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Abstract

In orthogonal range reporting we are to preprocess
N points in d-dimensional space so that the points
inside ad-dimensional axis-aligned query box can be
reported efficiently. This is a fundamental problem in
various fields, including spatial databases and compu-
tational geometry.

In this paper we provide a number of improvements
for three and higher dimensional orthogonal range
reporting: In the pointer machine model, we improve
all the best previous results, some of which have
not seen any improvements in almost two decades.
In the I/O-model, we improve the previously known
three-dimensional structures and provide the first (non-
trivial) structures for four and higher dimensions.

Keywords-data structures; computational geometry; or-
thogonal range searching; external memory;

1. Introduction

Orthogonal range reporting is a fundamental prob-
lem in several fields, including spatial databases and
computational geometry (e.g., see the surveys by Gaede
and Günter [21], Arge [6], Agarwal [2] or Agarwal
and Erickson [3] for a data base, external memory and
computational geometry point of view, respectively).
In this problem, we are to preprocess a set ofN
points in d-dimensional space so that the points in a
d-dimensional axis-parallel query box can be reported
efficiently. This problem has been studied extensively

∗Work was supported in part by the Danish National Research
Foundation and the Danish Strategic Research Council.
†Center for Massive Data Algorithmics, a center of the Danish
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by many researchers and in different models of com-
putation, including in the pointer machine (e.g., [9],
[17], [24]), the RAM (e.g., [5], [12], [20], [25]),
and the external memory (e.g., [1], [7], [27], [29])
models. Various lower bounds have also been obtained
(e.g., [13], [14], [19], [26]). The problem is especially
well-understood in two dimensions, where space and
query optimal structures have been developed in most
models of computation. This is not the case in higher
dimensions.

In this paper we provide a number of improvements
for the three and higher dimensional versions of the
problem in the pointer machine model and the external
memory (I/O) model.

1.1. Previous Pointer Machine Model Results

In this section we review previous pointer ma-
chine model orthogonal range reporting results. For
brevity, we focus on static near-linear space structures
with polylogarithmic query bounds. For other variants
see [2], [3].

The one-dimensional version of the problem can be
solved with optimalO(log N + K) query time and
linear space using a binary search tree. HereK denotes
the number of elements returned by a query. Using
priority search trees [24] and fractional cascading [16],
Chazelle described a two-dimensional structure using
O(N log N/ log log N) space that answers queries in
O(log N + K) query time [11]. This is optimal [13].
Three results are known in three and higher dimen-
sions, each offering a different trade-off between query
time and space. The first data structure was given by
Chazelle and usesO(N logd−1 / log log N) space and
can answer queries inO(logd−1 N + K) time [11].
The second data structure, also by Chazelle, uses



O(N(log N/ log log N)d−1) space but has a slightly
higher query time ofO(logd−1+ε N + K) [13] (in the
same paper Chazelle proves that this space complexity
is the best possible for any polylogarithmic query
bound). The third data structure has the fastest query
time, O(logd−2 N + K), but it occupiesO(N logd N)
space [10], [17]. All the three high-dimensional data
structures are essentially obtained using techniques that
extend low-dimensional (restricted queries) structures
to higher dimensions.

1.2. Restricted Queries

Let Q(d, k), 0 ≤ k ≤ d, denote the restricted case
of thed-dimensional problem in whichk of the dimen-
sions have finite ranges. Refer to Fig. 1. TheQ(2, 1)
and Q(d, 0) problems are oftencalled 3-sided planar
range reportinganddominance reporting, respectively.
The Q(1, 0) problem can obviously be solved with
optimal O(log N + K) query time and linear space.
Q(2, 1) can be solved in the same bounds using a
priority search tree [24]. TheQ(3, k) problem can be
solved with O(N logk N) space andO(log N + K)
query time [1], [10], [17].

Using a couple of general techniques, the above
structures (along with structures forQ(1, 1) and
Q(2, 2)) can be used to obtainQ(d, d) structures (in-
cluding the ones discussed in Section 1.1). The first
uses range trees and a data structure forQ(d, k) to
solve Q(d + 1, k + 1), while incurring a log N fac-
tor increase in both space and query complexity [9].
We call this methoddimension reduction. The sec-
ond solvesQ(d, k + 1) by using a data structure for
Q(d, k) and paying alog N factor increase in the space
complexity [17]. We call thisside reduction. Note that
this means that any improvements to lower-dimensional
structures immediately carries over to higher dimen-
sions.

1.3. Previous I/O-Model Results

External memory data structures are designed in an
I/O-model whereB elements are moved between main
memory and disk in one I/O; computations can only
occur on elements in the main memory of sizeM [4].
The goal is to answer a query using as few I/Os as
possible.

In the I/O-model,Q(1, 1) can be solved optimally in
linear space and usingO(logB N +K/B) I/Os using a
B-tree [18]. Similar to the pointer machine model, lin-
ear space structures withO(logB N +K/B) query I/Os
also exist forQ(2, 1) [7]. For Q(2, 2), the same query
bound can be obtained withO(N log N/log logB N)

space, which is optimal [7]. Finally, the best data struc-
ture for Q(3, k) usesO(N logk N) space and answers
queries inO(logB N +K/B) I/Os [1]. This is optimal
only for k = 0.

The dimension reduction and side reduction tech-
niques are applicable in the I/O-model. However, they
still incur a log2 N (or rather log2(N/B)) factor in-
crease in the query and/or space complexity, respec-
tively. Thus higher-dimensional structures based on the
two techniques are not explicitly mentioned in the
external memory literature, since thelog2(N/B) factor
seems far from optimal.

The best known lower bound for three- and higher-
dimensional orthogonal range reporting in the I/O-
model is due to Hellerstein et al. [23], who showed that
Ω(N(log B/log logB N)d−1) space is needed to solve
Q(d, d). Note thelog B (rather thanlog N ) denomina-
tor in this bound, and thus the large gap between the
lower bound and the knownQ(3, 3) structure.

1.4. Our Results

Our main result is a reduction of the penal-
ties suffered by side and dimension reductions to
log N/ log log N in the pointer machine model and
to log N/ log logB N = logB N/ logB logB N =
loglogB N N in the I/O-model, (with two-dimensional
problems as base cases).

Our result has several immediate implications
in the pointer machine model. The most
significant one is a Q(d, d) data structure
with O(N(log N/ log log N)d−1) space and
O(logd−1 N/(log log N)d−2 + K) query time.
This improves both data structures by Chazelle [11],
[13] and achieveso(logd−1 N) query search time
with optimal space. Alternatively, we can obtain a
structure withO(logd−2 N + K) query time but using
O(N logd N/(log log N)3) space, which improves
the third known Q(d, d) data structure. Our main
result also gives the first optimal data structure
for Q(3, 1) with O(log N + K) query time using
O(N log N/ log log N) space.

In the I/O-model the impact of our main result
is also significant. We show thatQ(d, d) can be
solved with O(N(log N/ log logB N)d−1) space and
O(logd−1

B N/(logB logB N)d−2 + K/B) query I/Os.
Another consequence is an optimal data structure for
Q(3, 1) with O(logB N + K/B) query I/Os using
O(N log N/ log logB N) space. In three dimensions,
we also obtain a query optimal structures answering
queriesQ(3, k) queries in O(logB N + K/B) I/Os
usingO(N(log N/ log logB N)k) space. Fork = 1 the
space bound is also optimal.

On the lower bound side, we show that anyQ(d, d)
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Figure 1. Two- and three-dimensional queries.

Queries Space Query bound Ref./Notes Deviation

Q(2,1) N log N + K PM, [24] 1 (opt)

Q(2,1) N log
B

N + K/B IO, [7] 1 (opt)

Q(2,2) N · loglog N
N log N + K PM, [11] 1 (opt)

Q(2,2) N · loglogB N
N log

B
N + K/B IO, [7] 1 (opt)

Q(3,0) N log
B

N + K/B IO, [1] 1 (opt)

Q(3,1) N · log N log N + K PM, [1], [17], [10] (log log N)

Q(3,1) N · log N log
B

N + K/B IO, [1] (log log
B

N)

Q(3,1)* N · loglogN
N logN + K PM 1 (opt)

Q(3,1)* N · loglog
B

N
N log

B
N + K/B IO 1 (opt)

Q(3,3) N · log3 N log
B

N + K/B IO, [1] (log log
B

N)3

Q(3,3)* N · log2

logN
N logN · loglogN

N + K PM 1

Q(3,3)* N · log3

logN
N logN + K PM 1

Q(3,3)* N · log2

log
B

N
N log

B
N · loglog

B
N
N + K/B IO 1

Q(3,3)* N · log3

log
B

N
N log

B
N + K/B IO 1

Q(d,d) N · logd−2 N · loglog N
N logd−1 N + K PM, [11] (log log N)2d−4

Q(d,d) N · logd−1
log N

N logd−1+ε N + K PM,[13] logε N

Q(d,d) N · logd N logd−2 N + K PM, [1], [17], [10] (log log N)2d−3

Q(d,d)* N · log3

logN
N · logd−3

N logd−2
N + K PM (loglogN)2d−6

Q(d,d)* N · logd−1

logN
N logN · logd−2

logN
N + K PM 1

Q(d,d)* N · logd−1

log
B

N
N log

B
N · logd−2

log
B

N
N + K/B IO 1

Table I. A summary of our upper bound results in bold as well as the best previous upper
bounds on orthogonal range reporting. Our results are marke d with an * . PM and IO stand for
the pointer machine and I/O-model, respectively. Deviatio n measures the ratio of the space-
query product, S(N) ·Q(N), to N · logd+k−2

B N/(logB logB N)d+k−3 (B = 2 for the pointer machine
model). Deviations marked with (opt) indicate that the result is provablyoptimal.

data structure with a query complexity polynomial
in logB N has to useΩ(N(log N/log logB N)d−1)
space. This proves the space complexity of ourQ(d, d)
data structure is optimal for a large range of values
of B. A comparison of our results with the pre-
vious ones is given in Table I. Note that the Ta-
ble displays a curious pattern: forQ(d, k) the space
S(N) and the query search timeQ(N) of all the
optimal results lie on the curveS(N) · Q(N) =
N logd+k−2

B N/(logB logB N)d+k−3 (B = 2 for the
pointer machine model). If this is the right trade-off
curve for S(N) and Q(N), then all our main data

structures are optimal!

In the next section we describe the dimension re-
duction technique and describe how it motivates a
“concurrent” version of range searching where the same
query needs to be answered on several different point
sets. In Section 3, we show how to use concurrent
range searching to obtain our improved versions of the
dimension and side reduction techniques. Using these,
we present our main orthogonal range searching results
in Section 4. Finally, in Section 5 we prove our space
lower bound. Conclusions and open problems are given
in Section 6.



2. Dimension Reduction

Dimension reduction is the only known tool that
allows us to solve orthogonal range searching in higher
dimensions. As our ideas build upon this technique, we
briefly describe it here. Consider theQ(d + 1, k + 1)
problem and assume we have access to a black-
box solutionA for Q(d, k). Let p1, . . . , pN be the
points of the input setS sorted increasingly accord-
ing to the value of the last coordinate. ImplementA
on the projection ofS onto the firstd dimensions,
then recurse on the setsSℓ :=

{

p1, . . . , pN/2

}

and
Sr :=

{

pN/2+1, . . . , pN

}

. Let H be the hyperplane
passing throughpN/2 and orthogonal to the vector
(0, 0, . . . , 0, mN/2) wheremN/2 is the last coordinate
of pN/2. For the queryq we have two cases: (i) Ifq
completely lies at one side ofH , then it is answered
recursively using data structures implemented onSℓ or
Sr. (ii) If q intersectsH then it can be decomposed
into two Q(d + 1, k) queries, one on each of the sets
Sℓ andSr. Thus, it suffices to describe how to answer
a Q(d + 1, k) query. Assume now thatq is one such
query. Again, we have two cases: (i) Ifq completely
lies at one side ofH , then it is answered recursively.
(ii) If q intersectsH then it can be decomposed into
two queries; one query will be aQ(d + 1, k) query,
which is answered recursively, but the other will be a
Q(d, k) query which can be answered directly byA.

Let SA(N) and QA(N) be the worst-case
space and the query time ofA, respectively. The
above solution takesO(SA(N) log N) space and has
O(QA(N) log N) query time. If we model this recur-
sive construction with a tree, it becomes clear that the
log N factor comes from the height of the tree. In other
words, a tree of heighth will result in anO(hSA(N))-
space data structure withO(hQA(N)) query time.

It is known that if a tree of fanoutt is used instead of
a binary tree (in other words, at each step the point set
is partitioned intot sets rather than two), then the height
of the tree will belogt N . For t = logε N this is equal
to log N/ log log N . Unfortunately, answering queries
using a tree of larger fanout is difficult as we might
need to answer one query on up tot different point
sets. Previously, three techniques were used to handle
this issue. One incurs extra penalties in space, the other
incurs extra penalties in query time and the last one
only works in 2-d [11]. Thus, achieving factorlogt N
penalty in both space and query was left open. This
barrier is also responsible for the lack of I/O efficient
results in higher dimensions.

3. Concurrent Q(d, k) Problem

The motivation for concurrent range reporting is
clear in the light of the previous discussion: we want to
solve all thet queries generated by a tree of fanoutt at
the same time. The caveat is that the obvious definition
fails to provide us with any means of attack.

We formally define the concurrent range searching
problem as follows. LetS be an input set ofN points
and assume each pointp ∈ S has been assigned a color
A(p) from a setC of colors. A concurrentQ(d, k)
problem is defined by a setP ⊂ 2C (intuitively, the set
of all the “possible” sets of colors) and is an orthogonal
range reporting problem where the query is a tuple
(q, L) in which L ∈ P and q is a Q(d, k) query. The
output should be the set of all the pointsp such that
A(p) ∈ L and p ∈ q. Note that this should not be
confused with the usual colored range searching where
we are interested in the set ofcolors in q and not the
points (e.g., see [22]). We useQA,C,P(d, k) to denote
this concurrentQ(d, k) problem.

Our main results of this section are the dimension
and side reduction techniques for concurrent orthogonal
range reporting and a solution for concurrentQ(2, 1).

3.1. Side Reduction

Consider theQA,C,P(d + 1, k + 1) problem. We
describe our reduction only for queries that have two
sides at the last dimension; otherwise, we can apply
basic geometric transformations on the input set and
use the solution for this specific case. This will increase
the space by a constant factor only.

Build a balanced treeT of fanoutt on the point set
sorted by their last coordinates. Letv be a node inT
andc1, . . . , ct be the children ofv. Now, v corresponds
to an interval[av; bv) on the last dimension and the last
coordinate of all the points in the subtree rooted atv,
T (v), lie betweenav and bv; the children ofv further
subdivide this interval intot disjoint smaller intervals.
We defineCv asC×{1, . . . , t} andPv as the set con-
taining all the setsLL,i,j := {(c, k)|c ∈ L, i ≤ k ≤ j}
for all L ∈ P and all 0 ≤ i ≤ j ≤ t. Clearly,
|Cv| = t|C| and|Pv| ≤ t2|P|. For the pointsp ∈ T (v)
we define a new color assignmentAv by setting
Av(p) = (A(p), j) wherej is the index of the subset
T (cj) that containsp. We implement a data structure
Dv for QAv ,Cv,Pv(d + 1, k) on T (v). We repeat this
operation for every node inT .

To answer the query(q, L), let [a; b] be the pro-
jection of q on the last dimension. We start from the
root and walk down the tree to find the first nodev
such that[a; b] is not contained in the interval of one
child of v. Let c1, . . . , ct be the children ofv and



assume[a; b] intersects the intervals ofci, . . . , cj , for
1 ≤ i < j ≤ t. Finding v costsQsearch(N). We have
aci ≤ a < bci ≤ acj ≤ b < bcj . We create two
new boxes,qr and qℓ by modifying the coordinates
of q: qr is made by settinga to −∞ and qℓ is made
by setting b to +∞. Next, we define two lists of
colors,Lℓ := {(c, x)|c ∈ L, i ≤ x ≤ j − 1} for qℓ and
Lr := {(c, j)|c ∈ L} for qr. The pairs(qr, Lr) and
(qℓ, Lℓ) form two valid Q(d + 1, k) concurrent queries
since bothLℓ andLr are inPv. We query both onDv.

Correctness:We must report all the pointsp such
that p ∈ q andA(p) ∈ L. Consider a pointp and letz
be the value of its last coordinate. We have four possible
cases:

1) A(p) 6∈ L: In this caseAv(p) 6∈ Lr andAv(p) 6∈
Lℓ and thusp will not be reported. From now on,
we assumeA(p) ∈ L.

2) p ∈ T (cj): In this caseAv(p) = (A(p), j), so
Av(p) ∈ Lr andAv(p) 6∈ Lℓ. Clearly, the query
(qℓ, Lℓ) will not report p but (qr, Lr) will report
p if and only if p is contained inqr. However, if
p is in qr thenz ≤ b. Note that we knowacj ≤ z
sincep ∈ T (cj) and thusa < z. These implyp
will be reported if and only if it is contained inq.

3) p ∈ ∪i≤x≤j−1T (cx): Let x be the index such that
T (cx) containsp. As with the previous case, we
haveAv(p) = (A(p), x) ∈ Lℓ andAv(p) 6∈ Lr.
Similarly, sincez < bcj−1 ≤ b, p will be reported
if and only if it is contained inq.

4) p 6∈ ∪i≤x≤jT (cx): This is the else case to the
above three. It is clear that in this casep 6∈ q and
sinceAv(p) 6∈ Lr ∪ Lℓ none of the queries will
reportp.

Thus, we have the following result.

Lemma 1. QA,C,P(d + 1, k + 1) can be solved with
O
(

N + hSnc,np,d+1,k(N)
)

space and with the query
complexity of O

(

Qsearch(N) + Qnc,np,d+1,k(N)
)

.
Here, h is the height of T , Snc,np,d+1,k(·) and
Qnc,np,d+1,k(·) are the worst-case query and space
complexity of the concurrentQ(d + 1, k) data
structure used, respectively,nc = maxv∈T |Cv|,
np = maxv∈T |Pv|, and Qsearch(·) is the cost of
search for a node in the tree.

3.2. Dimension Reduction

We describe the dimension reduction for concurrent
Q(d + 1, k + 1) queries. We assume the query has two
sides at the last dimension.

Build a balanced treeT of fanout t on the last
dimension and consider the notations introduced in the
previous subsection and buildCv,Pv andAv similarly.
The difference is that this time we project the points

of T (v) onto the firstd dimensions and implement a
data structureDv for QAv ,Cv,Pv(d, k) on the projected
points.

To answer the query(q, L), let [a; b] be the projec-
tion of q on the last dimension. Find the first nodev1

such that[a; b] is not contained in the interval of one
child of v1. Assume[a; b] intersects the intervals of
ci, . . . , cj , for 1 ≤ i < j ≤ t. This time, we create three
boxesqℓ, qm andqr by modifying coordinates ofq. qℓ

is obtained by settingb to +∞, qr is obtained by setting
a to −∞, andqm is a d-dimensional box obtained by
setting a = −∞ and b = +∞. We define the color
list Lm as{(c, x)|c ∈ L, i < x < j} and queryDv with
(qm, Lm). Boxesqℓ andqr define twov1 to leaf query
paths (to be described); we only analyze the query path
for qr below, as the other one is similar.

Definev2 := cj . Now (qr, L) is a concurrentQ(d+
1, k) query on v2 and we answer it as follows. Let
c
(2)
1 , . . . , c

(2)
t be the children ofv2 and assumex is the

index such thata
c
(2)
x
≤ b < b

c
(2)
x

. We create a color

list L
(2)
m := {(c, y)|c ∈ L, 1 ≤ y ≤ x− 1} and query

(qm, L
(2)
m ) onDv2 . Now we setv3 := c

(2)
x and continue

until we reach a leaf.
Correctness:An analysis similar to that of side

reduction shows(qm, Lm) and (qm, L
(2)
m ) respectively

return all the points inq ∩ (T (ci+1) ∪ · · · ∪ T (cj−1))

andq ∩ (T (c
(2)
1 )∪ · · · ∪T (c

(2)
x−1)) with the right colors

and nothing more. The recursive call tov3 takes care of
the points inT (c

(2)
x ). Finally, the same analysis holds

for the other query path determined byqℓ. Thus, we
have the following lemma.

Lemma 2. QA,C,P(d + 1, k + 1) can be solved with
O
(

N + hSnc,np,d,k(N)
)

space and with the query
complexity of O

(

Qsearch(N) + hQnc,np,d,k(N)
)

.
Here, h is the height of T , Snc,np,d,k(·) and
Qnc,np,d,k(·) are the worst-case query and
space complexity of the concurrentQ(d, k) data
structure used, respectively,nc = maxv∈T |Cv|,
np = maxv∈T |Pv|, and Qsearch(·) is the cost of
search for a node in the tree.

3.3. Answering ConcurrentQ(2, 1) Queries

Here we solve the concurrentQA,C,P(2, 1) problem.
As this will be used at the base case for our higher
dimensional results, any suboptimal space or query
bound will carry over to higher dimensions. Thus,
it is crucially important that we obtain an efficient
structures. Our main result of this subsection is the
following.

Lemma 3. QA,C,P(2, 1) can be solved withO(N)
space andO(|P||C| + log N + K) query time in a



pointer machine andO(|P||C|+logB N +K/B) query
I/Os in the I/O-model.

Proof: We only provide a data structure for the
I/O-model. By settingB = 2 it can be turned into a data
structure for a pointer machine. We also assume that the
three-sided query is in the form of[x1; x2]× (−∞, y];
general three-sided queries can be reduced to this case.

Sort the points according to theirx-coordinates and
partition the point set intoNα vertical slabs, whereα :=
B|C||P|, such that each slab containsα points. For
each slabb we build a basic data structureDbasic(b) as
follows: for every colorc in b, the points with colorc
are stored increasingly according to theiry-coordinates
in consecutive blocks (linked list in a pointer machine).

Next, for every setL ∈ P , we build a search struc-
ture of sublinearsize which we denote byDsearch(L).
To do this, first we copy the basic data structure but we
delete some of its points in two stages. First, we delete
all pointsp such thatA(p) 6∈ L. Let pc,1, pc,2, . . . , pc,tc

be the remaining points in slabb, sorted increasingly
according to theiry-coordinates. Next we delete all
the pointspc,i, i > B. The Dsearch(L) is made by
implementing an optimal I/O efficientQ(2, 1) structure
on the remaining points. Finally, we place a pointer
from pc,B (if it exists) to its copy inDbasic(b).

Each slabb containsα points but at mostB|L| ≤
B|C| points are stored in each slab inDsearch(L). Thus,
the size ofDsearch(L) is O

(

N
α B|C|

)

= O(N/|P|). We
build |P| different search structures (one for each list
in P), so our space complexity is linear.

Let (q, L) be the query andbi, . . . , bj be the slabs
intersected byq. We decomposeq into three smaller
boxes,qℓ, qm andqr such thatqℓ andqr are contained
in bi and bj respectively andqm := q \ (qℓ ∪ qr). We
answer(qℓ, L) and (qr, L) by scanning all the points
in bi andbj and this takesO(α/B) = O(|C||P|) I/Os.
To answer(qm, L), usingDsearch(L) first we find all
the points ofDsearch(L) that are insideqm. This costs
O(logB N + K ′/B) I/Os whereK ′ is the number of
points reported. A helpful observation is that the set of
points reported is a subset of the final output. During
this operation, whenever we encounter a pointpc,B that
is to be reported, we follow the pointer toDbasic and
scan all the points stored in the following blocks until
the y-coordinates of the stored points exceed that of
qm. The crucial observation is that the cost of the
pointer jump can be charged to the output size (to the
B points of colorc that have been outputted from the
slab containingpc,B). It is easy to check that all the
relevant points are reported and that the cost of the
query isO(|C||P|+ logB N + K/B) I/Os.

4. Answering Q(d, d) Queries

The Q(d, d) problem is a concurrentQ(d, d) prob-
lem with C = {1}, P = {{1}} andA(p) = 1. To solve
it, we apply our reductions outlined in Lemmas 1 and
2.

After d − 2 applications of dimension reduction,
Q(d, d) will be reduced to a concurrentQ(2, 2) prob-
lem. Notice that each dimension reduction increases the
size of the setsC andP by factors oft andt2 respec-
tively. Next we apply a side reduction which further
increasesC and P by factors of t and t2. Thus, at
the end, our subproblems will consist ofQA,C,P(2, 1)
problems where|C| = td−1 and |P| = t2d−2.

We set t := log
1/(3d−3)
B N . This means in all

our subproblems we have|C||P| = O(logB N). By
Lemma 3 these can be solved with linear space and
O(logB N + K/B) I/Os. As the height of the trees
used in our constructs islogt N , we have h =
log N/ log logB N . By Lemma 1, our side reduction
adds a factor ofh to space. By Lemma 2, ourd − 2
dimension reductions add a factor ofhd−2 to both space
and query. Thus we obtain the following results.

Theorem 1. In the I/O-model, the orthogonal
range reporting problem onN input points can be
solved withO(N(log N/ log logB N)d−1) space and
O(logB N(log N/ log logB N)d−2 +K/B) query I/Os.

Theorem 2. In a pointer machine, the orthogonal
range reporting problem onN input points can be
solved with O(N(log N/ log log N)d−1) space and
O(logd−1 N/(log log N)d−2 + K) query time.

The space usage of Theorem 2 is optimal by [13].
Using our techniques we can also obtain the first
optimal result forQ(3, 1) queries.

Theorem 3. Q(3, 1) queries can be solved op-
timally in the pointer machine model (resp. the
I/O-model) usingO(N log N/ log log N) space (resp.
O(N log N/ log logB N) space) and withO(log N +
K) query time (resp.O(logB N + K/B) query I/Os).

Proof: Use the traditional side reduction technique
with a tree of fanoutt := log1/3 N . As discussed,
this results in twoQ(3, 0) queries and up tot Q(2, 0)
queries. TheQ(3, 0) queries can be solved by the
linear-space data structures outlined in [1]. TheQ(2, 0)
queries can be solved using Lemma 3. The space bound
is optimal since with a simple geometric transformation
one can use a data structure forQ(3, 1) to answer
Q(2, 1) queries and anΩ(N log N/ log log N) (resp.
Ω(N log N/ log logB N)) space lower bound is known
for Q(2, 1) [7], [13].

Theorem 4. For k = 2, 3, Q(3, k) can be



solved in pointer machine model (resp. I/O-
model) usingO(N(log N/ log log N)k) space (resp.
O(N(log N/ log logB N)k) space) and with optimal
queries.

Proof: The proof is similar to that of Theorem 3:
by normal side reduction, we get twoQ(3, k − 1)
queries and one concurrentQ(2, k − 1) query which
can be solved by their corresponding theorems outlined
above.

Corollary 1. Orthogonal range reporting can be
solved with O(N logd N/(log log N)3) space and
O(logd−2 N + K) query time.

5. I/O-model Lower Bound

In this section we use the indexability theory of
Hellerstein et al. [23] to prove that any data struc-
ture answeringQ(d, d) queries in the I/O-model using
O(logc

B N + K/B) query I/Os for any constantc > 0,
has to useΩ(N(log N/log logB N)d−1) space.

In the indexability model [23] an indexing problem
is described by aworkload W = (I, Q), whereI is a
set of input elements andQ is a set of subsets ofI; the
elements ofQ are calledqueries. Given a workloadW
and a block sizeB, an indexing schemeS is defined
on I by a block assignment function,B, which is a set
of B-sized subsets ofI. Intuitively, all the elements in
a setb ∈ B are stored in one block.

The quality of an indexing scheme is quantified by
two parameters:redundancyandaccess overhead. The
redundancyr of S is a measure of the space overhead
and is defined asr = B|B|/|I|. If any query inQ is
covered by at mostA0 + A1⌈|q|/B⌉ blocks ofB, then
the access overhead is defined as the(A0, A1) tuple [8]
(this a slight variation on the original definition of
access overhead [23]). For any data structure in the I/O-
model, an indexing scheme is naturaly defined by just
looking at the points stored in the blocks of the storage
medium. The followingredundancy theoremrelates
redundancy and access overhead and is the main tool
for proving space lower bounds in the I/O-model [8],
[23].

Theorem 5 (Refined Redundancy Theorem [8]). For
a workload W = (I, Q) with |I| = N and where
Q = {q1, q2, . . . , qm}, let S = (I, B) be an indexing
scheme forW with access overhead(A0, A1) with
A1 ≤

√
B/8 such that for any1 ≤ i, j ≤ m, i 6=

j : |qi| ≥ BA0 and |qi ∩ qj | ≤ B/(64A2
1). Then the

redundancy ofS is bounded byr ≥ 1
12N

∑m
i=1 |qi|.

Consider a data structure forQ(d, d) with
c0 logc

B N + c1
T
B query bound wherec0 and c1 are

constants. We chooseA0 = c0 logc
B N and A1 = c1.

The refined redundancy theorem then states that if we
can construct a set ofN points andm query boxes
q1, . . . , qm, such that any box contains at leastBA0

points and where the intersection of any pair of boxes
contains at mostB/(64c2

1) points, then the amount of
space needed by any data structure isΩ(

∑m
i=1 |qi|).

The goal is thus to maximize the sum of the sizes of
the queries.

In two-dimensions, theΩ(N log N/ log logB N)
space lower bound forQ(2, 2) was obtained us-
ing a Fibonacci workload. However, generalizing
the Fibonacci workload to higher dimensions seems
hard, and the previously best knownd-dimensional
Ω(N(log B/ log logB N)d−1) space lower bound in-
stead utilizes a simple pointset consisting of aN1/d ×
· · · × N1/d grid. In internal memory, the space
lower bounds in the pointer machine model [28]
for d-dimensional range searching were proven by
Chazelle [13]. In 2-d, a fairly simple point-set (work-
load) was used to prove the bounds, whereas a much
more complex point-set and a randomized argument
were used in higher dimensions.

Here we generalize Chazelle’s planar point set
to higher dimensions using a deterministic construc-
tion. Such a deterministic generalization was given by
Chazelle as well, but for the off-line orthogonal range
searching in the semi-group model [15]. In fact, by
modifying the parameters used in his proof, one can
prove the Ω(N(log N/ log logB N)d−1) space lower
bound; however, the lower bound will be valid only if
B = O(logB N), which is an unrealistic assumption in
the I/O-model. Relaxing this constraint seems to require
more substantial changes, e.g., changing the query or
the point set. Here we present an alternate but similar
construction that achieves this. Our lower bound holds
for 2 ≤ B ≤

√
M ≤

√
N , known also as thetall-

cache assumption, which is a much more reasonable
assumption.

Point set I.: Let a1 = 64A0A
2
1 and aj =

(
∏j−1

i=1 ai)+1 for j = 2, . . . , d− 1. It is easily verified
that a1, a2, . . . , ad−1 are relatively prime. We define
the point setI := {(pa1(i), pa2(i), . . . , pad−1

(i), i) |
i = 0, 1, . . . , N − 1}, where paj (i) is obtained by
first writing i in base aj , then removing all but
the ⌊logaj

N
1
4d ⌋ least significant digits (adding lead-

ing 0-digits if necessary), and finally reversing all
the digits of the constructed number. We will use←−−−−−−−−mk−1 . . . m0 to denote the reversal ofmk−1 . . . m0,
that is,←−−−−−−−−mk−1 . . .m0 = m0 . . . mk−1. The following
lemma is an easy consequence of the defitions given
above.

Lemma 4. Consider the i’th point pi =
(pa1(i), . . . , pad−1

(i), i) in I. The k most significant



digits of the j’th coordinate paj (i) are precisely←−−−−−−
i mod ak

j for k ≤ ⌊logaj
N

1
4d ⌋.

Let X be the box in the positive quadrant an-
chored at the origin(0, 0, . . . , 0) with dimensions

a
⌊loga1

N1/4d⌋

1 × · · ·× a
⌊logad−1

N1/4d⌋

d−1 ×N ; X contains
all points inI. Now consider a boxq insideX , and let
[x1; x2] be the range it spans in thej’th dimension. If
x1 = m0 . . . mk−100 . . .0 andx2 = m0 . . .mk−1(aj−
1)(aj−1) . . . (aj−1) in baseaj for somem0 . . . mk−1,
it follows from Lemma 4 that each pointpi with i
mod ak

j =←−−−−−−−−m0 . . . mk−1 has thej’th coordinate in the
range[x1; x2]. If the same holds for each of the first
d− 1 dimensions, we can determine whether a point is
insideq simply by looking at itsd’th coordinate.

Query setQ.: Consider the setR consisting
of one box with each of the following dimensions
ai1
1 × ai2

2 × · · · × a
id−1

d−1 × BA0a
k1
1 ak2

2 . . . a
kd−1

d−1 for
ij ∈ {0, . . . , ⌊logaj

N
1
4d ⌋} andkj = ⌊logaj

N
1
4d ⌋− ij.

Lemma 5. Any r ∈ R placed at the origin ind-
dimensional space is completely contained inX . Fur-
thermore,|R| = Ω((log N/ log A0A

2
1)

d−1)

Proof: The first d − 1 dimensions ofr are obvi-
ously within X . Using the tall-cache assumption we
get that BA0 = Bc0 logc

B N ≤
√

Nc0 logc
B N ≤√

Nc0 logc
2 N which for N greater than some con-

stant is at most
√

NN
1
4 = N

3
4 . Thus the size

of the d’th dimension of r is bounded byBA0 ·
∏d−1

i=1 a
⌊logai

N1/4d⌋

i ≤ N
3
4 · (N 1

4d )d−1 ≤ N , and
thereforer fits within X .

To see the bound on the size ofR, simply count the
number of combinations ofij in the definition ofR

|R| =
d−1
∏

i=1

⌊logai
N

1
4d ⌋+ 1 ≥

d−1
∏

i=1

logai
N

1
4d ≥

(

logad−1
N

1
4d

)d−1

≥
(

log
a2d

1

N
1
4d

)d−1

=

(

loga1
N

1

4d·2d

)d−1

=

(

loga1
N

4d · 2d

)d−1

=

(

loga1
N
)d−1

(4d)d−1 · 2d2−d
= Ω

(

(

loga1
N
)d−1

)

=

Ω

(

(

logA0A2
1
N
)d−1

)

= Ω

(

(

log N

log A0A2
1

)d−1
)

Our query setQ consists of the boxes obtained by
tiling X with each of the boxesr ∈ R in turn, starting
at the origin. Notice that we will use only those queries
that are completely contained inX . Refer to Fig. 2.

Lemma 6. For any queryq ∈ Q, |q| = BA0.

X

Figure 2. Tiling X with a box r ∈ R. Note
that r might not tile X completely in all
dimensions.

Proof: Let q be a box inQ with dimensionsai1
1 ×

· · · × a
id−1

d−1 × BA0a
k1
1 . . . a

kd−1

d−1 , and consider itsj’th
dimension (j < d). Sinceq was placed by tiling from
the origin,q will span the rangeIj = [cja

ij

j ; (cj+1)a
ij

j )
in the j’th dimension for somecj = m0m1 . . . mkj−1,
wherecj is written in baseaj. From Lemma 4 it then
follows that thei’th point pi = (pa1(i), . . . , pd−1(i), i)
of I is insideq if and only if

∀ 1 ≤ j ≤ d− 1, mod a
kj

j =←−cj (1)

and

cdBA0a
k1

1 . . . a
kd−1

d−1 ≤ i < (cd + 1)BA0a
k1

1 . . . a
kd−1

d−1 .

As a1, . . . , ad−1 are relatively prime andgcd(a, b) = 1,
by the Chinese Remainder Theorem there is a unique
value of i moduloak1

1 ak2
2 . . . a

kd−1

d−1 that satisfies all of
the d− 1 requirements in (1). Sinceq ⊂ X , it follows
from the last requirement oni thatq contains precisely
(BA0a

k1
1 . . . a

kd−1

d−1 )/(ak1
1 . . . a

kd−1

d−1 ) = BA0 points.
Having defined our workloadW = (I, Q), we now

bound the number of points in the intersection of any
two query boxes inQ.

Lemma 7. For any two query boxesq1, q2 ∈ Q, |q1 ∩
q2| ≤ B/(64A2

1)
1.

Proof: If q1 and q2 have the same dimensions,
we get from the tiling thatq1 ∩ q2 = ∅ and the
lemma follows. Now consider the case whereq1 and
q2 differ in at least one dimension. Letai1

1 × · · · ×
a

id−1

d−1 ×BA0a
k(i,1)

1 . . . a
k(i,d−1)

d−1 be the dimensions ofq1

andaj1
1 × · · · × a

jd−1

d−1 ×BA0a
k(j,1)

1 . . . a
k(j,d−1)

d−1 be the
dimensions ofq2. Let l < d be any dimension where
il 6= jl. W.l.o.g we assume thatil > jl. Sinceail

l is
just a multiplicative ofajl

l , it follow from the tiling that
the intersection ofq1 andq2 is either empty in thel’th
dimension, or spans the same range asq2. If the range is
empty, our proof is done, so assume it equals the range
of q2. Now consider the boxJ that spans exactly the
same ranges asq1, except in thel’th dimension, where

1This property is one of the main differences between our point
set and the one developed by Chazelle; his construction ensures that
|q1∩q2| = O(1) which is a more strict condition than ours and thus
his bound is valid for small values ofB.



it spans the same range asq2. Clearly q1 ∩ q2 ⊂ J .
Using the Chinese Remainder Theorem, we get thatJ
contains at most

BA0a
k(i,1)

1 . . . a
k(i,d−1)

d−1

a
k(i,1)

1 . . . a
k(j,l)

l . . . a
k(i,d−1)

d−1

≤ BA0

al
≤ B

64A2
1

points. Sinceq1 ∩ q2 ⊂ J , we have that|q1 ∩ q2| ≤
|J | ≤ B/(64A2

1) and the lemma follows.
We now apply the redundancy theorem. By

Lemma 6 and Lemma 7, our workloadW = (I, Q)
fulfills the requirements of the Refined Redundancy
Theorem. Thus, the redundancy,r, of any solution for
this workload is at least 1

12N

∑ |qi|.
Now consider any boxs ∈ R. By Lemma 5 we

know that s will be contained inX if placed at the
origin. We also get from the definition ofR, that the
d − 1 first dimensions ofX are multiplicative of the
d − 1 first dimensions ofs. It then follows from the
tiling that every point inI will have its d − 1 first
coordinates inside one query box for everys ∈ R, and
at least half the points will have theird’th coordinate
inside one query box for everys ∈ R. Therefore
∑ |qi| ≥ |R|N2 . Plugging this value in the bound for
redundancy and using Lemma 5 impliesr = Ω(|R|) =
Ω((log N/ logA0A

2
1)

d−1). SinceA0 = c0 logc
B N and

A1 = c1, we obtain the desired lower bound.

Theorem 6. There exist a workload (i.e., a set of
points and a set of queries)W for Q(d, d) such that
any data structure forW that can answer queries in
O(logc

B N + K
B ) I/Os for any constantc > 0, requires

Ω(N(log N/ log logB N)d−1) space.

6. Conclusion

In this paper we improved the dimension and side
reduction techniques and thus obtained new orthogonal
range reporting data structures in both the pointer
machine model and the I/O-model. In the latter model
we also provided a space lower bound. Our reductions
incur log N/ log log N (resp.log N/ log logB N ) factor
penalties in space and/or query complexity in the
pointer machine model (resp. the I/O-model).

Note that in the I/O-model, the penalties are mini-
mized forB = 2 and for large values ofB are far away
from logB N . Still, for all our structures the overall
query complexity decreases withB.

We believe it is unlikely that the techniques (spe-
cially the dimension reduction) can be further im-
proved. Focussing on the I/O-model for example, our
space lower bound proves that it is impossible to
achieveo(log N/ log logB N) space penalty in dimen-
sion reduction even withO(logO(1) N) penalty in
query. Currently there are no query lower bounds

available but as the source of both query and space
penalties are the same (namely, the height of the tree
used in the reduction), we suspect lowering the query
penalty (without increasing the space penalty) needs
completely new ideas.

Finally, we believe this work brings up many inter-
esting open problems, including the following:

Open Problem. What is the right trade-off curve for
the query time and the space bound of the best possible
Q(d, k) data structures in the pointer machine model
or the I/O-model?
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