
Instance-Optimal Geometric Algorithms

Peyman Afshani∗ Jérémy Barbay† Timothy M. Chan‡

July 3, 2009

Abstract

We prove the existence of an algorithmA for computing 2-d or 3-d convex hulls that is optimal for
every point setin the following sense: for every setS of n points and for every algorithmA′ in a certain
classA, the maximum running time ofA on input〈s1, . . . , sn〉 is at most a constant factor times the max-
imum running time ofA′ on〈s1, . . . , sn〉, where the maximum is taken over all permutations〈s1, . . . , sn〉
of S. In fact, we can establish a stronger property: for everyS andA′, the maximum running time of
A is at most a constant factor times the average running time ofA′ over all permutations ofS. We call
algorithms satisfying these propertiesinstance-optimalin theorder-obliviousandrandom-ordersetting.
Such instance-optimal algorithms simultaneously subsumeoutput-sensitive algorithms and distribution-
dependent average-case algorithms, and all algorithms that do not take advantage of the order of the input
or that assume the input is given in a random order.

The classA under consideration consists of all algorithms in a decision tree model where the tests
involve onlymultilinear functions with a constant number of arguments. To establishan instance-specific
lower bound, we deviate from traditional Ben–Or-style proofs and adopt an interesting adversary argument.
For 2-d convex hulls, we prove that a version of the well knownalgorithm by Kirkpatrick and Seidel (1986)
or Chan, Snoeyink, and Yap (1995) already attains this lowerbound. For 3-d convex hulls, we propose a
new algorithm.

To demonstrate the potential of the concept, we further obtain instance-optimal results for a few other
standard problems in computational geometry, such as maxima in 2-d and 3-d, orthogonal line segment
intersection in 2-d, finding bichromaticL∞-close pairs in 2-d, off-line orthogonal range searching in2-d,
off-line dominance reporting in 2-d and 3-d, off-line halfspace range reporting in 2-d and 3-d, and off-line
point location in 2-d.
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1 Introduction

Instance optimality: our model(s). Standard worst-case analysis of algorithms has often been criticized
as overly pessimistic. As a remedy, some researchers have turned towardsadaptiveanalysis where the cost
of algorithms is measured as a function of not just the input size but other parameters that capture in some
ways the inherent simplicity or difficulty of the input instance. For example, for problems in computational
geometry (the primary domain of the present paper), parameters that have been considered in the past include
the output size (leading to so-calledoutput-sensitivealgorithms) [46], the spread of an input point set (the ratio
of the maximum to the minimum pairwise distance) [38], various measures of fatness of the input objects (e.g.,
ratio of circumradii to inradii) [48] or clutteredness of a collection of objects [30], the number of reflex angles
in an input polygon, and so on.

The ultimate in adaptive algorithms is aninstance-optimalalgorithm, i.e., an algorithmA whose cost is
at most a constant factor from the cost of any other algorithmA′ running on the same input, foreveryinput
instance. Unfortunately, for many problems, this requirement is too stringent. For example, consider the 2-d
convex hull problem, which hasΘ(n log n) worst-case complexity in the algebraic computation tree model:
for every input sequence ofn points, one can easily design an algorithmA′ that runs inO(n) time on that
particular sequence, thus ruling out the existence of an instance-optimal algorithm.1

To get a more useful definition, we suggest a variant of instance optimality where we ignore the order in
which the input elements are given, as formalized preciselybelow:

Definition 1.1 Consider a problem where the input consists of a sequence ofn elements from a domainD.
Consider a classA of algorithms. Acorrectalgorithm refers to an algorithm that outputs a correct answer for
every possible sequence of elements inD.

For a setS of n elements inD, let TA(S) denote the maximum running time ofA on inputσ over all
n! possible permutationsσ of S. Let OPT(S) denote the minimum ofTA′(S) over all correct algorithms
A′ ∈ A. If A ∈ A is a correct algorithm such thatTA(S) ≤ O(1) ·OPT(S) for every setS, then we sayA is
instance-optimal in the order-oblivious setting.

For many problems, the output is a function of the input as a set rather than a sequence, and the above
definition is especially meaningful. In particular, for such problems, instance-optimal algorithms are au-
tomatically optimal output-sensitive algorithms; in fact, they are automatically optimal adaptive algorithms
with respect toany parameter that is independent of the input order, all at the same time! This property is
satisfied by simple parameters like the spread of an input point setS, or more complicated quantities like the
expected sizefr(S) of the convex hull of a random sample of sizer from S [26].

For many algorithms (e.g., quickhull [52], to name one), therunning time is not affected so much by the
order in which the input points are given but by the input point set itself. Combinatorial and computational
geometers more often associate “bad examples” with bad point sets rather than bad point sequences. All this
supports the reasonableness and importance of the order-oblivious form of instance optimality.

We can consider a still stronger variant of instance optimality:

Definition 1.2 For a setS of n elements inD, let T
avg
A (S) denote the average running time ofA on input

σ over alln! possible permutationsσ of S. Let OPTavg(S) denote the minimum ofT avg
A′ (S) over all correct

1The length of the program forA′ may depend onn in this example. If we relax the definition to permit the “constant factor” to
grow as a function of the program length ofA

′, then an instance-optimal algorithmA exists for many problems such as sorting (or
more generally problems that admit linear-time verification). This follows from a trick attributed to Levin [42], of enumerating and
simulating all programs in parallel under an appropriate schedule. To say that algorithms obtained this way are impractical, however,
would be an understatement.
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algorithmsA′ ∈ A. If A ∈ A is a correct algorithm such thatTA(S) ≤ O(1) · OPTavg(S) for every setS,
then we sayA is instance-optimal in the random-order setting.2

Note that an instance-optimal algorithm in the above sense is immediately also competitive againstran-
domized(Las Vegas) algorithmsA′, by the easy direction of Yao’s principle. The above definition has extra
appeal in computational geometry, as it is common to see the design of randomized algorithms where the
input elements are initially permuted in random order [28].

Instance-optimal algorithms in the random-order setting also imply optimal average-casealgorithms
where we analyze the expected running time under the assumption that the input elements are random and
independently chosen from a common given probability distribution. (To see this, just observe that the input
sequence is equally likely to be any permutation ofS conditioned to the event that the set ofn input elements
equals any fixed setS.) An instance-optimal algorithm can deal with all probability distributions at the same
time! Instance optimality also remedies a common complaintabout average-case analysis, that it does not
provide information about an algorithm’s performance on a specific input.

Convex hull: our main result. After making the case for instance-optimal algorithms under our definitions,
the question remains: do such algorithms actually exist, orare they “too good to be true”? Specifically, we
turn to one of the most fundamental and well known problems incomputational geometry—computing the
convex hull of a set ofn points. ManyO(n log n)-time algorithms in 2-d and 3-d have been proposed since
the 1970s [31, 36, 52], which are worst-case optimal under the algebraic computation tree model. Optimal
output-sensitive algorithms can solve the 2-d and 3-d problem inO(n log h) time, whereh is the output size.
The first such output-sensitive algorithm in 2-d was found byKirkpatrick and Seidel [46] in the 1980s and was
later simplified by Chan, Snoeyink, and Yap [20] and independently Wenger [55]; a different, simple, optimal
output-sensitive algorithm was discovered by Chan [15]. The first optimal output-sensitive algorithm in 3-d
was obtained by Clarkson and Shor [28] using randomization;another version was described by Clarkson [26].
The first deterministic optimal output-sensitive algorithm in 3-d was obtained by Chazelle and Matoušek [25]
via derandomization; the approach by Chan [15] can also be extended to 3-d and yields a simpler optimal
output-sensitive algorithm. There are also average-case algorithms that run inO(n) expected time for certain
probability distributions [52], e.g., when the points are independent and uniformly distributed inside a circle
or a constant-size polygon in 2-d, or a ball or a constant-size polyhedron in 3-d.

The convex hull problem is in some ways an ideal candidate to consider in our models. It is not difficult
to think of examples of “easy” point sets and “hard” point sets (see Figure 1(a,b)). It is not difficult to think of
different heuristics for pruning nonextreme points, whichmay not necessarily improve worst-case complexity
but may help for many point sets encountered “in practice” (e.g., consider quickhull [52]). However, it is
unclear whether there is a single pruning strategy that works best on all point sets.

In this paper, we show that there are indeed instance-optimal algorithms for both the 2-d and 3-d convex
hull problem, in the order-oblivious or the stronger random-order setting. Our algorithms thus subsume all
the previous output-sensitive and average-case algorithms simultaneously, and are provably at least as good
asymptotically as any other algorithm for every point set, so long as input order is ignored.

Techniques. We believe that our techniques—for both the upper-bound side (i.e., algorithms) and the lower-
bound side (i.e., proofs of their instance optimality)—areas interesting as our results.

On the upper-bound side, we find that in the 2-d case, a new algorithm is not necessary: a version of
Kirkpatrick and Seidel’s output-sensitive algorithm, or its simplification by Chan, Snoeyink, and Yap, is
instance-optimal in the order-oblivious and random-ordersetting. We view this as a plus: these algorithms

2One can also consider other variations of the definition, e.g., relaxing the condition toT avg
A (S) ≤ O(1) ·OPTavg(S), or replacing

expected running time over random permutations with analogous high-probability statements.
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(a) (b) (c) (d)

Figure 1: (a) A “harder” point set and (b) an “easier” point set for the upper hull problem. (c) A point set with
H(S) nearlog h and (d) an “easier” point set withH(S) near constant for the maxima problem.

are simple and practical to implement [12], and our analysissheds new light into their theoretical complexity.
In particular, our result immediately implies that a version of Kirkpatrick and Seidel’s algorithm runs inO(n)
expected time for points uniformly distributed inside a circle or a fixed-size polygon—we were unaware of
this fact before. (As another plus, our result also providesa more conclusive answer to the title question from
Kirkpatrick and Seidel’s paper.)

In 3-d we propose a new algorithm, as none of the previous output-sensitive algorithms seem to be
instance-optimal (e.g., known 3-d generalizations of the Kirkpatrick–Seidel algorithm have suboptimal
O(n log2 h) running time [20, 37], while a straightforward implementation of Chan’s algorithm [15] fails
to be instance-optimal even in 2-d). Our algorithm builds onChan’s technique [15] but requires additional
ideas, notably the use ofpartition trees[31, 49].

The lower-bound side requires more innovation. We are awareof three existing techniques for prov-
ing worst-caseΩ(n log n) (or output-sensitiveΩ(n log h)) lower bounds in computational geometry: (i)
information-theoretical or counting arguments, (ii) topological arguments, from early work by Yao [56] to
Ben-Or’s theorem [10], and (iii) Ramsey-theory-based arguments, by Moran, Snir, and Manber [50]. Ben-Or’s
approach is perhaps the most powerful and works in the general algebraic computation tree model, whereas
Moranet al.’s approach works for a decision tree model in which all the test functions have a bounded number
of arguments. For an arbitrary input setS for the convex hull problem, the naive information-theoretical argu-
ment gives only anΩ(h log h) lower bound on OPT(S). On the other hand, topological and Ramsey-theory
approaches seem unable to give any instance-specific lower bound at all (e.g., modifying the topological
approach is already nontrivial if we just want a lower bound for someinteger input set [57], let alone for
everyinput set, whereas the Ramsey-theory approach considers only input elements that come from a cleverly
designed subdomain).

We end up using a different lower bound technique which is inspired by an adversary argument from a
recent work by Chan [18] on an unrelated problem (time–spacelower bounds for median finding). Chan [19]
noted that this approach can lead to another proof of the standard Ω(n log n) lower bounds for many geo-
metric problems including convex hull; the proof is simple and works in an algebraic decision tree model
where the test functions have at most constant degree and have at most a constant number of arguments. We
build on the idea further and obtain an optimal lower bound for the convex hull problem foreveryinput point
set. The assumed model is more restrictive: the classA of allowed algorithms consists of those under a
decision tree model in which the test functions aremultilinear and have at most a constant number of argu-
ments. Fortunately, most standard primitive operations encountered in existing convex hull algorithms satisfy
the multilinearity condition (e.g., the standard determinant test does). The final proof is quite nice, in our
opinion. Interestingly it involves partition trees, whichare more typically used in algorithms (as in our new
3-d algorithm) rather than in lower-bound proofs.

So, what is OPT(S), i.e., what parameter truly captures the difficulty of a point setS, asymptotically, for
the convex hull problem? As it turns out, the bound has a simple expression (to be revealed in Section 3)
and shares similarity withentropybounds found in average-case (also called “expected-case”) analysis of
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geometric data structures where query points come from a given probability distribution—these entropy-
based results have been the subject of several recent papers[6, 7, 29, 35, 41]. However, lower bounds for
expected-case data structures cannot be applied to our problem because our problem is off-line (lower bounds
for on-line query problems usually assume that the query algorithms fit a “classification tree” framework, but
an off-line algorithm may compare a query point not only withpoints from the data set but also with other
query points). Furthermore, although in the off-line setting we can think of the query points as coming from
a discrete point probability distribution, the distribution is not known in advance.3 Lastly, expected-case data
structures achieve speedup in querying but not preprocessing.

Other results. Convex hull is just one problem for which we are able to obtaininstance optimality. We show
that our techniques can lead to instance-optimal results for many other standard problems in computational
geometry, in the order-oblivious or random-order setting,including: (a) maxima in 2-d and 3-d, (b) report-
ing/counting intersection between horizontal and vertical line segments in 2-d, (c) reporting/counting pairs of
L∞-distance at most 1 between a red point set and a blue point setin 2-d, (d) off-line orthogonal range report-
ing/counting in 2-d, (e) off-line dominating reporting in 2-d and 3-d, (f) off-line halfspace range reporting in
2-d and 3-d, and (g) off-line point location in 2-d. (We are forced to put these results in Appendix B because
of space limitation.)

Optimal expected-case, entropy-based data structures forthe on-line version of (g) are known before
[7, 41], but not for (e,f)—for example, a recent SODA’09 paper by Dujmovíc, Howat, and Morin [35] only
obtained results for 2-d dominance counting, a special caseof 2-d orthogonal range counting. Incidentally, as
a consequence of our ideas, we can also get new optimal expected-case data structures for on-line 2-d general
orthogonal range counting and 2-d and 3-d halfspace range reporting.

Related work. Although Faginet al. [39] first coined the term “instance optimality” (when studying the
problem about finding items with thek top aggregate scores in a database in a certain model), the concept has
appeared before. For example, the well known “dynamic optimality conjecture” is about instance optimality
concerning algorithms for manipulating binary search trees (see [32] for the latest in a series of papers).
Demaine, López-Ortiz, and Munro [34] studied the problem ofcomputing the union or intersection ofk
sorted sets and gave instance-optimal results for anyk for union, and for constantk for intersection, in the
comparison model; see Barbay and Chen [9] for an extension toa 2-d problem on computing the convex
hulls of k convex polygons. Another work about instance-optimal geometric algorithms is by Baran and
Demaine [8], who addressed an approximation problem about computing the distance of a point to a curve
under a certain black-box model. Other than these, there hasnot been much work on instance optimality in
computational geometry, especially concerning the classical problems under conventional models.

The concept of instance optimality resembles competitive analysis of on-line algorithms. In fact, in the
on-line algorithms literature, our order-oblivious setting of instance optimality is related to what Boyar and
Favrholdt called therelative worst order ratio[13], and our random-order setting is related to Kenyon’s
random order ratio[43]. What makes instance optimality more intriguing is that we are not bounding the
objective function of an optimization problem but the cost of an algorithm.

2 Warm-Up: 2-d Maxima

Before proving our main result on convex hull, we find it useful to study a simpler problem: maxima in 2-d.
For two pointsp andq we sayp dominatesq if each coordinate ofp is greater than that the corresponding
coordinate ofq. Given a setS of n points inR

d, a pointp is maximalif p ∈ S andp is not dominated by any

3Self-improvingalgorithms [4, 27] also cope with the issue of how to deal withunknown input probability distributions, but are not
directly comparable with our results, since in their setting each point can come from a different distribution, so inputorder matters.
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other point inS. For simplicity, we assume that the input is always nondegenerate throughout the paper. The
maxima problem is to report all maximal points, say, from left to right.

For an alternative formulation, we can define theorthant at a pointp to be the region of all points that
are dominated byp. In 2-d, the boundary of the union of the orthants at allp ∈ S forms astaircase, and the
maxima problem is equivalent to computing the staircase ofS.

This problem has a similar history as the convex hull problem: many worst-caseO(n log n)-time algo-
rithms are known, Kirpatrick and Seidel’s output-sensitive algorithm runs inO(n log h) time for output size
h, and average-case algorithms withO(n) expected time have been analyzed for various probability distribu-
tions [11, 26, 52]. The problem is simpler in the sense that direct pairwise comparisons are sufficient. We
therefore work with the classA of algorithms in thecomparison modelwhere we can access the input points
only through comparisons of the coordinate of an input pointwith the corresponding coordinate of another
input point. The number of comparisons made by an algorithm will act as a lower bound on the running time.

We define a measureH(S) to represent the difficulty of a point setS and prove that the optimal running
time OPT(S) is preciselyΘ(n(H(S) + 1)) for the 2-d maxima problem in the order-oblivious and random-
order setting.

Definition 2.1 Consider a partitionΠ of the input setS into disjoint subsetsS1, . . . , St. We say thatΠ is
respectfulif each subsetSk is either a singleton or can be enclosed by an axis-aligned box Bk whose interior
is completely below the staircase ofS. DefineH(Π) =

∑t
k=1(|Sk|/n) log(n/|Sk|). DefineH(S) to be the

minimum ofH(Π) over all respectful partitionsΠ of S.

Remark 2.2 Alternatively, we could further insist in the definition that the bounding boxesBi are nonover-
lapping and cover precisely the staircase ofS. However, this will not matter, as it turns out that the two
definitions yield asymptotically the same quantity (this nonobvious fact is a byproduct of our analysis).
H(Π) is of course an entropy-like expression and is similar to bounds used in expected-case geometric

data structures for the case of a discrete point probabilitydistribution, although our definition itself is non-
probabilistic. A measure proposed by Sen and Gupta [53] is identical toH(Πvert) for a specific respectful
partitionΠvert of S, obtained by dividing the point setS by h vertical lines at theh maximal points ofS. Note
thatH(Πvert) is at mostlog h (see Figure 1(c)) but can be much smaller; in turn,H(S) can be much smaller
thanH(Πvert) (see Figure 1(d)). The complexity of the 1-d multiset sorting problem [51] also has a similar
expression, but there each input multiset induces a unique partition and so the situation is much simpler.

2.1 Upper bound

The algorithm we use is a slight variant of Kirkpatrick and Seidel’s output-sensitive maxima algorithm [45]
(in their original algorithm, only points fromQℓ are pruned in line 4):

maxima(Q):
1. if |Q| = 1 then returnQ
2. divideQ into the left and right halvesQℓ andQr by the medianx-coordinate
3. discoverthe pointq with the maximumy-coordinate inQr (computable in linear time)
4. pruneall points fromQℓ andQr that are dominated byq
5. return the concatenation of maxima(Qℓ) and maxima(Qr)

We call maxima(S) to start. It is straightforward to show that the algorithm runs in timeO(n log h),
or O(n(H(Πvert) + 1)) time, as was done by Sen and Gupta [53]. Upper-bounding the running time by
O(n(H(Π) + 1)) for anarbitrary respectful partitionΠ of S requires a bit more finesse:

Theorem 2.3 The above 2-d maxima algorithm runs inO(n(H(S) + 1)) time.
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Proof: Imagine the recursion tree being generated level by level from the root. LetXj denote the sublist
of all maximal points ofS discovered during levels0, . . . , j of the recursion, in left-to-right order. Observe
that (i) there can be at most⌈n/2j⌉ points ofS with x-coordinates between any two consecutive points in
Xj , and (ii) all points that are strictly below the staircase ofXj have been pruned during levels0, . . . , j of
the recursion. Letnj be the number of points ofS thatsurvivelevel j, i.e., that have not been pruned during
levels0, . . . , j. The running time is asymptotically bounded by

∑log n
j=0 nj.

Let Π beany respectful partition ofS. Look at a subsetSk in Π. Let Bk be a box enclosingSk whose
interior lies below the staircase ofS. Fix a levelj. Suppose the upper-right corner ofBk hasx-coordinate
between two consecutive pointsqi, qi+1 in Xj . By (ii), the only points inBk that can survive levelj must
havex-coordinates betweenqi andqi+1. Thus, by (i), the number of points inSk that survive levelj is at
mostmin

{
|Sk|, ⌈n/2j⌉

}
. Since theSk’s cover the entire point set, with a double summation we have

log n∑

j=0

nj ≤
∑

k

log n∑

j=0

min
{
|Sk|, ⌈n/2j⌉

}
≤

∑

k

O (|Sk| log(n/|Sk|) + |Sk|+ |Sk|/2 + |Sk|/4 + · · ·)

= O

(
∑

k

|Sk|(log(n/|Sk|) + 1)

)
= O(n(H(Π) + 1)).

�

2.2 Lower bound

For the lower-bound side, we first provide an intuitive justification for the boundnH(S) and point out the
subtlety in obtaining a rigorous proof. Intuitively, to certify that we have a correct answer, the algorithm must
gather evidence for each pointp eliminated why it is not a maximal point, by indicating at least onewitness
point in S which dominatesp. We can define a partitionΠ by placing points with a common witness in the
same subset. It is easy to see that this partitionΠ is respectful. The entropy boundnH(Π) roughly presents
the number of bits required to encode the partitionΠ, so in a vague sense,nH(S) represents the length of the
shortest “certificate” forS. Unfortunately, there could be many valid certificates for agiven input setS (due
to possibly multiple choices of witnesses for each nonmaximal point). If hypothetically all branches of an
algorithm lead to a common partitionΠ, then a straightforward information-theoretic or counting argument
would indeed prove the lower bound. The problem is that each leaf of the decision tree may give rise to a
different partitionΠ. In Appendix A.2, we show that despite the aforementioned difficulty, it is possible to
obtain a proof of instance optimality via this approach, butthe proof requires a more sophisticated counting
argument, and also works with a different definition ofH(S). Moreover, it is limited specifically to the 2-d
maxima problem and does not extend to 3-d maxima, let alone tononorthgonal problems like convex hull.

In this subsection, we describe instead a different proof, which generalizes more easily to the other prob-
lems that we consider. The proof is based on an interesting and simpleadversaryargument. For simplicity,
we concentrate on the order-oblivious setting and postponethe modification of the proof in the random-order
setting to Appendix A.3.

Theorem 2.4 OPT(S) = Ω(n(H(S) + 1)) for the 2-d maxima problem in the comparison model.

Proof: We use ak-d treeconstruction [31] to define a treeT of axis-aligned boxes, generated top-down as
follows: The root stores the entire plane. For each node storing boxB, if B is strictly below the staircase of
S, or if B contains just one point ofS, thenB is a leaf. Otherwise, if the node is at an odd (resp. even) depth,
divide B into two subboxes by the medianx-coordinate (resp.y-coordinate) among the points ofS insideB.
The two subboxes are the children ofB. Note that each box at depthj of T contains at least⌊n/2j⌋ points
of S.

Let Πkd-tree be the partition ofS formed by the leaf boxes in this treeT (i.e., points in the same leaf box
are placed in the same subset). Clearly, this partitionΠkd-tree is respectful. We will prove that for any correct

6



algorithm inA, there exists a permutation ofS on which the algorithm requires at leastΩ(nH(Πkd-tree))
comparisons.

The adversary constructs a bad permutation by simulating the algorithm on an initially unknown input.
During the simulation, we maintain a boxBp in T for each pointp. If Bp is a leaf, the algorithm knows the
exact location ofp insideBp. But if Bp is an internal node, the only information the algorithm knows about
p is thatp lies insideBp. In other words,p can be assigned any point inBp without affecting the outcome of
the previous comparisons made.

For each boxB in T , let n(B) be the number of pointsp with Bp contained inB. We maintain the
invariant thatn(B) ≤ |S ∩B|. If n(B) = |S ∩ B|, we say thatB is full. WheneverBp first becomes a leaf,
we fix p by assigning it to an arbitrary point inS ∩ Bp that has previously not been assigned. The invariant
ensures that such an assignment can always be made.

When the simulation encounters a comparison, say, of thex-coordinates, between two pointsp andq, we
do the following:

1. If Bp (resp.Bq) is at even depth, we resetBp (resp.Bq) to one of its children arbitrarily. Now we may
assume thatBp andBq are both at odd depths (if they are not leaves).

W.l.o.g., suppose that the medianx-coordinate ofBp is less than the medianx-coordinate ofBq. We
resetBp to the left childB′

p of Bp andBq to the right childB′
q of Bq. Now, the knowledge thatp and

q lie in B′
p andB′

q allows us to deduce thatp has a smallerx-coordinate thanq, so we can resolve the
comparison and continue the simulation.

2. An exceptional case occurs ifB′
p is full (or similarly B′

q is full). Here, we resetBp instead to the sibling
B′′

p of B′
p. The invariant is maintained, since|S ∩Bp| ≥ n(Bp) ≥ n(B′

p) + n(B′′
p ) + 1 implies thatB′

p

andB′′
p cannot both be full. The comparison is not necessarily resolved yet, so we go back to step 1.

The above description ignores the case whenBp is a leaf (or similarlyBq is a leaf). This case can be treated
in the same way, except that in step 1, sincep has been fixed, we compare the actualx-coordinate ofp to
the medianx-coordinate ofBq, and reset onlyBq. (If both Bp andBq are leaves, the comparison is already
resolved.)

Let T be the number of comparisons made. LetD be the sum of the depth ofBp over all pointsp ∈ S.
We will boundD in terms ofT . Each time we reset a box to one of its children in step 1 or 2,D increments;
we say that anordinary (resp.exceptional) increment occurs at the parent box if this is done in step 1 (resp.
step 2). Each comparison generates onlyO(1) ordinary increments. To take exceptional increments into
account, we use a little amortization argument: At each boxB in T , the number of ordinary increments has
to reach at least⌊|S ∩ B|/2⌋ first, before exceptional increments can occur, and the number of exceptional
increments is at most⌉|S∩B|/2⌉. Thus, the total number of exceptional increments is asymptotically at most
the total number of ordinary increments, which isO(T ). It follows thatD = O(T ), i.e.,T = Ω(D).

After the end of the simulation, we can do the following postprocessing: whenever there is an internal
nodeBp, we resetBp to one of its non-full children arbitrarily, and repeat. As aresult, everyBp becomes a
leaf, and all the input points have been assigned to points ofS, and no two input points assigned are the same
value, i.e., the input is fixed to a permutation ofS.

We claim that the postprocessing is actually unnecessary, i.e., everyBp is already a leaf by the end of the
simulation. If not,Bp contains at least two points and is not completely underneath the staircase ofS. We can
either move a nonmaximal point upward or a maximal point downward insideBp and obtain a different input
that is consistent with the comparisons made but has a different set of maximal points. The algorithm would
be incorrect on this input: a contradiction.
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Thus, at the end of the simulation, eachBp has depthΘ(log(n/|S ∩Bp|)). It follows that

T = Ω(D) = Ω

(
∑

leaf B

|S ∩B| log(n/|S ∩B|)
)

= Ω(nH(Πkd-tree)) = Ω(nH(S)).
�

Remark 2.5 The above proof is inspired by an adversary argument by Chan [18] for a 1-d problem (the
original proof maintains a dyadic interval for each input point, while the new proof maintains a box from a
hierarchical subdivision). The proof still holds for weaker versions of the problem, e.g., where we can report
the maxima in any order, or we just want the number of maximal points (or the parity of the number). The
lower-bound proof easily extends to any fixed dimension and can be easily modified to allow comparisons of
different coordinates of any two pointsp = (x1, . . . , xd) andq = (x′

1, . . . , x
′
d), e.g., testing whetherxi < x′

j,
or evenxi < x′

j + a for any constanta. (For a still wider class of test functions, see the next section.)

3 Convex Hull

We now turn to our main result on 2-d and 3-d convex hull. It suffices to consider the problem of computing
the upper hull of an input point setS in R

d (d ∈ {2, 3}), since the lower hull can be computed by running the
upper hull algorithm on a reflection ofS.

We work with the classA of algorithms in amultilinear decision treemodel where we can access the
input points only through tests of the formf(p1, . . . , pc) > 0 for a multilinear functionf , over a constant
number of input pointsp1, . . . , pc. We recall the following standard definition:

Definition 3.1 A function f : (Rd)c → R
d is multilinear if the restriction of f is a linear func-

tion from R
d to R

d when anyc − 1 of the c arguments are fixed. Equivalently,f is multilinear if
f((x11, . . . , x1d), . . . , (xc1, . . . , xcd)) is a multivariate polynomial function in which each monomial has the
form xi1j1 · · · xikjk

wherei1, . . . , ik are all distinct (i.e., we cannot multiply coordinates fromthe same point).

Most of the 2-d and 3-d convex hull algorithms we know of fit this framework. For example, it supports
the standard determinant test (for deciding whetherp1 is above the line throughp2, p3, or the plane through
p2, p3, p4), since the determinant is a multilinear function. For another example, in 2-d we can compare the
slope of the line throughp1, p2 and the slope of the line throughp3, p4 by testing the sign of the function
(y2 − y1)(x4 − x3) − (x2 − x1)(y4 − y3), which is clearly multilinear. (See Appendix A.4, however,for
situations where non-multilinear test functions arise.)

We adopt the following modified definition ofH(S) (as before, it will not matter whether we insist that
the simplices∆k below are nonoverlapping):

Definition 3.2 A partition Π of S is respectfulif each subsetSk in Π is either a singleton or can be enclosed
by a simplex∆k whose interior is completely below the upper hull ofS. DefineH(S) to be the minimum of
H(Π) :=

∑
k(|Sk|/n) log(n/|Sk|) over all respectful partitionsΠ of S.

In 2-d, anO(n(H(S)+1)) upper bound can be established by using a version of Kirkpatrick and Seidel’s
(or Chan, Snoeyink, and Yap’s) convex hull algorithm. The analysis is similar enough to that for 2-d maxima
from Section 2.2 and is thus deferred to Appendix A.1.

3.1 Lower bound

The lower-bound proof for convex hull builds on the proof formaxima from Section 2.2 but is more involved,
because ak-d tree construction no longer suffices when addressing nonorthogonal problems. However, known
tools in computational geometry provide an appropriate analog:
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Lemma 3.3 For every setQ of n points inR
d and1 ≤ r ≤ n, we can partitionQ into r subsetsQ1, . . . , Qr

each of sizeΘ(n/r) and findr convex polyhedral cellsγ1, . . . , γr, each of sizeO(polylog r), such thatQi is
contained inγi, and each hyperplane intersects at mostO(r1−ε) cells. Here,ε > 0 is a constant that depends
only ond.

Proof: (Option 1) We can use Matoušek’s partition theorem [49], which provides the best constant, namely,
ε = 1/d. Each cellγi is a simplex but the cells may overlap. (Note that our application requires that the
subset sizes are lower-bounded byΩ(n/r), which is guaranteed by Matoušek’s construction.)

(Option 2) Ford = 2 or 3, a more elementary solution follows from the 4-sectioning or 8-sectioning
theorem [36, 58]: for everyn-point setQ in R

2, there exist 2 lines that divide the plane into 4 regions each
with n/4 points; for everyn-point setQ in R

3, there exist 3 planes that divide space into 8 regions each with
n/8 points. Since inR2 a line can intersect at most 3 of the 4 regions and inR

3 a plane can intersect at
most 7 of the 8 regions, a simple recursive application of thetheorem yieldsε ≈ 1 − log4 3 for d = 2 and
ε ≈ 1− log8 7 for d = 3. Each resulting cellγi may haveO(log r) facets, but the cells do not overlap. �

We need another fact, this time, a straightforward geometric property about multilinear functions:

Lemma 3.4 If f : (Rd)c → R is multilinear and has a zero inγ1×· · ·×γc where eachγi is a convex polytope
in R

d, thenf has a zero(p1, . . . , pc) ∈ γ1 × · · · × γc such that all but at most one pointpi is a polytope’s
vertex.

Proof: Let (p1, . . . , pc) ∈ γ1×· · ·×γc be a zero off . Suppose somepi does not lie on an edge ofγi. If we fix
the otherc−1 points, the equationf = 0 becomes a hyperplane, which intersectsγi and thus must intersect an
edge ofγi. We can movepi to such an intersection point. Repeating this process, we may assume that every
pi lies on an edgeuivi of γi. Represent the line segment parametrically as{(1− ti)ui + tivi | 0 ≤ ti ≤ 1}.

Next, suppose that some two pointspi andpj are not vertices. If we fix the otherc− 2 points and restrict
pi andpj to lie on uivi andujvj respectively, the equationf = 0 becomes a multilinear function in two
parametersti, tj ∈ [0, 1]. The equation has the formatitj + a′ti + a′′tj + a′′′ = 0 and is a hyperbola, which
intersects[0, 1]2 and must thus intersect the boundary of[0, 1]2. We can movepi andpj to correspond to such
a boundary intersection point. Then one ofpi andpj is now a vertex. This process can then repeated. �

We are now ready for the main proof. Again, we focus on the order-oblivious setting and leave the
random-order setting to Appendix A.3.

Theorem 3.5 OPT(S) = Ω(n(H(S) + 1)) for the upper hull problem in the multilinear decision tree model.

Proof: We define apartition treeT as follows: Each nodev stores a pair(Q(v), γ(v)), whereQ(v) is a
subset ofS enclosed inside a convex polyhedral cellγ(v). For each nodev, let Γ(v) denote the intersection
of γ(u) over all ancestorsu of v. The root stores(S, Rd). if Γ(v) is strictly below the upper hull ofS, or
if |Q(v)| drops below a constant, thenv is a leaf. Otherwise, fix a parameterr = b and partitionQ(v) by
Lemma 3.3 to getb subsetsQ1, . . . , Qb and cellsγ1, . . . , γb. The pairs(Qi, γi) are the children ofv. Note
that for each nodev at depthj of the treeT , |Q(v)| ≥ n/Θ(b)j . Note also thatΓ(v) hasO(bj) facets.

Let Πpart-treebe the partition formed by the subsetsQ(v) at the leavesv in T . Let Π̃part-treebe a refinement
of this partition obtained as follows: for each leafv at depthj, we triangulateΓ(v) into (bj)O(1) simplices and
subpartitionQ(v) by placing points ofQ(v) from the same simplex in the same subset; if|Q(v)| drops below
a constant, we subpartitionQ(v) into singletons. Note that the subpartitioning ofQ(v) causes the entropy
to decrease by at mostO((|Q(v)|/n) log(bj)O(1)) = O((|Q(v)|/n) log log(n/|Q(v)|)) for a constantb. The
total decrease in entropy is thuso(H(Πpart-tree)). SoH(Π̃part-tree) = Θ(H(Πpart-tree)). Clearly, Π̃part-tree is
respectful.
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The adversary constructs a bad input as follows. During the simulation, we maintain a nodevp in T for
each pointp. If vp is a leaf, the algorithm knows the exact location ofp insideΓ(vp). But if vp is an internal
node, the only information the algorithm knows aboutp is thatp lies insideΓ(vp).

For each nodev in T , let n(v) be the number of pointsp with vp in the subtree rooted atv. We maintain
that n(v) ≤ |Q(v)|. If n(v) = |Q(v)|, we say thatv is full. Whenvp first becomes a leaf, we fixp to an
arbitrary unassigned point inQ(vp). The invariant ensures that such an assignment can always bemade.

Suppose the simulation encounters a test “f(p1, . . . , pc) > 0?”.

1. Consider ac-tuple (v′p1
, . . . , v′pc

) wherev′pi
is a child ofvpi

. We say that the tuple isbad if f has a
zero inγ(v′p1

) × · · · × γ(v′pc
), andgoodotherwise. We count the number of bad tuples: If we fix all

but one pointpi, the restriction off can have a zero in at mostO(b1−ε) cells of the formγ(v′pi
), by

Lemma 3.3 and the multi-linearity off . There areO(bc−1 polylog b) choices ofc − 1 vertices of the
cells of the formγ(v′p1

), . . . , γ(v′pc
). By Lemma 3.4, it follows that the number of bad tuples is at most

O(bc−1 polylog b · b1−ε) = O(bc−ε polylog b). The overall number of tuples isΘ(bc). So, by choosing
b to be a sufficiently large constant, we can guarantee that some tuple(v′p1

, . . . , v′pc
) is good. We reset

vpi
to v′pi

for eachi = 1, . . . , c. Since the tuple is good, the sign off is determined and the comparison
is resolved.

2. In the exceptional case when somev′pi
is full, we resetvpi

instead to an arbitrary non-full child, and go
back to step 1.

The above description can be easily modified in the case when some of the nodesvpi
are leaves, i.e., when

some of the pointspi are already fixed (we just have to lowerc by the number of fixed points).
Let T be the number of tests made. LetD be the sum of the depth ofvp over all pointsp ∈ S. By the same

amortization argument as before (after adjustments of constant factors), we can lower-boundT by Ω(D).
After the end of the simulation, we can do the following postprocessing: whenever there is an internal

nodevp, we resetvp to one of its non-full children arbitrarily, and repeat. This way, the input is completely
fixed to a permutation ofS. We claim that the postprocessing is unnecessary, i.e., every vp is already a leaf at
the end of the simulation. If not, we can either move a interior point upward or an extreme point downward
inside Γ(vp) and change the upper hull. Then the algorithm would be incorrect on the modified input: a
contradiction.

Thus, at the end of the simulation, each nodevp has depthΘ(log(n/|Q(vp)|)). It follows that T =

Ω(D) = Ω(
∑

leaf v |Q(v)| log(n/|Q(v)|)) = Ω(nH(Πpart-tree)) = Ω(nH(Π̃part-tree)) = Ω(nH(S)). �

3.2 Upper bound in 3-d

The preceding lower-bound proof holds in any fixed dimension. We now give a 3-d upper-hull algorithm that
matches the bound. Unlike in 2-d, it is unclear if any of the known algorithms can be modified for this purpose.
For example, it is already nontrivial how to get anO(nH(Πvert)) upper bound for the specific partitionΠvert

where points underneath the same upper-hull facet are placed in the same subset. Fortunately, informed by
our lower-bound proof, we discover a solution based on partition trees.

We need the following subroutine by Chan [15, 16], which is obtained by applying a simple grouping
trick in conjunction with standard data structures (see also [14]).

Lemma 3.6 We can answer a sequence ofr linear programming queries over a given set ofn halfspaces in
R

3 in total timeO(n log r + r log n).

Our new upper hull algorithm is as follows:
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1. Q← S
2. for j = 0, 1, . . . , ⌈log(δ log n)⌉ do
3. partitionQ by Lemma 3.3 to getrj := 22j

subsetsQ1, . . . , Qrj
and cellsγ1, . . . , γrj

4. for eachi do
5. if γi is strictly below the upper hull ofQ thenpruneall points inQi from Q
6. return the upper hull of the remaining setQ

Line 3 takesO(|Q| log rj) time by known algorithms for Lemma 3.3 (either option) [49].The test in
line 5 reduces to deciding whether each vertex ofγi is strictly below the upper hull ofQ. This can be
done (without knowing the upper hull beforehand) by answering a 3-d linear programming query in the dual.
Using Lemma 3.6, we can perform lines 4–6 collectively in timeO(|Q| log rj +rj polylog rj log n); note that∑

j rj = O(nδ), and so the second term is negligible by choosing a constantδ < 1. Line 6 is done by running
anyO(|Q| log |Q|)-time algorithm; note thatlog |Q| = O(log rj) in the last iteration.

Theorem 3.7 The above 3-d upper hull algorithm runs inO(n(H(S) + 1)) time.

Proof: Let nj be the size ofQ just after iterationj. The total running time is asymptotically bounded by∑
j nj−1 log rj.
Let Π be any respectful partition ofS. Look at a subsetSk in Π. Let ∆k be a simplex enclosingSk

whose interior lies below the upper hull ofS. Fix an iterationj. Consider the subsetsQ1, . . . , Qrj
and cells

γ1, . . . , γrj
at this iteration. If a cellγi is competely inside∆k, then all points insideγi are pruned. At most

O(r1−ε
j ) cells γi intersect the boundary of∆k. Hence, the number of points inSk that remain inQ after

iterationj is at mostmin
{
|Sk|, O(r1−ε

j · n/rε
j)
}

= min
{
|Sk|, O(n/rε

j )
}

. Since theSk’s cover the entire

point set, with a double summation we have

∑

j

nj log rj+1 ≤
∑

k

∑

j

min
{
O(2j)|Sk|, n/2Ω(ε2j )

}

= O

(
∑

k

|Sk|(log(n/|Sk|) + 1)

)
= O(n(H(Π) + 1)).

�

Remark 3.8 Variants of the algorithm are possible. For example, instead of recomputing the partition in
line 3 at each iteration from scratch, a better option is to build the partitions hierarchically as a tree. Nodes
are pruned as the tree is generated level by level.

One minor technicality is that the above description of the algorithm does not discuss the low-level test
functions involved. In Appendix A.4, we explain how a modification of the algorithm can indeed be imple-
mented in the multilinear model.

The same approach works for 3-d maxima as well. In the comparison model, the partitions can be con-
structed by ak-d tree construction, and linear programming queries are replaced by queries to test whether a
point lies underneath the staircase, which can be done via ananalog of Lemma 3.6.

4 Discussion

Although we have argued for the order-oblivious form of instance optimality, we are not denigrating adaptive
algorithms that exploit the order of the input. Indeed, for some geometric applications, the input order may
exhibit some sort of locality of reference which can speed upalgorithms. There are various parameters that
one can define to address this issue, but it is unclear how a unified theory of instance optimality can be
developed for order-dependent algorithms for, say, the convex hull problem.
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We do not claim that the algorithms described here are the best in practice, because of possibly larger
constant factors (especially those that use Matoušek’s partition trees), although some variations of the ideas
might actually be useful. In some sense, our results can be interpreted as a theoretical explanation for why
heuristics based on bounding boxes and BSP trees perform so well (e.g., see [5] on experimental results for
the red/blue segment intersection problem).

Note that specializations of our techniques to 1-d also can easily lead to instance-optimal results for the
multiset-sorting problem and the problem of computing the intersection of two (unsorted) sets. Adaptive
algorithms for similar 1-d problems (e.g., [51]) were studied in settings different from ours.

Not all standard geometric problems admit nontrivial instance-optimal results in the order-oblivious set-
ting. For example, computing the Voronoi diagram ofn points or the trapezoidal decomposition ofn disjoint
line segments, both havingΘ(n) sizes, requiresΩ(n log n) time for every point set by the naive information-
theoretical argument. Computing the (L∞-)closest pair for amonochromaticpoint set requiresΩ(n log n)
time for every point set by our adversary lower-bound argument.

An open problem is to strengthen our lower bound proofs to allow for a more general class of test functions
beyond multilinear functions, e.g., arbitrary fixed-degree algebraic functions.

It remains to see how widely applicable the concept of instance optimality is. To inspire further work,
we mention the following geometric problems for which we currently are unable to obtain instance-optimal
results: (a) reporting all intersections between a set of disjoint red (nonorthogona) line segments and a set of
disjoint blue line segments in 2-d; (b) computing theL2- or L∞-closest pair between a set of red points and a
set of blue points in 2-d; (c) computing the diameter or the width of a 2-d point set; (d) computing the lower
envelope of a set of (perhaps disjoint) line segments in 2-d.

Finally, we should mention that all our current results concern at most logarithmic-factor improvements.
Obtaining some form of instance-optimal results for problems withω(n log n) worst-case complexity (e.g.,
off-line triangular range searching, 3SUM-hard problems,. . . ) would be even more fascinating.
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A Appendix 1: Miscellaneous

A.1 Analysis of Kirkpatrick and Seidel’s 2-d convex hull algorithm

In this subsection, we prove that a version of Kirkpatrick and Seidel’s output-sensitive upper hull algo-
rithm [46] runs inO(n(H(S) + 1)) time. The algorithm is described below. Our version adds an obvious
pruning step (line 2).

hull(Q):
1. if |Q| = 2 then returnQ
2. pruneall points fromQ strictly below the line through the leftmost and rightmost point of Q
3. divideQ into the left and right halvesQℓ andQr by the medianx-coordinatepm

4. discoverpointsq, q′ that define the upper-hull edgeqq′ intersecting the vertical line atpm

5. pruneall points fromQℓ andQr that are strictly underneath the line segmentqq′

6. return the concatenation of hull(Qℓ) and hull(Qr)

Line 4 can be done inO(n) time (without knowing the upper hull beforehand) by applying a 2-d linear
programming algorithm in the dual [52]. We call hull(S) to start. It is straightforward to show that the
algorithm, even without line 2, runs in timeO(n log h), or O(n(H(Πvert) + 1)) for the specific partitionΠvert

of S obtained by placing points underneath the same upper-hull edge in the same subset, as was done by Sen
and Gupta [53]. To upper-bound the running time byO(n(H(Π) + 1)) for an arbitrary respectful partitionΠ
of S, we modify the proof in Theorem 2.3:

Theorem A.1 The above 2-d upper hull algorithm runs inO(n(H(S) + 1)) time.

Proof: Like before, letXj denote the sublist of all hull vertices discovered during the first j levels of the
recursion, in left-to-right order. Observe that (i) there can be at most⌈n/2j⌉ points ofS with x-coordinates
between any two consecutive vertices inXj , and (ii) all points that are strictly below the upper hull ofXj

have been pruned during the firstj levels of the recursion.
Let Π be any respectful partition ofS. Look at a subsetSk in Π. Let ∆k be a triangle enclosingSk

whose interior lies below the upper hull ofS. Fix a levelj. If qi andqi+1 are two consecutive vertices in
Xj such thatqiqi+1 does not intersect the boundary of∆k (i.e., is above∆k), then all points in∆k with x-
coordinates betweenqk, qk+1 would have been pruned during the firstj levels by (ii). Since onlyO(1) edges
qiqi+1 of the upper hull ofXj can intersect the boundary of∆k, the number of points inSi that survive level
j is at mostmin

{
|Sk|, O(n/2j)

}
by (i). As before, we can then bound the running time asymptotically by∑

k

∑log n
j=0 min

{
|Sk|, n/2j

}
= O(n(H(Π) + 1)). �

Remark A.2 The same result holds for Chan, Snoeyink, and Yap’s simplified output-sensitive algorithm,
which avoids calling a 2-d linear programming algorithm. (In fact, Chanet al.’s paper explicitly adds the
pruning step in their description, inspired by quickhull.)The only difference in the above analysis is (i): now,
there can be at most⌈(3/4)jn⌉ points ofS with x-coordinates between any two consecutive vertices inXj .

A.2 Alternative proof for 2-d maxima

In this subsection, we describe an alternative proof of instance optimality for the 2-d maxima problem. Here,
we work with a seemingly different definition of difficultyF(S), as given below. This definition appears
simpler in the sense that we do not need to take the minimum over all partitions but measure the contribution
of each point directly. Of course,F(S) will turn out to be asymptotically equivalent tonH(S), as a byproduct
of our analyses. Note that this definition does not seem generalizable to 3-d maxima or other problems.
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Definition A.3 Given a point setS, let q1, . . . , qh denote the maximal points ofS from left to right. Given
a pointp ∈ S, let qi, . . . , qℓ be all the maximal points that dominatep. DefineF (p) to be the subset of all
points inS in the slab(qi−1.x, qℓ+1.x)× R, where we usep.x andp.y to denote thex- andy-coordinates of
p. DefineF(S) =

∑
p∈S log(n/|F (p)|).

The upper-bound proof is similar to our earlier proof:

Theorem A.4 The 2-d maxima algorithm from Section 2.1 runs inO(F(S)) time.

Proof: We proceed as in the proof of Theorem 2.3, but a simpler argument replaces the second paragraph:
Fix a pointp ∈ S. Let qi, . . . , qℓ be all the maximal points that dominatep. Fix a levelj. If |F (p)| >

⌊
n/2j

⌋
,

then (i) implies that some maximal point from{qi, . . . , qℓ}must been discovered, and (ii) implies thatp does
not survive levelj. Thus,p can survive only forO(log(n/|F (p)|)) levels. We can bound the running time by
O(
∑

j nj) = O(
∑

p log(n/|F (p)|)). �

For the lower-bound side, we first consider a slightly stronger problem which we callmaxima with wit-
nesses: given a point setS, report all maximal points in left-to-right order, and for each nonmaximal pointp
in S, report a maximal point (awitness) that dominatesp.

Theorem A.5 OPT(S) = Ω(F(S)) for the 2-d “maxima with witness” problem in the comparison model.

Proof: The proof is a counting argument, which we express in terms ofencoding schemes (see [33, 40] for
more sophisticated examples of counting arguments based onencoding/decoding). We will describe a way to
encode an arbitrary permutationσ of S, so that the length of the encoding can be upper-bounded in terms of
the running time of the given algorithmA on inputσ. Since the worst-case encoding length must be at least
log(n!), the running time must be large for some permutationσ. (All logarithms are in base 2.)

To describe the encoding scheme, we imagine that the permutation σ is initially unknown, and as we
proceed, we record bits of information aboutσ so that at the end,σ can be uniquely determined from these
bits. In the description below, we distinguish between aninput point, as represented its index/position in the
input permutationσ (its actual location is not necessarily known), and anactual point in S, as represented
by its coordinates (its position inσ is not necessarily known). At any moment, if we know which input point
corresponds to an actual pointp, we say (naturally) thatp is known.

We first simulate the algorithm onσ and record the outcome of the comparisons made; this requires at
mostTA(S) bits. LetM be the list of maximal input points returned. For each input point qi, let W (qi) be
the list of all nonmaximal input points that haveqi as witness. For each maximal actual point, we record its
position inM , using at mosth ⌈log h⌉ bits total. Now all maximal points are known.

We process the nonmaximal actual points ofS from left to right, and make them known as follows. To
process an actual pointp, let qi, . . . , qj be all the maximal points that dominatep, which are all known.
Observe thatp must be inW (qi)∪ · · · ∪W (qj). LetL be all the points that are left ofp, which are all known.
We record the position ofp in the listW (qi)∪· · ·∪W (qj)−L. This requires⌈log(|W (qi) ∪ · · · ∪W (qj)− L|⌉
bits. Observe thatW (qi) ∪ · · · ∪W (qj) is contained in(−∞, qj.x) × R. So,W (qi) ∪ · · · ∪W (qj) − L is
contained in the subsetF (p) defined above—a lucky coincidence. Thus, the number of bits required is at
most⌈log |F (p)|⌉. Now p is known and we can continue the process.

The encoding has total length at most

TA(S) + h log h +
∑

p

log |F (p)| + O(n) ≤ TA(S) + h log h + n log n−F(S) + O(n).

Hence,log(n!) ≤ TA(S) + h log h + n log n− F(S) + O(n), yieldingTA(S) = Ω(F(S) − n − h log h).
Combined with the trivial lower boundΩ(n) and the naive information-theoretic lower boundTA(S) =
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Ω(h log h) (as the problem definition requires the output to be in sortedorder), this implies thatTA(S) =
Ω(F(S)). �

Combining the above theorem with the following observationyields a complete proof of theΩ(F(S))
lower bound:

Observation A.6 Any algorithm for the 2-d maxima problem in the comparison model can be made to solve
the 2-d “maxima with witnesses” problem without any furthercomparisons on every input.

Proof: Consider the partial order≺x over S formed by the outcomes of thex-comparisons made by the
maxima algorithm. Define the partial order≺y similarly. Fix a nonmaximal pointp. We show that there
is a pointq ∈ S such thatp ≺x q andp ≺y q. If not, we can modify thex- andy-coordinates, without
violating any of the comparisons made, so that all pointsq with p 6≺x q now havep.x > q.x, and all pointsq
with p 6≺y q now havep.y > q.y. Then in the modified point set,p would now be a maximal point, and the
algorithm would be incorrect on the modified point set: a contradiction.

For every nonmaximal pointp, we can thus find a witness pointq that dominatesp, without making any
further comparisons. One issue remains: the witness point may not be maximal. If not, we can change
p’s witness to the witness of the witness, and repeat. At the end, all witnesses are maximal, and no new
comparisons are made. �

Remark A.7 The proof still works for the weaker problem where the algorithm can report the maxima in
arbitrary order, since by a similar observation, any such algorithm already knows thex-order of the maxima
without making any further comparisons.

This proof does not appear to work for problems besides 2-d maxima. One obvious issue is that Obser-
vation A.6 only applies to comparison-based algorithms fornonorthogonal problems. Even more critically,
however, the proof of Theorem A.5 relies on a coincidence that is special to 2-d maxima.

Curiously, this lower-bound proof holds even for nondeterministic algorithms, i.e., algorithms can make
guesses but must verify that the answer is correct; here we assume that each bit guessed costs unit time. In the
proof of Theorem A.5, we just record the guesses in the encoding. The previous proofs of instance optimality
by Faginet al. [39] and Demaineet al. [34] all hold in the nondeterministic settings. Perhaps this strength
of the proof prevents its applicability to other geometric problems, whereas our adversary-based proofs more
powerfully exploits the deterministic nature of the algorithms.

A.3 The random-order setting

In this subsection, we describe how the preceding lower-bound proofs in the order-oblivious setting can be
modified in the random-order setting.

First, the proof in Section A.2 can easily be made to work in the random-order setting, since in any
encoding scheme, only a very small (at most2−c0n) fraction of then! permutations can have encoding length
less thanlog(n!)− c0n for a constantc0.

Modifying the proof of Theorem 2.4 requires more effort. We need a technical lemma first:

Lemma A.8 Suppose we placen random elements independently int bins, where each element is placed in
thek-th bin with probabilitynk/n. Then the probability that thek-th bin contains exactlynk elements for all
k = 1, . . . , t is at leastn−O(t).

Proof: The probability is n!
n1!···nt!

(
n1

n

)n1 · · ·
(

nt

n

)nt , which by Stirling’s formula is

Θ(
√

n)(n/e)n/e

Θ(
√

n1)(n1/e)n1/e · · ·Θ(
√

nt)(nt/e)nt/e

(n1

n

)n1

· · ·
(nt

n

)nt

≥ 1

Θ(
√

n)t
.

�
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The new lower-bound proof is loosely inspired by the randomized “bit-revealing” argument by Chan [18]:

Theorem A.9 OPTavg(S) = Ω(n(H(S) + 1)) for the 2-d maxima problem in the comparison model.

Proof: Fix a sufficiently small constantδ > 0. Let T be as in the proof of Theorem 2.4, except that we keep
only the first⌊δ log n⌋ levels of the tree, i.e., when a node reaches depth⌊δ log n⌋, it is made a leaf.

Let Πkd-tree be the partition ofS formed by the leaf boxes inT . Let Π̃kd-tree be a refinement ofΠkd-tree in
which each subset corresponding to a box of depth⌊δ log n⌋ is further subpartitioned into singletons. Note
that each such subset has sizeΘ(nδ) and contributesΘ((nδ/n) log n) to both the entropy ofΠkd-tree and
Π̃kd-tree. Thus,H(Π̃kd-tree) = Θ(H(Πkd-tree)). Clearly,Π̃kd-tree is respectful.

The adversary proceeds differently. We do not explicitly maintain the invariant that no boxB is full.
Whenever someBp first becomes a leaf, we assignp at random among the points inS∩Bp that has previously
not been assigned. If all points inS ∩Bp have in fact been assigned, we say thatfailure occurs.

When the simulation encounters a comparison, say, of thex-coordinates, between two pointsp andq, we
do the following:

• We resetBp to one of its children at random, where each childB′
p is chosen with|S ∩ B′

p|/|S ∩ Bp|
(which is about1/2 for ak-d tree construction). We resetBq similarly to one of its children at random.
If the newBp andBq are now vertically separated, then the comparison is already resolved. Otherwise,
we repeat.

Observe that in the above, ifBp andBq are both at odd depths and w.l.o.g. the medianx-coordinate ofBp

is less than the medianx-coordinate ofBq, then the comparison is resolved when we choose the left child of
Bp and the right child ofBq, and this occurs with probability at least a positive constant (about1/4). Thus,
with at least a positive constant probability, the comparison is resolved within 2 iterations. The number of
iterations per comparison is thus upper-bounded by a geometrically distributed random variable with mean
O(1).

Let T be the number of comparisons made. LetD be the sum of the depth ofBp over all pointsp ∈ S at
the end of the simulation. Clearly,D is upper-bounded by the total number of iterations performed, which is at
most a sum ofT independent geometrically distributed random variables with meanO(1). Let(∗) be the event
thatD ≤ c0T for a sufficiently large constantc0. By the Chernoff bound,Pr[(∗)] ≥ 1−2−Ω(T ) ≥ 1−2−Ω(n).

After the end of the simulation, we can do the following postprocessing: whenever there is an internal
nodeBp, we resetBp to one of its children at random as above. As a result, everyBp becomes a leaf, and the
input is fixed to a permutation ofS, so long as failure does not occur.

By the same argument as before, we see that everyBp is already a leaf by the end of the simulation, or
failure occurs during simulation or postprocessing. Let(†) be the event that failure does not occur. Thus, if
(∗) and(†) are both true, then

T = Ω(D) = Ω

(
∑

leaf B

|S ∩B| log(n/|S ∩B|)
)

= Ω(nH(Πkd-tree)) = Ω(nH(Π̃kd-tree)) = Ω(nH(S)).

To analyzePr[(†)], consider the leaf boxBp that a pointp ends up with after the simulation and post-
processing (regardless of whether failure has occurred). This is a random variable, which equals a fixed
leaf boxB with probability |S ∩ B|/n. Moreover, all these random variables are independent. Failure oc-
curs iff for some leaf boxB, the number ofBp’s that equalB is different from|S ∩ B|. By Lemma A.8,
Pr[(†)] ≥ n−O(nδ), since there are at mostO(nδ) leaves inT . It follows that

Pr[not (∗) | (†)] ≤ Pr[not (∗)]
Pr(†) ≤ 2−Ω(n)

n−O(nδ)
= 2−Ω(n).
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Finally, observe thatPr[(†) ∧ the input equalsσ] is the same for all fixed permutationsσ of S (namely

the probability is
∏

leaf B

(
|S∩B|

n

)|S∩B|
1

|S∩B|! ). In other words, conditioned to(†), the input is a random

permutation ofS, i.e., the adversary does not act adversarily at all! It follows thatT = Ω(nH(S)) with high
probability for a random permutation ofS. In particular,E[T ] = Ω(nH(S)) for a random permutation ofS.

�

Applying the same ideas to the proof of Theorem 3.5 shows thatOPTavg(S) = Ω(n(H(S) + 1)) for the
2-d upper hull problem in the multilinear decision tree model.

A.4 On the multilinear model

Many commonly encountered test functions in geometric algorithms are multilinear. For example, in 3-d, the
predicateABOVE(p1, . . . , p4) which returns true iffp1 is above the plane throughp2, p3, p4, reduces to testing
signs of multilinear functions.

More generally, say that a functionf : (Rd)c → R
d is quasi-multilinear if f(p1, . . . , pc) =

(f1(p1, . . . , pc)/g(p1, . . . , pc), . . . , fd(p1, . . . , pc)/g(p1, . . . , pc)) for some multilinear functions
f1, . . . , fd, g : (Rd)c → R. For example, in 3-d, the functionPLANE(p1, . . . , p4) which returns the
dual of the plane throughp1, . . . , p4, or the function INTERSECT(p1, . . . , p4) which returns the inter-
section of the dual planes ofp1, . . . , p4, are quasi-multilinear. We can get more quasi-multilinearand
multilinear functions by composition: e.g., iff1, . . . , f4 : (R3)4 → R

3 are quasi-multilinear, then
INTERSECT(f1(p1, . . . , p4), f2(p5, . . . , p8), . . . , f4(p13, . . . , p16)) is quasi-multilinear inp1, . . . , p16, by
expanding all the determinants. More elaborately, a predicate such as

ABOVE(p17, p18, p19, INTERSECT(PLANE(p1, . . . , p4), PLANE(p5, . . . , p8), . . . , PLANE(p13, . . . , p16)))

also reduces to multilinear tests. However, we may run into problems if a point occurs more than once, e.g.,

ABOVE(p17, p18, p1, INTERSECT(PLANE(p1, . . . , p4), PLANE(p5, . . . , p8), . . . , PLANE(p13, . . . , p16))),

since expansion of the determinants may yield monomials of the wrong type. In most 2-d algorithms, this
kind of tests does not arise. Unfortunately, they can occasionally happen in our 3-d upper hull algorithm in
Section 3.2. We describe some modifications to the algorithmthat can avoid these problematic tests.

First, for the partition construction, it would be easier tochoose the second option in the proof of
Lemma 3.3. By perturbing the dividing planes, one can show the existence of 3 planes each passing through
3 input points, where the 9 points are distinct, so that each of the resulting 8 regions containsn/8 ± O(1)
points. A brute-force algorithm can find the 3 planes in polynomial time. We can reduce the construction time
by using the standard technique ofε-approximations[47] (at the expense of a small change in the constant).
It can be checked that known constructions forε-approximations fits in the multilinear model (it suffices to
check the implementation of the “subsystem oracle”). As a result, we can ensure that the cells are all defined
by planes that pass through 3 input points, where no two planes share a common defining point. A vertexv
of a cell is an intersection of 3 such planes and is defined by a set of 9 distinct input points, denotedDEF(v).

A problem occurs in testing whether a vertexv of a cellγi lies below the upper hull, specifically, when
we try to comparev against a feature that share a common defining point. For thisreason, we weaken the
test in line 5: we prune only when each vertexv of γi lies strictly below the upper hull ofQ − DEF(v). It
can be checked that some version of Lemma 3.6 can supportO(r) such queries in the multilinear model, in
O(n log r + rn1−α) time for someα > 0.

Since the pruning condition is weaker, the analysis needs more effort. We assume that the partition in
line 3 is generated hierarchically in the following way: first we find a partition ofQ by Lemma 3.3 with

√
rj
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subsetsQ′
ℓ and cellsγ′

ℓ; then for each subsetQ′
ℓ, we find a partition ofQ′

ℓ again by Lemma 3.3 with
√

rj

subsubsetsQi and cellsγi.
In the second paragraph of the proof of Theorem 3.7, we proceed differently. Suppose a pointp lies in the

subsetQ′
ℓ and the subsubsetQi. Observe that if the corresponding cellsγ′

ℓ andγi are both completely inside
∆k, then all points insideγi are pruned. This is because for each vertexv of the cellγi, the defining points
DEF(v) are contained inQ′

ℓ ⊂ γ′
ℓ and so cannot appear on the upper hull ofQ; the vertexv lies strictly below

the upper hull ofQ, which coincides with the upper hull ofQ− DEF(v).
At most O(

√
rj

1−ε) cells γ′
ℓ intersect the boundary of∆k. At most O(

√
rj · √rj

1−ε) cells γi inter-
sect the boundary of∆k. Hence, the number of points inSk that remain inQ after iterationj is at most

min
{
|Sk|, O(

√
rj

1−ε · n/
√

rj +
√

rj · √rj
1−ε · n/rj)

}
= min

{
|Sk|, O(n/r

ε/2
j )

}
. The rest of the proof is

then the same, after readjustingε.

B Appendix 2: Other Applications

We can apply our techniques to obtain instance-optimal algorithms for a number of geometric problems in the
order-oblivious and random-order setting:

1. Off-line halfspace range reporting in 2-d and 3-d: given asetS of n points and halfspaces, report the
subset of points inside each halfspace. Algorithms withΘ(n log n + K) running time [1, 17, 24] are
known for total output sizeK (the 3-d algorithm is randomized).

2. Off-line dominance reporting in 2-d and 3-d: given a setS of red/blue points, report the subset of red
points dominated by each blue point. The problem has similarcomplexity as in item 1.

3. Orthogonal segment intersection in 2-d: given a setS of n horizontal/vertical line segments, report all
intersections between the horizontal and vertical segments, or count the number of such intersections.
The problem is known to have worst-case complexityΘ(n log n + K) in the reporting version, for
output sizeK, and complexityΘ(n log n) in the counting version [31, 52].

4. BichromaticL∞-close pairs in 2-d: given a setS of n red/blue points in 2-d, report all pairs(p, q)
wherep is red,q is blue, andp andq haveL∞-distance at most 1, or count the number of such pairs.
Standard techniques in computational geometry [31, 52] yield algorithms with the same complexity as
in item 3.

5. Off-line orthogonal range searching in 2-d: given a setS of n points and axis-aligned rectangles, report
the subset of points inside each rectangle, or count the number of such points inside each rectangle. The
worst-case complexity is the same as in item 3.

6. Off-line point location in 2-d: given a setS of n points and a planar connected polygonal subdivision of
sizeO(n), report the face in the subdivision containing each point. Standard data structures [31, 52, 54]
imply a worst-case running time ofΘ(n log n).

For each of the above problems, it is not difficult to see that certain input sets are indeed “easier” than
others, e.g., if the horizontal segments and the vertical segments respectively lie inside two bounding boxes
that are disjoint, then the orthogonal segment intersection problem can be solved inO(n) time.

Note that although some of the above problems may be reducible to others in terms of worst-case complex-
ity, the reductions may not make sense in the instance-optimality setting. For example, an instance-optimal
algorithm for a problem does not imply an instance-optimal algorithm for a restriction of the problem in a
subdomain, because in the latter case, we are competing against algorithms that have to be correct only for
input from this subdomain.

20



B.1 Reporting problems

Many of the problems listed above belong to the following common framework. LetR ⊂ R
d × R

d′ be a
relation for some constant dimensionsd andd′. We say that a red pointp ∈ R

d and a blue pointq ∈ R
d′

interact if (p, q) ∈ R. We consider thereportingproblem: given a setS containing red points inRd and blue
points inR

d′ of total sizen, report allK interacting red/blue pairs of points inS. Note that by scanning the
output pairs, we can collect the subset of all blue points that interact with each red point, inO(K) additional
time.

We say that a red (resp. blue) cellγ is uninteresting toS if every red (resp. blue) point inγ interacts with
exactly the same subset of blue (resp. red) points inS. We redefineH(S) as follows:

Definition B.1 A partition Π of S is respectfulif each subsetSk in Π either is a singleton or is a monochro-
matic subset of points that can be enclosed by a simplex∆k that is uninteresting toS. DefineH(S) to be the
minimum ofH(Π) :=

∑
k(|Sk|/n) log(n/|Sk|) over all respectful partitionsΠ of S.

It is straightforward to modify the proofs from Section 3.1 and Section A.3 to show an
OPT(S), OPTavg(S) = Ω(n(H(S) + 1) + K) lower bound for this problem: We now keep two partition
trees, one for each color. IfΓ(v) is uninteresting toS, we makev a leaf. At the end, if some red (resp. blue)
nodevp is not a leaf, we can movep to some point insideΓ(vp) and change the answer. (TheΩ(K) term in
the lower bound is obvious, by the way.)

For the upper-bound side, we need three requirements aboutR for some constantα > 0:

(A) There is a worst-case algorithm for the reporting problem that runs inO(n log n + K) time.

(B) There is a data structure for the blue (resp. red) points in S, with O(n log n) preprocessing time, such
that we can report allκ blue (resp. red) points interacting with a query red (resp. blue) point inO(n1−α+
κ) time.

(C) There is a data structure for the blue (resp. red) points in S, with O(n log n) preprocessing time, such
that we can test whether a query red (resp. blue) simplexγ is uninteresting toS in O(n1−α) time.

Under these assumptions, it is straightforward to modify the algorithm from Section A.1 to an
O(n(H(S) + 1) + K)-time algorithm: In line 3, we partition the red points ofQ first. In line 5, if some
red cellγi is uninteresting toQ, then we find the subsetZ of blue points interacting with an arbitrary red
point in γi, output all pairs between the red points ofQi and the blue points ofZ, and prune the red points
of Qi from Q. The test requires querying the data structure in (C) (aftertriangulatingγi); the subsetZ can
be found by querying the data structure in (B). The grouping technique by Chan [16] yields an analog of
Lemma 3.6 with running timeO(n log r + rn1−α) for r queries of type (C), andO(n log r + rn1−α + κ)
for r queries of type (B) with total output sizeκ (since the problems in (B) and (C) are “decomposable”).
Before moving to the next iteration, we redo lines 3–5, this time partitioning the blue points ofQ and pruning
red points. At the end, in line 6, we switch to the algorithm in(A). The same analysis then goes through, by
choosing a constantδ < α.

Note that for orthogonal problems in the comparison model, we can make all the cells (all theγ’s and
∆’s) axis-aligned boxes, by reverting to ak-d tree construction.

We now check that the requirements are satisfied for some specific reporting problems.

• Off-line halfspace range reporting in 2-d and 3-d: It suffices to consider lower halfspaces in the input.
Color the given points red, and map the given lower halfspaces to blue points by duality. The data
structure problem in (B) is just halfspace range reporting.The data structure problem in (C) is equivalent
to testing whether a query simplex intersects a given set of hyperplanes (lines in 2-d or planes in 3-d);
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this reduces to ray shooting (or segment emptiness) queriesin a hyperplane arrangement, for which
there are known results [3, 49]. Requirement (A) is satisfiedin 2-d and 3-d (the 3-d algorithm is
randomized).

• Off-line dominance reporting in 2-d and 3-d: The data structure problem in (B) is just dominance
reporting. The data structure problem in (C) is equivalent to testing whether all the corners of a query
box are dominated by the same number of points from a given point set. This reduces to orthogonal
range counting [2, 31, 52].

• Orthogonal segment intersection in 2-d: Map each each horizontal line segment(x′, y)(x′′, y) to a red
point (x′, x′′, y) ∈ R

3 and each vertical line segment(x, y′)(x, y′′) to a blue point(x, y′, y′′) ∈ R
3.

These mappings toR3 are bijective. The data structure problem in (B) corresponds to reporting the
vertical segments from a given set that intersect a query horizontal segment. The data structure problem
in (C) is more complicated: for a query boxγ = [ξ1, ξ2]× [ξ3, ξ4]× [ξ5, ξ6], we want to decide whether
there exists a horizontal segment(x′, y)(x′′, y) with (x′, x′′, y) ∈ γ that intersects a given set of vertical
segments. This is equivalent to testing whether a query rectangle[min{ξ1, ξ3},max{ξ2, ξ4}]× [ξ5, ξ6]
intersects a given set of vertical segments. Both data structure problems reduce to orthogonal intersec-
tion searching (which in turn reduces to orthogonal range searching by lifting to a higher dimension,
and thus admits data structures withO(n log n) preprocessing time andO(nε) query time). Clearly, the
resulting algorithm works in the comparison model.

• BichromaticL∞-close pairs in 2-d: The problem in (B) corresponds to reporting all points of a given
point set that are inside a query square of side length 2. The problem in (C) corresponds to deciding,
for a query boxγ = [ξ1, ξ2]× [ξ3, ξ4], whether[ξ1 − 1, ξ2 + 1]× [ξ3 − 1, ξ4 + 1] contains a point from
a given set. Both data structure problems reduce to orthogonal range searching.

Note that here the resulting algorithm requires slightly more general tests of the form mentioned in
Remark 2.5, which are allowed in the lower-bound proof.

• Off-line orthogonal range reporting in 2-d: Color the givenpoints red, and map each rectangle with
corners(x1, y1), (x1, y2), (x2, y1), (x2, y2) to a blue point(x1, x2, y1, y2) ∈ R

4. The mapping toR4 is
bijective. The blue data structure problem in (B) corresponds to reporting all points from a given set
that are inside a query rectangle. The red data structure problem in (B) corresponds to reporting all
rectangles from a given set that contain a query point.

The red data structure problem in (C) corresponds to deciding, for a query box
γ = [ξ1, ξ2] × [ξ3, ξ4] × [ξ5, ξ6] × [ξ7, ξ8], whether all rectangles with corners
(x1, y1), (x1, y2), (x2, y1), (x2, y2), (x1, x2, y1, y2) ∈ γ, contain the same number of points
from a given set. This is equivalent to testing whether the rectangle [min{ξ1, ξ3},max{ξ2, ξ4}] ×
[min{ξ5, ξ7},max{ξ6, ξ8}] contains the same number of points from a given set as the rectangle
[max{ξ1, ξ3},min{ξ2, ξ4}]× [max{ξ5, ξ7},min{ξ6, ξ8}].
The blue data structure problem in (C) corresponds to deciding, for a query pointγ = [ξ1, ξ2]× [ξ3, ξ4],
whetherγ intersects any rectangle from a given set.

All these data structure problems reduce to orthogonal range/intersection searching.

B.2 Counting problems

We can also consider counting problems where we want the total number of interacting red/blue pairs. We
just need to change requirement (A) to the existence of a counting algorithm that runs inO(n log n) time, and
requirement (B) to the existence of a similar counting data structure without theO(κ)-term penalty. These
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requirements are satisfied by orthogonal segment intersection counting, bichromaticL∞-close pairs, and off-
line orthogonal range counting. The same lower- and upper-bound proofs yieldsΘ(n(H(S) + 1)).

If we want individual counts, i.e., the number of red points that interact with each blue point, we need a
further assumption—that the data structure in (B) can operate in the semigroup model [2]. (This assumption is
true for the specific problems mentioned in the preceding paragraph.) This way, we can report all interacting
red/blue pairs as a disjoint union of bicliquesPi×Qi with total sizes

∑
i(|Pi|+|Qi|) bounded byO(n(H(S)+

1)), without theO(K)-term penalty. We can keep a counter for each blue point, scanthrough each biclique,
and add the number of red points in the biclique to the counterof each blue point in the biclique, in total
additional timeO(

∑
i(|Pi| + |Qi|)), which is absorbed in the overall cost. We assume that the algorithm

in requirement (A) can produce individual counts but does not need to be the semigroup model. At the end
(line 6), we can add the individual counts produced by this algorithm to the corresponding counters of each
blue point.

B.3 Detection problems?

We can also consider detection problems where we simply wantto decide whether there exists an interacting
red/blue pair. Here, we redefineH(S) by redefining “uninteresting”: a red (resp. blue) cellγ is now considered
uninteresting toS if no red (resp. blue) point inγ interacts with any blue (resp. red) points inS. We change
requirements (A) and (B) to the existence of counting algorithms and data structures without theO(K) and
O(κ) terms.

The proof of the upper boundO(n(H(S)+1)) is the same, but the proof of the lower boundΩ(n(H(S)+
1)) only goes through for instances with aNO answer: at the end, if some red (resp. blue) nodevp is not a
leaf, we can movep to some point insideΓ(vp) and change the answer fromNO to YES.

YES instances are problematic, but this is not a weakness of our technique but of the model: on every
input setS with a YES answer, OPT(S) is in factO(n). To see this, consider an input setS for which there
exists an interacting pair(p, q). An algorithm that is “hardwired” with the ranks ofp andq in S with respect
to, say, thex-sorted order ofS can first findp andq from their ranks by linear-time selection, verify thatp
andq interact in constant time, and returnYES if true or run a brute-force algorithm otherwise. Then on every
permutation of this particular setS, the algorithm always takes linear time. Many problems admit Ω(n log n)
worst-case lower bounds even when restricted toYES instances, and for such problems, instance optimality in
the order-oblivious setting is therefore not possible on all instances.

B.4 More off-line/on-line querying problems

We now study problems from another framework. LetM be a mapping from points inRd to “answers” in
some space; the answerM(q) of a pointq ∈ R

d may or may not have constant size depending on the context.
We consider the followingoff-line queryingproblem: given a setS of n points inR

d, computeM(q) for
everyq ∈ S. In addition, we consider the followingon-line queryingproblem: given a setS of n points in
R

d, build a data structure forS so that we can computeM(q) for any query pointq ∈ R
d, while trying to

minimize the average query cost over allq ∈ S.
We redefineH(S) by redefining “uninteresting”: a cellγ is now considereduninteresting toM if every

point q in γ has the same answerM(q).
For the off-line problem, our lower-bound proof givesΩ(n(H(S) + 1)) even ifM has been preprocessed

in advance. For the on-line problem, the same proof shows that running a sequence ofn queries over some
permutation ofS requiresΩ(n(H(S)+1)) time, even if the setS (not the permutation) has been preprocessed
in advance. So, the average query time isΩ(H(S) + 1). (In contrast, lower bounds for the on-line problem
do not necessarily translate to lower bounds for the off-line problem.)
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For the upper-bound side, we need two requirements aboutM for some constantα > 0 and some param-
eterm describing the size ofM. We assume thatM has been preprocessed in some data structure.

(A) Given q ∈ R
d, we can computeM(q) in O(log m + κ) worst-case time for output sizeκ.

(C) Given a simplexγ, we can test whetherγ is uninteresting toM in O(m1−α) time.

The algorithm this time is actually simpler, because there is only one color. Instead of using a22j
pro-

gression, we use a straightforwardb-way recursion, for some fixed parameterb (the resulting recursion tree
mimics the treeT from the lower-bound proof in Theorem 3.5, on purpose):

off-line-queries(Q,Γ), whereQ ⊂ Γ:
1. if |Q| drops belown/mδ then return answers directly
2. partitionQ by Lemma 3.3 to getb subsetsQ1, . . . , Qb and cellsγ1, . . . , γb

3. for eachi do
4. if γi ∩ Γ is uninteresting toM then
5. computeM(q) for an arbitrary pointq ∈ γi ∩ Γ
6. outputM(q) as the answer for the points inQi

7. else off-line-queries(Qi , γi ∩ Γ)

We call off-line-queries(S, Rd) to start. Line 1 takesO(|Q| log m+κ) time for output sizeκ by switching
to the data structure for (A); note that each point inQ in this case has participated inΩ(log m) levels of the
recursion, and we can account for the first term by charging each point unit cost for every level it participates
in. Line 2 takesO(|Q|) time for a constantb by known constructions [49]. Line 4 takesO(m1−α polylog m)
time (γi ∩ Γ hasO( polylog m) vertices), by (C); this cost is negligible by choosing a sufficiently small
constantδ < α, since the recursion tree hasO(mδ) nodes. Line 5 takesO(log m + κ) time for output sizeκ,
by (A); theO(log m) term is again negligible.

For the on-line problem, we just build a data structure corresponding to the recursion tree generated above,
in addition to the data structure for (A); the extra space isO(mδ).

Theorem B.2 The above off-line querying algorithm runs inO(n(H(S) + 1) + K) time for total output size
K. For the on-line querying problem, it produces a data structure that has average query costO(H(S)+1+κ)
for output sizeκ.

Proof: Let nj be number of points inS that survivelevel j, i.e., participate in subsetsQ at levelj of the
recursion. The total running time for the off-line problem is asymptotically bounded by

∑
j nj. Similarly, for

the on-line problem, the total query cost over allq ∈ S is asymptotically bounded by
∑

j nj.
Let Π be any respectful partition ofS. Look at a subsetSk in Π. Let ∆k be a simplex enclosingSk that is

contained inside one face ofM . Fix a levelj. Let Qi’s andγi’s be the subsetsQ and cellsγ at levelj. Each
Qi has size at mostn/Θ(b)j . The number ofγi’s that intersect each side of∆k is at mostO(b1−ε)j . Thus, the
number of points inSk that survive levelj is at mostmin

{
|Sk|, O(b1−ε)j · n/Θ(b)j

}
. Since theSk’s cover

the entire point set, with a double summation we have, for a sufficiently large constantb,

∑

j

nj ≤
∑

k

∑

j

min
{
|Sk|, ⌈n/Θ(b)εj⌉

}
= O

(
∑

k

|Sk|(log(n/|Sk|) + 1)

)
= O(n(H(Π) + 1)).

�

For the on-line problem, the above approach works, after straightforward modifications, for weighted
point setsS where we want to minimize the weighted average query cost. Inprinciple, the approach works
not only for discrete point setsS but also for continuous probability distributions, since the query bound does
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not depend on the sizen of S explicitly and can be imagined to approach infinity. “Average query cost”
over a finite set of query points now becomes “expected query cost” over a query point distribution. (The
preprocessing time can also be made independent ofn, under some computational assumptions about the
distribution.)

Below, we briefly mention applications to some specific off-line/on-line querying problems.

• Off-line/on-line point location queries in 2-d: For the off-line planar point location problem, the data
structure for requirement (A) only needsO(m) preprocessing time and space [22, 44, 54]. The data
structure problem in (C) reduces to testing whether a triangle is contained in a face of the subdivision;
this reduces to ray shooting (or segment emptiness) queriesin a polygonal subdivision, for which there
are known results [23]. The total running time isO(n(H(S) + 1)), including preprocessing, if the
subdivision has sizem = O(n). (For this problem, output sizes can be ignored.)

For the on-line version, we immediately get optimalO(H(S) + 1) average query cost, with anO(m)-
space data structure for a subdivision of sizem. This on-line point location result is already known
[6, 7, 29, 41] (some of these previous work even optimize the constant factor in the query cost).

• On-line halfspace range reporting queries in 2-d and 3-d: Here, we map query lower halfspaces to
points by duality. The known data structure for (A) needsO(m) space [1, 24]. The data structure for
(C) is the same as in Section B.1. We get optimalO(H(S) + 1 + κ) average query cost for output size
κ, with anO(m)-space data structure for a given point set of sizem in 2-d or 3-d. This result is new.

• On-line dominance reporting queries in 2-d and 3-d: The story is similar to halfspace range reporting.

• On-line orthogonal range reporting/counting queries in 2-d: Here, we map query rectangles to points
in 4-d as in Section B.1. The known data structure for (A) needs O(m log m) preprocessing time and
O(m) space [21]. The data structure for (C) is the same as in Section B.1. We get optimalO(H(S) +
1 + κ) average query cost for output sizeκ, with anO(m)-space data structure for a given point set of
sizem in 2-d. (For counting,κ = O(1).) The resulting algorithm works in the comparison model. This
result is apparently new, as it extends Dujmović, Howat, and Morin’s recent result on 2-d dominance
counting [35] and unintentionally answers one of their mainopen problems (and at the same time
improves their space bound fromO(m log m) to O(m)).
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