
Cache-Oblivious Range Reporting With Optimal Queries Requires

Superlinear Space

Peyman Afshani1,∗ Chris Hamilton2,† Norbert Zeh2,‡

1 MADALGO§, Dept. of Computer Science, Aarhus University, IT Parken, Aabogade 34
2 Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 1W5, Canada

peyman@madalgo.au.dk, {chamilton,nzeh}@cs.dal.ca

Draft of August 24, 2009

Abstract

We consider a number of range reporting problems in two and three dimensions and prove lower bounds
on the amount of space used by any cache-oblivious data structure for these problems that achieves the
optimal query bound of O(log

B
N + K/B) block transfers, where K is the size of the query output.

The problems we study are three-sided range reporting, 3-d dominance reporting, and 3-d halfs-
pace range reporting. We prove that, in order to achieve the above query bound or even a bound
of f(log

B
N, K/B), for any monotonically increasing function f(·, ·), the data structure has to use

Ω(N(log log N)ε) space. This lower bound holds even for the expected size of any Las-Vegas-type data
structure that achieves an expected query bound of at most f(log

B
N, K/B) block transfers. The expo-

nent ε depends on the function f and on the range of permissible block sizes.
Our result has a number of interesting consequences. The first one is a new type of separation

between the I/O model and the cache-oblivious model, as deterministic I/O-efficient data structures
with the optimal query bound in the worst case and using linear or O(N log∗ N) space are known for the
above problems. The second consequence is the non-existence of linear-space cache-oblivious persistent
B-trees with optimal 1-d range reporting queries.

1 Introduction

Range reporting is a well studied fundamental problem in computational geometry. Given a set S of points
in R

d, the goal is to preprocess S so that, for a query range q, all points in S ∩ q can be reported efficiently.
Typical types of query ranges include axis-aligned boxes, circles, simplices, and halfspaces. To indicate the
type of permissible queries, the problem is then referred to more specifically as orthogonal, circular, simplex or
halfspace range reporting. Three-sided range reporting is a special case of planar orthogonal range reporting
that considers axis-aligned boxes whose top boundaries are fixed at y = +∞. Dominance reporting is another
important special case of orthogonal range reporting: given a query point q, the problem is to report all
points in S that are dominated by q, that is, whose coordinates are less than q’s in all dimensions. These
different query types are illustrated in Figure 1.

∗Part of this work was done while visiting Dalhousie University. Work was supported in part by the Danish National
Research Foundation and the Danish Strategic Research Council.

†Supported by a Killam Graduate Scholarship.
‡Supported in part by the Natural Science and Engineering Research Council of Canada, the Canadian Foundation for

Innovation, and the Canada Research Chairs program.
§Center for Massive Data Algorithmics—a center of the Danish National Research Foundation.

1

orthogonal circular simplex halfspace 3-sided dominance

Figure 1: Standard query types.

Most previous work on this type of problem has focused on standard models of computation, such as the
RAM model or the pointer machine model. The distinguishing feature of these models is that the access
cost to a data item is independent of the location where the item is stored in memory. These models are
useful for studying the fundamental computational difficulty of a problem, but they ignore that in reality
the time to access an item can vary by up to a factor of 106 depending on its present location (disk, internal
memory, CPU cache, etc.).

A number of models have been proposed to model the non-uniform access costs in real memory hierarchies.
See [31] for a survey. The two most widely adopted ones are the input/output model (or I/O model) [6] and
the cache-oblivious model [18]. Their success is due to the balance they provide between simplicity, in order
to allow the design and analysis of sophisticated algorithms, and accuracy in predicting the performance of
algorithms on real memory hierarchies.

The I/O model considers two levels of memory: a fast internal memory with the capacity to hold M
data items, and a slow but conceptually unlimited external memory. All computation has to happen on
data in internal memory. The transfer of data between internal and external memory happens in blocks of
B consecutive data items; the complexity of an algorithm is the number of such block transfers it performs.

The cache-oblivious model provides a simple framework for designing algorithms for multi-level memory
hierarchies, while using the simple two-level I/O model for the analysis. In this model, the algorithm is
oblivious of the memory hierarchy and, thus, cannot initiate block transfers explicitly. Instead, the swapping
of data between internal and external memory is the responsibility of a paging algorithm, which is assumed
to be offline optimal, that is, to perform the minimum number of block transfers possible for the memory
access sequence of the algorithm. Since the memory parameters are used only in the analysis, the analysis
applies to any two consecutive levels of the memory hierarchy. In particular, if the analysis shows that
the algorithm is optimal with respect to two levels of memory, it is simultaneously optimal at all levels of
the memory hierarchy. See [18] for a more detailed discussion of this model and for a justification of the
optimality assumption of the paging algorithm.

In this paper, we study three-sided range reporting, 3-d dominance reporting, and 3-d halfspace range
reporting in the cache-oblivious model. We prove that any cache-oblivious data structure for these problems
that achieves the optimal (or in fact a much weaker) query bound has to use asymptotically more space than
a structure with the same query bound in the I/O model.

1.1 Related Work

In the I/O model, much work has focused on orthogonal range reporting. A number of linear-space data
structures have been proposed that achieve a query bound of O(

√

N/B + K/B) block transfers in two
dimensions and O((N/B)1−1/d + K/B) block transfers in higher dimensions [9, 19, 20, 22, 26, 28], where K
is the number of reported points. The same bounds have been obtained in the cache-oblivious model [4, 8].
In 2-d, Arge et al. [10] showed that Θ(N logB N/ logB logB N) space is sufficient and necessary to obtain a
query bound of O(logB N +K/B) block transfers for orthogonal range reporting in the I/O model. The lower
bound, when applied to blocks of size Nε, implies that achieving the optimal query bound cache-obliviously
requires Ω(N log N) space. The main tool used to prove the upper bound is an I/O-efficient version of
McCreight’s priority search tree [25] with a query bound of O(logB N + K/B) for three-sided queries and
using linear space.

2

Query type Model Space Query bound References

2-d three-sided internal memory N log N + K [25]
I/O model N logB N + K/B [10]
cache-oblivious model N log N log

B
N + K/B [3, 4, 7, 11]

3-d dominance internal memory N log N + K [1, 24]
I/O model N logB N + K/B [1]
cache-oblivious model N log N logB N + K/B [3]

3-d halfspace internal memory N log N + K [2]
I/O model N log∗ N logB N + K/B [2]
cache-oblivious model N log N logB N + K/B [3]

Table 1: A summary of known upper bounds for three-sided range reporting, 3-d dominance reporting and
3-d halfspace range reporting. For the sake of clarity, O-notation has been omitted.

In the cache-oblivious model, three data structures have been proposed that achieve a query bound of
O(logB N + K/B) for three-sided queries, but using O(N log N) space. The first one, by Agarwal et al. [4],
works only if log log B is an integer. The second and third data structures, by Arge et al. [7] and Arge and
Zeh [11], remove this restriction. The data structure by Arge and Zeh is obtained using standard techniques
from a linear-space data structure for optimal 2-d dominance queries proposed in the same paper.

For 3-d dominance reporting, Vengroff and Vitter [30] presented a data structure with a query bound
of O((log log logB N) log(N/B) + K/B) block transfers and using O(N log(N/B)) space in the I/O model.
The query bound can be reduced to O(logB N + K/B) by choosing the parameters in the data structure
more carefully [31]. Afshani [1] showed that an optimal query bound can in fact be obtained using linear
space, raising the question whether this result can be achieved also in the cache-oblivious model. In [3], we
show that the optimal query bound can indeed be achieved by a cache-oblivious data structure, but our data
structure uses O(N log N) space.

Halfspace range reporting in 3-d has a longer history, in part because it can be used to solve other
problems, such as 2-d circular range reporting and 2-d k-nearest neighbour searching. In internal memory,
Chan described an O(N log N)-space data structure with an expected query time of O(log N + K) [16].
Building on these ideas, Agarwal et al. [5] obtained an O(N log N)-space data structure with an expected
query bound of O(logB N+K/B) block transfers in the I/O model. Further research led to the development of
internal-memory data structures with the optimal query bound in the worst case and using O(N log log N)
space [17, 27]. The same improvements can be carried over to the I/O model. Recently, Afshani and
Chan [2] described a linear-space data structure with the optimal query bound in internal memory and
an O(N log∗ N)-space data structure that answers queries using O(logB N + K/B) block transfers in the
I/O model. In [3], we show how to achieve the optimal query bound in the cache-oblivious model, using
O(N log N) space. Table 1 summarizes these results.

1.2 New Results

As discussed in the previous section, there exist linear- or O(N log∗ N)-space data structures that achieve the
optimal query bound of O(logB N +K/B) for three-sided range reporting, 3-d dominance reporting, and 3-d
halfspace range reporting in the I/O model. In contrast, the best known data structures achieving the same
query bound in the cache-oblivious model use O(N log N) space. This raises the question whether linear-
space cache-oblivious data structures with the optimal query bound exist for these problems. In this paper,
we give a negative answer to this question. In particular, we prove that any cache-oblivious data structure for
three-sided range reporting, 3-d dominance reporting or 3-d halfspace range reporting that achieves a query
bound of f(logB N, K/B), for any monotonically increasing function f(·, ·), has to use Ω(N(log log N)ε)
space. This lower bound holds even for the expected size of Las-Vegas-type data structures, that is, data
structures with randomized construction and query algorithms that guarantee correct query answers but
achieve the desired query bound only in the expected case. The exponent ε depends on the function f and
on the range of permissible block sizes.

3

As a consequence of our lower bound, it follows that there is no linear-space cache-oblivious persistent
B-tree that achieves the optimal 1-d range reporting bound of O(logB N +K/B) block transfers in the worst
or expected case, while such a data structure exists in the I/O model [13].

There have been previous results showing that the cache-oblivious model is less powerful than the I/O
model. Brodal and Fagerberg [15] established a lower bound on the amount of main memory (as a function
of B) necessary for optimal cache-oblivious sorting, while Bender et al. [14] proved that cache-oblivious
searching has to cost a constant factor more than the search bound achieved in the I/O model using B-
trees [12]. In contrast, our result establishes a gap between the resource consumption of cache-oblivious and
I/O-efficient data structures that grows with the input size.

The key to obtaining our result is the construction of a hard point set and of a set of hard queries over
this point set in combination with techniques to explicitly use the multi-level structure of the cache-oblivious
model. Previous lower bound proofs for range reporting problems in the I/O model [10, 21, 23, 29] involved
the construction of a hard point set together with a set of many “sufficiently different” queries of the same
size. Combined with counting arguments, this ensured that the point set cannot be represented in linear
space while guaranteeing a certain proximity (on disk) of the points reported by each query. The problems
we study in this paper allow linear-space solutions in the I/O model, as well as linear-space cache-oblivious
solutions for queries of any fixed output size. This means the previous techniques are ineffective for our
purposes. In order to force a given point set to be hard for the problems we study, we construct many
queries of different sizes. Combined with the multi-level nature of the cache-oblivious model, this allows us
to create many incompatible proximity requirements for subsets of the point set and, thus, force duplication.
It should be noted here that our construction of a hard point set (as well as the proof of Lemma 3) is
inspired by a similar construction used by Afshani and Chan to prove a lower bound on the shallow partition
theorem [2].

2 A Lower Bound for Three-Sided Range Reporting

In this section, we present the main result of our paper: a lower bound on the space used by any deterministic
cache-oblivious data structure that supports three-sided range reporting queries using f(logB N, K/B) block
transfers in the worst case. This result is summarized in the following theorem. The lower bounds for 3-d
dominance reporting and 3-d halfspace range reporting are obtained from this result using reductions and
are discussed in Section 4. The same section discusses how to extend the lower bound to Las-Vegas-type
randomized data structures.

Theorem 1. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a constant. Any cache-
oblivious data structure capable of answering three-sided range reporting queries using at most f(logB N, K/B)
block transfers in the worst case, for every block size B ≤ N2δ, must use Ω(N(log log N)ε) space, where
ε = 1/f(δ−1, 1).

Since we can prove this lower bound only by considering block sizes up to N2δ, the lower bound can be
circumvented by using a sufficiently strong tall cache assumption that allows the entire point set to fit in
memory (M = ω(B1/(2δ)), for all 0 < δ ≤ 1/2). It is reasonable, however, to assume that M is polynomial
in B, in which case the stated lower bound holds.

Just as previous lower bounds for 4-sided range reporting in the I/O model [10, 21, 23, 29], our proof
ignores the cost of locating the points to be reported by a query and shows that the above space bound is
necessary even to ensure only that the points are stored in at most f(logB N, K/B) blocks.

Our first lemma shows that it suffices to focus on the case δ = 1/2—that is, to allow arbitrarily large
block sizes B ≤ N—in the proof of Theorem 1.

Lemma 1. If Theorem 1 holds for δ = 1/2, then it holds for any 0 < δ ≤ 1/2.

Proof. Consider a particular choice of N , f , and δ in Theorem 1, and let N ′ = N2δ and f ′(x, y) =
f(x/(2δ), y). Since Theorem 1 holds for δ = 1/2, there exist a point set S′ of size N ′ and a query set
Q′ over S′ such that a data structure storing S′ and capable of answering the queries in Q′ using at

4

most f ′(logB N ′, K/B) block transfers, for block sizes up to N ′, must use Ω(N ′(log log N ′)ε) space, where
ε = 1/f ′(2, 1).

Now we construct a point set S of size N by making m = N/N ′ copies S1, S2, . . . , Sm of S′, which we place
side by side. We also construct a query set Q as the union of query sets Q1, Q2, . . . , Qm, where Qi is a copy
of the query set Q′ over the copy Si of S′. By the argument in the previous paragraph, if we can answer the
queries in Qi over the point set Si using f(logB N, K/B) = f((logB N2δ)/(2δ), K/B) = f ′(logB N ′, K/B)
block transfers, for block sizes up to N ′ = N2δ, the points in Si must occupy Ω(N ′(log log N ′)ε) =
Ω(N ′(log log N)ε) space in the data structure. Therefore, since we have m = N/N ′ copies S1, S2, . . . , Sm,
the space occupied by the entire set S is Ω(N(log log N)ε), for ε = 1/f ′(2, 1) = 1/f(δ−1, 1).

By Lemma 1, it suffices to prove Theorem 1 for arbitrarily large block sizes. As already mentioned, the
key to achieving this is to construct a point set S along with a set Q of queries over S such that any data
structure capable of answering the queries in Q in the desired query bound has to use super-linear space.

The construction of the point set S is recursive; see Figure 2(a). At the first level of recursion, we divide
the plane into a t × 2t−1-grid T , for a parameter t to be chosen later, and place different numbers of points
into its cells. The points within each cell are arranged by dividing the cell into a t × 2t−1-grid of subcells
and distributing the points over those subcells. This process continues recursively as long as each grid cell
contains more than

√
N points.

The construction of the query set Q follows the recursive construction of the point set S. Each query at
the top level comprises a union of cells of T chosen so that each top-level query outputs roughly the same
number of points. For each grid cell, we construct a set of queries over the subgrid in this cell in a similar
fashion. We repeat this construction recursively until we reach the last level in the recursive construction of
the point set S.

The main idea now is to prove that, by choosing the queries in Q appropriately, we can force that there
exists at least one grid cell in T at least half of whose points are duplicated Ω(tε) times. The next level of
recursion ensures that at least one of the subcells in each of the remaining cells of T has at least half of its
points duplicated Ω(tε) times, and so on. By making the recursion sufficiently deep, we can ensure that at
least a constant fraction of the points are duplicated Ω(tε) times. Thus, by choosing t ≈ log log N , we obtain
the claimed lower bound. (The recursion depth depends on the choice of t, and t ≈ log log N is the largest
value we can choose to ensure that the recursion is sufficiently deep.)

The key to forcing this type of duplication at each level of recursion is to exploit the assumption of the
cache-oblivious model that the data structure has to be able to cope with any block size. In particular, it
allows us to choose a block size no less than

√
N and such that each query has an output size no greater

than B. With this choice of parameters, every query needs to be answerable using f(logB N, K/B) ≤
f(2, 1) = O(1) block transfers. This completely eliminates the potential benefit of the dependence of the
query bound on the size of the point set and on the output size of the query and allows us to place very
stringent constraints on the layout of the points contained in each query.

We divide the details of our proof into two parts. In Section 2.1, we discuss the construction of the point
set S and of the query set Q more precisely and prove that, if we can force the duplication claimed above in
one cell of each of the subgrids at each level of recursion, Theorem 1 follows. In Section 2.2, we then discuss
how to achieve this duplication at each level of recursion.

2.1 The Point Set and Query Set

To define the point set S, we construct a t× 2t−1-grid T , for a parameter t := (log log N)/4. This parameter
remains fixed throughout the recursive construction. We refer to the grid cell in row i and column j as
Tij . Every column of T is divided into t subcolumns, which also splits each cell Tij into t subcells Tijk, for
1 ≤ k ≤ t. We now place 2i−1N1 points into each cell in row i, where N1 = N/(22t−1 − 2t−1). The points in
cell Tij are placed into subcell Tiji. This is illustrated in Figure 2(a). Observe that this ensures that each
column of the grid receives (2t − 1)N1 points. Since there are 2t−1 columns, the total number of points in
the grid is (22t−1 − 2t−1)N1 = N . The layout of the points within each cell is now obtained by applying the

5

2
t−12

t−1

t

t

t

2
t−1

t

t

(a)

2
t−1

(b)

2
t−1

(c)

Figure 2: (a) The recursive construction of the point set. Fat solid lines bound grid cells, dotted lines
separate subcolumns. (b) The set of queries in QT . Only one query is shown for each level of QT . (c)
Queries at recursive levels output only points from their subgrids.

same procedure recursively to the set of points assigned to each cell. The recursion stops when the smallest
cell in the current subgrid receives at most

√
N points.

The query set Q is constructed by following the recursive construction of S. For the top-level grid T ,
we construct a set QT of queries consisting of t levels. Level i contains 2i−1 queries, the kth of which is the
union of all grid cells Ti′j′ satisfying 0 < i′ ≤ i and (k − 1)2t−i < j′ ≤ k2t−i; see Figure 2(b). It is easily
verified that every query in QT contains between 2t−1N1 and (2t − 1)N1 points. Note that, even though we
specify these queries as unions of grid cells, that is, effectively, as four-sided queries, we can move their top
boundaries to infinity without changing the set of points they report. To complete the construction of the
query set Q, we apply the same construction recursively to each cell, adding a query set QT ′ to Q, for each
subgrid T ′ in the recursive construction of S. Again, we can move the top boundary of each query in QT ′

to infinity to make it three-sided without changing the set of points it reports. Indeed, this clearly does not
change the set of points from T ′ reported by the query, and the staggered layout of the points in each grid
column into x-disjoint subcolumns ensures that there are no points in S that belong to the x-range of T ′

but are outside its y-range. This is illustrated in Figure 2(c).
The following lemma now provides the framework we use to prove Theorem 1.

Lemma 2. Assume that the following is true for every subgrid T ′ and its corresponding query set QT ′ :

(*) Let N ′ be the number of points in T ′. If each query in QT ′ can be answered using at most f(logB N, K/B)
block transfers, for B = N ′/2t−1, then there exists a cell C′ in T ′ at least half of whose points are
duplicated Ω(tε) times, for ε = 1/f(2, 1).

Then any cache-oblivious data structure achieving a query bound of at most f(logB N, K/B) block transfers
in the worst case for queries over S requires Ω(Ntε) = Ω(N(log log N)ε) space.

Proof. We construct a set of disjoint cells such that at least half of the points in each cell are duplicated
Ω(tε) times and the total number of points in these cells is Ω(N). This proves that the points in these cells
alone use Ω(Ntε) space.

To construct this set of cells, we apply the following recursive selection process, starting with T ′ = T .
For the current grid T ′ storing N ′ points, we choose a block size of B = N ′/2t−1. (Remember that a
cache-oblivious data structure must be able to cope with any block size.) Then, by (*), there exists a cell of
T ′ at least half of whose points are duplicated Ω(tε) times. We choose one of these cells, C′, and add it to
the set of selected cells. Then we recurse on the subgrids in each of the remaining cells unless the current
grid T ′ is already at the lowest level of recursion in the construction of the point set S.

The set of cells selected in this fashion is easily seen to be disjoint, as we recursively select cells only from
subgrids in cells not selected at the current level. We call a point selected if it is contained in one of the
selected cells. Our goal is to show that there are Ω(N) selected points in T .

6

The cell C′ selected in a grid T ′ contains at least N ′/4t points. This implies that at most N ′(1−4−t)r′+1

points from T ′ are not selected by the recursive selection process, where r′ denotes the minimum recursion
depth inside the cells of T ′. Indeed, if r′ = 0, exactly the points in C′ are selected, leaving at most
N ′′ = N ′(1− 4−t) points in T ′ unselected. If r′ > 0, we observe that, by induction, at most N ′′(1− 4−t)r′

=
N ′(1 − 4−t)r′+1 points in the cells of T ′ other than C′ are not selected, while all points in C′ are selected.

Since the recursion stops when the smallest cell of the current subgrid contains at most
√

N points, the
recursion depth inside each cell of the top-level grid T is at least

r = log4t

N√
N

=
(log N)/2

2t
=

log N

log log N
>

√

log N,

for N sufficiently large. Hence, the number of points in T that are not selected is at most

N(1 − 4−t)r+1 ≤ Ne−(r+1)/4t ≤ N/e,

that is, at least (1 − 1/e)N = Ω(N) points in T are selected. This completes the proof.

2.2 Forcing Duplication in at Least One Cell

By Lemma 2, it suffices to consider the top-level grid T and prove that the queries in QT force it to contain
at least one cell at least half of whose points are duplicated Ω(tε) times. The same argument then applies to
any subgrid T ′ in the recursive construction. Note that every grid cell c in the ith row of T is contained in
exactly one level-i query in QT ; we denote this query by qc. Moreover, recall that every query in QT has an
output size between N12

t−1 and N1(2
t − 1). By choosing a block size of B = (2t − 1)N1 ≥

√
N , we ensure

that every query outputs at most B points and, hence, must be answerable using α = f(2, 1) = O(1) block
transfers.

So consider a layout of the points in T in memory that achieves this query bound. We represent the
layout by assigning colour sets to points and queries. Every memory block is represented using a unique
colour. The colour set C(p) of a point p comprises the colours of those blocks that hold a copy of p. The
colour set C(q) of a query q comprises the colours of the blocks accessed to answer query q. Our goal now
can be rephrased as showing that there exists a cell in T at least half of whose points have Ω(tε) colours.
We do this in two steps. In Lemma 3, we show that there exists a set of r = Ω(t) cells in the same column of
T such that half of the points in each cell are “exposed” in a sense defined below. Then we show that there
exists at least one cell among these r cells such that every exposed point in this cell has at least rε = Ω(tε)
colours.

So consider a sequence 〈c1, c2, . . . , cr〉 of cells in the same column of T and numbered from top to bottom.
For 1 ≤ i ≤ r, let qi = qci

. We say that a query qj covers a point p ∈ ci with i > j if C(p) ∩ C(qj) 6= ∅.
Point p is said to be exposed if none of the queries q1, q2, . . . , qi−1 covers it; cell ci is exposed if at least half
of its points are exposed.

Lemma 3. There exists a column in T containing a sequence of Ω(t) exposed cells.

Proof. Let h be a constant to be chosen later, and consider the subgrid Th of T consisting of the rows with
numbers 1, h + 1, 2h + 1, As each cell in row ih + 1 contains N12

ih points, and there are 2t−1 cells in
each row, the total number of points in row ih + 1 is Xi := N12

t+ih−1.
Next we bound the number of points in row ih + 1 covered by queries at levels 1, h + 1, . . . , (i − 1)h + 1

of the query set QT . Level jh + 1 contains 2jh queries. Hence, the total number of queries at levels
1, h + 1, . . . , (i − 1)h + 1 is

∑i−1
j=0 2jh < 2(i−1)h+1. The colour set of each such query contains at most α

colours, and there are at most B = N12
t points with the same colour. Hence, at most Yi := αN12

t+(i−1)h+1 =
(4α/2h)Xi points have a colour belonging to the colour set of at least one of these queries and, thus, can be
covered by these queries.

Now choose h = ⌈log(16α)⌉ = Θ(1). Then Yi ≤ Xi/4. This implies that at least half of the cells in row
ih + 1 are exposed. Since this applies to all rows in Th, there exists a column in Th at least half of whose
cells are exposed. Since Th has ⌊t/h⌋ = Ω(t) rows, this column—and, hence, the corresponding column of
T—contains a sequence of Ω(t) exposed cells.

7

By Lemma 3, there exists a sequence 〈c1, c2, . . . , cr〉 of r = Ω(t) exposed cells. Now, for all 1 ≤ i ≤ r,
we choose pi to be an exposed point in cell ci with the minimum number of colours. It suffices to show that
there exists an index i such that pi has at least rε = Ω(tε) colours, as this implies that all exposed points in
ci have at least this many colours and at least half the points in ci are exposed.

In addition to the point sequence 〈p1, p2, . . . , pr〉, consider the query sequence 〈q1, q2, . . . , qr〉, where
qi = qci

, for all 1 ≤ i ≤ r. The point-query sequence 〈(p1, q1), (p2, q2), . . . , (pr, qr)〉 has the following two
properties:

(i) For i ≤ j, C(pi) ∩ C(qj) 6= ∅ (because pi ∈ qj).

(ii) For i > j, C(pi) ∩ C(qj) = ∅ (because pi is exposed).

We call a colouring of the points and queries in the sequence proper if it satisfies these two conditions. The
sequence is said to be (α, f)-coloured if |C(pi)| ≤ f and |C(qi)| ≤ α, for all 1 ≤ i ≤ r. Finally, we say that a
point-query sequence is (α, f)-colourable if it has a proper (α, f)-colouring.

Now let ℓ(α, f) be the length of the shortest point-query sequence that is not (α, f − 1)-colourable, and
let L(α, f) be the length of the longest point-query sequence that is (α, f)-colourable. Clearly, ℓ(α, f) =
L(α, f−1)+1. Another way to express ℓ(α, f) is as the length of the shortest point-query sequence such that
α-colouring the queries forces at least one point to have at least f colours if the colouring is to be proper.
The next lemma shows that ℓ(α, f) ≤ fα. Thus, a properly coloured sequence of length r contains at least
one point with at least r1/α colours if all the queries are α-coloured, which is exactly what we need to prove.

Lemma 4. For α ≥ 0 and f ≥ 1, ℓ(α, f) =
(

α+f−1
α

)

≤ fα.

Proof. We prove first that ℓ(α, f) satisfies the recurrence relation

ℓ(α, f) =

{

1 f = 1 or α = 0

ℓ(α, f − 1) + ℓ(α − 1, f) f > 1 and α > 0.
(1)

The base case (f = 1 or α = 0) is fairly obvious: a sequence of length 1 is neither (0, f)-colourable, for any
f , nor (α, 0)-colourable, for any α, while a sequence of length 0 is (α, f)-colourable, for any α and f .

For the inductive step (f > 1 and α > 0), we prove that L(α, f) = ℓ(α, f) + L(α − 1, f). This implies
that

ℓ(α, f) = L(α, f − 1) + 1

= ℓ(α, f − 1) + L(α − 1, f − 1) + 1

= ℓ(α, f − 1) + (ℓ(α − 1, f) − 1) + 1

= ℓ(α, f − 1) + ℓ(α − 1, f).

First we prove that L(α, f) ≤ ℓ(α, f) + L(α − 1, f). To this end, we consider a point-query sequence
〈(p1, q1), (p2, q2), . . . , (pr, qr)〉, where r = L(α, f). Since L(α − 1, f) ≥ 0, for all α and f , r ≤ ℓ(α, f) would
immediately imply r ≤ ℓ(α, f) + L(α − 1, f). Thus, we can assume that r > r′ := ℓ(α, f).

Now let C be a proper (α, f)-colouring of S. Since the restriction of the colouring C to the point-query
sequence 〈(p1, q1), (p2, q2), . . . , (pr′ , qr′)〉 is a proper (α, f)-colouring of this sequence, the definition of ℓ(α, f)

implies that there exists a point pk, 1 ≤ k ≤ r′, such that |C(pk)| = f and C(pk) ⊆ ⋃r′

j=1 C(qj). We use this to
construct a proper (α−1, f)-colouring C′ of the point-query sequence 〈(pr′+1, qr′+1), (pr′+2, qr′+2), . . . , (pr, qr)〉,
thereby showing that its length r− r′ is at most L(α− 1, f), which implies that L(α, f) = r = r′ +(r− r′) ≤
ℓ(α, f) + L(α − 1, f).

To obtain such a colouring C′, we define C′(pi) = C(pi) and C′(qi) = C(qi) \ C(pk), for all r′ < i ≤ r.
By property (i) of C, C(qi) ∩ C(pk) 6= ∅, for r′ < i ≤ r and, hence, |C′(qi)| < |C(qi)| ≤ α, while |C′(pi)| =
|C(pi)| ≤ f . Thus, C′ is an (α − 1, f)-colouring of the sequence 〈(pr′+1, qr′+1), (pr′+2, qr′+2), . . . , (pr, qr)〉.
Next we show that C′ is proper.

8

First observe that, for r′ < j < i ≤ r, C′(pi) ∩ C′(qj) ⊆ C(pi) ∩C(qj) = ∅, by property (ii) of C. Hence,
C′ satisfies property (ii).

For r′ < i ≤ j ≤ r, we have C(pi) ∩ C(pk) ⊆ C(pi) ∩
⋃r′

h=1 C(qh) = ∅, by property (ii) of C. Hence,
C′(pi) ∩ C′(qj) = C(pi) ∩ (C(qj) \ C(pk)) = C(pi) ∩ C(qj) 6= ∅, by property (i) of C. Thus, C′ satisfies
property (i). This concludes the proof of the inequality L(α, f) ≤ ℓ(α, f) + L(α − 1, f).

Next we prove that L(α, f) ≥ ℓ(α, f)+L(α−1, f) by proving that a sequence 〈(p1, q1), (p2, q2), . . . , (pr, qr)〉
of length r = ℓ(α, f) + L(α − 1, f) = L(α, f − 1) + L(α − 1, f) + 1 is (α, f)-colourable.

We divide the sequence into three subsequences 〈(p1, q1), (p2, q2), . . . , (pr1
, qr1

)〉, 〈(pr1+1, qr1+1)〉, and
〈(pr1+2, qr1+2), (pr1+3, qr1+3), . . . , (pr, qr)〉, where r1 = L(α, f − 1) and r3 = r − r1 − 1 = L(α− 1, f). By the
choice of r1 and r3, the sequence 〈(p1, q1), (p2, q2), . . . , (pr1

, qr1
)〉 has a proper (α, f−1)-colouring C1, while the

sequence 〈(pr1+2, qr1+2), (pr1+3, qr1+3), . . . , (pr, qr)〉 has a proper (α−1, f)-colouring C3. We can assume that
the two colourings use different colours. We define a colouring C of the sequence 〈(p1, q1), (p2, q2), . . . , (pr, qr)〉
as

C(pi) =











C1(pi) ∪ {γ} 1 ≤ i ≤ r1

{γ} i = r1 + 1

C3(pi) r1 + 2 ≤ i ≤ r

and

C(qi) =











C1(qi) 1 ≤ i ≤ r1

{γ} i = r1 + 1

C3(qi) ∪ {γ} r1 + 2 ≤ i ≤ r

,

where γ is a new colour not used by either C1 or C3. Since C1 is an (α, f − 1)-colouring of the sequence
〈(p1, q1), (p2, q2), . . . , (pr1

, qr1
)〉 and C3 is an (α−1, f)-colouring of 〈(pr1+2, qr1+2), (pr1+3, qr1+3), . . . , (pr, qr)〉,

C is an (α, f)-colouring of 〈(p1, q1), (p2, q2), . . . , (pr, qr)〉. Next we show that C is proper.
First consider property (i). For a point pi and a query qj with 1 ≤ i ≤ j ≤ r, we distinguish three cases.

If j ≤ r1, then C(pi) ⊃ C1(pi) and C(qj) = C1(qj). Hence, since C1(pi) ∩ C1(qj) 6= ∅ (by property (i) of the
colouring C1), we have C(pi) ∩ C(qj) 6= ∅. If i ≤ r1 + 1 ≤ j, we have γ ∈ C(pi) ∩ C(qj). If r + 1 < i, then
C(pi) = C3(pi) and C(qj) ⊃ C3(qj). Hence, since C3(pi) ∩ C3(qj) 6= ∅ (by property (i) of the colouring C3),
we have C(pi) ∩ C(qj) 6= ∅.

Next we verify property (ii). Consider a point pi and a query qj with 1 ≤ j < i ≤ r. If i ≤ r1, we
have C(pi) ∩ C(qj) = ∅ because C1(pi) ∩ C(qj) = C1(pi) ∩ C1(qj) = ∅ (by property (ii) of the colouring C1)
and γ 6∈ C(qj). If j ≤ r1 < i, we have C(qj) ∩ C(pi) = ∅ because γ 6∈ C(qj) and colourings C1 and C3 use
different colours. Finally, if r1 + 1 ≤ j, then C(pi)∩C(qj) = ∅ because C(pi)∩C3(qj) = C3(pi)∩C3(qj) = ∅
(by property (ii) of the colouring C3) and γ 6∈ C(pi).

This shows that C is a proper (α, f)-colouring of the sequence 〈(pi, qi)〉ri=1 and, hence, that ℓ(α, f) +
L(α − 1, f) = r ≤ L(α, f).

Having established the correctness of (1), it remains to derive a closed form for ℓ(α, f). We do this using
substitution. For the base case, we have ℓ(0, f) = 1 =

(

f−1
0

)

and ℓ(α, 1) = 1 =
(

α
α

)

. For the inductive step,
we obtain

ℓ(α, f) = ℓ(α, f − 1) + ℓ(α − 1, f)

=

(

f + α − 2

α

)

+

(

f + α − 2

α − 1

)

=

(

f + α − 1

α

)

.

This finishes the proof.

9

To summarize, Theorem 1 is established by invoking Lemma 3 to prove that there exists a sequence of
r = Ω(t) exposed cells in T . Using Lemma 4 and the discussion leading up to it, this implies that at least
half of the points in one of the cells in this sequence are duplicated at least rε = Ω(tε) times, for ε = 1/α
and α = f(2, 1). Since the same argument can be applied recursively to every subgrid in the recursive
construction of the point set S, we can now invoke Lemma 2 to prove Theorem 1 for δ = 1/2. By Lemma 1,
this implies Theorem 1 for any 0 < δ ≤ 1/2.

3 Tightness of the Lower Bound

In this section, we show how to lay out the points in the set S constructed in the previous section so that
the queries in Q can be answered using at most α + 1 + K/B block transfers, for any block size B. The
layout uses O(Nt1/α) space, which implies that the lower bound of Theorem 1 is tight for the point set S
and query set Q we constructed, up to the dependence of ε on f(·, ·). This is summarized in the following
theorem.

Theorem 2. There exists an O(N(log log N)1/α)-space layout of the point set S such that, for any block
size B, any query in Q can be answered by examining at most α + 1 + K/B blocks.

Note that our goal is to show only that we cannot obtain a stronger lower bound for the point and query
sets we constructed; the construction in this section does not yield a general data structure whose query and
space bounds match the lower bound of Theorem 1. In particular, we ignore the cost of locating the blocks
storing the points contained in a particular query, and the points in a query not in Q may be scattered across
more than α + 1 + K/B blocks.

The layout. To construct a layout of the point set S, let f be the smallest integer such that ℓ(α, f +1) ≥ t;
that is, f = O(t1/α) = O((log log N)1/α). To simplify the argument, we can assume that ℓ(α, f + 1) = t,
which we can achieve by padding each grid with empty rows at the bottom. Our layout consists of f copies
of S, which immediately implies that the layout uses Nf = O(N(log log N)1/α) space.

In the first copy, we divide the rows of the top-level grid T into α + 1 groups G0, G1, . . . , Gα, ordered
from top to bottom. The size of group Gi is ℓ(α− i, f). The cells in each group are laid out in column-major
order. This is illustrated in Figure 3(a). Note that the groups G0, G1, . . . , Gα cover all the rows of T because
t = ℓ(α, f + 1) =

∑α
i=0 ℓ(i, f); the second equality follows from the classic equality

(

n+1
m+1

)

=
∑n

i=0

(

i
m

)

. To
complete the layout of the points in the first copy of S, we have to determine the order in which to arrange
the points in each cell of T . Since each cell of T is divided recursively into t × 2t−1 subgrids, we can divide
the rows of each such subgrid T ′ into groups G′

0, G
′
1, . . . , G

′
α in the same fashion as just described and lay

out the cells in each group in column-major order. This continues recursively until we reach subgrids T ′

whose cells have not been divided further in the construction of the point set S. For each such subgrid, we
arrange the points in each cell in an arbitrary order.

For 1 < k ≤ f , the layout of the points in the kth copy of S is obtained by dividing the groups used to
define the (k−1)st copy into subgroups and laying out the cells in each subgroup in column-major order. In
particular, a group G in the (k − 1)st copy consisting of ℓ(β, f − k + 2) rows is divided into β + 1 subgroups
G0, G1, . . . , Gβ, with Gi covering ℓ(i, f −k+1) rows. This is illustrated in Figure 3(a) for the second copy of

S. Similar to the argument for the first copy of S, we have ℓ(β, f − k + 2) =
∑β

i=0 ℓ(i, f − k + 1), that is, the
subgroups cover the rows of G exactly. To determine the order in which to lay out the points in each cell of
T , we apply the same refinement process to the groups in each subgrid T ′ in the recursive construction of S.

By continuing in this fashion until k = f , we obtain that every group in the fth copy of S consists of
ℓ(β, 1) = 1 rows, for some β. Hence, the fth copy of S stores the cells in each row of T (and of any subgrid
T ′) in x-sorted order. This is illustrated on the right of Figure 3(a).

Answering queries. Since the layout arranges the cells of each subgrid T ′ in the recursive construction
of S in the same fashion as the cells of T , it suffices to prove that any query q ∈ QT can be answered using

10

Copy 1 Copy 2

G1

G0

G2

G3

G0,0

G0,1

G0,2

G1,0

G1,1

G0,3

G1,2

G2,0

G2,1

G3,0

Copy f

(a)

Copy 1 Copy 2S

(b)

Figure 3: (a) An O(N(log log N)ε)-space layout for the point set S (layout shown for α = 3). (b) Answering
a query on the first two levels of the layout. The dark portion of the query in each copy of S can be answered
by scanning a subsequence of the column-major layout of the respective group. The light portion is answered
using subsequent copies of S.

α + 1 + K/B block transfers. To this end, we show that the points in query q are divided into at most α + 1
contiguous subsequences in the layout; scanning these takes at most α + 1 + K/B block transfers.

Assume that query q is at the ith level of QT , that is, its bottom boundary coincides with the bottom
boundary of the ith row of T . If this row is the bottom-most row of some group Gj1 in the first copy of S,
observe that the points in q that belong to any group Gj , 0 ≤ j ≤ j1, are stored contiguously in the first
copy of S. Hence, the points in q are divided into j1 + 1 contiguous subsequences.

If row i belongs to group Gj1 but is not its bottom row, we use the first copy of S to report all points
of q that belong to groups G0, G1, . . . , Gj1−1 and use subsequent copies of S to report all points in q that
belong to Gj1 . We say that group Gj1 is the partial group of q in the first copy of S. By the arguments in the
previous paragraph, the points of q that belong to groups G0, G1, . . . , Gj1−1 form j1 contiguous subsequences
in the first copy of S.

To see how subsequent copies of S are used to collect the remaining points of q, consider the kth copy
and let G be the partial group of q in the (k − 1)st copy. This group has ℓ(β, f − k + 2) rows, for some
β. Then we consider the subgroup Gjk

of G containing row i. As for the first copy of S, if row i is the
bottom-most row of group Gjk

, we use groups G0, G1, . . . , Gjk
to report all points in G that belong to q.

These points are stored in jk + 1 contiguous subsequences of the kth copy. If row i is not the bottom-most
row of group Gjk

, then Gjk
is once again a partial group of q, and we report only those points in q that

belong to G0, G1, . . . , Gjk−1 using the kth copy of S, and use subsequent copies of S to report the points
in q that belong to Gjk

. Figure 3(b) illustrates this recursive partitioning of query q for the first two copies
of S. Note that this procedure terminates at the latest when reaching the last copy of S because this copy
stores all rows in x-sorted order, that is, the group Gjf

cannot be partial.
It remains to bound the number of contiguous subsequences into which the points of q are divided by this

procedure. If the procedure terminates after inspecting the first r copies of S, the points in q are divided
into 1+

∑r
k=1 jk contiguous subsequences, jk in the kth copy of S, for 1 ≤ k < r, and jr +1 in the rth copy.

For all 1 < k ≤ r, if the partial group G of q in the (k − 1)st copy of S has size ℓ(β, f − i + 2), then jk ≤ β
and Gjk

has ℓ(β − jk, f − i + 1) rows. Since j1 ≤ α, this implies that 1 +
∑r

k=1 jk ≤ α + 1 using a simple
inductive argument.

11

4 Further Lower Bounds

In this section, we show that the proof technique from Section 2 can be used to obtain the same lower bound
as in Theorem 1 for other range searching problems and to obtain a lower bound on the space consumption
of cache-oblivious persistent B-trees with optimal 1-d range queries. The lower bounds in Section 4.1,
for 3-d dominance reporting and persistent B-trees, are obtained using direct reductions from three-sided
range reporting. In Section 4.2, we prove the same lower bound for 3-d halfspace range reporting, but this
requires more care, as there is no direct reduction from three-sided range reporting to 3-d halfspace range
reporting. Finally, in Section 4.3, we show that all lower bounds proved in Sections 2, 4.1, and 4.2 also hold
for the expected size of Las-Vegas-type data structures that achieve an expected query bound of at most
f(logB N, K/B) block transfers.

4.1 3-D Dominance Reporting and Persistent B-Trees

The first result in this section is a lower bound on the space consumption of any cache-oblivious data structure
for 3-d dominance reporting, as summarized in the following theorem.

Theorem 3. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a constant. Any cache-
oblivious data structure capable of answering 3-d dominance reporting queries using at most f(logB N, K/B)
block transfers in the worst case, for every block size B ≤ N2δ, must use Ω(N(log log N)ε) space, where
ε = 1/f(δ−1, 1).

Proof. A simple geometric transformation reduces three-sided range queries to 3-d dominance queries. We
map each input point p = (xp, yp) ∈ S to the point φ(p) = (−xp, xp,−yp) in R

3. The point p belongs to the
three-sided query range q = [l, r] × [b, +∞) if and only if φ(p) is dominated by the point φ(q) = (−l, r,−b).
In other words, any 3-sided dominance reporting structure can be used as a 3-sided range reporting structure
and, thus, is subject to the lower bound of Theorem 1.

A similar reduction shows the following result.

Theorem 4. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a constant. Any (partially)
persistent cache-oblivious B-tree capable of answering 1-d range range reporting queries on any previous
version of the tree using at most f(logB N, K/B) block transfers in the worst case, for every block size B ≤
N2δ, must use Ω(N(log log N)ε) space to represent a sequence of N update operations, where ε = f(δ−1, 1).

Proof. Consider a persistent cache-oblivious B-tree T that uses S(N) space to represent a sequence of
N update operations and supports 1-d range reporting queries on any version of the tree using at most
f(logB N, K/B) block transfers. Using this, we can obtain a three-sided range reporting structure with
query bound at most f(logB N, K/B): we insert the points one by one into the tree, in order of decreasing y-
coordinates. To answer a three-sided range reporting query q = [l, r]× [b, +∞), we ask a 1-d range reporting
query with query range [l, r] on the version of T that was current at y-coordinate b. By combining this
observation with Theorem 1, we obtain the claimed space lower bound.

4.2 Halfspace Range Reporting in Three Dimensions

In this section, we extend the technique from Section 2 to 3-d halfspace range reporting. In this case, we
are not able to obtain a general geometric transformation that provides a reduction from three-sided range
reporting in the plane to halfspace range reporting. We can, however, distort the point set in the proof
of Theorem 1 so that each query in the query set Q we constructed in Section 2 can be replaced with a
parabolic range query that outputs the exact same set of points. Since parabolic range queries can be reduced
to halfspace range queries (see, e.g., [2]), this proves the following theorem.

Theorem 5. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a constant. Any
cache-oblivious data structure capable of answering 3-d halfspace range reporting queries using at most

12

(a) (b)

G

C

T ′

T

(c)

hi−1

A = (0, 0)

pij2

row i

pij1

hi

δ

bi

(d)

Figure 4: (a) Replacing three-sided queries with parabolic ones. The white squares are the areas where the
subgrids in each grid cell are to be placed. (b) A naively constructed query in the subgrid in cell T3,6 also
reports points in other cells (e.g., T2,6). (c) Placement of a subgrid within a grid box G that is nested inside
a column box C. (d) Incremental embedding of a subgrid T ′ inside a grid box.

f(logB N, K/B) block transfers in the worst case, for every block size B ≤ N2δ, must use Ω(N(log log N)ε)
space, where ε = 1/f(δ−1, 1).

To prove Theorem 5, we follow the recursive construction of S and Q from Section 2 and, for every subgrid
T ′ in the construction, replace the three-sided queries in QT ′ with parabolic ones as shown in Figure 4(a).
If we embed the subgrids of T ′ inside the indicated squares, each query outputs the same set of points in
T ′ as its corresponding three-sided query. However, we also have to ensure that the queries in QT ′ output
only points from T ′. For three-sided queries, we achieved this by ensuring that there are no points in the
x-range of T ′ but outside its y-range. As shown in Figure 4(b), this is not sufficient for parabolic queries, as
parabolic queries over T ′ cannot be confined to the x-range of T ′. Instead, we use the following construction,
which extends a construction from [2].

Given a grid cell and a subgrid T ′ to be embedded inside this cell, we use G to denote the portion of the
cell where the points in T ′ are to be placed (the white squares in Figure 4(a)). We call G the grid box of T ′.
Every parabolic query over T ′ is guaranteed to output only points from T ′ if it leaves the x-range of G only
above the top boundary of the top-level grid T . We represent this using a column box C that shares its left,
right, and bottom boundaries with G and whose top boundary is the top boundary of T ; see Figure 4(c).
The parabolic queries over T ′ must intersect only the top boundary edge of C. Once we have obtained an
embedding of T ′ inside G and a set of parabolic queries over T ′ that output the same set of points as the
three-sided queries in QT ′ and intersect only the top boundary of C, we can define grid and column boxes
for the subgrids of T ′ as above and apply this construction recursively. Thus, to prove Theorem 5, it suffices
to prove that, given any grid box G and any column box C ⊇ G, we can embed T ′ inside G and construct
appropriate parabolic queries over T ′ that intersect only the top boundary of C.

Lemma 5. Given a column box C and a grid box G ⊆ C, a subgrid T ′ can be embedded inside G so that,
for every three-sided range query q ∈ QT ′ , there exists a parabolic range query q′ that reports the same set
of points as q and intersects only the top boundary of C.

Proof. For the sake of this proof, we can assume that each grid cell of T ′ contains exactly one point, as we
can embed the subgrid represented by each such point in a sufficiently small neighbourhood of the point
without altering the properties of the construction. We can further assume that the bottom boundaries of
C and G coincide, that C is twice as wide as G, and that G is horizontally centred inside C, as this can be
enforced by shrinking G and C appropriately without relaxing the constraints placed by these two boxes on
the embedding of T ′ and on the queries constructed over T ′. We denote the widths and heights of G and C
by wG, wC , hG, and hC , respectively.

We construct T ′ row by row, placing the points in each row at the same y-coordinate and spacing them
evenly in x-direction. The top row of T ′ coincides with the top boundary of G, and we centre T ′ horizontally
in G. The points in each row have distance δ > 0 between every pair of consecutive points. After placing

13

the points in the ith row, we construct parabolic queries for all queries at level i in QT ′ that output exactly
those points in rows 1 through i contained in their three-sided counterparts in QT ′ . The next row of points
is then placed infinitesimally below the horizontal line through the apexes of these level-i queries. This is
illustrated in Figure 4(d).

Once we have placed the points of all rows of T ′ in this fashion, we obtain an embedding of T ′ inside a
box of width δ(2t−1 − 1) and height ht. We derive a bound on ht as a function of δ. By choosing δ small
enough, we can ensure that the constructed box (and, hence, T ′) is completely contained in G.

To discuss this construction in detail, consider the construction of the ith row. Let Bi−1 be the smallest
box containing all points already placed in rows 1 and i − 1 and such that its bottom boundary passes
through the apexes of all level-(i − 1) queries we have just constructed. The width of Bi−1 is δ(2t−1 − 1),
and we denote its height by hi−1. For i = 1, we assume that h0 = 0, that is, that B0 is a line segment
contained in the top boundary of G. To construct the ith row of T ′, we evenly distribute 2t−1 points along a
horizontal line segment of the same width as Bi−1 and infinitesimally below the bottom boundary of Bi−1.
This ensures that no point in the ith row is contained in any query at a level less than i. To construct the
queries at the ith level, we observe that each such query q′ has to output points pi′j′ with 1 ≤ i′ ≤ i and
(k′ − 1)2t−i < j′ ≤ k′2t−i, for some 0 < k′ ≤ 2i−1, where pij denotes the jth point in the ith row. For ease
of notation, let j1 = (k′ − 1)2t−i + 1 and j2 = k′2t−i. We construct the parabola q′ so that it passes through
points pij1 and pij2 and such that points p1,j1−1 and p1,j2+1, as well as the two top corners of C, lie below
q′. This ensures that q′ outputs exactly the desired set of points and intersects only the top boundary edge
of C.

To obtain a bound on the height ht of the final box Bt, we first derive a bound on the distance bi between
the apex A of q′ and the ith row of points, for all 1 ≤ i ≤ t, and then use the recurrence hi > hi−1 + bi. To
ease the exposition, we assume that the apex A of q′ is at the origin, so that q′ is given by an equation of
the form y = aix

2. Let di = δ(2t−i − 1)/2 be half the distance between points pij1 and pij2 . Since A has
distance bi from the ith row of points and q′ passes through points pij1 and pij2 , q′ must satisfy

bi = aid
2
i . (2)

In order for points p1,j1−1 and p1,j2+1 to lie below q′, q′ must satisfy

hi−1 + bi < ai(di + δ)2, (3)

as the distance of A from the first row is infinitesimally greater than hi−1 + bi and the distance between
two neighbouring columns of T ′ is δ. Finally, if we can satisfy (2) and (3) while placing A inside G, then q′

intersects only the top boundary edge of C if

hC < ai
w2

G

4
, (4)

as the height of C is hC and the distance between G and either of the two vertical boundary edges of C is
wG/2.

By substituting (2) into (3) and rearranging the result, we obtain that (3) holds if

ai >
hi−1

2diδ + δ2
. (5)

Inequalities (4) and (5) are both satisfied if

ai >
hi−1

2diδ + δ2
+

4hC

w2
G

, (6)

which gives

bi >

(

hi−1

2diδ + δ2
+

4hC

w2
G

)

d2
i (7)

14

by substituting (6) into (2). By using the equation di = δ(2t−i − 1)/2 and simplifying appropriately, we
obtain that (7) holds if

bi > 2t−i−2hi−1 +
4t−iδ2hC

w2
G

. (8)

By substituting this into the recurrence hi > hi−1 + bi, we obtain that we can satisfy (8) as long as

hi > hi−1(1 + 2t−i−2) +
4t−iδ2hC

w2
G

,

which holds if we set h0 = 0 and hi = 4itδ2hC/w2
G and as long as t ≥ 2. Thus, by choosing δ no greater

than min
(

wG/2t,
√

hGw2
G/(4t2hC)

)

, we can ensure that all points of T ′ lie inside G, and that all parabolas

in QT ′ have their apexes inside G, output the same set of points as their corresponding three-sided queries,
and intersect only the top boundary edge of C. This completes the proof.

4.3 Las-Vegas-Type Data Structures

The lower bounds we have proved so far apply to data structures with deterministic construction algorithms
and worst-case query bounds. In many cases, however, it is significantly easier to obtain efficient randomized
data structures of the Las Vegas kind, that is, with expected query bounds resulting from randomness in their
construction and in the query procedure (see, e.g., [17]). Therefore, we obtain a much stronger statement of
the difficulty of cache-oblivious range searching if we can show that the lower bounds shown in the previous
sections apply also to this type of data structure.

Formally, we consider data structures whose construction algorithm and query procedure both have access
to a sequence of random bits. The random bits used during the construction influence the shape of the data
structure, while the random bits used by the query procedure influence which blocks are read to answer
a given query. In a Las-Vegas-type data structure, the random bits may influence the costs of individual
queries, but the answer provided by a query must always be correct. The following theorem extends the
lower bounds we have proved for deterministic data structures with worst-case query bounds to randomized
data structures of the Las Vegas kind.

Theorem 6. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a constant. Any data
structure for three-sided range reporting, 3-d dominance reporting or 3-d halfspace range reporting constructed
by a randomized algorithm and capable of answering queries using at most f(logB N, K/B) block transfers
in the expected sense, for every block size B ≤ N2δ, must use expected Ω(N(log log N)ε) space, where
ε = 1/(4f(δ−1, 1)).

A cache-oblivious persistent B-tree that supports 1-d range reporting queries on any previous version of
the tree using at most f(logB N, K/B) block transfers in the expected sense, for every block size B ≤ N2δ,
must use expected Ω(N(log log N)ε) space to represent a sequence of N update operations.

To prove Theorem 6, it suffices to prove it for three-sided range queries and δ = 1/2. As before, Lemma 1
then extends the result to smaller values of δ, and the reductions in Sections 4.1 and 4.2 extend the lower
bound to 3-d dominance reporting, 3-d halfspace range reporting, and cache-oblivious persistent B-trees.

We start with the observation that we can eliminate the randomness in the query procedure. In particular,
we assume that, given a data structure constructed by the randomized construction procedure and a query
q, the query procedure is able to identify, at no cost, the smallest set of blocks in the data structure that
contain all the points in q. Clearly, a space lower bound in this model implies the same lower bound for data
structures with randomized query procedures.

Now assume that the construction procedure makes use of b random bits. Depending on the values of
these bits, it produces one of m := 2b data structures D1,D2, . . . ,Dm. Our goal is to prove that the average
size of these data structures is Ω(N(log log N)ε). To do this, we consider the point set S and the query set
Q constructed in Section 2.1. We consider a query q ∈ Q cheap on data structure Dk if answering q using

15

Dk requires at most 4f(2, 1) block transfers, and expensive otherwise. Since the expected cost of any query
q ∈ Q is at most f(2, 1), it must be cheap on at least 3m/4 of the data structures.

Now consider a tree T representing the recursive construction of S. Its root is the top-level grid T , and
its internal nodes represent the subgrids constructed recursively. We associate a copy Tk of T with each data
structure Dk and refer to the copy of a node T ′ ∈ T in Tk as T ′

k. This copy corresponds to the representation
of the points in T ′ in Dk.

In Section 2.2, we proved that, for a deterministic data structure D with worst-case query bounds, every
grid T ′ ∈ T contains a cell at least half of whose points are duplicated Ω(tε) times. The next lemma shows
that the same property holds for at least m/4 of its copies T ′

1, T
′
2, . . . , T

′
m.

Lemma 6. Every node T ′ ∈ T has at least m/4 copies among T ′
1, T

′
2, . . . , T

′
m such that each has a child at

least half of whose points are duplicated Ω(tε) times.

Proof. For a grid T ′
k, we call the ith row of T ′

k cheap if at least half of the level-i queries in QT ′ are cheap
on Dk; otherwise, the row is expensive. As each query is cheap on at least 3m/4 of the data structures
D1,D2, . . . ,Dm, every row of T ′ is cheap in at least m/2 of the copies T ′

1, T
′
2, . . . , T

′
m. Thus, the total number

of cheap rows over all copies of T ′ is at least tm/2, which implies that there are at least m/4 copies of T ′

that have at least t/3 cheap rows each.
Now recall the notation and terminology from Section 2.2; the colourings of points and queries refer

to data structure Dk now. For a sequence of cells 〈c1, c2, . . . , cr〉 in the same column of grid T ′
k and its

corresponding query sequence 〈q1, q2, . . . , qr〉, we call a point p ∈ ci weakly exposed if none of the queries
q1, q2, . . . , qi−1 covers it, that is, if it is exposed in the sense defined in Section 2.2. Point p is strongly exposed
if it is weakly exposed and the query qi is cheap on Dk. As in Section 2.2, we call a cell of T ′

k weakly or
strongly exposed if at least half its points are weakly or strongly exposed. To prove the lemma, it suffices
to show that each copy T ′

k of T ′ with at least t/3 cheap rows contains a sequence 〈c1, c2, . . . , cr〉 of cells in
the same column whose length is r = Ω(t) and all of whose cells are strongly exposed. Since each query qi

is α-coloured in this case, for α = 4f(2, 1), the lemma then follows by application of Lemma 4.
Let T ′′ be the subgrid of T ′

k consisting of only the cheap rows of T ′
k, and, similarly to the proof of

Lemma 3, let T ′′
h be the subgrid of T ′′ consisting of rows 1, h + 1, 2h + 1, Using the same arguments

as in the proof of Lemma 3, at most a (4α/2h)-fraction of the points in each row of T ′′
h can be covered by

cheap queries at higher levels of T ′′
h . Thus, for h = ⌈log(32α)⌉ = Θ(1), at least a 7/8-fraction of the points

in each row of T ′′
h are weakly exposed. Since a cell is weakly exposed if at least half of its points are weakly

exposed, this implies that at least a 3/4-fraction of the cells in each row are weakly exposed. It follows that
at least a 1/4-fraction of the cells in each row are strongly exposed because every row of T ′′

h is cheap. This,
however, implies that there exists a column of T ′′

h such that at least a 1/4-fraction of its cells are strongly
exposed. Since the height of T ′′

h is at least t/(3h) = Ω(t), this shows that T ′
k contains a sequence of Ω(t)

strongly exposed cells in the same column, and the lemma follows.

Using Lemma 6, we can now prove that the average size of data structures D1,D2, . . . ,Dm is Ω(N(log log N)ε).
To this end, we call a node T ′

k ∈ Tk accounted for if there exists an ancestor T ′′
k of T ′

k in Tk for which we can
guarantee that at least half the points in T ′′

k are duplicated Ω(tε) times. We call a point accounted for if it
is contained in a grid T ′

k that is accounted for. Our goal now is to show that there exists a level i in T such
that at least a constant fraction of the points in all level-i nodes of trees T1, T2, . . . , Tm are accounted for.
Since at least half of the accounted-for points are duplicated Ω(tε) times, this shows that the total size of
data structures D1,D2, . . . ,Dm is Ω(mNtε), and their average size is Ω(Ntε) = Ω(N(log log N)ε), as claimed
in Theorem 6.

For a given level i in T , we consider all nodes at level i in T that have more than 7m/8 unaccounted-for
copies in trees T1, T2, . . . , Tm. Let Ni be the total number of points in these nodes of T . By Lemma 6, each
such node T ′ has at least m/8 copies in trees T1, T2, . . . , Tm that are unaccounted for and such that each has
a child that is accounted for at level i + 1. If T ′ contains N ′ points, then any child of T ′ contains at least
N ′/4t points, as argued in Section 2.1. Hence, at least (m/8) · (Ni/4t) new points are accounted for at depth
i + 1.

16

For Ni > N/2, this shows that at least nM/(16 · 4t) = mN/(16
√

log N) new points are accounted for
at depth i + 1. Since there are only mN points in total, this implies that there can be at most 16

√
log N

levels in T that satisfy Ni > N/2. However, we have shown in Section 2.1 that the height of T is at least
log N/ log log N , which is greater than 16

√
log N , for N sufficiently large. Hence, there exists a level i in

T with Ni ≤ N/2, and at least N/2 of the points in S are accounted for in at least m/8 of the trees
T1, T2, . . . , Tm. Since at least half of the accounted for points are duplicated Ω(tε) times, the total size of
data structures D1,D2, . . . ,Dm is thus Ω(mNtε), as claimed. This concludes the proof of Theorem 6.

5 Conclusions

In this paper, we have provided another separation result between the cache-oblivious model and the I/O
model by proving an Ω((log log N)ε) gap between the space bounds of range reporting data structures with
optimal query bounds in the two models. While previous separation results between the two models had
been obtained (with considerable technical difficulty and using sophisticated techniques), our result is the
first one that proves a gap that grows with the input size. Our proof of the lower bound continues to
hold even if the data structure is aware of the block sizes we use. That is, the lower bound holds even for
cache-aware multi-level memory hierarchy models. In that case, however, our proof makes the somewhat
unrealistic assumption that the memory hierarchy has

√
log N levels.

Our lower bound still leaves a sizable gap to the O(N log N) space bound required by the currently best
cache-oblivious data structures for the problems we considered. As our analysis in Section 3 shows, the
result we obtained is in fact the best possible with the point and query sets we considered. Thus, it remains
open whether stronger lower bounds can be obtained using harder point sets or whether the O(N log N)
space bound of the currently best data structures for these problems can be lowered. In particular, it seems
plausible that O(N logε N)-space data structures for these problems may exist.

References

[1] Afshani, P.: On dominance reporting in 3D. In: Proceedings of the 16th European Symposium on
Algorithms, Lecture Notes in Computer Science, vol. 5193, pp. 41–51. Springer-Verlag (2008). DOI
http://www.springerlink.com/content/r853v710340481u3

[2] Afshani, P., Chan, T.M.: Optimal halfspace range reporting in three dimensions. In: Proceedings of
the 20th ACM-SIAM Symposium on Discrete Algorithms, pp. 180–186 (2009)

[3] Afshani, P., Hamilton, C., Zeh, N.: A general approach for cache-oblivious range reporting and approx-
imate range counting. In: Proceedings of the 25th ACM Symposium on Computational Geometry, pp.
287–295 (2009)

[4] Agarwal, P.K., Arge, L., Danner, A., Holland-Minkley, B.: Cache-oblivious data structures for orthog-
onal range searching. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp.
237–245 (2003)

[5] Agarwal, P.K., Arge, L., Erickson, J., Franciosa, P.G., Vitter, J.S.: Efficient searching with linear
constraints. Journal of Computer and System Sciences 61, 194–216 (2000)

[6] Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Communica-
tions of the ACM 31(9), 1116–1127 (1988)

[7] Arge, L., Brodal, G.S., Fagerberg, R., Laustsen, M.: Cache-oblivious planar orthogonal range searching
and counting. In: Proceedings of the 21st ACM Symposium on Computational Geometry, pp. 160–169
(2005)

17

[8] Arge, L., de Berg, M., Haverkort, H.J.: Cache-oblivious R-trees. In: Proceedings of the 21st ACM
Symposium on Computational Geometry, pp. 170–179 (2005)

[9] Arge, L., de Berg, M., Haverkort, H.J., Yi, K.: The priority R-tree: A practically efficient and worst-
case optimal R-tree. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 347–358 (2004)

[10] Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and optimal range search index-
ing. In: Proceedings of the 18th Symposium on Principles of Database Systems, pp. 346–357 (1999)

[11] Arge, L., Zeh, N.: Simple and semi-dynamic structures for cache-oblivious orthogonal range searching.
In: Proceedings of the 22nd ACM Symposium on Computational Geometry, pp. 158–166 (2006)

[12] Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indices. Acta Informatica
1, 173–189 (1972)

[13] Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal multiversion
B-tree. The VLDB Journal 5(4), 264–275 (1996)

[14] Bender, M.A., Brodal, G.S., Fagerberg, R., Ge, D., He, S., Hu, H., Iacono, J., López-Ortiz, A.: The
cost of cache-oblivious searching. In: Proceedings of the 44th IEEE Symposium on Foundations of
Computer Science, pp. 271–282 (2003)

[15] Brodal, G.S., Fagerberg, R.: On the limits of cache-obliviousness. In: Proceedings of the 35th ACM
Aymposium on Theory of Computing, pp. 307–315 (2003)

[16] Chan, T.M.: Random sampling, halfspace range reporting, and construction of (≤ k)-levels in three
dimensions. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science, pp.
586–595 (1998)

[17] Chan, T.M.: Random sampling, halfspace range reporting, and construction of (≤ k)-levels in three
dimensions. SIAM Journal on Computing 30(2), 561–575 (2000)

[18] Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proceedings
of the 40th IEEE Symposium on Foundations of Computer Science, pp. 285–397 (1999)

[19] Grossi, R., Italiano, G.F.: Efficient cross-tree for external memory. In: J. Abello, J.S. Vitter (eds.)
External Memory Algorithms and Visualization, pp. 87–106. American Mathematical Society (1999)

[20] Grossi, R., Italiano, G.F.: Efficient splitting and merging algorithms for order decomposable problems.
Information and Computation 154(1), 1–33 (1999)

[21] Hellerstein, J.M., Koutsoupias, E., Papadimitriou, C.H.: On the analysis of indexing schemes. In:
Proceedings of the 16th ACM Symposium on Principles of Database Systems, pp. 249–256 (1997)

[22] Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-replicated index structures. In:
Proceedings of the International Conference on Database Theory, Lecture Notes in Computer Science,
vol. 1540, pp. 257–276. Springer-Verlag (1999)

[23] Koutsoupias, E., Taylor, D.S.: Tight boundns for 2-dimensional indexing schemes. In: Proceedings of
the 17th ACM Symposium on Principles of Database Systems, pp. 52–58 (1998)

[24] Makris, C., Tsakalidis, A.: Algorithms for three-dimensional dominance searching in linear space. Infor-
mation Processing Letters 66(6), 277–283 (1998). DOI http://dx.doi.org/10.1016/S0020-0190(98)00075-
1

[25] McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14(2), 257–76 (1985)

18

[26] Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: A dynamic scalable kd-tree. In: Pro-
ceedings of the 8th International Symposium on Advances in Spatial and Temporal Databases, Lecture
Notes in Computer Science, vol. 2750, pp. 46–65. Springer-Verlag (2003)

[27] Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proceedings of the 15th
ACM Symposium on Computational Geometry, pp. 390–399 (1999)

[28] Robinson, J.: The K-D-B tree: A search structure for large dimensional dynamic indexes. In: Proceed-
ings of the SIGMOD International Conference on Management of Data, pp. 10–18 (1981)

[29] Samoladas, V., Miranker, D.P.: A lower bound theorem for indexing schemes and its application to
multidimensional range queries. In: Proceedings of the 17th ACM Symposium on Principles of Database
Systems, pp. 44–51 (1998)

[30] Vengroff, D.E., Vitter, J.S.: Efficient 3-D range searching in external memory. In: Proceedings of the
28th ACM Aymposium on Theory of Computing, pp. 192–201 (1996)

[31] Vitter, J.S.: External memory algorithms and data structures: dealing with massive data. ACM
Computing Surveys 33(2) (2001). Updated version at http://www.cs.purdue.edu/~jsv/Papers/

Vit.IO_survey.pdf

19

