
Fast Computation of Output-Sensitive Maxima in a Word RAM

Peyman Afshani ∗

Department of Computer Science
Aarhus University

peyman@madalgo.au.dk

November 6, 2013

Abstract

In this paper, we study the problem of computing the maxima of a set of n points in three dimensions

with integer coordinates and show that in a word RAM, the maxima can be found in O
(
n log logn/h n

)
deterministic time in which h is the output size. For h = n1−α this is O(n log(1/α)). This improves
the previous O(n log log h) time algorithm and can be considered surprising since it gives a linear time
algorithm when α > 0 is a constant, which is faster than the current best deterministic and randomized
integer sorting algorithms. We observe that improving this running time is most likely difficult since it
requires breaking a number of important barriers, even if randomization is allowed.

Additionally, we show that the same deterministic running time could be achieved for performing n
point location queries in an arrangement of size h. Finally, our maxima result can be extended to higher
dimensions by paying a logn/h n factor penalty per dimension. This has further interesting consequences

for example it preserves the linear running time when h ≤ n1−α, for a constant α > 0, and thus it shows
that for a variety of input distributions the maxima can be computed in linear expected time without
knowing the distribution.

1 Introduction

For two points p and q in d dimensions, we say p dominates q if and only if each coordinate of p is greater
than that of q. The maxima of a set P of n points is the subset of points that are not dominated by any
point in P .

Computing the maxima is one of the classical and fundamental problems in computational geometry and
not surprisingly, it has been studied extensively. The problem arises naturally in many applications such as
multi-criteria optimization and it has a wide range of applications. For instance, when comparing cars on gas
efficiency, price, and rating, if each of the three categories for a car A is better than that of a car B, then
the two cars can be represented by points in three-dimensional space where car A dominates car B which
means points on the maxima represent the “best” cars. This example shows that the dominance relation is a
natural generalization of ordinary comparison to higher dimensions.

Previous Results. The first algorithm to compute the maxima in two and three dimensions was given by
Kung et al. [18], in 1975, and it runs in O(n log n) time (see also [5]). The result extends to higher dimensions
by paying a log n factor penalty for each added dimension. They also proved a lower bound of Ω(n log n) in
the binary comparison tree model matching the complexity of the algorithm in two and three dimensions. In
two and three dimensions, output-sensitive results were obtained by Kirkpatrick and Seidel in 1985 [17]. Their
algorithm runs in O(n log h) time where h is the output size. Once again, in the algebraic decision tree model,

∗Center for Massive Data Algorithmics (MADALGO), a Center of the Danish National Research Foundation.

1

this running time is optimal (also see [16] for another lower bound proof). Finally, if the input has integer
coordinates, then it is known that the maxima can be computed deterministically in O(n log log n) time.
Using standard techniques [8], this gives an output-sensitive algorithm with running time of O(n log log h).
Note that since the best deterministic sorting algorithm runs in O(n log log n) time, improving the general
O(n log log n) algorithm at least requires breakthrough results in sorting.

In addition to the classical results mentioned above, the maxima problem has been a favorite when
studying new paradigms of computation beyond the worst-case analysis. The most popular approach is to
consider the case when the input points come independently from a distribution, (there are many results in
this category, e.g., see [6, 14]). However, the maxima has also been studied in many other models such as,
the distribution-sensitive model [21], the instance-optimal model [1], self-improving model [13], and under
various uncertainty assumptions (see e.g., [20]).

Our Results. In light of the overwhelming attention given to this problem, one might think that anything
that could be said for the classical output-sensitive 3D maxima problem has already been said. Thus, it was
a great surprise for us to realize that the known output-sensitive algorithm for the maxima problem is not
optimal in the word RAM model, specially, since this is the most natural model for the problem given the
orthogonal nature of the problem. In this paper, we show that the maxima of a set of three-dimensional points
with integer coordinates in which each coordinate is w bits long can be computed in O(n log logn/h n) time

deterministically in a word RAM with word size w. For h = n1−α this is O(n log(1/α)) which is linear if α is a
constant. We also observe that improving this bound, even by allowing randomization, requires breakthrough
results in a number of important problems. The algorithm can be generalized to higher dimension by paying
a logn/h n factor penalty for each added dimension. Along the way, we also obtain other interesting results.
We show that n offline point location queries on an arrangement of size h can be done in O(n log logn/h n)
time.

Relevance to Results on Random Pointsets. There are many results that deal with computing the
maxima (and the related problems such as the convex hull) under the assumption that the input points are
drawn independently from a probability distribution. In many cases in fact it is possible to compute the
maxima in linear time [14, 12, 4, 7]. However, such results use some special properties of the distribution and
thus the resulting algorithms are very much tailored to only work with that distribution. For example, an
algorithm presented by Bentley, Clarkson, and Levine [4] concerns the case when each coordinate of the input
points is drawn uniformly from an interval (say the unit interval). In this case, they show that with high
probability one point will dominate almost all the other points so most points can be easily pruned. That one
point itself can be found in a straightforward way by looking at each coordinate and locating the O(log n)
points with the largest coordinate. Our algorithm on the other hand, does not require the knowledge that
the input is drawn from a distribution. As long as the output is not too large (which is the case for all the
distributions considered), the maxima can be found in linear time.

Our Techniques. The main tool that we borrow from the previous literature is Han and Thorup’s linear
time

√
n-way splitting algorithm [15]. However, non-trivial amount of work is required to apply this tool to a

three-dimensional problem, specially since we have very little time to process each point and we cannot use
randomization to prune points. To circumvent these barriers, we use a non-traditional sweep-plane approach
where sweep order on the z-axis is determined by applying the splitting algorithm. The sweep is based on a
two-dimensional dynamic problem with very fast query time but very low update time. The high-level idea is
that since the output size is h, we can afford O(n/h) update time for the dynamic problem that will help us
reach very fast query times.

In the next section, we explore the basics both to warm-up for the more technical parts of the paper and
also to get introduced to the important barriers that are in the way of getting a better result. In Section 3
we present our algorithm to compute the maxima. Finally, in Section 4, we consider the offline point location
problem, and the extension of our algorithm to higher dimensions.

2

(a) Input of n integers.
(b) Random sample marked by cir-
cles.

(c) The 2D instance.

2 Preliminaries and Barriers

The input to the maxima problem is a set P of n points. The output is the subset M ⊂ P of all the points
that are not dominated by any point in P . We denote the size of M by h. Notice that the points in M can
be returned in any order. Furthermore, for every point p ∈ P \M , we require the algorithm to output a
certificate, that is, a point q, (q 6= p) that dominates p; q is not required to be a maxima point. Thus, the
output size is O(n).

As discussed, in the comparison and the Algebraic decision tree models, the status of the problem in two
and three dimensions is fully settled: O(n log n) in the worst-case and O(n log h) for outputs of size h. By
using a technique due to Chan [8], it is possible to use an algorithm that runs in nf(n) time, and build an
output-sensitive algorithm with running time of O(nf(h)). In RAM, computing the maxima in O(n log log n)
time is folklore and combined with Chan’s method, this gives an O(n log log h) time algorithm. Since the
best known deterministic sorting algorithm runs in O(n log log n) time, there is little hope to compute the
maxima in o(n log log n) time without finding a faster sorting algorithm. It might thus sound reasonable to
assume that the O(n log log h) should have the same barrier. As it turns out this is not true.

The crucial point is that the complexity of the planar output-sensitive maxima is not tied to sorting but
to h-way splitting , which is the following problem: given a set X of n integers and a parameter h, partition X
into h sets X1, . . . , Xh of roughly equal size such that all the elements of Xi are smaller than those in Xi+1.
The fact that in the word RAM model there is a surprisingly fast splitting algorithm gives us motivation to
tackle the output-sensitive maxima problem. The following theorem is the main tool that we borrow from
the literature.

Theorem 1. [15] In a word RAM,
√
n-way splitting can be done deterministically in linear time. Also,

h-way splitting can be done deterministically in O(n log logn/h n) time.

As discussed, in two dimensions, the connection between splitting and output-sensitive maxima problem
is quite strong. The following observation follows from folklore techniques (e.g., see [17]).

Observation 1. If h-way splitting can be done in nf(n, h) time, then the planar maxima can be computed
deterministically in O(nf(n, h)) time.

Proof sketch. Do a 2h-way splitting according to the value of the x-coordinate and let P1, · · · , P2h be the
resulting subsets. For each subset Pi, find the point pi with the largest y-coordinate. Observe that if a point
pi dominates a point pj (obviously we must have i > j), then pi dominates all the points in Pj . Since there
are at most h maxima points and 2h sets, at least half of the sets can be pruned. Repeat until few points are
left and then compute the maxima directly. �

Next, we observe that the maxima problem is at least as hard as the h-way splitting problem.

Lemma 1. Assume there exists an algorithm that given a planar point set of size n, outputs the h maxima
points in nf(n, h) time together with a certificate for any pruned point. Then, h-way splitting can be done in
O(nf(n, h) + sort(h)) expected time, in which sort(h) is the time it takes to sort h integers.

Proof. Let X be a set of n integers (Figure 1a). Randomly sample a subset I of h indices from [n] (Figure 1b).
Sort the elements corresponding to the indices, i.e., xi1 < · · · < xih in which ij ∈ I. For any index i 6∈ I,
define the point (xi,−xi). For index ij , define the point (xij ,−xij−1

) (Xi0 = 0) (Figure 1c). It is easy to see

3

that any non-maxima point has only one certificate and using the certificate, we can easily obtain an h-way
splitting. �

The best randomized sorting algorithm runs in O(n
√

log log n) time which means if f(n) is super-constant,
a better splitting algorithm leads to a better sorting algorithm by the following observation.

Observation 2. If h-way splitting can be done in O(n(log logn/h n)f−1(n)) time then integer sorting can be

done in O(n
√

log log nf−1(n)) expected time. Here, we assume f(n) = ω(1).

Proof. The proof is exactly a rewrite of the technique used by Han and Thorup [15] (Section 2) using the
additional parameter f(n). �

We can summarize the discussions in this section as follows: First, unless one can prune the points without
certificates, output-sensitive computation of maxima is at least as hard as h-way splitting. Second, coming
up with an algorithm to compute the maxima that is always faster O(n log logn/h n) requires improving the
best known randomized sorting algorithm. Third, even though sorting can be done in o(n log log n) time
using randomization, it is not know how to compute the maxima for h = Ω(n), in o(n log log n) time in the
worst-case. In other words, beating the worst-case bound of O(n log log n) is still open even if randomization
is allowed and even though randomized sorting can be accomplished in O(n

√
log log n) time.

With this discussion, it is clear that the O(n log logn/h n) bound is the best we can hope for, given the
current status of the integer sorting problem. Since in two-dimensions obtaining such an algorithm is not too
difficult, the main challenge is to obtain the aforementioned bound in three dimensions. We will do this in
the next chapter.

3 3D Maxima

In this section we present our algorithm to compute the maxima of a set P of n points in three dimensions.
We will assume that we know the output size, h. This assumption can be removed by “guessing” the output
size similar to the previous output-sensitive algorithms [8]. Furthermore, we will assume that h ≤ n/ log4 n.
If h ≥ n/ log4 n then our target running time becomes O(n log log n) and we can use one of the previously
known algorithms.

Our overall strategy is simple: we sweep a plane (from z = +∞ to z = −∞) to prune all but O(n/ log n)
of the points and then we run a classical algorithm on the rest of the points.

Our sweep-plane approach is rather non-traditional: normally, to perform a sweep approach, we need to
sort the points by the z-coordinate but since we are essentially aiming for o(log log n) processing time per
point, we cannot afford that. Incidentally, this non-traditional sweep is also used by Kirkpatrick and Seidel
in their output-sensitive maxima algorithm [17] but there approach does not directly work for us as there is
no obvious way to perform one of their main pruning steps within our desired bound (specifically, step 2.1 in
their “max3(T)” algorithm). To overcome this, we need additional ideas.

Using the h-way splitting algorithm, we reduce the universe size such that many points receive the same
x, y, and z-coordinates. As a negative consequence, the reduction can alter the shape of the maxima region
but it has the benefit that it helps us obtain a data structure for dynamic predecessor problem that has very
fast queries (i.e., o(log log n) query time) but with high update time (O(n/h) update time). The hope is that
even in the reduced universe, there would be O(h) maxima points so that during the sweep we can get away
with only O(h) updates. We use more pruning techniques to make up for the damage done by the reduction
in the universe size. The details of the algorithm are presented below.

Reduction to Small Universe. Let t = h log n. We begin the algorithm by a rank-reduction type
technique. For each coordinate, we perform a t-way split, resulting in subsets X1, . . . , Xt, Y1, . . . , Yt, and
Z1, . . . , Zt, arranged in increasing order, that contain the x, y, and z-coordinates of the points respectively.
Consider an input point p with coordinate (x, y, z) and assume x ∈ Xi, y ∈ Yj , and z ∈ Zk. We map p to the
point p(r) = (i, j, k). The mapped points thus live in [t]3, a much smaller universe. Let P (r) be the set of

4

(i, j)

s`

(i, j)

s`+1

(a) Cases when (i, j) is pruned.

(i, j) s`

(i, j)

(b) Cases when (i, j) is ignored.

(i, j)

s`

(c) (i, j) triggers a Z-pruning and it
will be inserted if it survives.

mapped points. We call P (r) the reduced pointset . Despite its inaccuracy, this transformation will preserve
the dominance relation between many pairs of points and thus it will still allow us prune most of the points.

Sweep Order with a Twist. To prune the majority of the points, we follow a sweep-plane approach.
We begin the sweep by processing all the points with z-coordinate t, and then the points with z-coordinate
t− 1, and we continue the sweep downward, until all the points are swept. Note that the sweep order comes
directly from the previous step and the points with the same z-coordinate (i.e., the points in Zi) can be
swept in arbitrary order. This results in the following unusual situation: even if the z-coordinate of a point p
is smaller than the z-coordinate of a point p′, it is possible to sweep p(r) first and then later p′(r), however,
this can only happen if both p and p′ belong to the same Zi bucket (i.e., mapped to the same z value). These
out-of-order sweeps can cause a problem later on. To deal with them, we need special pruning steps that are
discussed next.

Z-Pruning. To deal with the out-of-order sweeps, once in a while, we will issue a special pruning procedure
that we call Z-pruning : given a parameter k, we simply go through all the points in Zk and prune those
dominated by a point in Zk. In other words, if a point p ∈ Zk is dominated by another point q ∈ Zk, we will
delete p. We can do this in O(|Zk| log |Zk|) = O((n/t) log n) time. Remember that Z-pruning is done using
the original coordinates of the points and not the mapped coordinates. We need Z-pruning because without
it, the number of updates into the data structure might significantly exceed h, an unpleasant outcome that
can ruin our running time.

Dynamic Staircase. The sweep-plane approach corresponds to maintaining the maxima of a pointset (to
be exact, the projection of the reduced pointset onto the xy-plane) in two dimensions under deletions and
insertions. The two-dimensional maxima is in the form of a staircase. Let s1, . . . , sr be the current staircase,
sorted from left to right. Assume we are sweeping the point p(r) = (i, j, k), meaning, we need to insert (i, j)
into this staircase. To do so, we find the successor, s`, of i, that is, we consider all the staircase vertices whose
x-coordinate is greater than or equal to i and pick the one with the smallest x-coordinate to be s`. If (i, j) is
dominated by s` (remember this requires that the x and y-coordinates of s` be strictly larger than i and j,
respectively) then (i, j) is pruned. If this is not the case we check with s`+1: if (i, j) is dominated by s`+1

then (i, j) is pruned (see Figure 2a). If (i, j) lies on the boundary of the staircase (see Figure 2b) then we
ignore (i, j); it will neither be inserted into the staircase nor will it be pruned and we will take care of these
ignored points later. Otherwise, j is larger than the y-coordinate of s`, and thus (i, j) needs to be inserted as
a new staircase vertex. However, before doing so, we issue a Z-pruning with parameter k, unless of course
a Z-pruning with parameter k was already issued. We insert (i, j) into the staircase only if it survives the
Z-pruning step. After the insertion, we check the existing staircase vertices that might be dominated by
(i, j); these are deleted from the staircase (see Figure 2c).

Now we describe how to maintain the staircase under insertions and deletions. In general, this requires
Ω(log n/ log log n) query time (reduction from dynamic marked ancestor problem [3]) but fortunately, ours is
a special case and it permits a faster solution.

Staircase Data Structure. Our data structure to maintain the staircase is essentially a modification of
van Emde Boas tree. Let f =

√
n/t. Build a tree T of fanout f on the universe [t]. The tree will have height

5

logf t. We allow the following operations: we can mark or unmark a leaf or given a query leaf, we can ask for
the first marked leaf to the right of the query. Consider an internal node v with f children v1, . . . , vf . If the
subtree at v contains at least one marked leaf, then for each vi, we store the index of the smallest marked
leaf to the right of the subtree of vi and we call this the successor of vi. This is stored for all the children of
v, even those that do not contain any marked leaves.

Updates and Queries. It is not too difficult to see that updates can be handled in O(f logf t) time, by
walking down and up the tree and updating the relevant information. The successor queries now can be
answered in O(log(logf t)) time: Consider a query leaf. We access the ancestor v of the query leaf at depth
(logf t)/2. Let vi be the child of v that contains the query leaf. Both v and vi can be found in constant time
by address calculation. If the subtree at v does not contain any marked leafs, then we need to recurse on
the top half of the tree. Otherwise, we have stored the successor of v as well as every child of v, including
vi. If the subtree vi does not contain any marked leaf, then the answer to the query is the successor of vi.
Otherwise, after accessing the successor of vi, we need to recurse on the subtree rooted at vi. Either way,
after spending O(1) time, we will end up recursing on a tree of half the height, resulting in O(log logf t) query
time.

Analysis. We first bound the number of times Z-pruning is invoked. This is important as Z-pruning is an
expensive operation.

Lemma 2. At most h calls are made to the Z-pruning procedure.

Proof. Remember that we run our sweep on the reduced point set P (r). Also note that in our sweep approach,
some points will be ignored while sometimes we will issue special pruning steps. Consider a point p(r) = (i, j, k)
that when swept leads to the invocation of Z-pruning with parameter k. This can only happen if inserting
(i, j) into the staircase would have resulted in the creation of a new staircase vertex. To prove the lemma, it
suffices to show that Zk contains at least one maxima point of P . If p is a maxima point of P then our claim
is trivially true so assume p is dominated by a maxima point m ∈ P . By definition we have p(r) = (i, j, k)
and let m(r) = (i′, j′, k′). As m dominates p, we have i ≤ i′, j ≤ j′, and k ≤ k′. If m ∈ Zk, then our claim is
trivially true again. Thus, we must have k < k′ but this guarantees that m is swept before p, which implies
when sweeping p, the point (i′, j′) must have been inserted into the staircase. Finally, observe that p will be
ignored if i = i′ or if j = j′, meaning, Zk contains a maxima point. �

Next lemma is quite natural sounding but it is not completely trivial due to the existence of ignored
points.

Lemma 3. Consider a staircase vertex s = (i, j) and let A be the set of points p such that p(r) = (i′, j′, k′)
where i′ = i and j′ = j. A contains at least one maxima point in the original point set.

Proof. Let p be the point that causes the creation of the staircase vertex s (note that p may not be a maxima
point). We must have p(r) = (i, j, k) for some k ∈ [t]. This means that a Z-pruning with parameter k was
issued sometime in the past and p has survived the pruning. With a slight abuse of notation, redefine A ⊂ P
to be the subset of the points that are mapped to (i, j, k) that also have survived the Z-pruning step. We will
show that no point m ∈ P \A can dominate a point in A. Assume to the contrary that there is a maxima
point m ∈ P \A that dominates a point a ∈ A. By definition we have a(r) = (i, j, k) and let m(r) = (i′, j′, k′).
We know i ≤ i′, j ≤ j′, and k ≤ k′. We know a has survived the Z-pruning so we must have k < k′ but this
implies m is swept before a. Since m is a maxima point, it cannot be pruned, meaning, either m must have
been ignored or inserted into the staircase. Both of these options imply the existence of a staircase vertex
m′ = (i′′, j′′) with i′ ≤ i′′ and j′ ≤ j′′ thus this results in a contradiction since the existence of m′ will either
lead to p(r) being pruned or ignored. �

Corollary 1. At most h staircase vertices are created (or deleted) during the sweep.

Finally, we show that only a small fraction of the points can be ignored.

6

Lemma 4. In total, O(n/ log n) points are ignored throughout the sweep approach.

Proof. For a point p with p(r) = (i, j, k) to be ignored, there should be a staircase vertex v = (i′, j′) with
either i = i′ or j = j′. By Lemma 3, there is a maxima point p that gets mapped to (i′, j′). It is clear that we
either have p ∈ Xi′ or p ∈ Yj′ and since each such set contains O(n/t) points and we have h maxima points,
the total number of ignored points is O(hn/t) = O(n/ log n). �

Theorem 2. The maxima of set of n points with w bit integer coordinates can be found in O(n log logn/h n)
time deterministically, in a RAM with word size of w.

Proof. First, we run the sweep algorithm outlined above which results in a (significant) subset of the points
being pruned. Let P ′ be the subset of the points left (note that this includes the ignored points). We run a
classical maxima algorithm on P ′.

The correctness of the algorithm is obvious. To bound the running time, we need to show two things:
first, that the sweep algorithm runs within the desired bound and second that the size of P ′ is not too large
(we will prove that |P ′| = O(n/ log n)).

We begin by analyzing the sweep algorithm. The reduction of the universe to [t]3 can be done in
O(n log logn/t n) time which is O(n log logn/h n). Each point that is swept issues one query to the modified
van Emde Boas tree. However, by Corollary 1, at most h staircase vertices are created and deleted.
This means, the total number of mark and unmark operations done on the tree is at most 2h. The tree
performs each query in O(log logf t) = O(log log√

n/t
(h log n)) = O(log logn/h n) time. The total time spent

performing the updates is O(hf logf t) = O(h
√
n/h log n) = O(n). By Lemma 2, there are at most h calls

made to the Z-pruning procedure. Since the size of each set Zk is O(n/t), each such call is executed in
O(n(log n)/t) = O(n log n/(h log n)) = O(n/h) time resulting in O(n) total time.

Thus, it remains to bound the size of P ′. By Lemma 4, there are O(n/ log n) ignored points. Note that
any other point is either pruned or is inserted into the staircase. Since there are at most h staircase vertices
by Corollary 1, we have |P ′| = O(h+ n/ log n) = O(n/ log n), which means, the maxima of P ′ can be found
in O(n) time. �

4 Higher Dimensions and Related Problems

In this section, we further explore the implications of our results.

4.1 Offline Point Location.

We begin with the offline point location problem in the asymmetric version in which the number of queries n is
much larger than the size of the arrangement h. Formally, we have a set of n points in the plane together with
a set of h, h < n, disjoint axis-aligned rectangles. The goal is to find the rectangle (if any) that contains each
input point, all within O(n log logn/h n) time. Even though this is less popular than the general version of
the problem (i.e., the case when n = Θ(h)), the asymmetric case still arises from time to time in applications
(e.g., see [10]). In fact, we will need this result for our four-dimensional maxima algorithm. As before, we
assume h ≤ n/ log4 n since otherwise known results give us the desired bound.

Note that unlike some previous attempts [10], we cannot assume that the points are in sorted order.
Another very significant difference between our variant and the general case considered by Chan et al. [10]
relates to the “slab subproblem”. In our case, the slab subproblem is trivial (i.e., point location among m
horizontal lines) but all the known reductions from the general point location problem to the slab subproblem
induce a log log n factor penalty per query which is already too much for us.

To warm up, we begin with a very simple method. Assume h ≤
√
n/ log n. In this case, we simply extend

the horizontal and the vertical boundaries of each rectangle to form a grid with O(h2) = O(n/ log2 n) cells.
Each grid cell is either fully contained in a rectangle or lies outside all of them. With a simple sweep line
algorithm, for each grid cell we can determine if it is contained in a rectangle, and if so, we store a pointer
to that rectangle. This will use O(h2) space and will take O(h2 log h) time to build. Fortunately, both

7

these terms are sublinear. To solve the n point location queries, we use the linear time
√
n-way splitting

algorithm of Theorem 1 on x and y-coordinates; for every point p, if we know the vertical slab that contains
its x-coordinate and the horizontal slab that contains its y-coordinate, then we can calculate the grid cell
that contains p. Finding the vertical (resp. horizontal) slab that contains each point is equivalent to h-way
splitting with respect to specific splitters, namely, the x-coordinates (resp. the y-coordinate) of the slabs.
This is known to be equivalent to the h-way splitter problem [15] and can be solved within the same time
(i.e., O(n log logn/h n) which is in fact linear in this special case).

The above method crucially depends on the O(h2) space usage and in fact it is an expensive approach to
turn the point location problem into a slab problem by paying a large space overhead. To make it useful,
we need a preprocessing step which combines the grid based approach [2] with the first technique of Chan’s
point location strategy [9]. This recursive strategy uses an additional parameter, T , that intuitively captures
the amount of space available to each subproblem.

Consider a subproblem for our preprocessing step which involves a set of m rectangles and a parameter
T > m. The case when m <

√
T is the base case: we employ the basic approach outlined above, by building

an m×m grid (since we have a lot of space available). Otherwise, we build
√
T vertical (resp. horizontal)

slabs such that each slab contains m/
√
T vertices (of the rectangles). This results in a grid of size T . Using a

sweep line technique, we can determine for each grid cell whether:

(i) it is fully contained in a rectangle (we also store a pointer to the rectangle if this is the case), or

(ii) a rectangle horizontally cuts through it, or

(iii) a rectangle vertically cuts through it, or

(iv) none of the above (i.e., every rectangle intersecting the cell has a vertex inside the cell)

Because of the disjointness of the rectangles, (ii) and (iii) cannot happen simultaneously. Determining the
above for each grid cell takes O(m logm+ T log T) time and storing it needs O(T) space. Now consider a
horizontal (resp. vertical) slab s and consider the rectangles that have a vertex inside it. We clip each such
rectangle using s and then recurse inside s using parameter

√
T . Because we have assumed T > m, it follows

that the recursion in fact terminates and will always reach a base case when m <
√
T .

Let f(m,T) be the running time of the above procedure. We have,

f(m,T) = O(m logm+ T log T) + 2
√
Tf(m/

√
T ,
√
T).

After i steps of recursion f(m,T) is bounded by

O(2im logm+ 2iT log T) + 2iT 1−1/2if(m/T 1−1/2i , T 1/2i).

The base case is when m ≤
√
T and for that we have f(m,T) = O(m2 logm) = O(T log T). This means, the

recursion continues until m/T 1−1/2i ≤ T 1/2i+1

and thus, i ≤ log logT/m T − 1. Combined with the base case,

we can estimate f(m,T) = O(T log2 T). This estimate is not tight but it suffices for now. To solve the offline
point location, we will use m = h and T = n/ log2 n which results in O(n) construction time.

It remains to answer the n point location queries. We use the grid structures that we built above. At the
root, we have n query points, m = h, and T = n/ log2 n. Thus, at the root, we have a

√
n/ log n×

√
n/ log n

grid. Handling the root is a bit easier than handling subproblem, so we first focus on the root. Very similar
to the basic strategy, in O(n) time, we can find the grid cell that contains each query point using the

√
n-way

splitting algorithm. Consider a query point p inside a grid cell c. If there is a rectangle that completely
contains c, then we can directly answer the query for p. If a rectangle horizontally (resp. vertically) cuts
through c, then it follows from the disjointness of rectangles that no rectangle can vertically (resp. horizontally)
cut through c which in return implies the answer to p can be found by recursing in the horizontal (resp.
vertical) slab that contains c, and finally, if none of these is the case then we can recurse in either horizontal
or vertical slab. Using the splitting algorithm, all the recursive problems can be built in O(n) time.

8

Handling subproblems is only slightly more complicated and the case of the root outlined above. The
main issue is that we don’t have control on the number of points that get passed to each subproblem and
thus we might be unable to apply the splitting algorithm. Consider a subproblem at depth i of the recursion.
In this subproblem we will have m′ = Θ(h/T 1−1/2i) rectangles, and a parameter T ′ = T 1/2i . Assume we
need to answer n′ queries in this subproblem. We consider three cases.

1. n′ < T ′: Intuitively, in this case we have less than “expected” queries to answer to we simply use a
classical method with O((n′ +m′) log n) time instead of recursing. Thus, in the remaining cases we will
have n′ ≥ T ′ which means the

√
T ′-way splitting algorithm will run in linear time in the remaining

cases.

2. m′ <
√
T ′ (the base case): Remember that in this case, during the preprocessing, we have built a

m′ ×m′ grid where each grid cell stores a pointer to the rectangles that contains it (if any). Since
n′ ≥ T , using the m′-way splitting algorithm, we can find the grid cell that contains each query point
and thus we can answer the queries in O(n′) time.

3. Otherwise: In this case, we have built a
√
T ′ ×

√
T ′ grid. Using the

√
T ′-way splitting algorithm, we

find the grid cell that contains each query point and then recurse on the horizontal slab or the vertical
slab similar to the root case.

The maximum depth of the recursion is at most log logn/m n ≤ log log n and at the depth i of the recursion

there are 2iT 1−1/2i subproblems, with each subproblem having a parameter T ′ = T 1/2i . The total number of
points (over all subproblems at depth i) involved in case 1 is at most 2iT 1−1/2iT 1/2i = 2iT = O(n/ log n).
Similarly, the total number of rectangles involved in case 1 is 2im = O(h log h). As there are only O(log log n)
recursions, the total running time (over all recursion depths) spent in case 1 is O(n). The total running time
spent in case 2 is also linear as it involves no recursions. This leaves step 3 only. The total time spent in step
3 is O(nd) where d is the maximum recursion depth. Thus, we have the following.

Theorem 3. A set of n offline point location queries on a set of h disjoint rectangles can be executed
deterministically in O(n log logn/h n) time in a word RAM.

4.2 Output-Sensitive Maxima in Four Dimensions.

To remind the reader, we denote the input set of n points with P . As before, we assume an upper bound h
on the number of maxima points is known. Thus, we would like to find all the at most h maxima points
among the n input points in four dimensions. We also assume h ≥

√
n (if h <

√
n we can still run our

algorithm assuming h =
√
n). Let αh be such that h = n1−αh . Define m =

√
nαh and since h ≥

√
n we have

m ≤
√
n ≤ h. Perform an m-way split along the fourth dimension, thus yielding sets T1, . . . , Tm in which

each Ti contains O(n/m) points and the fourth coordinate of any points in Ti is greater than those in sets
T1, . . . , Ti−1. The m-way split can be done in linear time.

We now use a sweep-based approach that curiously is not useful for the general maxima problem but it
works quite well for the output-sensitive version. We begin from Tm and process the sets one by one under
the invariant that before processing Ti, the maxima of the points in Ti+1, . . . , Tm has already been computed
and stored in a set M . To handle Ti, first, we prune any point of Ti that is dominated by a point in M .
We call this the prune step and we shall present its details shortly. But notice that we can now recursively
compute the maxima of the remaining points of Ti. Observe that the result of this recursion step can be
added to M as a maxima point of Ti is a maxima point of P if it is not dominated by a point in M . We know
|Ti| = O(n/m), and |M | ≤ h and assuming the pruning step can be done in P (n/m, h) time, the running
time T (n, h) of the algorithm will obey the following recursion:

T (n, h) = O(n) +mP (n/m, h) +

m∑
i=1

T (n/m, hi)

9

where
∑m
i=1 hi = h. In an upcoming lemma we will prove that P (n, h) = O(n log logn/h n). Thus,

mP (n/m, h) = O
(
n log logn/(mh)(n/m)

)
=

O

(
n log

(
(1− αh/2) log n

(1− αh/2) log n− (1− αh) log n

))
=

O

(
n log

(
1− αh/2
αh/2

))
= O

(
n log log

1

αh

)
=

O
(
n log logn/h n

)
.

Plugging this in the recursion for T (n, h) we get that T (n, h) = O(n log logn/h n) +
∑m
i=1 P (n/m, hi). Since

the function log(log(a
a−log(x))) is a concave function of x, we have,

m∑
i=1

log

(
log n/m

log n/m− log hi

)
≤

m log

(
log n/m

log n/m− log(h/m)

)
.

Our recursion thus solves to
T (n, h) = O(n(log logn/h n) logn/h n).

We now look at the pruning step.

Lemma 5. We have P (n, h) = O(n log logn/h n).

Proof. Remember that the input to the pruning step is M and Ti. It is clear that we can ignore the fourth
coordinate of all the points since all the points in M have their fourth coordinate larger than any points in Ti
so in the rest of the proof we assume M and Ti are in the three dimensional space (or equivalently, we use M
and Ti to refer to their projection onto the first three dimensions). Using a classical idea [19], the problem
can in fact be turned to an offline point location problem: The region R ⊂ R3 consisting of all the points
dominated by points of M consists of vertices, and orthogonal faces. Intuitively, the idea is to look at R from
“above” (or down the z-axis) which gives us a planar orthogonal arrangement, composed of O(|h|) disjoint
orthogonal rectangles and it can be built in O(h log log h) time. By storing the z-coordinate of each face (or
intuitively, it’s “elevation”), once we find the face of the arrangement that contains the projection of a point
p ∈ Ti, we can determined if p is dominated by a point in M or not. Thus, lemma follows from Theorem 3.
�

In the next section, we show how to generalize this idea to higher dimensions.

4.3 Output-Sensitive Maxima in Higher Dimensions.

The general strategy to compute the maxima in higher dimensions is not too complicated and in fact it is
very similar to the four-dimensional case. We split the points according to the value of d-th dimension thus
dividing the points into “slabs” perpendicular to that dimension. We follow a sweep approach to prune some
of the points and then recurse on the points within each slab. During the sweep, we will encounter a different
problem and in one dimension lower.

As before, we assume h ≥
√
n, let αh be such that h = n1−αh , and m =

√
nαh . Perform an m-way split

along the d-th dimension, thus yielding sets T1, . . . , Tm. The m-way split can be done in linear time as before.
The general layout of the algorithm is the same as the one for the four dimensions and the only difference is
the pruning step. If we denote the time it takes to compute the maxima of n points in d dimensions with
Td(n, h), we have

Td(n, h) = O(n) +mPd−1(n/m, h) +

m∑
i=1

Td(n/m, hi) (1)

10

where Pd−1(n/h, h) is the time it takes to process a given set of n/h points in (d− 1)-dimensional space and
remove the points dominated by at least a point from another set of h points.

The main point of departure from the d = 4 case is the following lemma. Unfortunately, for dimensions
five and above, we no longer have access to the nice reduction to the point location problem in two dimensions
lower so we must try a different strategy.

Lemma 6. We have Pd(n, h) = O(n(log logn/h n)(logn/h n)d−3).

Proof. Consider two sets of points P and M in d-dimensional space with |P | = n and |M | = h. To prove the
lemma we must show that we can prune any point of P that is dominated by a point of M within the time
bound in the statement of the lemma. We use induction and we assume the lemma holds in (d−1)-dimensional
space. Clearly Lemma 5 is the base case.

Let t =
√
n/h. We perform a t-way split on the d-th dimension on set P , resulting in sets P1, . . . , Pt,

arranged according to the decreasing value of the d-th coordinate (i.e., points in Pi have larger d-th coordinate
than points in Pi−1). This gives us t slabs perpendicular to the d-th dimension such that Pi is the set of
points contained in the i-th slab. Distribute the points of M into these slabs as well. This phase takes
O(n+h log logh/t h)) = O(n) time. Let M1, . . . ,Mt be the resulting sets, arranged according to the decreasing
order of the d-th coordinate.

For every i = 1, . . . , t, using a (d − 1)-dimensional pruning subroutine, delete the points in Pi that is
dominated by a point in Ui = ∪i−1j=1Mj . Finally, recursively prune Pi by Mi. Since |Pi| = O(n/t) and |Ui| ≤ h,
we get the following recursion:

Pd(n, h) = O(n) + tPd−1(n/t, h) +

t∑
i=1

Pd(n/t, hi)

where

t∑
i=1

hi = h.

Now observe that

log(n/t)

log(n/t)− log h
≤ log n

log n− log h− log t
≤ 2 log n

log n− log h
,

which means

tPd−1(n/t, h) =

O

(
n log

(
logn/(th)(n/t)

)(
logn/(th)(n/t)

)d−4)
= O

(
n(log logn/h n)

(
logn/h n

)d−4)
.

The rest of the proof is very similar to the proof of Lemma 5: by a similar concavity argument, we can show
that the maximum value of the recursion is obtained when hi = h/t. The lemma follow by observing that the
depth of the recursion is logt n = O(logn/h n). �

By plugging in the value for Pd(n, h) in (1) we obtain the following theorem.

Theorem 4. The maxima of a set of n points with integer coordinates in d-dimensional space can be computed
deterministically in O(n(log logn/h n)(logn/h n)d−3) time using a word RAM, in which h is the number of
maxima points.

11

5 Conclusions and Open Problems

In this paper, we gave very fast algorithms for computing output-sensitive maxima in three and higher
dimensions. We also justified our belief that these algorithms are difficult to improve.

This work leaves many interesting problems to be tackled. We mention the two most interesting ones:
First, is it possible to answer n offline point location queries on a non-orthogonal arrangement of size h in
linear time, assuming h ≤ nε, for some constant ε? We note that an affirmative answer to this question will
automatically improve the offline point location results of Chan and Pătraşcu [11]. Second, is it possible to
find the maxima of a set of points in three dimensions in o(n log log n) expected time? Alternatively, one can
also formulate this as a point location problem: is it possible to answer n offline points locations queries in
an arrangement of size n in o(n log log n) expected time? We believe the answer to all these questions should
be positive even though the current techniques seem insufficient to tackle them.

References

[1] P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal geometric algorithms. In Proc. 50th IEEE
Symposium on Foundations of Computer Science, pages 129–138, 2009.

[2] S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range searching. In Proc.
41st IEEE Symposium on Foundations of Computer Science, pages 198–207, 2000.

[3] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th IEEE Symposium on
Foundations of Computer Science, pages 534–, 1998.

[4] J. Bentley, K. Clarkson, and D. Levine. Fast linear expected-time algorithms for computing maxima and
convex hulls. Algorithmica, 9(2):168–183, 1993.

[5] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM, 23(4):214–229, 1980.

[6] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time algorithms for computing
maxima and convex hulls. In Proc. 1st ACM/SIAM Symposium on Discrete Algorithms, pages 179–187,
1990.

[7] J. L. Bentley and M. I. Shamos. Divide and conquer for linear expected time. Information Processing
Letters, 7(2):87–91, 1978.

[8] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete and
Computational Geometry, 16(4):361–368, 1996.

[9] T. M. Chan. Persistent predecessor search and orthogonal point location in the word RAM. In Proc.
22nd ACM/SIAM Symposium on Discrete Algorithms, 2011. To appear.

[10] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the RAM, revisited. In
Proc. 27th ACM Symposium on Computational Geometry, pages 1–10, 2011.

[11] T. M. Chan and M. Pǎtraşcu. Transdichotomous results in computational geometry, II: offline search.
ACM Transactions on Algorithms, submitted, 2010. Preliminary version in STOC’07.

[12] K. L. Clarkson. More output-sensitive geometric algorithms. In Proc. 35th IEEE Symposium on
Foundations of Computer Science, pages 695–702, 1994.

[13] K. L. Clarkson, W. Mulzer, and C. Seshadhri. Self-improving algorithms for coordinate-wise maxima. In
Proc. 28th ACM Symposium on Computational Geometry, pages 277–286, 2012.

[14] M. J. Golin. A provably fast linear-expected-time maxima-finding algorithm. Algorithmica, 11:501–524,
1994.

12

[15] Y. Han and M. Thorup. Integer sorting in O(n
√

log log n) expected time and linear space. In Proc. 43rd
IEEE Symposium on Foundations of Computer Science, pages 135–144, 2002.

[16] S. Kapoor and P. Ramanan. Lower bounds for maximal and convex layers problems. Algorithmica,
4(1-4):447–459, 1989.

[17] D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal vectors. In Proc.
1st ACM Symposium on Computational Geometry, pages 89–96, 1985.

[18] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. Journal of the
ACM, 22:469–476, 1975.

[19] C. Makris and A. Tsakalidis. Algorithms for three-dimensional dominance searching in linear space.
Information Processing Letters, 66(6):277–283, 1998.

[20] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In Proc. 33rd International
Conference on Very Large Databases, pages 15–26, 2007.

[21] S. Sen and N. Gupta. Distribution-sensitive algorithms. Nordic Journal of Computing, 6(2):194–211,
1999.

13

	Introduction
	Preliminaries and Barriers
	3D Maxima
	Higher Dimensions and Related Problems
	Offline Point Location.
	Output-Sensitive Maxima in Four Dimensions.
	Output-Sensitive Maxima in Higher Dimensions.

	Conclusions and Open Problems

