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Abstract

We prove the existence of an algorithinfor computing 2-d or 3-d convex hulls that is optimal for
every point sein the following sense: for every sétof n points and for every algorithm’ in a certain
classA, the maximum running time of on input(sy, ..., s,,) is at most a constant factor times the max-
imum running time ofd’ on(s1, ..., s,,), where the maximum is taken over all permutations . . ., s,,)
of S. In fact, we can establish a stronger property: for evgrgnd A’, the maximum running time of
A is at most a constant factor times the average running timé aiver all permutations of. We call
algorithms satisfying these propertiestance-optimain the order-obliviousandrandom-ordersetting.
Such instance-optimal algorithms simultaneously subsantput-sensitive algorithms and distribution-
dependent average-case algorithms, and all algorithnhslthot take advantage of the order of the input
or that assume the input is given in a random order.

The classA under consideration consists of all algorithms in a denisgiee model where the tests
involve only multilinear functions with a constant number of arguments. To establisimstance-specific
lower bound, we deviate from traditional Ben—Or-style feoend adopt an interesting adversary argument.
For 2-d convex hulls, we prove that a version of the well knalgorithm by Kirkpatrick and Seidel (1986)
or Chan, Snoeyink, and Yap (1995) already attains this Idv&nd. For 3-d convex hulls, we propose a
new algorithm.

To demonstrate the potential of the concept, we furtheriolingtance-optimal results for a few other
standard problems in computational geometry, such as nzaiird-d and 3-d, orthogonal line segment
intersection in 2-d, finding bichromatic..-close pairs in 2-d, off-line orthogonal range searching-i,
off-line dominance reporting in 2-d and 3-d, off-line haléxe range reporting in 2-d and 3-d, and off-line
point location in 2-d.
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1 Introduction

Instance optimality: our model(s). Standard worst-case analysis of algorithms has often betirized
as overly pessimistic. As a remedy, some researchers havedttowardsadaptiveanalysis where the cost
of algorithms is measured as a function of not just the infmé but other parameters that capture in some
ways the inherent simplicity or difficulty of the input insize. For example, for problems in computational
geometry (the primary domain of the present paper), param¢hat have been considered in the past include
the output size (leading to so-calledtput-sensitivalgorithms) [46], the spread of an input point set (the ratio
of the maximum to the minimum pairwise distance) [38], vasianeasures of fatness of the input objects (e.g.,
ratio of circumradii to inradii) [48] or clutteredness of allection of objects [30], the number of reflex angles
in an input polygon, and so on.

The ultimate in adaptive algorithms is arstance-optimahlgorithm, i.e., an algorithmd whose cost is
at most a constant factor from the cost of any other algoritimunning on the same input, feveryinput
instance. Unfortunately, for many problems, this requigeiris too stringent. For example, consider the 2-d
convex hull problem, which ha®(n log n) worst-case complexity in the algebraic computation treel@ho
for every input sequence of points, one can easily design an algorithththat runs inO(n) time on that
particular sequence, thus ruling out the existence of aaricg-optimal algorithm.

To get a more useful definition, we suggest a variant of irtsayptimality where we ignore the order in
which the input elements are given, as formalized preciselgw:

Definition 1.1 Consider a problem where the input consists of a sequengest@ments from a domaim.
Consider a clasgl of algorithms. Acorrectalgorithm refers to an algorithm that outputs a correct ardar
every possible sequence of element®in

For a setS of n elements irD, let T4 (S) denote the maximum running time df on inputo over all
n! possible permutations of S. Let OPTS) denote the minimum of 4/ (S) over all correct algorithms
A" € A. If A € Ais a correct algorithm such thdty (S) < O(1) - OPT(S) for every setS, then we say is
instance-optimal in the order-oblivious setting

For many problems, the output is a function of the input astaatker than a sequence, and the above
definition is especially meaningful. In particular, for suproblems, instance-optimal algorithms are au-
tomatically optimal output-sensitive algorithms; in fatltey are automatically optimal adaptive algorithms
with respect toany parameter that is independent of the input order, all at #meestime! This property is
satisfied by simple parameters like the spread of an input 3eitS, or more complicated quantities like the
expected siz¢,.(S) of the convex hull of a random sample of siz&om S [26].

For many algorithms (e.qg., quickhull [52], to name one), rilmening time is not affected so much by the
order in which the input points are given but by the input paiet itself. Combinatorial and computational
geometers more often associate “bad examples” with bad peia rather than bad point sequences. All this
supports the reasonableness and importance of the ortieisob form of instance optimality.

We can consider a still stronger variant of instance opfiyial

Definition 1.2 For a setS of n elements irnD, let Tj"g(S) denote the average running time 4fon input
o over alln! possible permutations of S. Let OPTYY(S) denote the minimum of'{/%(S) over all correct

The length of the program fod’ may depend om in this example. If we relax the definition to permit the “ctarst factor” to
grow as a function of the program length 4f, then an instance-optimal algorithrh exists for many problems such as sorting (or
more generally problems that admit linear-time verifica}ioT his follows from a trick attributed to Levin [42], of emerating and
simulating all programs in parallel under an appropriateesitile. To say that algorithms obtained this way are impraicthowever,
would be an understatement.



algorithms A’ € A. If A € Ais a correct algorithm such thdts(S) < O(1) - OPT™Y(S) for every setS,
then we sayA is instance-optimal in the random-order settifig

Note that an instance-optimal algorithm in the above sengamediately also competitive agaiman-
domized(Las Vegas) algorithms!’, by the easy direction of Yao’s principle. The above defimthas extra
appeal in computational geometry, as it is common to see eékgyual of randomized algorithms where the
input elements are initially permuted in random order [28].

Instance-optimal algorithms in the random-order settitepp amply optimal average-casealgorithms
where we analyze the expected running time under the asgmtpit the input elements are random and
independently chosen from a common given probability ilistion. (To see this, just observe that the input
sequence is equally likely to be any permutatiortafonditioned to the event that the setoinput elements
equals any fixed sef.) An instance-optimal algorithm can deal with all prob#pilistributions at the same
time! Instance optimality also remedies a common complabdut average-case analysis, that it does not
provide information about an algorithm’s performance ompaciic input.

Convex hull: our main result.  After making the case for instance-optimal algorithms wrae definitions,
the question remains: do such algorithms actually exisgrerthey “too good to be true”? Specifically, we
turn to one of the most fundamental and well known problemsoimputational geometry—computing the
convex hull of a set ofi points. ManyO(n log n)-time algorithms in 2-d and 3-d have been proposed since
the 1970s [31, 36, 52], which are worst-case optimal underatgebraic computation tree model. Optimal
output-sensitive algorithms can solve the 2-d and 3-d prabih O(n log k) time, whereh is the output size.
The first such output-sensitive algorithm in 2-d was foundiokpatrick and Seidel [46] in the 1980s and was
later simplified by Chan, Snoeyink, and Yap [20] and indejgertigt \Wenger [55]; a different, simple, optimal
output-sensitive algorithm was discovered by Chan [15]e Titst optimal output-sensitive algorithm in 3-d
was obtained by Clarkson and Shor [28] using randomizatianther version was described by Clarkson [26].
The first deterministic optimal output-sensitive algamitin 3-d was obtained by Chazelle and MatouSek [25]
via derandomization; the approach by Chan [15] can also nded to 3-d and yields a simpler optimal
output-sensitive algorithm. There are also average-dagseithms that run in0(n) expected time for certain
probability distributions [52], e.g., when the points andeépendent and uniformly distributed inside a circle
or a constant-size polygon in 2-d, or a ball or a constarg-pdyhedron in 3-d.

The convex hull problem is in some ways an ideal candidat@nsider in our models. It is not difficult
to think of examples of “easy” point sets and “hard” poinsg@ee Figure 1(a,b)). Itis not difficult to think of
different heuristics for pruning nonextreme points, whichy not necessarily improve worst-case complexity
but may help for many point sets encountered “in practiced.(econsider quickhull [52]). However, it is
unclear whether there is a single pruning strategy that svbdst on all point sets.

In this paper, we show that there are indeed instance-op#fgarithms for both the 2-d and 3-d convex
hull problem, in the order-oblivious or the stronger randorder setting. Our algorithms thus subsume all
the previous output-sensitive and average-case alg@idimultaneously, and are provably at least as good
asymptotically as any other algorithm for every point setlang as input order is ignored.

Techniques. We believe that our techniques—for both the upper-bounel §id., algorithms) and the lower-
bound side (i.e., proofs of their instance optimality)—aseinteresting as our results.

On the upper-bound side, we find that in the 2-d case, a newithlgois not necessary: a version of
Kirkpatrick and Seidel's output-sensitive algorithm, ¢ simplification by Chan, Snoeyink, and Yap, is
instance-optimal in the order-oblivious and random-orsietting. We view this as a plus: these algorithms

One can also consider other variations of the definition, esgaxing the condition t@%'%(S) < O(1) - OPTY(S), or replacing
expected running time over random permutations with armledigh-probability statements.
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Figure 1: (a) A “harder” point set and (b) an “easier” point fee the upper hull problem. (c) A point set with
H(S) nearlog h and (d) an “easier” point set witH (.S) near constant for the maxima problem.

are simple and practical to implement [12], and our analgséxds new light into their theoretical complexity.
In particular, our result immediately implies that a versaf Kirkpatrick and Seidel’s algorithm runs (n)
expected time for points uniformly distributed inside ectgror a fixed-size polygon—we were unaware of
this fact before. (As another plus, our result also provi@esore conclusive answer to the title question from
Kirkpatrick and Seidel’s paper.)

In 3-d we propose a new algorithm, as none of the previousubsensitive algorithms seem to be
instance-optimal (e.g., known 3-d generalizations of thekpatrick—Seidel algorithm have suboptimal
O(nlog? h) running time [20, 37], while a straightforward implemeitat of Chan’s algorithm [15] fails
to be instance-optimal even in 2-d). Our algorithm buildsGiran’s technique [15] but requires additional
ideas, notably the use phrtition trees[31, 49].

The lower-bound side requires more innovation. We are awétéree existing techniques for prov-
ing worst-casef)(nlogn) (or output-sensitive2(n log h)) lower bounds in computational geometry: (i)
information-theoretical or counting arguments, (ii) ttqagical arguments, from early work by Yao [56] to
Ben-Or's theorem [10], and (iii) Ramsey-theory-based argnts, by Moran, Snir, and Manber [50]. Ben-Or's
approach is perhaps the most powerful and works in the gealgrgbraic computation tree model, whereas
Moranet al.s approach works for a decision tree model in which all tte tenctions have a bounded number
of arguments. For an arbitrary input sefor the convex hull problem, the naive information-thearak argu-
ment gives only ati2(h log h) lower bound on OP{S). On the other hand, topological and Ramsey-theory
approaches seem unable to give any instance-specific lomerdbat all (e.g., modifying the topological
approach is already nontrivial if we just want a lower bound Someinteger input set [57], let alone for
everyinput set, whereas the Ramsey-theory approach considigrispat elements that come from a cleverly
designed subdomain).

We end up using a different lower bound technique which ipinesl by an adversary argument from a
recent work by Chan [18] on an unrelated problem (time—spager bounds for median finding). Chan [19]
noted that this approach can lead to another proof of thedatdi§2(n logn) lower bounds for many geo-
metric problems including convex hull; the proof is simpledavorks in an algebraic decision tree model
where the test functions have at most constant degree amedahavost a constant number of arguments. We
build on the idea further and obtain an optimal lower bournrdtie convex hull problem foeveryinput point
set. The assumed model is more restrictive: the clas¥ allowed algorithms consists of those under a
decision tree model in which the test functions areltilinear and have at most a constant number of argu-
ments. Fortunately, most standard primitive operatiore®entered in existing convex hull algorithms satisfy
the multilinearity condition (e.g., the standard deteramintest does). The final proof is quite nice, in our
opinion. Interestingly it involves partition trees, whiahe more typically used in algorithms (as in our new
3-d algorithm) rather than in lower-bound proofs.

So, what is OPTS), i.e., what parameter truly captures the difficulty of a pcietS, asymptotically, for
the convex hull problem? As it turns out, the bound has a @megpression (to be revealed in Section 3)
and shares similarity witentropybounds found in average-case (also called “expected-caselysis of
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geometric data structures where query points come from angprobability distribution—these entropy-

based results have been the subject of several recent Jépérs29, 35, 41]. However, lower bounds for

expected-case data structures cannot be applied to oleprdizcause our problem is off-line (lower bounds
for on-line query problems usually assume that the quergrdlgns fit a “classification tree” framework, but

an off-line algorithm may compare a query point not only withints from the data set but also with other
query points). Furthermore, although in the off-line sejtive can think of the query points as coming from
a discrete point probability distribution, the distrilaiis not known in advancéLastly, expected-case data
structures achieve speedup in querying but not preprowgssi

Otherresults. Convex hull is just one problem for which we are able to obtagtance optimality. We show
that our techniques can lead to instance-optimal resuttmBmy other standard problems in computational
geometry, in the order-oblivious or random-order settimgluding: (a) maxima in 2-d and 3-d, (b) report-
ing/counting intersection between horizontal and verioa segments in 2-d, (¢) reporting/counting pairs of
L..-distance at most 1 between a red point set and a blue poiint 2€t, (d) off-line orthogonal range report-
ing/counting in 2-d, (e) off-line dominating reporting ind2and 3-d, (f) off-line halfspace range reporting in
2-d and 3-d, and (g) off-line point location in 2-d. (We arecfed to put these results in Appendix B because
of space limitation.)

Optimal expected-case, entropy-based data structurethdoon-line version of (g) are known before
[7, 41], but not for (e,f)—for example, a recent SODA09 papg Dujmovic, Howat, and Morin [35] only
obtained results for 2-d dominance counting, a special cb2al orthogonal range counting. Incidentally, as
a consequence of our ideas, we can also get new optimal exipease data structures for on-line 2-d general
orthogonal range counting and 2-d and 3-d halfspace ramgetieg.

Related work. Although Faginet al. [39] first coined the term “instance optimality” (when stuly the
problem about finding items with thetop aggregate scores in a database in a certain model), leemichas
appeared before. For example, the well known “dynamic aglftsnconjecture” is about instance optimality
concerning algorithms for manipulating binary search srésee [32] for the latest in a series of papers).
Demaine, Lopez-Ortiz, and Munro [34] studied the problencofmputing the union or intersection &f
sorted sets and gave instance-optimal results forkafor union, and for constart for intersection, in the
comparison model; see Barbay and Chen [9] for an extensi@n2al problem on computing the convex
hulls of £ convex polygons. Another work about instance-optimal geim algorithms is by Baran and
Demaine [8], who addressed an approximation problem abmmpating the distance of a point to a curve
under a certain black-box model. Other than these, therebialseen much work on instance optimality in
computational geometry, especially concerning the aasgiroblems under conventional models.

The concept of instance optimality resembles competithadyesis of on-line algorithms. In fact, in the
on-line algorithms literature, our order-oblivious segfiof instance optimality is related to what Boyar and
Favrholdt called theelative worst order ratio[13], and our random-order setting is related to Kenyon's
random order ratio[43]. What makes instance optimality more intriguing isttixee are not bounding the
objective function of an optimization problem but the cdsao algorithm.

2 Warm-Up: 2-d Maxima

Before proving our main result on convex hull, we find it ugetustudy a simpler problem: maxima in 2-d.
For two pointsp andg we sayp dominates; if each coordinate op is greater than that the corresponding
coordinate of;. Given a sefS of n points inR¢, a pointp is maximalif p € S andp is not dominated by any

3Self-improvingalgorithms [4, 27] also cope with the issue of how to deal witknown input probability distributions, but are not
directly comparable with our results, since in their sgttdach point can come from a different distribution, so ingnaker matters.
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other point inS. For simplicity, we assume that the input is always nondegas throughout the paper. The
maxima problem is to report all maximal points, say, front tefright.

For an alternative formulation, we can define thr¢hant at a pointp to be the region of all points that
are dominated by. In 2-d, the boundary of the union of the orthants apadt S forms astaircase and the
maxima problem is equivalent to computing the staircasg. of

This problem has a similar history as the convex hull problemany worst-casé (n log n)-time algo-
rithms are known, Kirpatrick and Seidel’'s output-sensitalgorithm runs irO(n log h) time for output size
h, and average-case algorithms witin) expected time have been analyzed for various probabil@gridu-
tions [11, 26, 52]. The problem is simpler in the sense thagatipairwise comparisons are sufficient. We
therefore work with the clasd of algorithms in thecomparison modaklhere we can access the input points
only through comparisons of the coordinate of an input puwiith the corresponding coordinate of another
input point. The number of comparisons made by an algorithiraat as a lower bound on the running time.

We define a measurk(.S) to represent the difficulty of a point sétand prove that the optimal running
time OPTS) is precisely®(n(H(S) + 1)) for the 2-d maxima problem in the order-oblivious and random
order setting.

Definition 2.1 Consider a partitiodI of the input setS into disjoint subsets, ..., S;. We say thafl is
respectfulif each subsep}, is either a singleton or can be enclosed by an axis-aligngdionvhose interior
is completely below the staircase §f DefineH(IT) = 3¢ _, (|Sk|/n)log(n/|Sk|). Define (S) to be the
minimum of H(II) over all respectful partitionsl of S.

Remark 2.2 Alternatively, we could further insist in the definition thiae bounding boxe#,; are nonover-
lapping and cover precisely the staircaseSof However, this will not matter, as it turns out that the two
definitions yield asymptotically the same quantity (thismabvious fact is a byproduct of our analysis).

H(IT) is of course an entropy-like expression and is similar torttsuused in expected-case geometric
data structures for the case of a discrete point probaldigyribution, although our definition itself is non-
probabilistic. A measure proposed by Sen and Gupta [53]estidal to7 (Il,er) for a specific respectful
partitionI1er Of S, obtained by dividing the point sétby h vertical lines at thés maximal points ofS. Note
that H (I1yer) is at mostlog h (see Figure 1(c)) but can be much smaller; in tdi{S) can be much smaller
thanH (I1yert) (See Figure 1(d)). The complexity of the 1-d multiset s@rtproblem [51] also has a similar
expression, but there each input multiset induces a unigttéipn and so the situation is much simpler.

2.1 Upper bound

The algorithm we use is a slight variant of Kirkpatrick andde#s output-sensitive maxima algorithm [45]
(in their original algorithm, only points frond), are pruned in line 4):

maxima():

if |Q] = 1 then return@

divide Q into the left and right halve®, andQ, by the median:-coordinate
discoverthe pointg with the maximumy-coordinate inQ,- (computable in linear time)
pruneall points from@), and@, that are dominated by

return the concatenation of maxifdy) and maximéQ),.)

arwdE

We call maximag) to start. It is straightforward to show that the algorithams in timeO(nlogh),
or O(n(H(Ilyerr) + 1)) time, as was done by Sen and Gupta [53]. Upper-bounding theimg time by
O(n(H(II) + 1)) for anarbitrary respectful partitiorlI of S requires a bit more finesse:

Theorem 2.3 The above 2-d maxima algorithm runs@in(H(S) + 1)) time.
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Proof: Imagine the recursion tree being generated level by leeehfthe root. LetX; denote the sublist
of all maximal points ofS discovered during level8, . .., j of the recursion, in left-to-right order. Observe
that (i) there can be at mo$h /2’7 points of S with z-coordinates between any two consecutive points in
X, and (ii) all points that are strictly below the staircaseXof have been pruned during levéls. . ., j of
the recursion. Let; be the number of points &f thatsurvivelevel j, i.e., that have not been pruned during
levelsO, . .., j. The running time is asymptotically bounded E}j‘)jgl n;.

Let IT be any respectful partition of5. Look at a subse$}, in II. Let By be a box enclosing; whose
interior lies below the staircase 6f. Fix a levelj. Suppose the upper-right corner Bf, hasz-coordinate
between two consecutive poinis ¢;+1 in X;. By (ii), the only points inB;, that can survive levej must
have z-coordinates betweesy andgq; 1. Thus, by (i), the number of points ifi;, that survive level; is at
mostmin {| S|, [n/277}. Since theS)’s cover the entire point set, with a double summation we have

logn logn

Sny < SO min {5l n/21} < 3001 log(n/ISk]) + Skl + [Skl/2 + |Skl/4+ - )

§=0 k j=0 k

= 0<Z|Skl(10g(n/\5k\)+1)> = O(n(H(D) +1)).

k

2.2 Lower bound

For the lower-bound side, we first provide an intuitive jfiséition for the bounch’H(.S) and point out the
subtlety in obtaining a rigorous proof. Intuitively, to ti&r that we have a correct answer, the algorithm must
gather evidence for each poipteliminated why it is not a maximal point, by indicating atdeanewitness
point in S which dominateg. We can define a partitioll by placing points with a common witness in the
same subset. It is easy to see that this partitios respectful. The entropy bound- (IT) roughly presents
the number of bits required to encode the partitibrso in a vague sense?(S) represents the length of the
shortest “certificate” folS. Unfortunately, there could be many valid certificates fgiven input setS (due

to possibly multiple choices of withesses for each nonmakipoint). If hypothetically all branches of an
algorithm lead to a common partitidd, then a straightforward information-theoretic or cougtargument
would indeed prove the lower bound. The problem is that eaahdf the decision tree may give rise to a
different partitionIl. In Appendix A.2, we show that despite the aforementiondiicdity, it is possible to
obtain a proof of instance optimality via this approach, it proof requires a more sophisticated counting
argument, and also works with a different definition7¢fS). Moreover, it is limited specifically to the 2-d
maxima problem and does not extend to 3-d maxima, let alonertorthgonal problems like convex hull.

In this subsection, we describe instead a different probfciwgeneralizes more easily to the other prob-
lems that we consider. The proof is based on an interestidgsempleadversaryargument. For simplicity,
we concentrate on the order-oblivious setting and posttlomenodification of the proof in the random-order
setting to Appendix A.3.

Theorem 2.4 OPT(S) = Q(n(H(S) + 1)) for the 2-d maxima problem in the comparison model.

Proof: We use &:-d treeconstruction [31] to define a tre of axis-aligned boxes, generated top-down as
follows: The root stores the entire plane. For each nodéngidoox B, if B is strictly below the staircase of
S, orif B contains just one point df, thenB is a leaf. Otherwise, if the node is at an odd (resp. evenhdept
divide B into two subboxes by the mediancoordinate (respy-coordinate) among the points Sfinside B.
The two subboxes are the children Bf Note that each box at depghof 7~ contains at leastn/27 | points
of S.

Let Ixg-tree b€ the partition ofS formed by the leaf boxes in this trée (i.e., points in the same leaf box
are placed in the same subset). Clearly, this partikiggee is respectful. We will prove that for any correct
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algorithm in A, there exists a permutation 6f on which the algorithm requires at lea@{n™H (Ilkg-tree))
comparisons.

The adversary constructs a bad permutation by simulatiagabiporithm on an initially unknown input.
During the simulation, we maintain a bdx, in 7 for each poinp. If B, is a leaf, the algorithm knows the
exact location op inside B,,. But if B, is an internal node, the only information the algorithm kiscabout
p is thatp lies insideB,. In other wordsp can be assigned any point I8}, without affecting the outcome of
the previous comparisons made.

For each boxB in 7, let n(B) be the number of points with B,, contained inB. We maintain the
invariant thatw(B) < |S N B|. If n(B) = |S N B|, we say thatB is full. WheneverB, first becomes a leaf,
we fix p by assigning it to an arbitrary point ifi N B, that has previously not been assigned. The invariant
ensures that such an assignment can always be made.

When the simulation encounters a comparison, say, aftbeordinates, between two poinisandq, we
do the following:

1. If B, (resp.B,) is at even depth, we res&, (resp.,) to one of its children arbitrarily. Now we may
assume thabB, and B, are both at odd depths (if they are not leaves).

W.l.0.g., suppose that the mediarcoordinate ofB,, is less than the mediar-coordinate of5,. We
resetB,, to the left child B}, of B, and B, to the right childB; of B,. Now, the knowledge that and

q liein BI’J andB{I allows us to deduce thathas a smaller:-coordinate thary, so we can resolve the
comparison and continue the simulation.

2. An exceptional case occursh, is full (or similarly By is full). Here, we reseB,, instead to the sibling
By of B,,. The invariant is maintained, sin¢6 N B, | > n(B,) > n(B,) +n(B,) + 1 implies thatB,,
and B, cannot both be full. The comparison is not necessarily vesbyet, so we go back to step 1.

The above description ignores the case wigns a leaf (or similarly5, is a leaf). This case can be treated
in the same way, except that in step 1, sipdeas been fixed, we compare the actualoordinate ofp to
the medianz-coordinate of3,, and reset only3,. (If both B, and B, are leaves, the comparison is already
resolved.)

Let T be the number of comparisons made. [ebe the sum of the depth @, over all pointsp € S.
We will bound D in terms ofT". Each time we reset a box to one of its children in step 1 dp icrements;
we say that amrdinary (resp.exceptiongl increment occurs at the parent box if this is done in stegedp(r
step 2). Each comparison generates aniyt) ordinary increments. To take exceptional increments into
account, we use a little amortization argument: At each Bar 7, the number of ordinary increments has
to reach at least|S N B|/2] first, before exceptional increments can occur, and the reurabexceptional
increments is at most.S N B|/2]. Thus, the total number of exceptional increments is asgtigatly at most
the total number of ordinary increments, whictQ$T'). It follows thatD = O(T), i.e.,T = Q(D).

After the end of the simulation, we can do the following posgessing: whenever there is an internal
nodeB,, we resetB,, to one of its non-full children arbitrarily, and repeat. Asesult, every, becomes a
leaf, and all the input points have been assigned to poings ahd no two input points assigned are the same
value, i.e., the input is fixed to a permutationsf

We claim that the postprocessing is actually unnecessarygveryB,, is already a leaf by the end of the
simulation. If not,53,, contains at least two points and is not completely undenibat staircase of. We can
either move a nonmaximal point upward or a maximal point deand inside3, and obtain a different input
that is consistent with the comparisons made but has aeiiffeset of maximal points. The algorithm would
be incorrect on this input: a contradiction.



Thus, at the end of the simulation, eaBp has deptl® (log(n/|S N Byl)). It follows that

T = QD) = Q (Z \SﬂB|log(n/\SﬂB|)) = QnH(Tkgred) = QnH(S)).

leaf B O

Remark 2.5 The above proof is inspired by an adversary argument by Cha&hfpr a 1-d problem (the
original proof maintains a dyadic interval for each inpuintpwhile the new proof maintains a box from a
hierarchical subdivision). The proof still holds for weakersions of the problem, e.g., where we can report
the maxima in any order, or we just want the number of maxinaéthts (or the parity of the number). The
lower-bound proof easily extends to any fixed dimension ardle easily modified to allow comparisons of
different coordinates of any two points= (1, . ..,z4) andg = (1, ..., z), e.g., testing whether; < z,

or evenx; < :c; + a for any constant. (For a still wider class of test functions, see the nextisagt

3 Convex Hull

We now turn to our main result on 2-d and 3-d convex hull. Ifiseé to consider the problem of computing
the upper hull of an input point sétin R (d € {2, 3}), since the lower hull can be computed by running the
upper hull algorithm on a reflection ¢f.

We work with the class4 of algorithms in amultilinear decision treenodel where we can access the
input points only through tests of the forifi{pi,...,p.) > 0 for a multilinear functionf, over a constant
number of input point®4, ..., p.. We recall the following standard definition:

Definition 3.1 A function f : (R%)¢ — R? is multilinear if the restriction of f is a linear func-
tion from R? to R? when anyc — 1 of the ¢ arguments are fixed. Equivalently; is multilinear if

fl(x11y. . 214)y - - oy (Te1, - - -, Zeq)) IS @ Multivariate polynomial function in which each monohtias the
formax; 5, - - 4,5, Whereiy, ..., i, are all distinct (i.e., we cannot multiply coordinates frtme same point).

Most of the 2-d and 3-d convex hull algorithms we know of fisthiamework. For example, it supports
the standard determinant test (for deciding whegheis above the line throughs, ps, or the plane through
D2, P3, P4), Since the determinant is a multilinear function. For &eotexample, in 2-d we can compare the
slope of the line througlp,, po and the slope of the line through, p4 by testing the sign of the function
(y2 — y1)(x4 — x3) — (22 — 21)(y4 — y3), Which is clearly multilinear. (See Appendix A.4, howevig
situations where non-multilinear test functions arise.)

We adopt the following modified definition 6€(S) (as before, it will not matter whether we insist that
the simplicesA\;, below are nonoverlapping):

Definition 3.2 A partition IT of S is respectfulif each subseb), in 11 is either a singleton or can be enclosed
by a simplexA;, whose interior is completely below the upper hull$fDefine(.S) to be the minimum of
H(IT) := 3, (ISk|/n) log(n/|Sk|) over all respectful partitionsl of S.

In 2-d, anO(n(H(S) + 1)) upper bound can be established by using a version of Kiriggeand Seidel’s
(or Chan, Snoeyink, and Yap's) convex hull algorithm. Thalgsis is similar enough to that for 2-d maxima
from Section 2.2 and is thus deferred to Appendix A.1.

3.1 Lower bound

The lower-bound proof for convex hull builds on the proof foaxima from Section 2.2 but is more involved,
because &-d tree construction no longer suffices when addressingntioogonal problems. However, known
tools in computational geometry provide an appropriatdana
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Lemma 3.3 For every set) of n points inR¢ and1 < r < n, we can partitionQ into r subsetg);, ..., Q,
each of siz&(n/r) and findr convex polyhedral cellsy, . .., ~,, each of siz&(polylog ), such that)); is
contained invy;, and each hyperplane intersects at most-! ) cells. Hereg > 0 is a constant that depends
only ond.

Proof: (Option 1) We can use MatouSek’s partition theorem [49],cliprovides the best constant, namely,
e = 1/d. Each celly; is a simplex but the cells may overlap. (Note that our appbcarequires that the
subset sizes are lower-bounded® /), which is guaranteed by MatouSek’s construction.)

(Option 2) Ford = 2 or 3, a more elementary solution follows from the 4-sectionimgesectioning
theorem [36, 58]: for every.-point set@ in R?, there exist 2 lines that divide the plane into 4 regions each
with n /4 points; for everyn-point setQ in R?, there exist 3 planes that divide space into 8 regions eatth wi
n/8 points. Since inR? a line can intersect at most 3 of the 4 regions an@&#na plane can intersect at
most 7 of the 8 regions, a simple recursive application oftti@®rem yields ~ 1 — log, 3 for d = 2 and
e ~ 1 — logg 7 for d = 3. Each resulting cell; may haveO (log r) facets, but the cells do not overlap. [

We need another fact, this time, a straightforward geometoperty about multilinear functions:

Lemma 3.4 If f : (RY)¢ — R is multilinear and has a zero ity x - - - x 7. where eachy; is a convex polytope

in RY, then f has a zerd(py,...,p.) € 71 X --- X 7. such that all but at most one poipt is a polytope’s
vertex.
Proof: Let(p1,...,pc) € 71 X---X~.be azero off. Suppose somg does not lie on an edge of. If we fix

the otherc—1 points, the equatioli = 0 becomes a hyperplane, which intersegtand thus must intersect an
edge ofy;. We can movey; to such an intersection point. Repeating this process, weassume that every
p; lies on an edg@&;v; of ;. Represent the line segment parametrically @s— ¢;)u; + t;v; | 0 < t; < 1}.
Next, suppose that some two poipisandp; are not vertices. If we fix the other— 2 points and restrict

p; andp; to lie onw;v; andw;v; respectively, the equatiofi = 0 becomes a multilinear function in two
parameters;, t; € [0, 1]. The equation has the forat;t; + a't; + a”t; + o’ = 0 and is a hyperbola, which
intersectg0, 12 and must thus intersect the boundany@fi]>. We can move,; andp; to correspond to such
a boundary intersection point. Then oneppindyp; is now a vertex. This process can then repeated. [

We are now ready for the main proof. Again, we focus on the motidivious setting and leave the
random-order setting to Appendix A.3.

Theorem 3.5 OPT(.S) = Q(n(H(S) + 1)) for the upper hull problem in the multilinear decision treeae!|.

Proof: We define gpartition tree7 as follows: Each node stores a paifQ(v),~(v)), whereQ(v) is a
subset ofS enclosed inside a convex polyhedral cglb). For each node, letI'(v) denote the intersection
of v(u) over all ancestors: of v. The root storeg.S,R%). if I'(v) is strictly below the upper hull of, or
if |Q(v)| drops below a constant, thenis a leaf. Otherwise, fix a parameter= b and partitionQ(v) by
Lemma 3.3 to geb subsets)q, ..., Q, and cellsyy, ..., v,. The pairs(Q;,~;) are the children of. Note
that for each node at depthj of the treeT’, |Q(v)| > n/O(b)’. Note also thal'(v) hasO(bj) facets.

Let Ipar-reebe the partition formed by the subsél¢v) at the leaves in 7. Let ﬁpart-treebe a refinement
of this partition obtained as follows: for each leadt depthj, we triangulatd’(v) into (b5)°() simplices and
subpartition@ (v) by placing points of)(v) from the same simplex in the same subseiifv)| drops below
a constant, we subpartitiof (v) into singletons. Note that the subpartitioning@fv) causes the entropy
to decrease by at mo6t((|Q(v)|/n) log(b7)°M) = O((1Q(v)|/n)loglog(n/|Q(v)|)) for a constanb. The
total decrease in entropy is thu$H (Ipart-tree)). SO H (Ilpart-tred = ©(H (Hpart-tred)). Clearly, Ipart-tree iS
respectful.



The adversary constructs a bad input as follows. During itnelation, we maintain a node, in 7 for
each poinp. If v, is a leaf, the algorithm knows the exact locatiorpafsideI’(v,). But if v, is an internal
node, the only information the algorithm knows abpiis thatp lies insidel(v,).

For each node in 7, letn(v) be the number of points with v, in the subtree rooted at We maintain
thatn(v) < |Q(v)|. If n(v) = |Q(v)|, we say thaw is full. Whenw, first becomes a leaf, we fix to an
arbitrary unassigned point i (v,,). The invariant ensures that such an assignment can alwaysthe.

Suppose the simulation encounters a t¢gp1, ..., p.) > 0?”".

1. Consider a-tuple (v, ..., v, ) wherev, is a child ofv,,. We say that the tuple isad if f has a

zero invy(vy, ) x -+ x ¥(v,, ), andgoodotherwise. We count the number of bad tuples: If we fix all
but one pointp;, the restriction off can have a zero in at moét(b!—¢) cells of the formy(vy,), by

Lemma 3.3 and the multi-linearity of. There areD (b~ ! polylog b) choices ofc — 1 vertices of the

cells of the formy(vy, ), . .. ,7(vy,, ). By Lemma 3.4, it follows that the number of bad tuples is astmo
O(b*~ L polylog b - b'=¢) = O(b° ¢ polylog b). The overall number of tuples 8(v°). So, by choosing

b to be a sufficiently large constant, we can guarantee thae sopte(v,,,, ..., v, ) is good. We reset
vp, 10 v;%_ foreachi =1, ..., c. Since the tuple is good, the sign pfs determined and the comparison
is resolved.

2. In the exceptional case when sonjeis full, we reset,, instead to an arbitrary non-full child, and go
back to step 1.

The above description can be easily modified in the case whiee ®f the nodes,, are leaves, i.e., when
some of the pointg; are already fixed (we just have to loweby the number of fixed points).

LetT be the number of tests made. Liete the sum of the depth of, over all pointsp € S. By the same
amortization argument as before (after adjustments oftaab$actors), we can lower-bourfdby (D).

After the end of the simulation, we can do the following postessing: whenever there is an internal
nodew,, we reset, to one of its non-full children arbitrarily, and repeat. $hvay, the input is completely
fixed to a permutation of. We claim that the postprocessing is unnecessary, i.ay eyas already a leaf at
the end of the simulation. If not, we can either move a intep@int upward or an extreme point downward
insideI'(v,) and change the upper hull. Then the algorithm would be iecbron the modified input: a
contradiction.

Thus, at the end of the simulation, each nagehas deptho(log(n/|Q(vy)|)). It follows thatT =

QD) = QX jeato |Qv)[log(n/1Q(v)])) = Q(nH(Tparttred) = L(nH(Mpartwee)) = 2nH(S)). O

3.2 Upper bound in 3-d

The preceding lower-bound proof holds in any fixed dimensiée now give a 3-d upper-hull algorithm that
matches the bound. Unlike in 2-d, it is unclear if any of thewn algorithms can be modified for this purpose.
For example, it is already nontrivial how to get @inH (Ilyert)) upper bound for the specific partitidiyert
where points underneath the same upper-hull facet arepiacie same subset. Fortunately, informed by
our lower-bound proof, we discover a solution based on fiamtirees.

We need the following subroutine by Chan [15, 16], which isaoted by applying a simple grouping
trick in conjunction with standard data structures (see fl4]).

Lemma 3.6 We can answer a sequencerdinear programming queries over a given setohalfspaces in
R? in total timeO(nlogr + rlogn).

Our new upper hull algorithm is as follows:
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1. Q< S

2. forj=0,1,...,[log(dlogn)] do

3 partition@ by Lemma 3.3 to get; := 2%’ subsets), ... ,Qr; and cellsyy, ...,y
4. for eachi do

5 if ; is strictly below the upper hull of) thenpruneall points inQ; from Q

6. return the upper hull of the remaining gt

Line 3 takesO(|Q|logr;) time by known algorithms for Lemma 3.3 (either option) [49The test in
line 5 reduces to deciding whether each vertexypfs strictly below the upper hull of). This can be
done (without knowing the upper hull beforehand) by ansmged 3-d linear programming query in the dual.
Using Lemma 3.6, we can perform lines 4—6 collectively ingio| Q| log r; 4 r; polylog r; log n); note that
Zj rj= O(n?), and so the second term is negligible by choosing a conétant. Line 6 is done by running
anyO(|Q|log |Q|)-time algorithm; note thabg || = O(logr;) in the last iteration.

Theorem 3.7 The above 3-d upper hull algorithm runs@(n(H(S) + 1)) time.

Proof: Letn; be the size of) just after iterationj. The total running time is asymptotically bounded by
>_jnj—1logr;.

Let IT be any respectful partition of. Look at a subsef. in II. Let A, be a simplex enclosing},
whose interior lies below the upper hull 6t Fix an iteration;. Consider the subseg, ..., Q,, and cells
71, - -+, atthis iteration. If a celly; is competely inside\, then all points inside; are pruned. At most

O(r;‘g) cells v; intersect the boundary ak;. Hence, the number of points i}, that remain inQ after

iteration j is at mostmin {|Sk|, O(rjlff . n/rj-)} = min {\Sk\, O(n/rj-)}. Since theSy’s cover the entire
point set, with a double summation we have

anlogTjH < ZZmin{O(Qj”Sk"n/QQ(EQj)}
J kg

= 0 (Z |Sk|(log (n/|Sk) + 1)) = O(n(H(I) + 1)). -
k

Remark 3.8 Variants of the algorithm are possible. For example, irgstefarecomputing the partition in
line 3 at each iteration from scratch, a better option is titddhine partitions hierarchically as a tree. Nodes
are pruned as the tree is generated level by level.

One minor technicality is that the above description of tlgod@thm does not discuss the low-level test
functions involved. In Appendix A.4, we explain how a modifion of the algorithm can indeed be imple-
mented in the multilinear model.

The same approach works for 3-d maxima as well. In the comgannodel, the partitions can be con-
structed by &-d tree construction, and linear programming queries gulaoed by queries to test whether a
point lies underneath the staircase, which can be done véaalog of Lemma 3.6.

4 Discussion

Although we have argued for the order-oblivious form of amgte optimality, we are not denigrating adaptive
algorithms that exploit the order of the input. Indeed, fome geometric applications, the input order may
exhibit some sort of locality of reference which can speedigporithms. There are various parameters that
one can define to address this issue, but it is unclear howfeedrtheory of instance optimality can be
developed for order-dependent algorithms for, say, theeohull problem.
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We do not claim that the algorithms described here are theibgwactice, because of possibly larger
constant factors (especially those that use MatouSektgtipartrees), although some variations of the ideas
might actually be useful. In some sense, our results cantbepieted as a theoretical explanation for why
heuristics based on bounding boxes and BSP trees perfornelsgevg., see [5] on experimental results for
the red/blue segment intersection problem).

Note that specializations of our techniques to 1-d also eailyelead to instance-optimal results for the
multiset-sorting problem and the problem of computing thierisection of two (unsorted) sets. Adaptive
algorithms for similar 1-d problems (e.qg., [51]) were sedlin settings different from ours.

Not all standard geometric problems admit nontrivial inseoptimal results in the order-oblivious set-
ting. For example, computing the Voronoi diagramngboints or the trapezoidal decompositionroélisjoint
line segments, both havirg(n) sizes, require$)(n log n) time for every point set by the naive information-
theoretical argument. Computing thé.(-)closest pair for anonochromatigoint set require$2(n logn)
time for every point set by our adversary lower-bound argoine

An open problem is to strengthen our lower bound proofs tafbr a more general class of test functions
beyond multilinear functions, e.qg., arbitrary fixed-degedgebraic functions.

It remains to see how widely applicable the concept of irctamptimality is. To inspire further work,
we mention the following geometric problems for which wereatly are unable to obtain instance-optimal
results: (a) reporting all intersections between a setgjbatit red (nonorthogona) line segments and a set of
disjoint blue line segments in 2-d; (b) computing the or L..-closest pair between a set of red points and a
set of blue points in 2-d; (c) computing the diameter or thdtiwof a 2-d point set; (d) computing the lower
envelope of a set of (perhaps disjoint) line segments in 2-d.

Finally, we should mention that all our current results amcat most logarithmic-factor improvements.
Obtaining some form of instance-optimal results for praidewith w(n logn) worst-case complexity (e.g.,
off-line triangular range searching, 3SUM-hard problems) would be even more fascinating.
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A Appendix 1: Miscellaneous

A.1 Analysis of Kirkpatrick and Seidel’'s 2-d convex hull algorithm

In this subsection, we prove that a version of Kirkpatricld éeidel’'s output-sensitive upper hull algo-
rithm [46] runs inO(n(H(S) + 1)) time. The algorithm is described below. Our version adds lanows
pruning step (line 2).

hull(Q):

1. if |Q| = 2then return@

pruneall points from@ strictly below the line through the leftmost and rightmostrt of
divide @ into the left and right halve®, and@,- by the medianc-coordinatep,,,
discoverpointsg, ¢ that define the upper-hull edge’ intersecting the vertical line a,,
pruneall points fromQ, and@, that are strictly underneath the line segmerit

return the concatenation of hig},) and hul(Q,)

o0k wWN

Line 4 can be done iW(n) time (without knowing the upper hull beforehand) by applye 2-d linear
programming algorithm in the dual [52]. We call hfl) to start. It is straightforward to show that the
algorithm, even without line 2, runs in tim@(n log i), or O(n(H(Ilyer) + 1)) for the specific partitiodIyer
of S obtained by placing points underneath the same upper-tigé & the same subset, as was done by Sen
and Gupta [53]. To upper-bound the running time®{n (H (I1) + 1)) for an arbitrary respectful partitiofl
of S, we modify the proof in Theorem 2.3:

Theorem A.1 The above 2-d upper hull algorithm runs@(n(#(S) + 1)) time.

Proof: Like before, letX; denote the sublist of all hull vertices discovered during finst j levels of the
recursion, in left-to-right order. Observe that (i) theande at mosfn /27| points of S with z-coordinates
between any two consecutive verticesXn, and (ii) all points that are strictly below the upper hull 5§
have been pruned during the figstevels of the recursion.

Let IT be any respectful partition of. Look at a subsef, in II. Let A, be a triangle enclosing},
whose interior lies below the upper hull 6t Fix a levelj. If ¢; andg;1 are two consecutive vertices in
X such that;g; {1 does not intersect the boundary &f; (i.e., is aboveA), then all points inA;, with -
coordinates betweet), g1 would have been pruned during the fijdevels by (ii). Since onlyO(1) edges
Giqi+1 of the upper hull ofX; can intersect the boundary of;, the number of points ity; that survive level
j is at mostmin {|Sx|,O0(n/27)} by (i). As before, we can then bound the running time asynigaty by

>y 2% min {[Sk],n/27} = O(n(H(IT) + 1)). O

Remark A.2 The same result holds for Chan, Snoeyink, and Yap’s simglifietput-sensitive algorithm,
which avoids calling a 2-d linear programming algorithmn tact, Chanret al’s paper explicitly adds the
pruning step in their description, inspired by quickhull)e only difference in the above analysis is (i): now,
there can be at mos$t3/4)’n] points of S with z-coordinates between any two consecutive verticesin

A.2 Alternative proof for 2-d maxima

In this subsection, we describe an alternative proof obims¢ optimality for the 2-d maxima problem. Here,
we work with a seemingly different definition of difficulty(S), as given below. This definition appears
simpler in the sense that we do not need to take the minimumadivgartitions but measure the contribution
of each point directly. Of course;(.S) will turn out to be asymptotically equivalent td(S), as a byproduct
of our analyses. Note that this definition does not seem gépaile to 3-d maxima or other problems.

15



Definition A.3 Given a point sef, let ¢, ..., g, denote the maximal points ¢f from left to right. Given
a pointp € S, letg;, ..., q, be all the maximal points that dominagte Define F'(p) to be the subset of all
points inS in the slab(g;—1.x, gs11.2) X R, where we use.x andp.y to denote ther- andy-coordinates of

p. DefineF(S) = glog(n/|F(p)]).
The upper-bound proof is similar to our earlier proof:
Theorem A.4 The 2-d maxima algorithm from Section 2.1 run€i(F(S)) time.

Proof: We proceed as in the proof of Theorem 2.3, but a simpler argtimeplaces the second paragraph:
Fix a pointp € S. Letg;, ..., ¢ be all the maximal points that dominateFix a levelj. If |F(p)| > [n/27],

then (i) implies that some maximal point frofm;, . . . , g¢} must been discovered, and (ii) implies thadoes
not survive levelj. Thus,p can survive only folO(log(n/|F(p)|)) levels. We can bound the running time by
O, nj) = O, log(n/[F(p)]))- O

For the lower-bound side, we first consider a slightly stemgroblem which we calinaxima with wit-
nessesgiven a point sefb, report all maximal points in left-to-right order, and faa@h nonmaximal poiry
in .S, report a maximal point (aitnes$ that dominatep.

Theorem A.5 OPT(S) = Q(F(S)) for the 2-d “maxima with witness” problem in the comparisondel.

Proof: The proof is a counting argument, which we express in ternenobding schemes (see [33, 40] for
more sophisticated examples of counting arguments basedamding/decoding). We will describe a way to
encode an arbitrary permutatienof .S, so that the length of the encoding can be upper-boundednstef
the running time of the given algorithm on inputo. Since the worst-case encoding length must be at least
log(n!), the running time must be large for some permutatiorfAll logarithms are in base 2.)

To describe the encoding scheme, we imagine that the petionuta is initially unknown, and as we
proceed, we record bits of information abeuso that at the endy can be uniquely determined from these
bits. In the description below, we distinguish betweenrgrut point as represented its index/position in the
input permutations (its actual location is not necessarily known), andaatual pointin S, as represented
by its coordinates (its position in is not necessarily known). At any moment, if we know whichutpoint
corresponds to an actual pojmtwe say (naturally) that is known

We first simulate the algorithm ot and record the outcome of the comparisons made; this rexqatre
mostT4(S) bits. Let M be the list of maximal input points returned. For each inpitpg;, let W (g;) be
the list of all nonmaximal input points that hageas witness. For each maximal actual point, we record its
position inM, using at mosk [log i bits total. Now all maximal points are known.

We process the nonmaximal actual pointsSofrom left to right, and make them known as follows. To
process an actual poinpt, let g;, ..., q; be all the maximal points that dominage which are all known.
Observe thap must be il (g;) U---UW (g¢;). Let L be all the points that are left @f which are all known.
We record the position gf in the listWW (g;)U- - -UW (g;)—L. This requireglog(|W (g;) U --- U W (q;) — L|]
bits. Observe thall’(¢;) U - - - U W(g;) is contained in—oo, g;.x) x R. So,W(¢g;)U---UW(q;) — Lis
contained in the subséf(p) defined above—a lucky coincidence. Thus, the number of bgsired is at
most|log |F'(p)|]. Now p is known and we can continue the process.

The encoding has total length at most

T4(S)+ hlogh + Zlog |F(p)| + O(n) < Ta(S)+ hlogh+ nlogn — F(S)+ O(n).
P

Hencelog(n!) < Ta(S) + hlogh + nlogn — F(S) + O(n), yieldingT4(S) = Q(F(S) —n — hlogh).
Combined with the trivial lower bouné(n) and the naive information-theoretic lower boufid (S) =
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Q(hlogh) (as the problem definition requires the output to be in soaietr), this implies thaf’s(S) =
Q(F(9)). O

Combining the above theorem with the following observatygglds a complete proof of th@(F(.5))
lower bound:

Observation A.6 Any algorithm for the 2-d maxima problem in the comparisordeican be made to solve
the 2-d “maxima with witnesses” problem without any furtisemparisons on every input.

Proof: Consider the partial ordek, over S formed by the outcomes of the.comparisons made by the
maxima algorithm. Define the partial ordey, similarly. Fix a nonmaximal poinp. We show that there
is a pointg € S such thatp <, ¢ andp <, ¢. If not, we can modify ther- andy-coordinates, without
violating any of the comparisons made, so that all pajntsth p £, ¢ now havep.z > ¢.x, and all points;
with p £, ¢ now havep.y > ¢.y. Then in the modified point set, would now be a maximal point, and the
algorithm would be incorrect on the modified point set: a cadfittion.

For every nonmaximal point, we can thus find a witness poigthat dominatep, without making any
further comparisons. One issue remains: the witness poayt mot be maximal. If not, we can change
p’s witness to the witness of the witness, and repeat. At tlie ah withesses are maximal, and no new
comparisons are made. O

Remark A.7 The proof still works for the weaker problem where the altori can report the maxima in
arbitrary order, since by a similar observation, any sugoiihm already knows the-order of the maxima
without making any further comparisons.

This proof does not appear to work for problems besides 2ximaa One obvious issue is that Obser-
vation A.6 only applies to comparison-based algorithmsni@northogonal problems. Even more critically,
however, the proof of Theorem A.5 relies on a coincidenceithspecial to 2-d maxima.

Curiously, this lower-bound proof holds even for nondeteistic algorithms, i.e., algorithms can make
guesses but must verify that the answer is correct; here swgresthat each bit guessed costs unit time. In the
proof of Theorem A.5, we just record the guesses in the engodihe previous proofs of instance optimality
by Faginet al. [39] and Demainest al. [34] all hold in the nondeterministic settings. Perhaps 8trength
of the proof prevents its applicability to other geometriolems, whereas our adversary-based proofs more
powerfully exploits the deterministic nature of the algons.

A.3 The random-order setting

In this subsection, we describe how the preceding lowenbtqaroofs in the order-oblivious setting can be
modified in the random-order setting.

First, the proof in Section A.2 can easily be made to work i@ thndom-order setting, since in any
encoding scheme, only a very small (at mpst™) fraction of then! permutations can have encoding length
less tharlog(n!) — con for a constant.

Modifying the proof of Theorem 2.4 requires more effort. \Weed a technical lemma first:

Lemma A.8 Suppose we place random elements independentlytihins, where each element is placed in
the k-th bin with probabilityn;. /n. Then the probability that the-th bin contains exactly;, elements for all
k=1,...,tisatleastn=9®,

Proof: The probability is—— ()™ ... (2t)" 'which by Stirling’s formula is

O(v/n)(n/e)"/e ni\m gy 1
O(ymr)(m/e)/e - O( /) (me/e) e/ ) ()" 2 e(vn)" -
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The new lower-bound proof is loosely inspired by the randeadi“bit-revealing” argument by Chan [18]:

Theorem A.9 OPT®Y(S) = Q(n(H(S) + 1)) for the 2-d maxima problem in the comparison model.

Proof: Fix a sufficiently small constart > 0. Let7 be as in the proof of Theorem 2.4, except that we keep
only the first| 0 log n | levels of the tree, i.e., when a node reaches déptbg |, it is made a leaf.

Let Ixg-ree be the partition ofS formed by the leaf boxes ifi. Let ﬁkd-tree be a refinement affly.iree iN
which each subset corresponding to a box of déptleg | is further subpartitioned into singletons. Note
that each such subset has sén’) and contributeg@((né /n)logn) to both the entropy oflig.tree and
Ikg-tree Thus,H (Ilkg-tree) = O (H (Ilkg-tree) ). Clearly, ITxg.-tree iS respectful.

The adversary proceeds differently. We do not explicitlyimtedn the invariant that no bo® is full.
Whenever somé,, first becomes a leaf, we assigat random among the points N B, that has previously
not been assigned. If all points #1N B, have in fact been assigned, we say fadtire occurs.

When the simulation encounters a comparison, say, aftbeordinates, between two poinisandq, we
do the following:

e We resetB,, to one of its children at random, where each cHilflis chosen withS N B,|/|S N B,
(which is aboutl /2 for a k-d tree construction). We res#}, similarly to one of its children at random.
If the new B, and B, are now vertically separated, then the comparison is ajrezgblved. Otherwise,
we repeat.

Observe that in the above, if, and B, are both at odd depths and w.l.0.g. the mediatoordinate of53,
is less than the mediarrcoordinate of33,, then the comparison is resolved when we choose the lett ohil
B, and the right child ofB,, and this occurs with probability at least a positive constaboutl/4). Thus,
with at least a positive constant probability, the compariss resolved within 2 iterations. The number of
iterations per comparison is thus upper-bounded by a gemaléyt distributed random variable with mean
o(1).

Let T be the number of comparisons made. [ebe the sum of the depth @, over all pointsp € S at
the end of the simulation. Clearlip is upper-bounded by the total number of iterations perfatmich is at
most a sum of’ independent geometrically distributed random variabligls meanO(1). Let (x) be the event
thatD < ¢,T for a sufficiently large constamy. By the Chernoff boundpr[(x)] > 1—2"%1) > 1 —2-9n),

After the end of the simulation, we can do the following postessing: whenever there is an internal
nodeB,, we resetB, to one of its children at random as above. As a result, exgrpecomes a leaf, and the
input is fixed to a permutation &, so long as failure does not occur.

By the same argument as before, we see that elsgrig already a leaf by the end of the simulation, or
failure occurs during simulation or postprocessing. Lgtbe the event that failure does not occur. Thus, if
() and(f) are both true, then

T = QD) = Q (Z |SmB|1og(n/|SmB|)> = Q(nH(Uygaed)) = QnH(Higaes) = QnH(S)).
leaf B

To analyzePr[(t)], consider the leaf bo¥3, that a pointp ends up with after the simulation and post-
processing (regardless of whether failure has occurredis i a random variable, which equals a fixed
leaf box B with probability |S N B|/n. Moreover, all these random variables are independenturganc-
curs iff for some leaf box3, the number ofB,’s that equalB is different from|S N B|. By Lemma A.8,

Pr[(1)] > n=9(®"), since there are at mosk(n®) leaves in7. It follows that

r * —Q(n)
Prinot (+) | (1)] < - E"(‘Tg b 2005 = oo,
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Finally, observe thaPr[(f) A the input equal®] is the same for all fixed permutatiomsof S (namely

he probability i 0B\ 1y i oth d ditioned he input i d
the probability IS [ic. 5 (T) W)' n other words, conditioned t¢}), the input is a random

permutation ofS, i.e., the adversary does not act adversarily at all! lofe8 thatl” = Q(nH(.S)) with high
probability for a random permutation &f. In particular, E[T] = Q(nH(S)) for a random permutation &f.
O

Applying the same ideas to the proof of Theorem 3.5 shows@alY9(S) = Q(n(H(S) + 1)) for the
2-d upper hull problem in the multilinear decision tree mlode

A.4 On the multilinear model

Many commonly encountered test functions in geometricrélyos are multilinear. For example, in 3-d, the
predicateaBOVE(p1, - . . , p4) Which returns true iffp; is above the plane through, ps, p4, reduces to testing
signs of multilinear functions.

More generally, say that a functiofi : (R%)¢ — R< is quasi-multilinearif f(py,...,p.) =
(filp1y--ype)/9(D1s- - ype)s -y faP1y -y pe)/9(P1,--.,pc)) for some  multilinear functions
fisooos farg o (RHe — R. For example, in 3-d, the functioRLANE(p1,...,ps) Which returns the
dual of the plane through;,...,ps, or the functionINTERSECT(py,...,ps) Which returns the inter-
section of the dual planes ofj,...,ps, are quasi-multilinear. We can get more quasi-multilinead
multilinear functions by composition: e.g., ifi,...,fs : (R¥)* — R3 are quasi-multilinear, then

INTERSECT(fl(plu cee 7p4)7 f2(p57 cee 7p8)7 s 7f4(p137 cee 7p16)) is quaSi_mu“:i”near inp17 ..., D16, by
expanding all the determinants. More elaborately, a petdisuch as

ABOVE(p17, P18, P19, INTERSECT(PLANE(p1, . .., p4), PLANE(D5, ..., P8), ..., PLANE(P13,...,P16)))

also reduces to multilinear tests. However, we may run intdblems if a point occurs more than once, e.g.,

ABOVE(p17>p187p17 INTERSECT(PLANE(pla s 7p4)> PLANE(p5> cee >p8)> ey PLANE(pl?)a s 7p16)))7

since expansion of the determinants may yield monomial$i@frong type. In most 2-d algorithms, this
kind of tests does not arise. Unfortunately, they can oocadlly happen in our 3-d upper hull algorithm in
Section 3.2. We describe some modifications to the algoritfahcan avoid these problematic tests.

First, for the partition construction, it would be easier diboose the second option in the proof of
Lemma 3.3. By perturbing the dividing planes, one can sh@nettistence of 3 planes each passing through
3 input points, where the 9 points are distinct, so that eddheoresulting 8 regions contains/8 + O(1)
points. A brute-force algorithm can find the 3 planes in polyial time. We can reduce the construction time
by using the standard techniqueasépproximationg47] (at the expense of a small change in the constant).
It can be checked that known constructions deapproximations fits in the multilinear model (it suffices to
check the implementation of the “subsystem oracle”). Assaltewe can ensure that the cells are all defined
by planes that pass through 3 input points, where no two plahare a common defining point. A vertex
of a cell is an intersection of 3 such planes and is defined ley af® distinct input points, denotaxtF(v).

A problem occurs in testing whether a vertexf a cell~; lies below the upper hull, specifically, when
we try to compares against a feature that share a common defining point. Foreason, we weaken the
test in line 5: we prune only when each vertexf +; lies strictly below the upper hull of) — DEF(v). It
can be checked that some version of Lemma 3.6 can supfgeitsuch queries in the multilinear model, in
O(nlogr + rn'=®) time for somen > 0.

Since the pruning condition is weaker, the analysis need® mffort. We assume that the partition in
line 3 is generated hierarchically in the following way: fivee find a partition of) by Lemma 3.3 with, /75
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subsets)); and cellsy;; then for each subsep;, we find a partition ofQ); again by Lemma 3.3 with /r;
subsubset§); and cellsy;.

In the second paragraph of the proof of Theorem 3.7, we ptbdiferently. Suppose a poiptlies in the
subsety;, and the subsubsé€};. Observe that if the corresponding ceffsand~; are both completely inside
Ay, then all points insidey; are pruned. This is because for each verieX the celly;, the defining points
DEF(v) are contained i), C ~, and so cannot appear on the upper hulippthe vertexv lies strictly below
the upper hull of, which coincides with the upper hull 6} — DEF(v).

At most O(,/7;'~¢) cells v, intersect the boundary af,. At mostO(,/7; - /') cells v; inter-
sect the boundary o\;. Hence, the number of points ifl. that remain inQ) after iteration; is at most

min {|Sk|, O( /75" - n/\/i5 4+ J/Tj - /T -n/rj)} = min{|Sk|,O(n/r§/2)}. The rest of the proof is
then the same, after readjusting

B Appendix 2: Other Applications

We can apply our technigues to obtain instance-optimalréibgos for a number of geometric problems in the
order-oblivious and random-order setting:

1. Off-line halfspace range reporting in 2-d and 3-d: givesesS of n points and halfspaces, report the
subset of points inside each halfspace. Algorithms Wit log n + K) running time [1, 17, 24] are
known for total output sizé( (the 3-d algorithm is randomized).

2. Off-line dominance reporting in 2-d and 3-d: given a Seif red/blue points, report the subset of red
points dominated by each blue point. The problem has sirodarplexity as in item 1.

3. Orthogonal segment intersection in 2-d: given a$ef n horizontal/vertical line segments, report all
intersections between the horizontal and vertical segs@ntcount the number of such intersections.
The problem is known to have worst-case compleitin logn + K) in the reporting version, for
output sizeK, and complexityd(n log n) in the counting version [31, 52].

4. Bichromatic L,-close pairs in 2-d: given a sét of n red/blue points in 2-d, report all paif®, q)
wherep is red,q is blue, andv andq have L.-distance at most 1, or count the number of such pairs.
Standard techniques in computational geometry [31, 524 dgorithms with the same complexity as
in item 3.

5. Off-line orthogonal range searching in 2-d: given asef n points and axis-aligned rectangles, report
the subset of points inside each rectangle, or count the auaiflsuch points inside each rectangle. The
worst-case complexity is the same as in item 3.

6. Off-line point location in 2-d: given a sétof n points and a planar connected polygonal subdivision of
sizeO(n), report the face in the subdivision containing each poitan8ard data structures [31, 52, 54]
imply a worst-case running time &¥(n log n).

For each of the above problems, it is not difficult to see tlatain input sets are indeed “easier” than
others, e.g., if the horizontal segments and the vertiggingmts respectively lie inside two bounding boxes
that are disjoint, then the orthogonal segment intersegifoblem can be solved if(n) time.

Note that although some of the above problems may be re@udilathers in terms of worst-case complex-
ity, the reductions may not make sense in the instance-aptinsetting. For example, an instance-optimal
algorithm for a problem does not imply an instance-optinigbathm for a restriction of the problem in a
subdomain, because in the latter case, we are competingsagégorithms that have to be correct only for
input from this subdomain.
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B.1 Reporting problems

Many of the problems listed above belong to the following coon framework. LetR ¢ R? x R be a
relation for some constant dimensiodsindd’. We say that a red point € R? and a blue poiny € R¥
interactif (p,q) € R. We consider theeporting problem: given a se$ containing red points iiR? and blue
points inR of total sizen, report all X interacting red/blue pairs of points . Note that by scanning the
output pairs, we can collect the subset of all blue pointsititaract with each red point, i@(K) additional
time.

We say that a red (resp. blue) celis uninteresting taS if every red (resp. blue) point iy interacts with
exactly the same subset of blue (resp. red) pointS.id/e redefing(S) as follows:

Definition B.1 A partition IT of S is respectfulif each subseb, in 11 either is a singleton or is a monochro-
matic subset of points that can be enclosed by a simfileihat is uninteresting t6. Define’H(.5) to be the
minimum of H(IT) := >, (|Sk|/n) log(n/|Sk|) over all respectful partitionsl of S.

It is straightforward to modify the proofs from Section 3.Inhda Section A.3 to show an
OPT(S),OPTY(S) = Q(n(H(S) + 1) + K) lower bound for this problem: We now keep two partition
trees, one for each color. If(v) is uninteresting t&, we makev a leaf. At the end, if some red (resp. blue)
nodew, is not a leaf, we can moveto some point insidé&(v,) and change the answer. (ThgK) term in
the lower bound is obvious, by the way.)

For the upper-bound side, we need three requirements d&éwmtsome constani > 0:

(A) There is a worst-case algorithm for the reporting problihat runs inO(nlogn + K) time.

(B) There is a data structure for the blue (resp. red) pomtS,iwith O(n log n) preprocessing time, such
that we can report alt blue (resp. red) points interacting with a query red (rege)point inO(n! =+
k) time.

(C) There is a data structure for the blue (resp. red) pomts, iwith O(n log n) preprocessing time, such
that we can test whether a query red (resp. blue) simpliexuninteresting te& in O(n!=%) time.

Under these assumptions, it is straightforward to modife #@igorithm from Section A.1 to an
O(n(H(S) + 1) + K)-time algorithm: In line 3, we partition the red points @ffirst. In line 5, if some
red cell~; is uninteresting ta), then we find the subsét of blue points interacting with an arbitrary red
point in +;, output all pairs between the red points@f and the blue points o, and prune the red points
of Q; from Q. The test requires querying the data structure in (C) (aftangulating~;); the subset/ can
be found by querying the data structure in (B). The groupeghhique by Chan [16] yields an analog of
Lemma 3.6 with running timé& (nlogr + rn!=%) for r queries of type (C), and(nlogr + rn!~* + k)
for r queries of type (B) with total output size (since the problems in (B) and (C) are “decomposable”).
Before moving to the next iteration, we redo lines 3-5, thigetpartitioning the blue points @ and pruning
red points. At the end, in line 6, we switch to the algorithm{A). The same analysis then goes through, by
choosing a constant< «.

Note that for orthogonal problems in the comparison model,can make all the cells (all thés and
A’s) axis-aligned boxes, by reverting tdcad tree construction.

We now check that the requirements are satisfied for soméfigpeporting problems.

¢ Off-line halfspace range reporting in 2-d and 3-d: It suflite consider lower halfspaces in the input.
Color the given points red, and map the given lower halfspdoeblue points by duality. The data
structure problem in (B) is just halfspace range reportifige data structure problem in (C) is equivalent
to testing whether a query simplex intersects a given seypétplanes (lines in 2-d or planes in 3-d);
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this reduces to ray shooting (or segment emptiness) quieriashyperplane arrangement, for which
there are known results [3, 49]. Requirement (A) is satisfire@-d and 3-d (the 3-d algorithm is
randomized).

¢ Off-line dominance reporting in 2-d and 3-d: The data stitestproblem in (B) is just dominance
reporting. The data structure problem in (C) is equivalertesting whether all the corners of a query
box are dominated by the same number of points from a givent geit. This reduces to orthogonal
range counting [2, 31, 52].

e Orthogonal segment intersection in 2-d: Map each each dwtat line segmentx’, y) (2", y) to a red
point (¢, z",y) € R3 and each vertical line segmefit, v')(z, y”) to a blue point(z,y’,y") € R3.
These mappings t&? are bijective. The data structure problem in (B) corresgotudreporting the
vertical segments from a given set that intersect a quergdimial segment. The data structure problem
in (C) is more complicated: for a query bex= [1, 2] X [€3,&4] X [€5,&6], we want to decide whether
there exists a horizontal segmént, y) (", y) with (2/, 2", y) € ~ that intersects a given set of vertical
segments. This is equivalent to testing whether a queramgtg min{&;, &3}, max{&2, £4}] X [&5, &6)
intersects a given set of vertical segments. Both datatsteiproblems reduce to orthogonal intersec-
tion searching (which in turn reduces to orthogonal rangecteng by lifting to a higher dimension,
and thus admits data structures wilin log n) preprocessing time ard(n°) query time). Clearly, the
resulting algorithm works in the comparison model.

e BichromaticL..-close pairs in 2-d: The problem in (B) corresponds to rapgrall points of a given
point set that are inside a query square of side length 2. Tdlg@em in (C) corresponds to deciding,
for a query boxy = [£1,&2] % [€3,&4], Whether[¢; — 1, & + 1] x [§3 — 1, &4 + 1] contains a point from
a given set. Both data structure problems reduce to orttadlgange searching.

Note that here the resulting algorithm requires slightlyrengeneral tests of the form mentioned in
Remark 2.5, which are allowed in the lower-bound proof.

e Off-line orthogonal range reporting in 2-d: Color the givpaints red, and map each rectangle with
corners(zy, y1), (z1,y2), (x2,y1), (x2,y2) to @ blue point(z1, z2, y1,y2) € R*. The mapping tR* is
bijective. The blue data structure problem in (B) corresjsto reporting all points from a given set
that are inside a query rectangle. The red data structuriglgoroin (B) corresponds to reporting all
rectangles from a given set that contain a query point.

The red data structure problem in (C) corresponds to deagidifor a query box
o= [&L,&] x [€3,84] x [&5.&) < [€7,&s], whether all rectangles with corners
(x1,11), (21,92), (x2,11), (x2,y2), (x1,22,9y1,y2) € -, contain the same number of points
from a given set. This is equivalent to testing whether thetamgle [min{¢;, {3}, max{&2, &4} %
min{&s, &7}, max{&s, &g }] contains the same number of points from a given set as thanglet

[max{{1, &3}, min{&e, £4}] x [max{&s, &7}, min{&e, £s}.

The blue data structure problem in (C) corresponds to degjdor a query pointy = [£1, &) X [€3, &4,
whethery intersects any rectangle from a given set.

All these data structure problems reduce to orthogonalaémigrsection searching.

B.2 Counting problems

We can also consider counting problems where we want thertataber of interacting red/blue pairs. We
just need to change requirement (A) to the existence of atoa@ualgorithm that runs i (n log n) time, and
requirement (B) to the existence of a similar counting datacture without theD(x)-term penalty. These
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requirements are satisfied by orthogonal segment intéosecbunting, bichromatid..-close pairs, and off-
line orthogonal range counting. The same lower- and uppant proofs yield® (n(H(S) + 1)).

If we want individual counts, i.e., the number of red poirtattinteract with each blue point, we need a
further assumption—that the data structure in (B) can dpenghe semigroup model [2]. (This assumption is
true for the specific problems mentioned in the precedinggraph.) This way, we can report all interacting
red/blue pairs as a disjoint union of bicliquBsx @; with total sizesy ", (| P;|+|Q;|) bounded byO (n(H(S)+
1)), without theO(K')-term penalty. We can keep a counter for each blue point, rangh each biclique,
and add the number of red points in the biclique to the couniterach blue point in the biclique, in total
additional timeO(>_, (|| + |Qs])), which is absorbed in the overall cost. We assume that theritiign
in requirement (A) can produce individual counts but doelsnmeed to be the semigroup model. At the end
(line 6), we can add the individual counts produced by thg®@athm to the corresponding counters of each
blue point.

B.3 Detection problems?

We can also consider detection problems where we simply toasfecide whether there exists an interacting
red/blue pair. Here, we redefifté(.S) by redefining “uninteresting”: ared (resp. blue) cels now considered
uninteresting taS if no red (resp. blue) point ify interacts with any blue (resp. red) pointsin We change
requirements (A) and (B) to the existence of counting atbars and data structures without ¢ K ) and
O(k) terms.

The proof of the upper boun@(n(H(S)+1)) is the same, but the proof of the lower bounth (H(S) +
1)) only goes through for instances withnep answer: at the end, if some red (resp. blue) noglés not a
leaf, we can move to some point insid&'(v,) and change the answer frono to YES.

YES instances are problematic, but this is not a weakness ofemtmntque but of the model: on every
input setS with a YES answer, OPTYS) is in factO(n). To see this, consider an input sefor which there
exists an interacting paiip, ¢). An algorithm that is “hardwired” with the ranks gfandgq in S with respect
to, say, ther-sorted order ofS can first findp andq from their ranks by linear-time selection, verify that
andgq interact in constant time, and retuvigs if true or run a brute-force algorithm otherwise. Then onrgve
permutation of this particular sét, the algorithm always takes linear time. Many problems adi log n)
worst-case lower bounds even when restrictedes instances, and for such problems, instance optimality in
the order-oblivious setting is therefore not possible dinatances.

B.4 More off-line/on-line querying problems

We now study problems from another framework. et be a mapping from points iR¢ to “answers” in
some space; the answa1 (q) of a pointg € R? may or may not have constant size depending on the context.
We consider the followingff-line queryingproblem: given a se$ of n points inR¢, computeM q) for
everyq € S. In addition, we consider the followingn-line queryingproblem: given a se$ of n points in

R<, build a data structure fof so that we can computé1(q) for any query poiny € R%, while trying to
minimize the average query cost overg@k S.

We redefineH (S) by redefining “uninteresting”: a cel} is now consideredininteresting taM if every
pointq in v has the same answgrl(q).

For the off-line problem, our lower-bound proof give$n(H(S) + 1)) even if M has been preprocessed
in advance. For the on-line problem, the same proof showstimaing a sequence of queries over some
permutation ofS requiresQ2(n(H(S)+1)) time, even if the se$ (not the permutation) has been preprocessed
in advance. So, the average query tim&i{g<(S) + 1). (In contrast, lower bounds for the on-line problem
do not necessarily translate to lower bounds for the of-fpnoblem.)

23



For the upper-bound side, we need two requirements abottr some constant > 0 and some param-
eterm describing the size oM. We assume tha#1 has been preprocessed in some data structure.

(A) Givengq € R?, we can computeéM(q) in O(log m + ) worst-case time for output size
(C) Given a simplexy, we can test whether is uninteresting toV in O(m!~¢) time.

The algorithm this time is actually simpler, because thsrerily one color. Instead of usingQ&j pro-
gression, we use a straightforwarevay recursion, for some fixed parametefthe resulting recursion tree
mimics the treeZ” from the lower-bound proof in Theorem 3.5, on purpose):

off-line-querie$@, I'), where@ C I":

1. if |Q| drops belown/m? then return answers directly

2. partition@ by Lemma 3.3 to geli subset€), ..., Q, and cellsy, ..., v
3 for eachi do

4. if v; N I"is uninteresting to\ then

5 computeM q) for an arbitrary poing € v, N T

6 outputM(q) as the answer for the points i

7 else off-line-querigg);,v; N T")

We call off-line-querie&S, R?) to start. Line 1 take®(|Q|log m + &) time for output size: by switching
to the data structure for (A); note that each pointdnn this case has participated §i(log m) levels of the
recursion, and we can account for the first term by chargird @aint unit cost for every level it participates
in. Line 2 takesD(|Q|) time for a constank by known constructions [49]. Line 4 takéxm !~ polylog m)
time (y; N T hasO( polylogm) vertices), by (C); this cost is negligible by choosing a sigfitly small
constan®y < a, since the recursion tree hé¥m?) nodes. Line 5 take®(log m + &) time for output sizex,
by (A); the O(log m) term is again negligible.

For the on-line problem, we just build a data structure cggomding to the recursion tree generated above,
in addition to the data structure for (A); the extra spac@ ().

Theorem B.2 The above off-line querying algorithm runs@n(n(H(S) + 1) + K) time for total output size
K. For the on-line querying problem, it produces a data stawetthat has average query ca3{H(S)+1+x)
for output sizex.

Proof: Letn; be number of points irt thatsurvivelevel j, i.e., participate in subsetg at level j of the
recursion. The total running time for the off-line problesnaisymptotically bounded sz n;. Similarly, for
the on-line problem, the total query cost over@lt S is asymptotically bounded ij n;.

Let IT be any respectful partition ¢f. Look at a subse$, in II. Let A be a simplex enclosing§;, that is
contained inside one face 8f. Fix a level;. Let Q;’s and~;’s be the subset§ and cellsy at levelj. Each
Q; has size at most/©(b)?. The number ofy;’s that intersect each side &, is at mostO(b*~¢)7. Thus, the
number of points inSy, that survive levelj is at mostmin {|Sk|, O(b'~¢)7 - n/©(b)7 }. Since theSy’s cover
the entire point set, with a double summation we have, fofffecgntly large constant,

D ony <> 0> min{[S],[n/0(0)7]} = O (ZISkI(log(n/lSkl)H)) = O(n(H(II) +1)).
j koj k O
For the on-line problem, the above approach works, aftaigttforward modifications, for weighted

point setsS where we want to minimize the weighted average query cosprifitiple, the approach works
not only for discrete point setS but also for continuous probability distributions, sinbe guery bound does
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not depend on the size of S explicitly and can be imagined to approach infinity. “Avesaguery cost”
over a finite set of query points now becomes “expected quesy’ ©ver a query point distribution. (The
preprocessing time can also be made independent ahder some computational assumptions about the
distribution.)

Below, we briefly mention applications to some specific ofelon-line querying problems.

e Off-line/on-line point location queries in 2-d: For the 4diffie planar point location problem, the data
structure for requirement (A) only needs(m) preprocessing time and space [22, 44, 54]. The data
structure problem in (C) reduces to testing whether a ti@igcontained in a face of the subdivision;
this reduces to ray shooting (or segment emptiness) quargepolygonal subdivision, for which there
are known results [23]. The total running time¥n(#(S) + 1)), including preprocessing, if the
subdivision has sizen = O(n). (For this problem, output sizes can be ignored.)

For the on-line version, we immediately get optind&((.S) + 1) average query cost, with an(m)-
space data structure for a subdivision of size This on-line point location result is already known
[6, 7, 29, 41] (some of these previous work even optimize trestant factor in the query cost).

e On-line halfspace range reporting queries in 2-d and 3-dreHee map query lower halfspaces to
points by duality. The known data structure for (A) ne€disn) space [1, 24]. The data structure for
(C) is the same as in Section B.1. We get opti@&H (S) + 1 + ) average query cost for output size
k, with anO(m)-space data structure for a given point set of sizen 2-d or 3-d. This result is new.

e On-line dominance reporting queries in 2-d and 3-d: Theysgsimilar to halfspace range reporting.

e On-line orthogonal range reporting/counting queries it 2Here, we map query rectangles to points
in 4-d as in Section B.1. The known data structure for (A) s&@@n log m) preprocessing time and
O(m) space [21]. The data structure for (C) is the same as in SeBtib. We get optimaD (H(S) +
1 + k) average query cost for output sizewith anO(m)-space data structure for a given point set of
sizem in 2-d. (For countings = O(1).) The resulting algorithm works in the comparison modelisTh
result is apparently new, as it extends Dujntouiowat, and Morin's recent result on 2-d dominance
counting [35] and unintentionally answers one of their majren problems (and at the same time
improves their space bound fro@(m log m) to O(m)).
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