
On Approximate Range Counting and Depth∗

Peyman Afshani and Timothy M. Chan

School of Computer Science

University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada

{ pafshani, tmchan }@uwaterloo.ca

Abstract

We improve the previous results by Aronov and Har-Peled (SODA’05) and Kaplan and Sharir
(SODA’06) and present a randomized data structure of O(n) expected size which can answer 3D
approximate halfspace range counting queries in O(log n

k
) expected time, where k is the actual

value of the count. This is the first optimal method for the problem in the standard decision
tree model; moreover, unlike previous methods, the new method is Las Vegas instead of Monte
Carlo. In addition, we describe new results for several related problems, including approximate
Tukey depth queries in 3D, approximate regression depth queries in 2D, and approximate linear
programming with violations in low dimensions.

1 Introduction

Halfspace range counting arguably ranks as one of the all-time classic problems in computational
geometry: how fast can one count the number of points in a query halfspace q if one is allowed to
preprocess the point set in a data structure? The existing space/query trade-offs for this problem
are not very satisfactory, even in low dimensions. In 3D (the main case of interest in this paper),
for data structures with linear space, one is forced to be content with query time near O(n2/3) [27]
or, in terms of the actual count k, near O(k2/3) [12]. On the other hand, logarithmic query time
is attained only by data structures with near-cubic space. This is in contrast with the related
problem of halfspace range reporting (finding all points inside q), which admits efficient algorithms
in low dimension: linear space and O(logn + k) query in 2D [14] and 3D [1]. (See [2] for further
background.)

Since it is generally believed that one cannot beat the query time of Ω(n2/3) with linear space
for counting in 3D, researchers have turned to the approximate version of the problem. Here, for
any fixed constant ε, if the actual count is k, any answer between (1−ε)k and (1+ε)k is considered
correct. This 3D approximate halfspace range counting problem is the main subject of the paper.

Note that approximation is with respect to the count and not with respect to proximity—the
latter option was, for example, investigated by Arya and Mount [4], where ranges are treated as
“fuzzy” objects, and points too close to the boundary can either be counted or ignored. These two

∗A preliminary version of this paper appeared in Proc. 23rd Sympos. Comput. Geom., pages 337–343, 2007. Work
of the second author was supported by NSERC.

1

forms of approximation are vastly different in terms of the techniques involved. Our interest in
approximating counts are motivated by applications in computational statistics (see below).

Variants of approximate halfspace range counting were actually considered early on, for example,
in a 1986 paper by Edelsbrunner and Welzl [18], who studied the 2D problem with additive instead
of relative error (and called the problem “halfplanar range estimation”). If an additive error of
εn is tolerable, then the problem can be solved with constant space and query time in any fixed
dimension by simply working with a sample (so-called ε-approximation) of constant size [21, 30].
In particular, when the count k is close to n, we can get low relative error easily. So, the main
challenge is in getting low relative error when k is small. In particular, for k = 0, we do not tolerate
any error; thus, the problem should be at least as hard as range emptiness (deciding whether h
contains any point). The existence of efficient halfspace range emptiness data structures in 2D and
3D (with O(n) space and O(logn) query time [17, 31]) suggests that efficient approximate halfspace
range counting structures might be possible in the same dimensions.

Indeed, that is the case, as was shown in two recent SODA papers. (Both papers are of particular
relevance to us here, as some of the techniques used are related to ours.) The first, by Aronov and
Har-Peled [3], described a black-box reduction from approximate halfspace range counting to range
emptiness, with polylogarithmic increase in space and query time. In 3D, their resulting data
structure needs O(n logn) space and O(log2 n log log n) query time and gives a correct approximate
answer with high probability, but is Monte Carlo in the sense that the query algorithm does not
know if the returned answer is a correct approximation or not. The second paper, by Kaplan and
Sharir [22] improved the query time to O(log2 n) with the same O(n logn) space bound, by using a
different strategy that combined an approximation technique of Cohen [16] with a new combinatorial
lemma about overlaying lower envelopes over all prefixes of a randomly permuted sequence of planes.
This query algorithm is also Monte Carlo. Subsequently, in an updated version of the first paper [3],
Aronov and Har-Peled showed that the same improved query time of O(log2 n) can be obtained
directly by their original method, making the overlay lemma unnecessary. On the other hand,
Kaplan and Sharir improved their data structure with Ramos in the journal version of their paper
and obtained an O(n log logn)-space data structure with O(log2 n) expected query time [23, 24].
Finally, a third paper by Har-Peled and Sharir [19], among other results, describes a data structure
with the query time of O(logn log log n) but with a larger space bound of O(n logO(1) n) for the 3D
problem.

All these methods are suboptimal by a logarithmic factor either in space, query time or both.
Furthermore, they are all Monte Carlo. Thus, the question of obtaining an O(n)-size structure
with O(logn) query time in 3D is left open—this situation is somewhat unsettling, considering
the fundamental nature and simplicity of the problem, and the desirability of linear space and
logarithmic time in practice.

Our main result. We resolve the remaining open problem in this paper, by presenting a data
structure usingO(n) expected space which can answer approximate halfspace range counting queries
in 3D in O(log n) expected time or, better still, in O(log n

k) expected time. This is optimal in terms
of n and k, because a matching Ω(log n

k) lower bound in the algebraic decision tree model is not
hard to show, even in 2D.1

The expected preprocessing time for our data structure is O(n logn), which is also optimal in

1Proof: Consider n

2k
points in convex position, each duplicated 2k times. Deciding whether a halfplane has

approximately less than k points is the same as answering emptiness queries in an input of size n

2k
. (It is possible to

modify the construction for nondegenerate input.)

2

terms of n. Moreover, unlike the previous algorithms, our query algorithm is Las Vegas, meaning
that it always produces a correct approximate answer. Our result is obtained by bringing in shallow
cuttings (see Section 3.1) and, at the same time, applying Kaplan and Sharir’s overlay technique
in a new way (see Section 3.2), thus reclaiming the usefulness of the overlay lemma.

Other related results. We can apply some of our ideas to obtain new results on approximating
the depth of a query point with respect to two definitions of depth that have been popularly studied
at the intersection of robust statistics and computational geometry. The Tukey depth (also called
halfspace depth) of a query point q with respect to a point set P is defined as the minimum number
of points of P in any halfspace that contains q. The regression depth of a query line q with respect
to a 2D point set P is defined as the minimum number of points intersected by q in any continuous
motion which turns q into a vertical line [33]. Previous work in computational geometry has mostly
focused on estimating the maximum depth rather than building data structures to estimate the
depth of a query point/line. Points of maximum Tukey depth and lines of maximum regression
depth in 2D can be computed in optimal O(n logn) expected time [13, 25], but it appears difficult
to find data structures with nontrivial worst-case performance that can compute the exact depth of
an arbitrary query point/line. The maximum depth in either definition is Θ(n) for all point sets, so
an approximate maximum depth can be found easily by again working with a sample of constant
size. The challenge is in approximating the depth of a query point/line, with low relative error,
when the point/line is at small depth.

We show how one can approximate the regression depth of any query line in 2D with an O(n)-
space2 data structure in O(log n) time (see Section 4.1). We show how one can approximate the
Tukey depth of a query point in 3D with an O(n)-space data structure in O(logn log log n) time;
in 2D the query time can be improved to O(logn) (see Section 4.2).

We also realize that if Monte Carlo algorithms are allowed, almost optimal results for many
approximate counting problems can be obtained through a simple general reduction using random
sampling. In fact, the main idea (see Section 4.3) is already contained in Aronov and Har-Peled’s
paper [3].

Another related problem of fundamental importance is linear programming (LP) with violations.
In one version, we are given n halfspaces and we want to find the smallest number k of halfspaces to
delete so that the remaining halfspaces have a nonempty intersection. (Equivalently, we want the
minimum depth, in another sense of the word, in an arrangement of halfspaces.) This problem was
studied by Matoušek [28] and Chan [10]. In 2D and 3D, the current best running time, by Chan,
is O(n log k+ k2 log n) and O(n log k+ k11/4n1/4 logO(1) n) respectively; in higher dimensions d, the
time bound is slightly less than O(nkd+1). Aronov and Har-Peled [3] showed that a (1 + ε)-factor
approximation of the minimum k can be found by significantly faster Monte Carlo algorithms with
O(n log log n) running time in 2D and O(n logd+1 n) running time in any constant dimension d. We
observe that with appropriate data structures, their method actually runs in O(n log log n) time
for any fixed dimension and, in fact, O(n) time if k ≫ logn log logn (see Section 4.4). We also
show how to obtain an efficient O(n logn) Las Vegas algorithm in 3D. Similar ideas also lead to an
O(n logn) Las Vegas algorithm for approximating the maximum depth in an arrangement of disks
in 2D (for this problem, Aronov and Har-Peled gave an O(n logn) Monte Carlo algorithm).

2This improves over the O(n log log n) space bound claimed in the preliminary version of this paper.

3

2 Preliminaries

Halfspace range searching problems are often easier to study in the dual space where the input is
represented by a set, H, of n planes in R

3. Here, the halfspace range reporting and (approximate)
counting problems correspond to reporting and (approximately) counting the planes that pass below
a query point q. We need the following result, first obtained by Chan [11]:

Lemma A. With O(n logn) expected preprocessing time, a 3D halfspace range reporting query with
output size k can be answered in O(logn+ k) expected time.

Subsequent papers on halfspace range reporting [32, 1] have concentrated on improving the
space usage of the above data structure. These improvements will not be required here.

We need the following definitions. The level of a point q ∈ R
3 is the number of planes of H

that pass below q. Call the locus of all points of level at most k the (≤ k)-level and the boundary
of this locus the k-level .

The main tool that we use is Matoušek’s shallow cutting lemma [26], one version of which is
stated below. (The lemma has often been used in previous work on halfspace range reporting [32, 1].)
An ε-cutting of H is a collection of nonoverlapping cells (tetrahedra) such that each cell intersects
at most εn planes of H. The conflict list of a cell refers to the list of planes intersecting the cell.
We say that the cutting covers a region if the union of the simplices contains the region.

Lemma B. For any set of n planes in R
3 and a parameter k, there exists an O(kn)-cutting of size

O(nk) that covers the (≤ k)-level. The cells in the cutting are all vertical prisms unbounded from
below.

Furthermore, we can construct these cuttings for all k of the form
⌊

(1 + ε)i
⌋

simultaneously in
Oε(n log n) expected time.

Proof. The first part is due to Matoušek [26]. The construction time for the cuttings follows from
an algorithm by Ramos [32] and Chan [10, Lemma 3.1] observed that the cells can be turned into
vertical prisms.

Throughout this paper, we say that an event X happens with high probability (w.h.p.) if Pr[X] ≥
1− 1/nc0 for a fixed large constant c0. We say a number x is ε-approximately y iff y(1− ε) ≤ x ≤
y(1+ε); similarly, x is ε-approximately less (resp. greater) than y iff x ≤ y(1+ε) (resp. x ≥ y(1−ε)).
For the sake of simplicity we will not work out the precise dependences of the time/space bounds
on ε, since we have not tried to optimize such dependences; we use the Oε notation to hide factors
in terms of ε, which are in all cases 1/εO(1) or smaller.

3 Approximate Halfspace Range Counting Queries in 3D

In this section, we first present an O(n)-space, O(logn log log n)-time result for approximate halfs-
pace range counting in 3D. We then refine this method to obtain the optimal O(n)-space, O(log n

k)-
time result.

3.1 Approximate levels by shallow cuttings

We first describe how Lemma B alone can lead to an almost optimal result that beats all previous
methods. This method has the additional advantage of being Las Vegas.

4

As we discussed, approximate halfspace range counting in dual space corresponds to prepro-
cessing a set H of n planes in R

3 in a data structure that can answer the following queries: given
any query point q, approximate the number k∗ of planes below q. Notice that k∗ is also the level
of q in H. Thus, for a parameter k, k ≤ k∗ (resp. k ≥ k∗) is equivalent to q being above (resp.
below) the k-level of H.

Our idea is to use this simple observation but replace exact levels with approximate levels.
In 3D, the best upper bound on the complexity of the exact k-level currently is O(nk3/2) [34].
However, the total complexity of the k′-level for all k′ = 0, . . . , k is O(nk2) [15], which means that
the average complexity of a k′-level with (1− ε)k ≤ k′ ≤ (1 + ε)k is Oε(nk). This is still too large
for our purposes. We show that a form of approximate k-level exists with complexity Oε(

n
k) only,

which surprisingly is sublinear for nonconstant k.
We formally define an ε-approximate (≤ k)-level to be a region that contains the (≤ (1− ε)k)-

level and is contained in the (≤ (1 + ε)k)-level. (For our purposes, we do not require the region to
be a terrain.) Using the shallow cutting lemma, we get:

Lemma 3.1. For any set H of n planes in R
3 and a parameter k, there exists an O(ε)-approximate

(≤ k)-level of size Oε(
n
k).

Furthermore, we can construct such approximate levels for all k of the form
⌊

(1 + ε)i
⌋

simulta-
neously in Oε(n log n) expected time; in the same time, we can also build a linear-size data structure
that can decide whether a query point lies inside such an approximate (≤ k)-level in O(log n

k) time.

Proof. Using Lemma A, we construct an O(kn)-cutting of size O(nk), covering the (≤ k)-level of H
for every k of the form

⌊

(1 + ε)i
⌋

in Oε(n log n) time. For each vertical prism ∆ in each cutting,
we find the set of O(k) planes in the conflict list of ∆, denoted by H∆; this can be done in
O(logn+k) time each, after O(n logn) preprocessing time, by applying Lemma A with the vertices
of ∆ as query points. Next, we construct an ε-cutting (covering ∆) of H∆. As is well known, for a
constant ε, there exists an ε-cutting (covering R

3) of constant size [17, 30] (more precisely, of size
O(ε−3)) and the cutting can be constructed in time linear in the number of planes, i.e., O(k) time.
(Constant-size cuttings can in fact be constructed by “elementary” methods, such as prune-and-
search.) Summing over all O(n/k) prisms for a given k, this process produces Oε(n/k) subcells and
takes Oε(

n
k (log n+ k)) time. Over all values of k, this amounts to Oε(n log n) preprocessing time.

For each subcell δ ⊂ ∆ of the ε-cutting, we use Lemma A to compute the level ℓδ of some
arbitrary point in δ, and if ℓδ ≤ k, we include δ in the approximate (≤ k)-level. This construction
satisfies the desired property, because each subcell δ intersects O(εk) planes so the levels of any
two points in the subcell differ by at most O(εk). The time for this step is again Oε(

n
k (log n+ k)),

and thus the total preprocessing time is Oε(n logn).
For a given query point q, we can find the vertical prism ∆ in the O(kn)-cutting containing q

in O(log n
k) time by planar point location [17, 31] on the xy-projection of the prisms. Afterwards,

we can find the subcell δ ⊂ ∆ containing q in constant time and see if δ was included in the
approximate (≤ k)-level.

The above lemma immediately suggests a data structure for our problem:

Theorem 3.2. With Oε(n log n) expected preprocessing time one can build a data structure of size
Oε(n) which can answer approximate 3D halfspace range counting queries in Oε(log n log log n)
worst-case time. The query algorithm is always correct.

5

Proof. Let ki =
⌊

(1 + ε)i
⌋

for i = 1, . . . ,
⌈

log1+ε n
⌉

, and construct an approximate (≤ ki)-level for
each i. The expected preprocessing time is Oε(n logn). The total space is given by a geometric
series O(

∑

i
n
ki
) = Oε(n).

To approximate the number k∗ of points below the query point q, we do an approximate binary
search. For a given ki, we can determine whether k∗ is O(ε)-approximately less than ki or O(ε)-
approximately greater than ki, by testing whether q lies inside the approximate (≤ ki)-level or not,
in O(log n

ki
) time. After O(log log1+ε n) iterations of binary search on the ki’s, we arrive at a value

that is O(ε)-approximately k∗. The query time is O(logn log log1+ε n).

Remark. The above data structure uses a hierarchy of shallow cuttings and is similar in spirit to
Chan’s data structure for halfspace range reporting [11], which uses a hierarchy of lower envelopes of
random samples. Lower envelopes of samples share some similar characteristics as shallow cuttings
and are more practical for implementation but, without additional ideas, do not seem to yield Las
Vegas results as good as the above data structure. In the next method, though, we will employ
lower envelopes of random subsets, but in conjunction with our shallow-cutting-based method.

3.2 Using randomized incremental construction

For our optimal method, we need an additional technique by Kaplan and Sharir:

Lemma 3.3. Let h1, . . . , hn be a random permutation of n given planes in R
3. With O(n logn)

expected preprocessing time one can build a data structure of expected size O(n) so that given a
query point q, one can find the smallest index j such that hj lies below q in O(logn) expected time.
In fact, the expected query bound can be reduced to O(log j).

Proof. The first part (ignoring the space bound) was originally due to Kaplan and Sharir [22],
and is derived from their combinatorial lemma stating that the overlay of all the lower envelopes
encountered during a randomized incremental construction has expected complexity O(n logn). An
alternative method was described in subsequent paper of Kaplan, Ramos, and Sharir [23] (which
uses linear space).

For the improvement to O(log j), let ji = 22
i

for i = 1, 2, . . . , ⌈log log n⌉ and build the above
data structure for the prefix h1, . . . , hji , which is itself a random permutation, for each i. The
expected preprocessing time and space remain asymptotically unchanged. To answer a query, we
query the prefix h1, . . . , hji for i = 1, i = 2, and so on, until an answer is found. The total expected
query time is O(

∑

ji−1≤j log ji) = O(log j).

The usefulness of the above lemma is explained by the following observation:

Observation 3.4. Let h1, . . . , hn be a random permutation of a set H. Given any subset S ⊆ H
of size k∗, let j be the smallest index with hj ∈ S. Let k = n

j . Then the probability that k∗ < k/b
or k∗ > bk for a parameter b > 0 is O(1/b).

Proof. The event k∗ < k/b implies that j < n
bk∗ and so at least one of h1, . . . , hn/(bk∗) is in S; this

happens with probability at most n
bk∗ ·

k∗

n = 1/b. On the other hand, k∗ > bk implies that j > bn/k∗

and so h1, . . . , hbn/k∗ are all not in S; this happens with probability at most (1−k∗/n)bn/k
∗

= 1/eΩ(b).

6

The key new idea is to use Kaplan and Sharir’s lemma to obtain an initial estimate k = n
j

which approximates the unknown count k∗ well with good probability (“well” and “good” in the
sense of the above observation). With the availability of this initial estimate, we can speed up the
query time of Theorem 3.2: namely, we can replace the approximate binary search (which is the
cause of the extra log log n factor) with a simple linear search. In the analysis, we bound the overall
expected query time by a geometric series.

Theorem 3.5. With Oε(n logn) expected preprocessing time, one can build a data structure of
expected size Oε(n) which can answer approximate 3D halfspace range counting queries in Oε(log

n
k∗)

expected time for any fixed query halfspace. Here k∗ is the actual value of the count and the query
algorithm is always correct.

Proof. Our data structure consists of the data structure from Theorem 3.2 which includes ap-
proximate (≤ ki)-levels for ki =

⌊

(1 + ε)i
⌋

, i = 1, . . . ,
⌈

log1+ε n
⌉

. We augment this with the data
structure in Lemma 3.3 applied to a random permutation of the n planes dual to the input points.

To approximate the number k∗ of planes below a query point q, we first compute the smallest
index j such that hj lies below q in O(log j) time. Let k = n

j and suppose ks ≤ k < ks+1. We apply
a linear search starting at ks. Recall that we can determine whether k∗ is O(ε)-approximately less
than ks±i or O(ε)-approximately greater than ks±i, in O(log n

ks±i
) time by querying an approximate

level. If k∗ is O(ε)-approximately less than ks, we repeatedly O(ε)-approximately compare k∗ with
ks−1, ks−2, . . .; otherwise, we repeatedly O(ε)-approximately compare k∗ with ks+1, ks+2, . . . With
O(i) iterations of the search, we eventually arrive at a value ks±i that is O(ε)-approximately k∗.

The probability that k∗ is O(ε)-approximately ks±i ≈ (1 + ε)±ik is at most O(1/(1 + ε)i) by
Observation 3.4. Thus, the total expected query time is upper-bounded by

∞
∑

i=1

1

(1 + ε)i
·O

(

i log
n(1 + ε)i

k∗

)

= Oε

(

log
n

k∗

)

.

This completes the proof.

4 Related Problems

Similar techniques can be applied to solve other related problems.

4.1 Approximate regression depth queries in 2D

The problem of computing the regression depth of a query line in 2D reduces to the following in
dual space: Given a set H of n lines in R

2, preprocess them in a data structure so that given
any query point q, we can find the minimum number k∗ of lines intersected by a ray over all rays
originating from q (see Figure 1(a)). Following [6], call k∗ the undirected depth of q. Call the locus
of all points of undirected depth at most k the (≤ k)-envelope. Call the boundary of this locus
the k-envelope. In measuring the complexity of a k-envelope or a polygonal chain, we will include
all vertices in the arrangement that lie on the chain, including those making angles of π (in other
words, every line contributes as many vertices as its number of intersections with the boundary -
see Firgure 1(b)).

We use the ideas outlined in Theorem 3.2. We first need an analog of Lemma 3.1. Define an ε-
approximate (≤ k)-envelope to be a region that contains the (≤ (1− ε)k)-envelope and is contained

7

(b)

q

(a)

Figure 1: (a) A point of regression depth one. (b) The 1-envelope of a set of four lines containing
six vertices. The vertices are marked with small circles.

p
v(i+1)m

vim

r

r′

(c)

vim

v(i+1)m

. . .
vim+1

(a)

v(i+1)m

vim

r r′

p

(b)

Figure 2: (a) An edge of a simplified polygon (in dotted line). (b) Proof of Lemma 4.2(i). (c) Proof
of Lemma 4.2(ii).

in the (≤ (1 + ε)k)-envelope. In the preliminary version of this paper, we prove the existence of
an approximate (≤ k)-envelope of size O(min{n, n

k log n}). Here, we present a different proof of a
slightly improved bound of O(nkα(k)), where α(·) is the inverse Ackermann function.

Lemma 4.1. For any set H of n lines in R
2, the total complexity of the k′-envelope over all

k′ = 0, . . . , k is O(nk).

Proof. First observe that in 2D, the 0-envelope consists of all unbounded cells in the arrangement
and has linear complexity by the zone theorem [17], since the unbounded cells intersect the line
x = −M or x = M for a sufficiently large M .

We apply Clarkson and Shor’s technique [15], by picking a random sample in which each line
is chosen with probability 1

k . The lemma follows from the fact that a vertex v of the arrangement
which lies in the (≤ k)-envelope of H has Ω(1

k2
) chance of surviving in the sample and being a

0-envelope vertex.

In 2D, one can obtain an approximate level of size O(nk) by taking an exact level of size O(n)
and applying a “simplification” process (e.g., as in [18]). We show that approximate envelopes
can be constructed in a similar fashion. The modification is not trivial, as k-envelopes have a
more complicated geometry than k-levels. In particular, the k-envelope may consist of multiple
polygons; all points inside these polygons have undirected depth at least k and all points outside
have undirected depth at most k.

Given a polygon A = 〈v0, v1, . . . , vt〉, we define its m-simplification as the polygon A′ =
〈v0, vm, v2m, . . . , vm⌊ t

m
⌋, vt〉 (see Figure 2(a)). Note that even if A is a simple polygon, the sim-

plified polygon A′ may self-intersect. We say that a point p is outside a nonsimple polygon C if p

8

is in the outer connected component of R2−C (i.e., the component containing infinity); otherwise,
p is inside C. Similarly, p is outside a collection C of polygons (possibly with holes) if p is in the
outer component of R2−

⋃

A∈C A. The following lemma encompasses all the properties of simplified
polygons that we need:

Lemma 4.2. Let C be the collection of polygons defining the k-envelope and C ′ be the collection
of the m-simplifications of these polygons. Then (i) all points inside C ′ have undirected depth at
least k−m; (ii) all points outside C ′ have undirected depth at most k+m; and (iii) C ′ has at most
O(|C ′|m) crossings.

Proof. (i) Consider any ray r′ from an arbitrary point inside C ′ which intersects C ′, say, at a
point p on the segment vimv(i+1)m. Draw a ray r parallel to r′ from vim (Figure 2(b)). Then
r hits at least k lines since vim has undirected depth k. Any line which crosses only one
of these two rays intersects the segment vimv(i+1)m and thus creates a vertex on the chain
〈vim, vim+1, . . . , v(i+1)m〉, but there are only m such vertices. So, r′ hits at least k −m lines.

(ii) Let p be outside C ′. Then p must be outside the simplified polygon A′ for some A =
〈v0, v1, . . . , vt〉 in C. If p is outside A, then p has undirected depth at most k. We may
assume that p is inside A.

Since p is outside A′, it is possible to connect p to infinity through a curve c not cross-
ing A′. Since p is inside A, the number of intersections between c and A must be odd.
This implies that for some vim, the number of intersections between c and the chain
Ai = 〈vim, vim+1, · · · , v(i+1)m〉 is odd.

Observe that p is inside the shape formed by adding the segment vimv(i+1)m of A′ to the
chain Ai, since the number of intersections of c with this boundary is odd. Thus, we have a
situation similar to Figure 2(c). Consider a ray r from vim which crosses k lines, and draw a
ray r′ parallel to r from p. Then any line which crosses r′ but not r must also cross the chain
Ai, but there can be at most m such lines. So, p has undirected depth at most k +m.

(iii) Suppose two segments vimv(i+1)m and wjmw(j+1)m of C ′ cross. Since the original k-
envelope C does not have crossings, one of two possibilities must hold: the chain
Ai = 〈vim, vim+1, . . . , v(i+1)m〉 intersects the segment wjmw(j+1)m, in which case we give
wjmw(j+1)m one charge; or the chain Bj = 〈wjm, wjm+1, . . . , w(j+1)m〉 intersects the segment
vimv(i+1)m, in which case we give vimv(i+1)m one charge.

Any line which intersects the segment vimv(i+1)m must create a vertex on the chain Ai, but
there are only m such vertices. Thus, each of the |C ′| segments receives O(m) charges.

With one additional combinatorial fact stated below, we can derive our lemma on approximate
envelopes.

Lemma 4.3. Given an arrangement of N line segments in R
2 with X intersections, the outer face

has complexity O(Nα(⌈X/N⌉)).

Proof. By a standard result [20], the outer face has complexity O(Nα(N)). To obtain an X-
sensitive bound, we use known results on intersection-sensitive cuttings (e.g., [5]): there exists a
partition of R2 into O(r+X(r/N)2) triangles, such that each triangle intersects O(N/r) segments.
For each triangle ∆, let S∆ be the segments clipped to ∆. Since each vertex in ∆ of the outer face

9

of the overall arrangement must be on the outer face of S∆, the complexity of the overall outer face
is at most O (

∑

∆ |S∆|α(|S∆|)) = O((r + X(r/N)2) · (N/r)α(N/r)). Setting r = min{N2/X,N}
yields the O(Nα(⌈X/N⌉)) bound.

Lemma 4.4. For any set of n lines in R
2 and a parameter k, there exists an O(ε)-approximate

(≤ k)-envelope of size Oε(
n
kα(k)).

Proof. According to Lemma 4.1, the average complexity of a k′-envelope for a random k′ between
(1 − ε)k and (1 + ε)k is Oε(n). Let C be such a k′-envelope. We return the outer face of the m-
simplifications of the polygons in C, with the parameter m = εk. By Lemma 4.2(i,ii), the resulting
polygon is an O(ε)-approximate (≤ k)-envelope.

Note that any polygon in C with complexity less than m can be simplified to the empty polygon
and be discarded. The total number of vertices in the simplified polygons is N = Oε(

n
k) and the

number of crossings is X = Oε(Nk) by Lemma 4.2(iii). By Lemma 4.3, the complexity of the outer
face is Oε(

n
kα(k)).

We can now use the above lemma to prove the following theorem.

Theorem 4.5. One can build a data structure that uses Oε(n) space and can answer approximate
regression depth queries in 2D in Oε(log n) worst-case time.

Proof. Let ki =
⌊

(1 + ε)i
⌋

for i = 1, . . . ,
⌈

log1+ε n
⌉

, and construct an (ε/3)-approximate (≤ ki)-
envelope Ei for each i by Lemma 4.4. The total size of the Ei’s is Oε(

∑

i
n
ki
α(ki)) = Oε(n). Finally,

we store all these approximate envelopes in a point location data structure [17, 31]. Note that there
are no intersections between the boundaries of the Ei’s.

To approximate k∗ for a query point q, we return the smallest ki such that q lies inside Ei. This
can be done in Oε(log n) time by a single planar point location query on the combined subdivision
formed by the boundaries of the Ei’s.

4.2 Approximate Tukey depth queries in 3D

The problem of computing the Tukey depth of a query point in 3D reduces to the following in
dual space: Given a set H of n planes in R

3, preprocess them in a data structure so that given
any query plane q, we can find the smallest value k∗ such that q intersects the (≤ k∗)-level in
the arrangement of H. (Technically, we need to compute also the smallest value k∗∗ such that q
intersects the (≥ n − k∗∗)-level, and return the smaller of the two values, but computing k∗∗ is
similar.)

We adapt the method used in Theorem 3.2 to solve this problem:

Theorem 4.6. One can preprocess a 3D point set of size n in Oε(n log n) expected time into a
data structure of Oε(n) size such that the Tukey depth of any query point q can be approximated in
Oε(log n log logn) worst-case time. The query algorithm is always correct.

Proof. Let ki =
⌊

(1 + ε)i
⌋

for i = 1, . . . ,
⌈

log1+ε n
⌉

, and construct an approximate (≤ ki)-level Li

for each i by Lemma 3.1, as in the proof of Theorem 3.2. For each i, we compute the upper hull
Ui of the O(n

ki
) vertices of Li. This takes time O(

∑

i
n
ki
log n

ki
) = Oε(n log n).

To approximate k∗ for a query plane q, we do an approximate binary search. For a given ki,
we can determine whether k∗ is O(ε)-approximately greater than ki or O(ε)-approximately less

10

than ki, by testing whether q lies strictly above the upper hull Ui or not, in O(logn) time (back in
primal space, this corresponds testing whether a point lies below a lower envelope of planes, which
reduces to planar point location). After O(log log1+ε n) iterations of binary search, we arrive at a
value that is O(ε)-approximately k∗. The query time is O(logn log log1+ε n).

Remarks. For Tukey depth queries in 2D, we can improve the query time to Oε(log n) by the same
idea as in the proof of Theorem 4.5 (replacing binary search with a single planar point location
query).

4.3 General approximate counting through reduction to small counts

The concept of approximate levels employed in the previous sections provides almost optimal results
where the correctness is guaranteed with probability one. However, it is not always possible to take
this approach if such approximate levels are difficult to build. Nonetheless, as Aronov and Har-
Peled [3] observed Monte Carlo approximation schemes can be obtained through simpler ideas such
as random sampling. They proposed a general technique to reduce a approximate counting problem
to a corresponding emptiness problem. In this section, we propose a similar reduction but to a
counting problem when the count is small (bounded by O(log n)). In contrast to their technique,
our reduction introduces no overhead in the space and only a tiny increase in the query time.

Our method uses an easy application of the Chernoff bound to obtain the following lemma which
helps us “approximately compare” the actual value of the count with another fixed parameter.

Observation 4.7. Let c be an arbitrary constant, cε be a sufficiently large constant depending on
ε and c, and k be a fixed parameter such that k ≥ cε log n. For a set P of n elements consider
a random sample, R, where each element of P is included with probability p = cε logn

k . For any
subset S ⊆ P of size k∗, if k∗ ≤ k (resp. k∗ ≥ k) then with probability at least 1 − n−c we have
|S ∩R| ≤ (1 + ε)pk (resp. |S ∩R| ≥ (1− ε)pk).

Proof. LetXi = 1 if the i-th element of S is in R, and 0 otherwise; these are independent, identically
distributed, random variables. Let X = |S ∩R| =

∑k∗

i=1Xi, which has mean µ = pk∗.
Suppose k∗ ≤ k. According to the Chernoff bound [29],

Pr[X > (1 + δ)µ] ≤

{

e−δ2µ/4 if δ ≤ 2e− 1

2−(1+δ)µ if δ > 2e− 1.

We substitute δ = εk/k∗ and see that Pr[X > (1 + ε)pk] ≤ Pr[X > pk∗ + εpk] ≤
max{e−ε2(k/k∗)2pk∗/4, 2−pk∗−εpk} ≤ max{e−ε2pk/4, 2−εpk} ≤ n−c, if cε is sufficiently large.

Next, suppose k∗ ≥ k. According to the Chernoff bound,

Pr[X < (1− δ)µ] ≤ e−δ2µ/2.

Then Pr[X < (1− ε)pk] ≤ Pr[X < (1− ε)pk∗] ≤ e−ε2pk∗/2 ≤ e−ε2pk/2 ≤ n−c, if cε is sufficiently
large.

The above observation suggests the following reduction.

11

Theorem 4.8. Given any point set of size n and a “threshold” parameter ℓ, suppose there is a
data structure that can decide whether the number of points in a query range is at most ℓ, and if so,
return this number. Let Psmall(n), Ssmall(n), and Qsmall(n, ℓ) be the (expected) preprocessing time,
space, and query time of this data structure (assuming these functions are well-behaved).

Then with Oε(Psmall(n)) preprocessing time, Oε(Ssmall(n)) space and
Oε(Qsmall(n, logn) log logn) expected query time one can build a data structure that can ap-
proximate the number of points in a query range.

The algorithm is correct w.h.p. for any fixed query range.

Proof. For each i, we take a random sample Ri of the given point set P with sampling probability
pi = cε logn

ki
in which ki =

⌊

(1 + ε)i
⌋

for i =
⌈

log1+ε(cε logn)
⌉

, . . . ,
⌈

log1+ε n
⌉

. We then build a
small-count data structure for every sample Ri, with threshold ℓ = cε log n. Since the expected size
of Ri geometrically decreases as i increases, the total preprocessing time and space is asymptotically
unchanged.

To approximate the (unknown) number k∗ of points inside a query region h, we do an approx-
imate binary search. By Observation 4.7, for a given ki, we can determine whether k∗ is O(ε)-
approximately less than ki or O(ε)-approximately greater than ki, by testing whether |h ∩ Ri| ≤
cε log n. This can be done by using the small-count data structure for Ri. After O(log log1+ε n) it-
erations of binary search on the ki’s, we arrive at a value that O(ε)-approximates k∗ w.h.p. (We can
readjust ε by a constant factor if necessary.) The query time is O(Qsmall(n, cε log n) log log1+ε n).

One special case remains: what if k∗ is less than all the ki’s, i.e., k
∗ ≤ cε log n? In this case, we

can directly answer the query using a small-count data structure for P in Qsmall(n, cε log n) time.

Remarks. For example, for 3D halfspace range counting, we can use known results for 3D halfspace
range reporting [1, 11, 32] to get Psmall(n) = O(n logn), Ssmall(n) = O(n), and Qsmall(n, ℓ) =
O(logn + ℓ). Thus, this implies a Monte Carlo data structure with O(logn log log n) query time
using linear space, which is already close to optimal. Of course, for 3D approximate halfspace range
counting specifically, the optimal solution presented in Section 3 is better.

Ironically, essentially the same Chernoff-bound observation was used before in Aronov and Har-
Peled’s paper [3], not for halfspace range counting but for offline problems like linear programming
with violations. One reason that Aronov and Har-Peled obtained a worse result for range counting
is perhaps their insistence on reducing approximate counting to emptiness, although to be fair,
their main focus was not in optimizing logarithmic factors.

4.4 Approximate LP with violations

Lastly, we address the problem of LP with violations: given a set H of n halfspaces in R
d, find a

point that violates (i.e., lies outside) the smallest number kopt of halfspaces.
We can apply Theorem 4.8 to get the following reduction, which was originally obtained by

Aronov and Har-Peled [3]. We include the proof to prepare for a later result:

Theorem 4.9. Suppose there is an algorithm for LP with violations running in Tsmall(n, kopt) time
(assuming that the function Tsmall is well-behaved). Then we can solve the problem approximately
in Oε(Tsmall(

n
kopt

logn, logn)) time. This algorithm is correct w.h.p.

12

Proof. We first solve the approximate decision problem: given a threshold k, determine whether
kopt is ε-approximately less than k or ε-approximately greater than k.

The solution is simple: take a random sample R with sampling probability p = cε logn
k and solve

the problem for R with threshold pk = cε log n in O(Tsmall(
cεn logn

k , cε log n)) time. By Observa-
tion 4.7, if a fixed point violates ε-approximately less (resp. greater) than pk halfspaces in R, then
it violates O(ε)-approximately less (resp. greater) than k halfspaces in H w.h.p. Thus, the answer
is correct w.h.p., since the number of combinatorially “different” points is polynomial in n.

To approximate kopt, we just run the above approximate decision algorithm for k =
n, ⌊(1− ε)n⌋,

⌊

(1− ε)2n
⌋

, . . ., until k is O(ε)-approximately kopt. The total running time forms
a geometric series and increases only by a constant factor.

In d dimensions, Matoušek [28] gave an algorithm for LP with violations with running time
O(nkd+1

opt). For small kopt < nα for a constant α > 0 depending on d, Chan [7, 8] showed how to
improve the running time to O(n log kopt) by using data structures for linear programming queries:

Lemma C. LP with violations in a constant dimension d can be solved in Tsmall(n, kopt) =

O(n log kopt + k
O(1)
opt) time.

Combined with Theorem 4.8, the above lemma implies an algorithm for the approximate version
of the problem with running time Oε(Tsmall(

n
kopt

log n, logn)) = Oε(
n

kopt
log n log logn + logO(1) n)

for all kopt. For kopt = ω(log n log logn), this is sublinear. For kopt = O(log n log log n), we can
switch back to the algorithm in Lemma C itself. Thus we have the following result.

Theorem 4.10. We can solve the problem of approximate LP with violations in constant dimension

in Oε(min
{

n
kopt

log n log logn+ logO(1) n, n log kopt + k
O(1)
opt

}

) time. The bound is always at most

O(n log log n). This algorithm is correct w.h.p.

The above algorithm is quintessentially Monte Carlo. We show how to obtain a Las Vegas
algorithm in 3D (and thus in 2D as well), by using shallow cuttings:

Theorem 4.11. We can solve the problem of approximate LP with violations in 3D in Oε(n log n)
expected time. This algorithm is always correct.

Proof. We follow the algorithm from Theorem 4.9. Consider a random sample R in which each
plane is chosen with probability p = cε logn

k . Intuitively, this random sample attempts to compare
approximately kopt to k. Instead of relying on a high probability bound we try to certify that the
chosen sample is indeed “good”. Let H− (resp. H+) be the bounding planes of the lower (resp.
upper) halfspaces. Let R− = R∩H− (resp. R+ = R∩H+). We only describe this process for R−;
R+ can be certified in a similar manner.

Following the algorithm of Theorem 4.9, we need to certify that (≤ pk)-level of R− is contained
within the (≤ (1 + O(ε))k)-level of H− and contains the (≤ (1 − O(ε))k)-level of H−. By Obser-
vation 4.7, this certification succeeds w.h.p., since the number of combinatorially different points
is polynomial in n; if certification fails at any moment, we can afford to switch to a brute-force
algorithm.

To perform the certification, we follow the approximate level construction from the proof of
Lemma 3.1. Consider each vertical prism ∆ of the O(kn)-cutting covering the (≤ 2k)-level of H−.
Recall that ∆ is further divided into a constant number of subcells δ via an ε-cutting, and we have
computed the level ℓδ of an arbitrary point in each subcell δ.

13

Let R−
∆ be the planes in R− intersecting ∆. Note that since ∆ intersects O(k) planes of H−,

|R−
∆| is binomially distributed with mean O(pk); so E[g(|R−

∆|)] = O(g(pk)) for any polynomially
bounded function g satisfying g(2n) = O(g(n)).

We construct the arrangement of R−
∆. If a feature f of this arrangement intersects a subcell δ,

then f ∩ δ lies between (ℓδ − O(ε)k)-level and (ℓδ + O(ε)k)-level of H−, because the levels of any
two points in a subcell differ by at most O(εk). We just need to compare ℓδ approximately with
k. As there are only a constant number of subcells in ∆, the cost per ∆ is O(|R−

∆|
3), which has

expected value O(p3k3) = Oε(log
3 n).

In fact, we can reduce some of the logarithmic factors: instead of examining all features f of
the whole arrangement of R−

∆, it suffices to construct an approximate (≤ k′)-level of R−
∆, over all

k′ of the form
⌊

(1 + ε)i
⌋

, of total size Oε(|R
−
∆|), and examine only features of the boundaries of

these approximate levels. By Lemma 3.1, this reduces the cost per ∆ to Oε(|R
−
∆| log |R

−
∆|), which

has expected value Oε(log n log log n).
The total expected extra cost for the certification is thus Oε(

n
k logn log logn). We can

approximate kopt as before. The total expected time of the algorithm remains Oε(n log n +
n

kopt
logn log log n). As before, for kopt < log logn, we can directly use Lemma C.

Using a similar approach, we can also obtain an O(n logn) Las Vegas algorithm for the following
problem: given n disks in 2D, find a point that has the maximum depth, i.e., lies inside the maximum
number of disks.

Theorem 4.12. We can compute a (1 + ε)-factor approximation to the maximum depth in an
arrangement of n disks in 2D in Oε(n log n) expected time. This algorithm is always correct.

Proof. First we can get a Monte-Carlo Oε(n log n) algorithm, as described by Aronov and Har-
Peled [3]: Let Tsmall(n, kopt) denote the time required to solve the problem when the depth is kopt;
we can naively bound Tsmall(n, kopt) by O(n logn+nkopt) by explicitly constructing the entire disk
arrangement [3]. By an appropriate analog of Theorem 4.9, we can then solve the problem in time
Oε(Tsmall(

n
kopt

log n, logn)) = Oε(
n

kopt
log2 n), which is Oε(n logn) for kopt ≥ logn. For kopt < log n,

we can switch to the O(n logn+ nkopt) algorithm.
Now, to turn this into a Las Vegas algorithm, we use certification via shallow cuttings again.

By applying the standard lifting map to transform the disks into planes in 3D [17], the problem
is equivalent to approximating the maximum level for an arrangement of n planes over all points
on the unit paraboloid. We can certify whether a sample of planes R chosen during Theorem 4.9
is “good” in exactly the same manner as in the proof of Theorem 4.11. The total expected time
becomes Oε(n log n+ n

kopt
log2 n). As before, for kopt < logn, we can switch to the O(n logn+nkopt)

algorithm.

An intriguing question that remains is whether approximate LP with violations can be solved
in linear time, Las Vegas or Monte Carlo. We don’t know how even in 2D. For constant-factor
approximations, however, we can obtain a linear-time Monte Carlo algorithm in 2D, by using the
following subroutine:

Lemma D. Let H− and H+ be two sets of lines in R
2 of total size n. Given K, we can find the

largest k ≤ K such that there is a line separating the k-level of H− and the (|H+|−k)-level of H+,
in O(n+K(n/K)δ log n) expected time for any fixed δ > 0.

14

Proof. The result follows from known techniques by Chan [13, 9]. Specifically, Chan [13] considered
the problem of finding a point of maximum Tukey depth for a given point set; in the dual, this
problem in 2D is equivalent to the problem stated in the lemma in the case when H− = H+ and
K = n. The same algorithm can be applied to the setting where the input consists of two sets H−

and H+. The expected running time is O(n logn).
To obtain a time bound that depends on K, we note that the algorithm in [13] uses an “implicit

linear programming” technique to reduce the problem to the following decision problem:

Given k ≤ K and a line ℓ, decide whether ℓ separates the k-level of H− and the
(|H+| − k)-level of H+.

Specifically, if the decision problem can be solved in D(n,K) time and D(n,K)/nδ is a mono-
tone increasing function in n for some fixed δ > 0, then the optimization problem can be solved
in O(D(n,K)) expected time. The decision problem amounts to deciding whether a given line
intersects a k-level (k ≤ K); as observed in [9, proof of Theorem 5.2], this can actually be done
in O(n +K logn) time (the subproblem reduces to a one-dimensional problem of selecting the K
smallest and K largest elements from a list of n elements). We replace O(n + K log n) with the
upper bound D(n,K) = O(n+K(n/K)δ log n) (so that D(n,K)/nδ is monotone increasing).

Theorem 4.13. We can obtain a factor-O(1) approximation for LP with violations in 2D in Oε(n)
expected time. This algorithm is correct w.h.p.

Proof. Let H− (resp. H+) be the bounding lines of the lower (resp. upper) halfplanes. Let L−
k

denote the k-level of H− and L+
k denote the (|H+| − k)-level of H+. Given an upper bound K to

kopt, we use Lemma D to find the largest k ≤ K such that there is a line separating L−
k and L+

k .
We claim that this k approximates kopt to within a factor of 4. Suppose there is a point q that

violates k constraints. Then q is below L−
k and above L+

k , so no line can separate the L−
k and L+

k .
Conversely, suppose no line separates L−

k and L+
k . Then the upper hull of L−

k and the lower hull of
L+
k must intersect, so there is a point q below an upper hull edge u−v− of L−

k and above a lower
hull edge u+v+ of L+

k . Since u
− and v− are on the k-level of H−, q lies below the (2k)-level of H−;

similarly, q is above the (2k)-level of H+. So q violates at most 4k constraints.
We set K = n/ log2 n. If kopt ≤ n/ log2 n, the algorithm will successfully compute kopt in

expected time O(n+K(n/K)δ log n) = O(n). If kopt > n/ log2 n, we can switch to the Monte Carlo

algorithm in Theorem 4.10 running in time Oε(
n

kopt
log n log log n+ logO(1) n).

Remark. The approximation factor 4 can be improved, but it is not clear how to bring the constant
arbitrarily close to 1.

References

[1] P. Afshani and T. M. Chan. Optimal halfspace range reporting in three dimensions. In Proceedings of
the 20th Annual Symposium on Discrete Algorithms, pages 180–186, 2009.

[2] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 1–56. American Mathematical Society, Providence, RI, 1999.

15

[3] B. Aronov and S. Har-Peled. On approximating the depth and related problems. In Proceedings of the
16th Annual ACM–SIAM Symposium on Discrete Algorithms, pages 886–894, 2005. Updated version at
http://valis.cs.uiuc.edu/~sariel/research/papers/04/depth/, downloaded in November 2006.

[4] S. Arya and D. M. Mount. Approximate range searching. Computational Geometry: Theory and
Applications, 17(3-4):135–152, 2000.

[5] M. de Berg and O. Schwarzkopf. Cuttings and applications. International Journal of Computational
Geometry and Applications, 5:343–355, 1995.

[6] M. Bern and D. Eppstein. Multivariate regression depth. In Proceedings of the 16th Annual Symposium
on Computational Geometry, pages 315–321, 2000.

[7] T. M. Chan. Fixed-dimensional linear programming queries made easy. In Proceedings of the 12th
Annual ACM Symposium on Computational Geometry, pages 284–290, 1996.

[8] T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete
and Computational Geometry, 16:369–387, 1996.

[9] T. M. Chan. Geometric applications of a randomized optimization technique. Discrete and Computa-
tional Geometry, 22:547–567, 1999.

[10] T. M. Chan. Low-dimensional linear programming with violations. SIAM Journal on Computing,
34:879–893, 2000.

[11] T. M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-levels in three
dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

[12] T. M. Chan. On enumerating and selecting distances. International Journal of Computational Geometry
and Applications, 11:291–304, 2001.

[13] T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proceedings of the 15th
Annual ACM–SIAM Symposium on Discrete Algorithms, pages 430–436, 2004.

[14] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25(1):76–90, 1985.

[15] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.
Discrete and Computational Geometry, 4:387–421, 1989.

[16] E. Cohen. Size-estimation framework with applications to transitive closure and reachability. Journal
of Computer and System Sciences, 55:441–453, 1997.

[17] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theo-
retical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

[18] H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements with applications.
SIAM Journal on Computing, 15:271–284, 1986.

[19] S. Har-Peled and M. Sharir. Relative ε-approximations in geometry. http://valis.cs.uiuc.edu

/~sariel/research/papers/06/relative/, 2006. Also with B. Aronov, in Proceedings of the 23rd
ACM Symposium on Computational Geometry, pages 327–336, 2007.

[20] S. Hart and M. Sharir. Nonlinearity of Daveport-Schinzel sequences and of generalized path compression
schemes. Combinatorica, 6(2):151–177, 1986.

[21] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete and Computational Geom-
etry, 2:127–151, 1987.

[22] H. Kaplan and M. Sharir. Randomized incremental constructions of three-dimensional convex hulls
and planar Voronoi diagrams, and approximate range counting. In Proceedings of the 17th Annual
ACM–SIAM Symposium on Discrete Algorithms, pages 484–493, 2006.

16

[23] H. Kaplan, E. Ramos, and M. Sharir. Range minima queries with respect to a random permutation,
and approximate range counting. To appear in Discrete and Computational Geometry.

[24] H. Kaplan, E. Ramos, and M. Sharir. The overlay of minimization diagrams in a randomized incremental
construction. Manuscript, 2007.

[25] S. Langerman and W. Steiger. The complexity of hyperplane depth in the plane. Discrete and Compu-
tational Geometry, 30(2):299–309, August 2003.

[26] J. Matoušek. Reporting points in halfspaces. Computational Geometry: Theory and Applications,
2(3):169–186, 1992.

[27] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Computational Geometry,
10(2):157–182, 1993.

[28] J. Matoušek. On geometric optimization with few violated constraints. Discrete and Computational
Geometry, 14:365–384, 1995.

[29] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York, NY,
1995.

[30] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1994.

[31] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[32] E. A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings of the 14th
Annual Symposium on Computational Geometry, pages 390–399, 1999.

[33] P. J. Rousseeuw and M. Hubert. Regression depth. Journal of American Statistical Association,
94(446):388–402, 1999.

[34] M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in three dimensions. Discrete
and Computational Geometry, 26:195–204, 2001.

17

