consecutively in the output. In other words, the algorithm should list the answer to qj fully
before answering any other query. However, there is no restriction on the order in which the
queries are answered nor on the order of elements reported for each query. We call this query
output format. Observe that BRS and BORR are equivalent when we consider the paired
output format but they could behave differently if we consider the query output format.

As we shall see shortly, a very connected research direction is in-depth study of algorithms
that permute a given set of input elements in the I/O model. A major or interesting (in our
opinion) rather open-ended unsolved questions are the following.
I Question 1. Can one prove an ω(N/B) lower bound for the permutation problem for when
M > B2? (i) Either using explicit permutation (ii) or using any proof technique that is not
based on counting?
I Question 2. Let A be an algorithm that can compute some permutation π of a given N
input elements in αN/B I/Os, for some parameter α. Can we transform A into another
algorithmA′ that computes the same permutation π usingO(αN/B) I/Os and the algorithm
A′ has some kind of simpler “canonical” form, e.g., it uses simple permutation algorithms
as building blocks?

Previous work. Sorting and permuting are possibly the two most fundamental problems in
the area of I/O algorithms. Sorting N elements requires O(Sort(N)) = min

{
N, NB logm N

B

}
I/Os and this bound is tight [7]. The permutation problem is very similar to the sorting
problem where the goal is to produce (possibly an implicitly defined) permutation of the
input elements. It is also known that any permutation can be performed in O(Sort(N))
I/Os and there exists permutations that require asymptotically that many I/Os; however,
the proof is existential and no such explicit permutation is known to this date [7]. This
lower bound (as well as many of the lower bounds in the I/O model) are proved in the
so-call Indivisibility Model: the data elements are assumed to be indivisible and atomic
and each block can store B data elements and the only computation allowed on the atomic
elements is to move, delete, or copy them (to or from memory). All other information or
computation (unless explicitly mentioned) is free. In the rest of this article, we will only focus
on algorithms that work in the indivisibility model. Within the context of permutations in
the indivisibility model, there has been attempts to answer Question 1 (or alternatively, to
study “easy” permutations) but all the known explicit permutations can be shown to be
easier [7, 16, 20] and in particular, they all can be done in O(N/B) I/Os when we do not
have a short cache.

Additionally, there has been a lot of interest in batched problems. For example, in a
survey Vitter [23] cites 12 different problems that can be answered in O(Sort(N) +K/B)
I/Os where N is the total input size and K is the total output size. See also [10, 13, 17, 18,
19]. In particular Arge et al. [11] show that a slightly less restrictive version of Problem 2
can be solved in O

(
N/B logd−1

m N/B +K/B
)
I/Os. These results produce paired output

format.
For the lower bounds, the permutation and sorting lower bounds as well as a problem

known as “proximate neighbors” [15], provide a basis of Ω(Sort(N)) lower bounds for a lot
of problems, including problems with batches of N input elements and N queries. Showing
a lower bound of roughly Ω(Sort(N)) for smaller batches is more difficult but some such
results are also known [4, 6] (although not explicitly stated in these papers). Lower bounds
for dynamic batched queries have also been proved [5]. In general, Ω(Sort(N)) is the only
lower bound available for all of these problems, in particular because in the indivisibility

P.A. and I. v. D XX:3

model we can consider any algorithm that solves a batched problem as an algorithm that
computes an implicitly defined permutation of the input elements (possibly with duplicates).

Our results. In relation to Question 2, we prove a simulation result that shows any al-
gorithm in the indivisibility model that performs αn I/Os such that it reads and writes each
element O(α) times, can be “simplified” into an algorithm that performs O(α) rounds where
in each round each element is read and written once, using α factor smaller blocks.

In relation to the batched problems and assuming query output format, we prove that
if a data structure answers BRS queries in f(N) + c0K/B I/Os, for a constant c0, then

f(N) = N
logB+log log N

B

·
(

logN
mO(α)

)d−1
, assuming B ≥ mε for a small enough constant ε. For

the BORR problem, then we prove f(N) = Ω
(
N
B logd−1

m (N)
)
. Interestingly, this might

mean that BRS is a more difficult problem than BORR in the query output format.

1.1 Preliminaries
Technical barriers. The indivisibility model has been extremely successful in proving lower
bounds for algorithmic and data structure problems. However, despite the considerable
attention, there are still some very natural questions left open. For instance, we consider
Question 1 as a major open question. The situation becomes more exasperating when one
considers that the known existential proof in fact shows that almost all permutations should
require Ω(Sort(N)) I/Os to permute but yet, we do not know of a single permutation that
even requires ω(N/B) I/Os. Furthermore, the existential proof (as well as the comparison-
based lower bounds for sorting) only can show a Ω(logm(N !)) = Ω(Sort(N)) lower bound
for any reasonably defined batched problem. For example, we can only obtain a Ω(Sort(N))
lower bound for the d-dimensional BORR problem (for a constant d) since the total number
of “combinatorially” different point sets of size N in Rd is at most N !d and logm(N !d) =
Θ(Sort(N)) for a constant d. Obviously, it is extremely unlikely that this bound is tight and
that the d-dimensional BORR problem can be solved in O(Sort(N)) I/Os.

However, if we assume a short cache, then both of these obstacles go away: we can in fact
show lower bounds for explicit permutations such as the matrix transpose permutation and
using a different proof strategy [7]. So the natural question becomes, can we actually proof
meaningful lower bounds for batched geometric queries under the short cache assumption?
Apart from the above considerations, this is also motivated by the desire to understand the
effects of short cache on the performance of the algorithms.

Hong-Kung’s rounds. While trying to prove a lower bound for the complexity of fast Four-
ier transform, Hong and Kung [22] presented a general transformation of any I/O algorithm
into a more standard form that works in rounds. While their transformation is originally
presented for B = 1, it is easily generalizable to larger block sizes. We can thus present
their transformation as follow.

I Theorem 1. An I/O algorithm A that runs in a machine with memory size M can be
transformed into an equivalent algorithm A′ with the same asymptotic running time on a
machine with memory size 2M and the same block size such that A′ runs in rounds and
during each round, A′ first reads 2M/B blocks, performs some computation and then writes
2M/B blocks and clears the memory.

The increase in the block size of the machine in the above theorem is not consequential.
It is easy to show that two machines where the block sizes and memory sizes differ only by

XX:4 Permuting and Batched Geometric Lower Bounds in the I/O model

a constant amount are equivalent, up to constant factors.

I Corollary 2. Let A be an algorithm that works in Hong and Kung’s rounds that creates a
permutation π of a set of N input elements using αN/B I/Os. If A writes every element
O(α) times, then the elements in every output block can be traced back to mO(α) input blocks.
Furthermore, any permutation algorithm writes at least half of the elements at most O(α)
times.

Proof. Since A works in Hong-Kung rounds, we can trace the elements in an output block
to 2m other blocks written previously by the algorithm. Those elements, subsequently can
be traced back to (2m)2 other blocks. Since the elements are written O(α) times, the output
block is traced back to mO(α) input blocks. J

2 Universal External Permuting Algorithm

To study the hardness of permuting, we need to consider arbitrary algorithms that perform
a specific permutation. That is, the hardness of a permutation is determined by the op-
timal algorithm performing it. Often, one admirable goal towards this end is to reduce any
permuting algorithm into a “canonical” permuting algorithm that is simpler and easier to
study. In fact, Hong and Kung’s rounds is one such attempt. However, we would like to
probe much deeper. Our basic building block is the following.

2.1 Blocked Shuffle Exchange
To simplify analysing external memory permuting lower bounds, we only consider a single
type of algorithm that we call a Blocked Shuffle Exchange (BSE).

I Definition 3. In a machine with block size B and memory size M , a blocked shuffle
exchange with α phases is an algorithm with the following structure. (i) it runs in α phases
(ii) in each phase, the algorithm does the following until all elements are read and written
once: read at most m = M/B blocks into the memory, write some permutation of the read
elements to the disk, and then clear the memory.

The goal is to show that we can (partially) simulate any permuting algorithm with a
BSE. In particular, the goal is to simulate an algorithm A that uses at most αN/B I/Os,
with a BSE containing O(α) phases. We can in fact do this but under two caveats. The
first caveat is that we only simulate the permutation of the elements that are written O(α)
times. This is necessary because of some (rather uninteresting) bad examples: an algorithm
that sorts the first O(N/ logN) elements of an input using N/B I/Os, obviously cannot
be simulated with O(1) phases of a BSE. However, the algorithm reads and writes a small
portion of the elements many times while not touching the rest. So it is only meaningful to
demand a simulation on the subset of the input elements that are not read or written many
times. This is what we demand with the first caveat. For the second caveat (that we do not
know if it is necessary or not) we define work as block size times number of I/Os performed;
for an optimal simulation in terms of work, we need to run our simulation BSE on a smaller
block size. The exact formulation of our result is the following.

I Theorem 4. Let A be an algorithm that creates a permutation π of a set of N input
elements using αN/B I/Os. Furthermore, we assume that A writes any element O(α)
times.

Then, we can create a BSE that creates π using O(α) phases and either (i) uses α2N/B

I/Os or (ii) uses the same amount of work but using blocks of size B/α .

P.A. and I. v. D XX:5

Proof. Observe that we can assume A writes every element exactly α̂ := cα times for a
constant c; if some elements are written fewer times, we can just read them and perform
dummy writes.

To describe a BSE, we model the sequential write history of A. That is, all the writes
that A makes laid out sequentially in the order in which they are written. Now conceptually
imagine having α̂ copies of this array stacked on top of each other, where each copy forms
a layer. Every write performed by A thus corresponds to a column that is composed of α̂
layer-blocks stacked on top of each other. Assume the layer-blocks in one block are numbered
from one to α̂, so that the ith block the kth column contains all elements written for the
ith time at the kth write. Thus, simulating an I/O by algorithm A corresponds to reading
or writing in the corresponding column.

︸ ︷︷ ︸

αN/B blocks

α̂



 · · ·

· · ·

· · ·

Block B with |B| = B
︷ ︸︸ ︷

B/α︷︸︸︷
...

...

Figure 1 The write history of A consists of αN/B blocks of size B. Sparse layer blocks can be
compactified using blocks of size B/α (2 in this example). Note that all columns contain at most
one element.

The observation is that in the simulation, we can compute the i + 1st layer by only
reading from the ith layer. To compute the next layer, we simply simulate A, but ignore
empty reads and writes. Since A uses αN/B I/Os, computing the next layer also takes at
most that many I/Os. Since layer-blocks can be very sparse, this gives a work of α2N .

To achieve αN work, the layer blocks are tightly packed in smaller B/α-sized blocks.
Every simulated I/O is now a sequence of densely filled B/α-sized blocks and one additional
sparse block. Since every element occurs exactly once per layer, there are at mostN/(B/α) =
αN/B dense I/Os per layer. The same bound holds for sparse I/Os, since there are αN/B
columns, and at most one sparse I/O per column. Together, this yields α2N/B I/Os and
(α2N/B)(B/α) = αN work. J

The factor α reduction in block size in this result might not be optimal. For small
block size, it might happen that α = Ω(B), and thus the simulation essentially becomes an
internal memory simulation. However, for simulations where α is a constant, the theorem is
particularly useful.

I Corollary 5. To prove that an explicit permutation π requires ω(N/B) I/Os (and thus
ω(N) work), it is sufficient to prove that permuting π with a BSE requires ω(N) work.

2.2 Abstract Duplicate Removal
As we show in Section 3, creating the output of a batched problem is not modelled as a
permutation problem, but as a duplicate removal problem. Essentially, we can think of the
algorithm as an algorithm that runs “backwards” and given the output of the batched prob-
lem, it is trying to remove all the duplicates and produce the input set of elements. Because

XX:6 Permuting and Batched Geometric Lower Bounds in the I/O model

of this, we prove a different simulation result that shows a duplicate removal algorithm can
be manipulated to produce a particular permutation of a subset of the elements with some
nice properties. Before stating our simulation result, we need to introduce some definitions
pertaining to duplicate removal.

I Definition 6. Consider a set S of K atomic elements together with an equivalence relation
≡ defined on S. An element e1 is a duplicate of an element e2 if and only if e1 ≡ e2. The
duplicate removal problem is the problem of finding the quotient set or specifically, it is
the problem of finding a subset S′ ⊂ S of N elements such that no two elements in S′ are
equivalent but for every element in S there is an equivalent element in S′.

The duplicate removal problem is trivial if the algorithm has full knowledge of which
elements are duplicates and if we only care about the movement of the elements. However,
such an algorithm is highly unrealistic. To tie up the algorithm into a more realistic behavior,
we force the algorithm into duplicate elimination framework (DEF).

1: The algorithm starts with an input of K atomic elements, but with no knowledge of the
equivalent relation ≡.

2: At cost of one I/O, the algorithm can read or write a block.
3: The algorithm can move or delete elements in the main memory.
4: The algorithm works in the Hong-Kung’s rounds.
5: The algorithm can detect all elements e1, e2 in the main memory s.t., e1 ≡ e2. From now

on, the algorithm remembers this for free, for all copies of e1 and e2.

Crucially, an algorithm A can actually delete all copies of an element, if it detects that
it is a duplicate of another element. This is a problem for showing lower bounds for the
batched problem since this operation can shrink the input size of the duplicate removal
algorithm, leaving an easier instance of the problem. In the following theorem, we overcome
this difficulty.

I Theorem 7. Consider an algorithm A that works in the DEF and given an input S of
size K it detects a subset S′ ⊂ S of K/2 duplicate pairs in αK/B I/Os.

Then, using O(αK/B) I/Os, and using a machine with M ′ = M + B memory, we can
create a permutation of a subset S′′ ⊂ S such that S′′ contains K/4 pairs of elements (e, e′)
of S where e is a duplicate of e′ and e and e′ are placed in the same block.

Proof. Our overall proof strategy is as follows. We allocate a special buffer of size B in the
memory where we collect pairs of elements (e, e′) such that e is a duplicate of e′. Once the
special buffer is full, we write them to the disk. To fill the special buffer we simulate A two
times: once forward and once backwards. During the backwards execution of A we make
some modifications where instead of writing an element e into a block B, we may write an
element e′ instead. This means that, in the future, when we read the block B, we will have
the element e′ instead of e. We continue the backwards execution of A while treating e′ the
same way e was treated; this is possible since A only moves or copies the element e and
both can be applied obliviously to e′ instead. Ultimately, what we want to show is that by
using the sequence of I/Os that A performs, we can create an algorithm that produces a
permutation of the input such that at least half of the elements reside in a block with at
least one equivalent element. In order to show this, we define two notions.

Consider the original execution of A. First, every element e defines a copy tree C(e),
which is a rooted tree, as follows. There is a node in C(e) for every time e was loaded
into a Hong-Kung round. The root of C(e) is the first time the element e is loaded into

P.A. and I. v. D XX:7

memory. More than one copy of e could be in memory in a specific round. Therefore, pick
one arbitrarily to be the representative that round. Two nodes u and v in C(e) are connected
if the block u is loaded from was written in the round where v was the representative. Note
that this implies that C(e) is a path if e is only ever moved around and never duplicated.

Second, for every equivalence class E we define an equivalence tree T (E). Two elements
ei and ej in T (E) are connected if the algorithm discovered their equivalence. This implies
in particular that (some copies of) ei and ej were in the memory at the same time. It
is therefore easy to write all edges of T (E) to a special buffer during the execution of A.
However, this would not be a permutation since every element of the equivalence tree is
written as many times as its degree.

The basic idea is to output siblings of T (E) in pairs, so that in the at least half of the
elements of T (E) are output as disjoint pairs. There are two obstacles with this approach.
The most important is that siblings might not reside in memory at the same time. The
other obstacle is that nodes might not have an even number of children.

First we show how to handle the second obstacle with the following grouping scheme
(the algorithm does not actually perform these operations, but it is considered known by
the algorithm). Consider the deepest internal node e. If it has an even number of children
they are marked to belong to the same group, meaning that they will be paired up later.
If e has an odd number of children, then e is grouped together with its children. In either
case, e and its children are discarded and the scheme is repeated until there are no nodes
left to group. Note that some elements are not grouped (i.e. those that had an even number
of children), but at least half of the elements will be grouped. The goal now is to pair each
element with exactly one member of its group.

We first run A with a memory of size M + B. The special buffer is used to write
discovered pairs to disk, and it is written to the output section on disk when it is full. If an
element meets a member of its group in the memory, we write the pair to the buffer. The
two elements are now disregarded for the rest of the procedure, meaning they will not be
paired up with other elements anymore. Note that all nodes that were grouped with their
children have been written to disk. What is left is to show how to pair up the remaining
unpaired siblings.

We do this by performing the I/Os of A backwards by considering writes as reads and
vice versa. Elements that have already been paired up will not be used to form new pairs,
but are still moved around in the backwards run. Consider the situation where the algorithm
“discovers” an equivalence between ei and ej , where ei is the parent in the equivalence tree
and ej is still unpaired. Since ei is either already paired in the forward run, or will not
be paired at all, we can safely substitute it with ej . That means that for the rest of the
backwards run, every copy of this ei upwards in the copy tree is now replaced by ej . The
claim is that all unpaired siblings will be paired up in this way.

Figure 2 depicts part of the equivalence tree of ei. The two children ej and ek were never
in memory at the same time. However, if we replace the copy of ei (call it a) that discovers ej
by ej (and similarly for the copy b that discovers ek) the following happens. The substituted
elements will end up in the memory at the same time, namely at the round where some copy
of ei wrote copies a and b to disk. At this point the elements are written to the buffer and
ignored for the rest of the backwards run as usual. If more than two substituted elements
meet in memory, then at most one (namely the one that was not written to the buffer) will
propagate up the copy tree of ei. By construction, an even number of siblings were left, so
all of them will eventually be paired and written to the buffer.

Thus, all elements that were grouped are written to disk exactly once, and always paired.

XX:8 Permuting and Batched Geometric Lower Bounds in the I/O model

ei ei
C(ei)

ekej

ekej

Figure 2 An element ei and its children in the equivalence tree (left), and ei as a supernode
showing the underlying copy tree C(ei) (right).

Since at least half of the elements were grouped, the proof is complete.
J

3 Batched Lower Bounds for Short Cache

In this section, we describe our lower bounds for offline problems under the short cache
assumption. As discussed earlier, a major open problem is to obtain some non-trivial lower
bound of ω(Sort(N)) for some offline problem without the short cache assumption and
unfortunately, none of the known techniques seem capable of doing that.

In general, proving lower bounds for geometric problems involves first building a “diffi-
cult” input set and then proving that the input is indeed difficult. For our problems, this
first part is now considered standard since there have been plenty of lower bounds that have
been using similar set of basic constructions of points and rectangles [2, 3, 12, 14, 21].

These standard constructions have been summarized in the following theorems.

I Theorem 8. [2, 3, 14] For any parameter n, we can place a set P of n points inside the
unit cube U in Rd such that for any two points p, q ∈ P , the rectangle created by p and q has
volume Ω(1/n). Furthermore, any rectangle of volume v contains Ω(vn−O(1)) points.

I Theorem 9. [3, 14, 12] For any two parameters n and `, 2 ≤ ` ≤ n1/3, we can place a
set R of n rectangles inside the unit cube U in Rd with the following properties. There are
t := ct(log` n)d−1 types of rectangles, for a constant ct, with each type having the dimensions(1
`

)i1 × (1
`

)i2 ×· · · (1
`

)id−1 × t`i1+i2+...id−1

n , for some integers ix ∈ {0, . . . , log`(n/t)}. The set
R has the following properties:

(i) each rectangle has volume t
n ,

(ii) Θ(nt) rectangles of each type are sufficient to tile U ,
(iii) every two rectangles of same type are disjoint, and
(iv) r rectangles that have distinct types intersect at a volume at most t

n`r .

3.1 Batched rectangle stabbing problem
In BRS we are given an input set I of N rectangles and a query set Q of N points. The
goal is to find for every point q in Q, the set of rectangles that contain q. For every query
point q, the algorithm is required to output the set of rectangles that contain q in contiguous
blocks. However, the algorithm is given freedom to choose the order in which to report the
queries, and within each query, the order of the rectangles that contain q.

I Theorem 10. Let A be an algorithm that given the input sets I and Q for the BRS problem,
answers the queries in query order format and in f(N) + c0K/B I/Os for a constant c0.

We prove that f(N) = N
logB+log logn ·

(
logN
mO(c0)

)d−1
, assuming B = Ω(log logN).

P.A. and I. v. D XX:9

The first step is to construct the difficult input sets. First, we create a set Q of N points
using Theorem 8. Then, using Theorem 9, we create a set I1 of n initial rectangles for a
parameter n. Next, we “clone” each initial rectangle β times, where β is a parameter. This
is inspired by a data structure lower bound of [1]. Specifically, we create β copies of each
initial rectangle and then place the copies in the input set I. Thus, we can construct a set
I of N = nβ rectangles. One should think of the clones as slightly perturbed copies of the
original rectangles, meaning, the cloned rectangles are distinct atomic rectangles. However,
for simplicity we consider them to cover the same area. If an initial rectangle is stabbed by
k query points, all its clones are said to have multiplicity k.

Thus, we have a set Q of query points, and a set I of rectangles. Assume that the
algorithm decides to answer the set of queries in the order < q1, · · · , qN >. For each qi, let
Iqi refer to the subset of I that contains the point qi. By Theorem 9 and because of our
cloning, Iqi contains tβ rectangles where t = (log` n)d−1. The output of the algorithm can
therefore be described as O := Iq1 , ..., IqN . Thus, O is a sequence of atomic elements, where
each atomic element is a rectangle from I. Let K be the total length of O. With the input
and output formalised, we have the necessary tools to prove the theorem.

Proof of Theorem 10. Consider the input (Q, I) and the output O as described above. O is
generated from the sequence in which I is presented to the algorithm. Multiple query points
might stab the same rectangle, so O can contain many duplicates. Since the operations of
the algorithm are reversible in the indivisibility model, we can consider the algorithm in
reverse. In this setting, the sequence O is the input and the goal is to remove duplicates.
Observe that we have many duplicates; by Theorem 9, each rectangle r ∈ I has volume t/n,
and therefore by Theorem 8 it contains Θ(tnN) = Θ(tβ) points. This means r appears Θ(tβ)
times among the query answers, and thus it is duplicated Θ(tβ) times. By assumption the
algorithm spends at most f(N) + c0K/B I/Os to remove all the duplicates. We claim it
is enough to prove that this duplicate removal requires more than (c0 + 1)K/B I/Os: this
implies that f(N) ≥ K/B.

The rest of the proof is devoted to proving this main claim. By contradiction, assume
the duplicate removal can be done in αK/B I/Os, for α = c0 + 1. If there are more than
K/10 elements of O that are written more than 10α times, then it follows that the algorithm
has spent more than (10α ·K/10)/B = αK/B I/Os, which is not possible. Thus, let O′ be
the subset of O where each element of O′ is written at most 10α times and now we know
that O′ contains at least 9K/10 elements. Since O contains N unique elements, it follows
that O′ contains 9K/10−N ≥ 8K/10 duplicates. Now ignore any element that is not in O′
(or assume the algorithm can just remove the duplicates for free outside O′). This means,
the algorithm has an input of size at least 9K/10 and it remove at least 8K/10 duplicates.

By Theorem 7, we can do a simulation of the duplicate removal with an α (i.e. constant)
factor overhead on the number of I/Os. Let Ô be the sequence of elements produced by
the simulation, and consider a block B in Ô. By Theorem 7, we know B is filled with pairs
of elements that are duplicates and by Corollary 2, B can be traced back to w = mO(α)

blocks of size B in the sequence O′ and in particular to blocks in the sequence Iq1 , ..., IqN .
Each block of size B can store answers for max{1, Btβ } queries and thus w blocks of size B
correspond to u = w ·max{1, Btβ } queries. Since every rectangle is stored in the same block
with at most β of its clones, there are at least B

cβ un-cloned (initial) rectangles in I1 with
multiplicity > 1. That means that there exists a subset S ⊆ Q of queries (where |S| ≤ u),
so that in the set of rectangles in I1 stabbed by S, there are at least B

cβ rectangles stabbed
by at least two query points.

XX:10 Permuting and Batched Geometric Lower Bounds in the I/O model

We show that for the right choice of parameters, this is impossible which would in turn
prove our main claim above. To do this, it is enough to show that two query points qi and
qj cannot stab r = B

cβu2 common initial rectangles; if that holds, then the total of common
initial rectangles over all u2 pairs in S cannot amount to B

cβ .
By an area argument, we show that two query points qi and qj cannot stab r = B

cβu2 + 1
initial rectangles. If the area of the intersection of r initial rectangles, which is t

n`r−1 , is
smaller than the area spanned by qi and qj , which is at least Ω(1

N) = Ω(1
nβ) by Theorem 8,

then we are done. Thus, we must ensure that t
n`r−1 < 1

c′nβ , (i.e. c′βt < `r−1) for some
constant c′. By substituting t = ct(log` n)d−1 and r we get:

c′ctβ(log` n)d−1 < `
B

cβu2 (1)

(d− 1) log log` n+ log β +O(1) < B log `
cβu2 (2)

β((d− 1) log log` n+ log β +O(1)) < B log `
cu2 (3)

We set β = B/(logB + log logn) and thus we get u = w since βt ≥ B. We assume
B = Ω(log logN) and thus this implies β ≥ 1 and thus it is a valid choice for β. Then, we
observe that setting the value log ` = mO(α) satisfies the inequality 3. We thus we obtain
a lower bound of f(N) = Ω(K/B). Since each query point hits exactly tβ rectangles, the

output size is K = Ntβ. For our choice of `, we have t =
(

logN
mO(α)

)d−1
. Using the notation

f � g for f = Ω(g), we get

f(N)� K

B
= N ·

(
logN
mO(α)

)d−1 1
logB + log logn (4)

J

3.2 Batched Orthogonal Ranged Reporting
I Theorem 11. Let A be an algorithm that given the input sets P and R for the BORR
problem, answers the queries in f(N)+c0K/B I/Os. And assume Bε > mc0 for some small
enough constant ε. We prove that

f(N) = Ω
(
N

B
logd−1

m (N) +K/B

)
Proof. The proof of this theorem follows the same reasoning as the proof of Theorem 10,
but the input objects (points) are not cloned. Consider an input (P,R) where P is a set of
N points as in Theorem 8 and R is set of n query ranges as in Theorem 9. The value of n is
determined by a parameter β so that β = N/n. Note that we create fewer rectangles than
points.

As before, we look at the problem as a duplicate removal problem, define the sequence
O of size K and observe that it is sufficient to prove that removal of duplicates from O

requires at least αK/B I/Os where α = c0 + 1. As before, we assume otherwise, meaning,
we assume that the algorithm can remove duplicates in αK/B I/Os. We then define the
sequence O′ and use Theorem 7 to define the sequence Ô. We know that every block in Ô
contains B/c duplicates for some constant c. However, here the role of the rectangles and
points are swapped and proofs start to diverge.

P.A. and I. v. D XX:11

The volume of a rectangle is t
n , so by Theorem 8 it contains Θ(N t

n) = Θ(tβ) points.
Since the points contained in a rectangle are reported consecutively, a block of size B can
store answers to max{1, Btβ } queries. Thus, setting β to be max{1,Θ

(
B
t

)
}, every block can

store the answers to O(1) queries. As before, every block in Ô can be traced back to only
mO(α) blocks in the sequence O and since very block in the sequence O stores answers of
at most O(1) queries, it follows that every block in Ô can be traced back to w = mO(α)

rectangles that contains B/c points that are contained in at least two of the rectangles. This
means, for some pair of rectangles q1, q2, we must have B/(cu2) common points. Observe
that the area of q1∩ q2 is at most O(t

n`) and thus by Theorem 8, q1∩ q2 can contain at most
1 +N ·O(t

n`) = 1 + c′ tβ` points, for some constant c′.
Thus, we can get a contradiction by satisfying the inequality

1 + c′
tβ

`
<

B

w2 .

Observe that if B
w2 > 1, then we can pick ` large enough such that it satisfies the inequality.

In particular, we set ` = Ω(w2). The assumption of B
w2 > 1 translates to Bε > mc0 which is

satisfied by our short cache assumption. Thus, we get a lower bound

f(N) = Ω
(
K

B

)
= Ω

(
tβn

B

)
= Ω

(
tN

B

)
= Ω

(
N logd−1

w2 N

B

)
= Ω

(
N

B
logd−1

m N

)
.

J

References
1 Afshani, P.: Improved pointer machine and I/O lower bounds for simplex range reporting

and related problems. In: Symposium on Computational Geometry (SoCG). pp. 339–346
(2012)

2 Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting in three and higher dimen-
sions. In: Proceedings of Annual IEEE Symposium on Foundations of Computer Science
(FOCS). pp. 149–158 (2009)

3 Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: query lower bounds,
optimal structures in 3-d, and higher-dimensional improvements. In: Symposium on Com-
putational Geometry (SoCG). pp. 240–246 (2010)

4 Afshani, P., Brodal, G.S., Zeh, N.: Ordered and unordered top-k range reporting in large
data sets. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). pp. 390–400 (2011)

5 Afshani, P., Sitchinava, N.: I/O-efficient range minima queries. In: Scandinavian Workshop
on Algorithms Theory. pp. 1–12 (2014)

6 Afshani, P., Zeh, N.: Lower bounds for sorted geometric queries in the I/O model. In: ESA
12: Proceedings of the 20th Annual European Symposium. pp. 48–59 (2012)

7 Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
Communications of the ACM (CACM) 31(9), 1116–1127 (1988)

8 Arge, L.: External memory data structures. In: Abello, J., Pardalos, P.M., Resende,
M.G.C. (eds.) Handbook of Massive Data Sets, pp. 313–358. Kluwer Academic Publishers
(2002)

9 Arge, L.: Efficient external-memory data structures and applications. Ph.D. thesis, Aarhus
University (1996)

10 Arge, L.: The buffer tree: A technique for designing batched external data structures.
Algorithmica 37(1), 1–24 (2003)

XX:12 Permuting and Batched Geometric Lower Bounds in the I/O model

11 Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Theory and practice of I/O
efficient algorithms for multidimensional batched searching problems. In: Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 685–694 (1998)

12 Arge, L., Samoladas, V., Yi, K.: Optimal external-memory planar point enclosure. In:
Proceedings of European Symposium on Algorithms (ESA). pp. 40–52 (2004)

13 Arge, L., Vengroff, D.E., Vitter, J.S.: External-memory algorithms for processing line
segments in geographic information systems. In: Proceedings of European Symposium on
Algorithms (ESA). pp. 295–310. Springer (1995)

14 Chazelle, B.: Lower bounds for orthogonal range searching: I. the reporting case. Journal
of the ACM (JACM) 37(2), 200–212 (1990)

15 Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.:
External-memory graph algorithms. In: Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). pp. 139–149 (1995)

16 Cormen, T.: Fast permuting on disk arrays. Journal of Parallel and Distributed Computing
17(1), 41 – 57 (1993)

17 Crauser, A., Ferragina, P., Mehlhorn, K., Meyer, U., Ramos, E.A.: I/O-optimal computa-
tion of segment intersections. External Memory Algorithms and Visualization pp. 131–138
(1999)

18 Crauser, A., Ferragina, P., Mehlhorn, K., Meyer, U., Ramos, E.A.: Randomized external-
memory algorithms for line segment intersection and other geometric problems. Interna-
tional Journal of Computational Geometry & Applications 11(03), 305–337 (2001)

19 Goodrich, M.T., Tsay, J.J., Vengroff, D.E., Vitter, J.S.: External-memory computational
geometry. In: Proceedings of Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS). pp. 714–723 (1993)

20 Griener, G.: Sparse Matrix Computations and their I/O Complexity. Ph.D. thesis, Tech-
nische Universität München (2012)

21 Hellerstein, J.M., Koutsoupias, E., Miranker, D.P., Papadimitriou, C.H., Samoladas, V.:
On a model of indexability and its bounds for range queries. Journal of the ACM (JACM)
49(1), 35–55 (2002)

22 Kung, H.T.: Computational models for parallel computers. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
326(1591), 357–371 (1988)

23 Vitter, J.S.: Algorithms and data structures for external memory. Foundations and Trends
in Theoretical Computer Science 2(4), 305–474 (2008)

	Introduction
	Preliminaries

	Universal External Permuting Algorithm
	Blocked Shuffle Exchange
	Abstract Duplicate Removal

	Batched Lower Bounds for Short Cache
	Batched rectangle stabbing problem
	Batched Orthogonal Ranged Reporting

