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Abstract Some solutions to a programming problem are more elegant or more simple
than others and thus more understandable for students. We review desirable properties of
example programs from a cognitive and a measurement point of view. Certain cognitive
aspects of example programs are captured by common software measures, but they are not
sufficient to capture a key aspect of understandability: readability. We propose and discuss
a simple readability measure for software, SRES, and apply it to object-oriented textbook
examples. Our results show that readability measures correlate well with human percep-
tions of quality. Compared with other readability measures, SRES is less sensitive to
commenting and whitespace. These results also have implications for software maintain-
ability measures.

Keywords Object-oriented programming - Quality - Measurement - Software
readability - Programming education

1 Introduction

Simplicity and understandability are essential properties of example programs. In simple
and understandable programs, it is easier to identify the essential elements (Watson and
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Mason 2002). Such programs are also easier to comprehend, since extraneous cognitive
load is reduced (VanLehn 1996). Simplicity and understandability are also important
properties for production code. About 50 % of software maintenance costs are spent on
code comprehension (Foster 1993; Nguyen 2010; Yip and Lam 1994) and more than 40%
of the comprehension time is spent on plain code reading alone (LaToza et al. 2006).
Readability is therefore an important quality aspect for learning to program as well as for
software maintenance.

In this paper, we look at simplicity and understandability from a cognitive and from a
measurement point of view.

We start by looking at the role of examples in education (Sect. 2) and at properties of
good example programs (Sect. 3). In Sect. 4, we exemplify various aspects of these
properties using two example implementations of a class Date: “The Beauty” and “The
Beast”. In Sect. 5, we then develop a formula to quantify readability, which is a necessary
condition for understandability. This formula is inspired by formulas for measuring
readability of ordinary text (see Sect. 5.1). In Sect. 6, we apply the formula to 21 examples
from popular introductory Java textbooks. The results are then compared with other
readability measures, traditional software measures and human assessments of quality. In
Sect. 7, we wrap up with conclusions and directions for future work.

Parts of the work presented here are based on a technical report by the authors (Borstler
et al. 2007) that has been updated significantly and extended with a case study.

2 Examples in education

Examples are important teaching tools. Research in cognitive science confirms that “ex-
amples appear to play a central role in the early phases of cognitive skill acquisition”
(VanLehn 1996). An alternation of worked examples and problems increases the learning
outcome compared with just solving more problems (Sweller and Cooper 1985; Trafton
and Reiser 1993).

Students generalize from examples and use them as templates for their own work (Liz
et al. 2006; Mason and Pimm 1984; Reimann and Schult 1996). Examples must therefore
be easy to generalize and consistent with current learning goals. Furthermore, they should
also be consistent with the principles and rules of the subject and free of any undesirable
properties or behavior. The “[c]hoice of examples is important in helping students develop
generalisations of structures rather than surface features” (Watson and Mason 2002).

By perpetually exposing students to “exemplary” examples, desirable properties are
reinforced many times. Students will eventually recognize patterns of “good” design and
gain experience in telling desirable from undesirable properties. Trafton and Reiser (1993)
note that in complex problem spaces, “[l]earners may learn more by solving problems with
the guidance of some examples than solving more problems without the guidance of
examples”.

With carefully developed examples, teachers can minimize the risk of misinterpreta-
tions and erroneous conclusions, which otherwise can lead to misconceptions. Once
established, misconceptions can be difficult to resolve and hinder students in their further
learning (Clancy 2004; Ragonis and Ben-Ari 2005).

An important question is therefore how to tell “good” examples from “bad” ones and
whether example quality can be measured objectively.
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3 Properties of good examples

Any fool can write code that a computer can understand. Good programmers write
code that humans can understand. [M. Fowler]

Programming is a human activity, often done in teams. About 40-70 % of the total
software lifecycle costs can be attributed to maintenance, and the single most important
cost factor of maintenance is program understanding (Glass 2003; Tryggeseth 1997).
Understandability is therefore a significant property even for production code. In an
educational context, understandability is even more important. When novice students are
still learning how to write simple programs that a computer can understand, there is little
room to deal with program understanding by humans.

A good example must obviously be understandable by a computer. Otherwise, it cannot
be used on a computer and would therefore not be a real programming example.

A good example must also be understandable by students. Otherwise, they cannot
construct an effective mental model of the program, and it becomes even more difficult to
learn how to write a program that a computer can understand. Without “understanding”,
knowledge retrieval works only on an example’s surface properties, instead of on its
underlying structural and conceptual properties (Deimel and Naveda 1990; Trafton and
Reiser 1993; VanLehn 1996).

A good example must furthermore effectively communicate the concept(s) to be taught.
There should be no doubt about what exactly is exemplified. The structural form of
information affects the form of the knowledge encoded in human memory (Tennyson and
Cocchiarella 1986). Conceptual knowledge is improved by best examples and by ex-
pository examples, where the best example represents an average, central, or prototypical
form of a concept. To minimize cognitive load (Paas et al. 2003), an example should
furthermore exemplify only one new concept (or very few) at a time.

The “goodness” of an example also depends on “external” factors, like the pedagogical
approach taken. E.g., when the main learning goal is proficiency in object-oriented pro-
gramming (in terms of concepts, not specific syntax), examples should always be truthfully
object-oriented and “exemplary”, i.e., they should adhere to accepted design principles
and rules and not show any signs of “code smells”! (Fowler 1999; Martin 1993; Riel
1996). If examples are not consistently truthfully object-oriented, students will have dif-
ficulties picking up the underlying concepts, principles, and rules.

The three example properties (1) understandable by a computer, (2) understandable by
students, and (3) effectively communicate the concept(s) to be taught might seem obvious.
However, the recurring discussions about the harmfulness or not of certain common ex-
amples show that there is quite some disagreement in the teaching community about the
meaning of these properties (Ben-Ari 2010; CACM 2002; Dodani 2003; Westfall 2001).

4 One problem, two solutions
Assume the following two implementations of a class Date capable of creating date

objects and advancing dates one day at a time. The Beauty and the Beast exemplify design
choices for object-oriented example programs targeted at novices. The examples could be

' According to Fowler (1999), a code smell is an indication on the code’s surface level of a potential
problem at a deeper level. It is subtle and easy to spot, but not necessarily an actual problem or defect.
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easily criticized for exhibiting undesirable properties, like, for example, the possibility of
creating invalid dates, insufficient comments, or their lack of functionality. Solving all
these “shortcomings” would arguably lead to better programs, but not necessarily to ones
that are more easily understood by novices. Adding more concepts, properties or infor-
mation increases cognitive load and will therefore decrease understandability (VanLehn
1996). On the other hand, example programs should be sufficiently complete and consistent
to make sense (Mayer 2004).

The main difference between the Beauty and the Beast is in the way the problem is
decomposed into “components”. Software decomposition is an important factor in
managing complexity and affects comprehension and maintenance positively (Woodfield
et al. 1981). High degrees of decomposition furthermore decrease cognitive load and
support chunking (Cant et al. 1995; Clark et al. 2006; Shaft and Vessey 2006). This
supports independent and incremental comprehension, development, and test, which is
particularly important from a teaching and learning point of view.

The Beauty is beautiful because there is an explicit representation of key concepts in the
problem domain. These can work as cues (so-called beacons) aiding in code compre-
hension (Gellenbeck and Cook 1991). The components of the solution are also kept simple
with a recognizable distribution of responsibilities.

From the process point of view, the Beauty gives cues of how one could compose a
complex program from simple components, focusing on one component at a time. The
Beauty presented below only considers functional components. We could also use explicit
data components, like a static array for the number of days per month or separate (private
or public) classes for encapsulating day, month, and year, respectively. We have not done
so, though, to keep the number of language concepts in both examples on a comparable
level.

public class Date_Beauty { private int daysInMonth() {
private int day; if ( month == 2 ) {
private int month; if ( isLeapYear () )
private int year; return 29;
else
public Date_Beauty(int y, int m, int d) { return 28;
day = d; b
month = m;
year = y; if ( month == 4 || month == 6 ||
¥ month == 9 || month == 11 )
return 30;
public void setToNextDay () { else
int daysThisMonth; return 31;

} // daysInMonth
day = this.day + 1;

daysThisMonth = daysInMonth(); private boolean isLeapYear() {
return ( isMultipleOf (4) && !isMultipleOf (100) )

if ( day > daysThisMonth ) { Il isMultipleOf (400);

day = 1; } // isLeapYear

month = month + 1;
} private boolean isMultipleOf (int a) {
if ( month > 12 ) { return ( year % a ) == 0;

month = 1; } // isMultipleOf

year = year + 1;

} } // Date_Beauty
} // setToNeztDay

The Beast is structured as one monolithic method. All necessary information is con-
tained in a single statement sequence. Although this solution is smaller than the Beauty, it
is more difficult to get the full picture. The Beast shows no signs of “work units” or
“chunks” with single responsibilities that can be understood independently. That makes it
difficult to deconstruct the program and find appropriate starting points for a code com-
prehension effort. The Beast is also highly nested. Students have to keep track of many
conditions at the same time, which significantly increases cognitive load (Paas et al. 2003).
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class Date_Beast { } else {
private int day; // 1 <= day <= days in month if ( (year%4 == 0 && year%100 != 0)
private int month; // 1 <= month <= 12 Il (year%400 == 0) ) {
private int year; daysInMonth = 29;
public Date_Beast(int y, int m, int d) { } else {
day = d; daysInMonth = 28;
month = m; ¥
year = y; ¥
} day = day + 1;
public void setToNextDay () { if ( day > daysInMonth ) {
int daysInMonth; day = 1;
if ( month == 1 || month == 3 || month = month + 1;
month == 5 || month == 7 ||
month == 8 || month == 10 || if ( month > 12 ) {
month == 12 ) { month = 1;
daysInMonth = 31; year = year + 1;
¥
} else ¥
if ( month == 4 || month == 6 || } // setToNexztDay ()
month == 9 || month == 11 ) {
daysInMonth = 30; } // Date_Beast

Large, monolithic units of code are difficult to understand. To support understanding,
software should be decomposed into suitable components with limited responsibility for
the overall task. Such decomposition will lead to a more complex design. One could say
that in the Beauty the complexity (and thinking) went into the design. As a result, the units
of code became simple. In the Beast the design is trivial, but the code is more complex.

From an instructional design point of view, the Beauty has a big advantage over the
Beast. In the Beauty, the teacher can provide the difficult part (i.e., the design) and leave
the simpler part (i.e., the actual coding) to the students. In the Beast, on the other hand, the
design is trivial, which leaves the difficult part to the students. If teachers do not consis-
tently provide students with good role models of design, they will never be able to rec-
ognize patterns of “good” design. With bad (or no) designs, the students will always be left
with unnecessarily difficult tasks. The Beauty is therefore not only superior in structure, it
is also superior from a learning theoretic point of view.

Small units reduce cognitive load (Clark et al. 2006; Paas et al. 2003), structural
similarities support the recognition of programming plans or patterns (Burkhardt et al.
2002; Trafton and Reiser 1993; VanLehn 1996), and the frequent appearance of mnemonic
names helps to give meaning to program elements (Deimel and Naveda 1990; Gellenbeck
and Cook 1991).

Fig. 1 A characterization of Examining the text
aspects of readability measures

for text, according to Cadwell | Legibility
(2008) il Accessibility
Readability
Comprehension Doability

Acceptability Usability

L ili
iy Comprehensibility Translatability

Interest Post-editing effort

Examining the reader Examining the results
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5 The importance of readability

Text understanding depends on many factors, like, for example, familiarity with the vo-
cabulary, sentence structure, or reader interest in the text’s subject (DuBay 2004). There
are therefore many ways to characterize or capture readability, see Fig. 1.

A basic prerequisite for understandability is readability. The basic syntactical elements
must be easy to spot and easy to recognize. Only then, one can establish relationships
between the elements. And only when meaningful relationships can be established, one can
make sense of a text.

Like for ordinary text, understandability is an important quality factor for software.
Readability is therefore an important cost factor in software development and maintenance,
as described earlier. A good overview over code readability issues is presented in (Deimel
and Naveda 1990).

5.1 The Flesch Reading Ease Score

The Flesch Reading Ease Score (FRES) is a measure of readability of ordinary text (DuBay
2004; Flesch 1948). Based on the average sentence length (ASL—words/sentences) and
the average word length (AWL—syllables/words), FRES (see Eq. 1) computes a score for
the readability of a text on a scale 0..100. Texts with FRES <30 are considered very
difficult and FRES > 90 are considered very easy.

FRES = 206.835 — 1.015ASL — 84.6AWL (1)

Lower values of the ratios ASL and AWL indicate more easy-to-read text, and higher
values indicate more difficult to read text. I.e., the shorter the sentences and the shorter the
words in a text, the easier the text is to read. One should note that the FRES does not say
anything per se about understandability. The FRES is just concerned with the “parsing” of
a text. Flesch’s work was quite influential and has been applied successfully to many types
of texts. There are also measures for other languages than English.

Flesch’s and similar readability formulas have been criticized heavily for not taking into
account important factors, such as properties of the vocabulary, text cohesion and coher-
ence, or sentence structure. Recent research, though, shows that including such factors does
not necessarily lead to better predictors for readability (Benjamin 2012). “The [readability]
formulas have survived 80 years of intensive application, investigation, and controversy,
with both their credentials and limitations remaining intact” (DuBay 2004).

5.2 A Reading Ease Score for software

Following the idea of Flesch, a Software Readability Ease Score (SRES) could be defined
by interpreting the lexemes of a programming language as syllables, its statements as
words, and its units of abstraction as sentences. One could then argue that the smaller the
average word length and the average sentence length, the easier it is to recognize relevant
units of understanding—so-called “chunks” (Clark et al. 2006; Gobet et al. 2001; Miller
1956; Paas et al. 2003).

A chunk is a grouping or organization of information, a unit of understanding. Chunking
is the process of reorganizing information from many low level “bits” of information into
fewer chunks with many “bits” of information (Miller 1956). Chunking is a cognitive
abstraction process that helps humans to manage complexity. Since abstraction is a key
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computing/programming concept (Armstrong 2006; Kramer 2007), proper chunking is
highly relevant for the understanding of programming examples.

To measure SRES, the average word length (AWL) and average sentence length (ASL)
was computed as follows (see (Abbas 2010) for the detailed counting rules): AWL cor-
responds to the average length of lexemes (identifiers, keywords, and symbols) in number
of characters (note that the Flesch reading ease score uses average number of syllables) and
ASL corresponds to the average number of words per statement or block (delimited by
curly brackets and semicolons).

In common text readability formulas, AWL is given a higher weight (by about a factor
of 10), since word length is considered more important than sentence length for the
readability of regular text. For program text, we argue that the situation is different. AWL
should be reasonably high, since longer identifiers can carry more meaning (Liblit et al.
2006). Research also shows that longer identifiers support program comprehension (Lawrie
et al. 2006). ASL should be short though, since it is the factor that is most important for
chunking. The authors would furthermore argue that ASL is more important than AWL.
Since most words are familiar, but the grammar unfamiliar, reading the “sentences” of a
program is more difficult that reading its “words”.

This argumentation leads to the following candidate formula for SRES, where smaller
values indicate higher readability:

SRES = ASL — 0.1AWL (2)

There is more to software readability than AWL and ASL, like, for example, indentation or
commenting. In SRES, like in traditional measures for text readability, we focus on in-
herent properties that cannot be easily changed without restructuring the code. Like in text
readability, which distinguishes readability and legibility,2 we want to capture readability
independently from aspects or code features that are purely representational. Hargis (2000)
points out that “[r]eadability depends on things that affect the readers’ eyes and minds.
Type size, type style, and leading affect the eye. Sentence structure and length, vocabulary,
and organization affect the mind.” The properties that “affect the eye” can be changed in
most modern editors. SRES focuses on the properties that cannot be easily changed without
restructuring the code.

5.3 Other measures of software readability

Buse and Weimer (2010) (B&W) propose a readability measure based on human ratings of
the perceived readability of small code snippets (7.7 lines of code on average) extracted
from production code. Their measure is based on 25 code features like number and length
of identifiers, counts of various syntactical elements and structures, line length, and in-
dentation. Their readability measure correlates well with code changes, automated defect
reports, and defect log messages.

Posnett et al. (2011) reevaluated the B&W-measure and identified several weaknesses
in its statistical modeling. They also propose a simpler readability model that outperforms
the B&W-model on the original dataset:

2 DuBay (2004) defines readability as “what makes some texts easier to read than others. It is often
confused with legibility, which concerns typeface and layout.”
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PHD = 8.87 — 0.033V + 0.40Lines — 1.5Entropy, (3)

where V is Halstead’s Volume, Lines the number of snippet lines (incl. comments and
whitespace), and Entropy the relative distribution of the tokens/characters in the code.

5.4 Other related measures

Names account for up to 70% of the source code (Deiflenbock and Pizka 2006; Haiduc and
Marcus 2008) and are an important element for the understandability of code (Butler et al.
2010; Liblit et al. 2006; Salviulo and Scanniello 2014). Research also shows that tools can
help developers to define better and more consistent names (De Lucia et al. 2011; Relf
2005). However, there is little research on measures for software readability that incor-
porates linguistic information beyond Halstead’s software science (Halstead 1975).

Marcus et al. (2008) propose a measure for conceptual cohesion of classes (C3) that
takes into account the information encoded in source code comments and identifiers. C3
complements traditional structural cohesion metrics by capturing readability in terms of
“the textual coherence of a class within the context of the entire system”. They show that
C3 can improve the prediction of faulty classes when used together with traditional
structural cohesion measures.

Hgst and @stvold (2009) propose a method to identify “naming bugs”, which they use
to measure the percentage of potentially unsuitable names in software. Liblit et al. (2006)
give a thorough overview over the cognitive perspectives on naming issues in software that
affect understanding, but none of this work has resulted in actual readability measures.

6 Applying SRES
In the following subsections, we first compare SRES with common software quality

measures using our example programs from Sect. 4. In Sect. 6.2, we compare SRES with
some of the readability measures discussed in Sect. 5.3 using object-oriented textbook

Table 1 Candidate software measures

Acronym Description

SRES The software reading ease score as described in Sect. 5.2

B&W The software readability measure defined by Buse and Weimer (2010), see Sect. 5.3

PHD The software readability measure defined by Posnett et al. (2011), see Sect. 5.3

CC The average McCabe cyclomatic complexity per method; the control flow complexity in terms
of the number of (statically) distinct paths through a method (McCabe 1976)

E Halstead’s Effort; the (mental) effort required to construct a program, based on its number of
operators and operands (Halstead 1975)

MI Maintainability Index; a measure for predicting software maintainability (Welker et al. 1997)

CC/NOS  Average control flow complexity per Java statement

NOS Number of Java statements

LOC Lines of code, including comment lines and empty lines

CD Comment density. Lines of comments per statement
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examples that have been studied in the literature (Borstler et al. 2009, 2011). The results
from these comparisons are discussed in Sect. 6.3.

6.1 The Beauty and the Beast

Table 2 summarizes the measurement results for the Beauty and the Beast presented in
Sect. 4, which we complemented with three other versions of the Beauty: Beauty-array,
using an array for storing the days per month; Beauty-switch, using a switch-statement
instead of a nested if in method daysInMonth; and Beauty-private, using a private class
each to model day, month, and year.

In addition to the SRES measure and the readability measures described in Sect. 5.3, the
example programs are compared along a range of other measures that have been selected
for their reported importance for software quality in general or readability and under-
standability in particular (see Table 1).

CC, E, and NOS have been chosen for their high predictive value in program com-
prehension tests and software maintenance tasks, in particular for small programs (Curtis
et al. 1979; Fitzsimmons and Love 1978). A systematic review by Jabangwe (2014) shows
that CC and size (LOC) have been widely and successfully used for measuring main-
tainability and reliability. MI is a composite measure to quantify the maintainability of
software systems (Welker et al. 1997) and has also been used widely (Welker 2001). CC/
NOS has been suggested by Lanza et al. (2005) as a simple composite measure for
characterizing the quality of object-oriented software. CD has been added to capture the
potential effect of the amount of comments on software readability.

All measures, except SRES, B&W, PHD, and LOC have been computed using the
measurement tool JHawk v5.1.> SRES is computed with Equation 2, using measure-
ments for word data and sentence data taken with Pogje (Abbas 2010).4 The mea-
surement values for B&W and PHD are computed using software provided by the
authors of (Buse and Weimer 2010)° and (Posnett et al. 2011)°, respectively. LOC was
counted manually.

Our measurements show that the Beast ranks as the worst version in all measures,
except for PHD and measures of size (NOS and LOC). Our data also show that readability
measures like SRES, B&W, and PHD might be useful in assessing example program
quality. This will be investigated in a case study in the next section.

6.2 A case study

In (Borstler et al. 2009, 2011), the authors report on a study on the quality of object-
oriented example programs. Example programs were taken from corresponding chapters of
12 popular introductory Java programming textbooks and were 24—-194 LOC in length
(86.4 LOC on average). The examples were evaluated by 11 experienced programming
educators from 5 countries with over 10 years of subject-specific teaching experience on
average. More than half of the reviewers also had professional experience as software
developers. They evaluated example quality from a technical, object-oriented and didactic

3 http://www.virtualmachinery.com/jhawkprod.htm.

4 Pogje as well (Abbas 2010) can be downloaded from http:/www.bth.se/com/jub.nsf.
5 Available from http://www.arrestedcomputing.com/readability/.

¢ Available from https://github.com/darylposnett/readability.
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Table 2 Measurement results for the Beauty and the Beast for the candidate measures in Table 1

Example SRES B&W PHD CC E MI CC/NOS NOS LOC CD

< > > < < > < < < >
Beauty 422 00175 -3.63 2.0 4,640.51 121.40 0.077 26 52 0.154
Beast 504 0.0006 —6.11 35 1265531 9923 0.135 26 47 0.115

Beauty-array 453 00026 —-834 1.6 5,572.42  120.82 0.059 27 47 0.185
Beauty-switch  2.99  0.0247 —4.52 22 5,770.17 117.68 0.069 32 58 0.156
Beauty-private  4.81 0.0013 —10.52 127 6,879.51 12637 0.027 47 81 0.128

The “worst” value for each measure is in boldface. A < (>) indicates that lower (higher) values are “better”

Table 3 Additional measures used in case study

Acronym Description

TOD Human perception of quality of object-oriented example programs (Borstler et al. 2011)

The remaining measures are listed in Table 1

point of view. The overall quality score was captured by measure TOD (see Table 3). The
TOD ratings for the example programs showed high inter-rater agreement and can
therefore be considered reliable. In the following, we compare those ratings with the
measures for software readability discussed in Sects. 5.2 and 5.3.

For this case study, we took measurements for SRES (Sect. 5.2), B&W (Buse and
Weimer 2010), PHD (Posnett et al. 2011), MI, CC, TOD (Borstler et al. 2011), NOS, and
CD for the following programs: the Beauty, the Beast, and the example programs E1..E26
from (Borstler et al. 2011).” The values for TOD are taken from (Bérstler et al. 2011). The
other measurement values have been obtained using the same tools as described in
Sect. 6.1. CC and LOC have not been included in this case study. Since commenting and
usage of whitespace varies significantly between example programs, NOS gives a more
accurate value for size. Control flow complexity is captured by CC/NOS.

Table 4 summarizes the Spearman rank correlations for all measures. A summary of the
actual measurement values, including TOD, can be found in Table 6 in the appendix.
Table 4 shows that the readability measures SRES and PHD correlate strongly and sig-
nificantly with E, MI, TOD, and each other. PHD also correlates strongly and significantly
with CD. It can be noted that none of the traditional measures correlates significantly with
TOD. B&W shows no significant correlation with any of the other measures. The differ-
ences and similarities between the readability measures are discussed in more detail in the
next section.

6.3 Discussion

Our measures for the Beauty and the Beast examples (see Table 2) show a large variation.
Although the measures focus on different quality aspects of a program, they show that
programs with higher degrees of decomposition (i.e., the different versions of the Beauty)
consistently have better values, except for PHD and measures of size (NOS and LOC). The

7 A list of references to the source code of E1..E26 can be downloaded from http://www.bth.se/com/jub.nsf.
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Table 4 Spearman’s rank correlations for measurement data in Table 6 (see “Appendix”)

B&W  PHD E Ml CC/NOS TOD NOS CD

SRES —0.018 —0.633** 0.788**% —0.860** —0.246  —0.558* 0.450 —0.345
B&W —0.029 —0.128 —0.123 0.189 0.212 —0.328 —0.008
PHD —0.640%* 0.762%* 0.002 0.711%%  —0.324 0.808%**
E —0.840**  —0.572* —0.372 0.824**  —0.382
MI 0.129 0.471 —0.443 0.545%
CC/NOS 0.024 —0.855%*  —0.195
TOD —0.120 0.683%*
NOS —0.100

* Significant at o < 0.01
** Significant at o < 0.001

measures also show that higher degrees of decomposition not necessarily lead to larger
programs. In fact, some versions of the Beauty are actually as small as the Beast, which has
no decomposition at all.

It should be noted, though, that SRES attempts to measure readability, not size. Longer
programs take longer to read, but that does not necessarily mean that they are more difficult
to read. Our data shows neither a significant correlation between size (NOS) and any of the
readability measures (SRES, B&W, and PHD), nor does it show a significant correlation
between NOS and TOD.

This contradicts Posnett et al. (2011)’s observation that “the number of lines in the
snippet is positively associated with readability”. One should note, though, that the
snippets in this dataset were only 7.7 lines long on average and did not contain declara-
tions. The observation might therefore be an artifact of the experimental set-up.

Our case study data corroborate Posnett et al’s critique on the B&W-measure, which
only shows very weak correlations with the other measures in Table 6. SRES and PHD, on
the other hand, show significant and moderate to strong correlations with E, MI, TOD, and
each other.

Our data also corroborate earlier results showing that Halstead’s Effort (E) correlates
well with size and complexity (Curtis et al. 1979; Fitzsimmons and Love 1978).

A major difference between SRES on one hand and B&W and PHD on the other is that
the latter two are based on empirical data from the perceived readability of very small code
snippets that did not contain declarations. A significant part of object-oriented programs
are declarations, though. The examples used in our case study are complete classes con-
taining declarations and are therefore more realistic.

PHD is the only readability measure that shows a strong and significant correlation with
comment density (CD). Many examples in the case study are heavily commented. Over
40% of the examples have more comment lines than Java statements (CD > 1, see
Table 6). Since PHD considers Lines as a factor in its computation (see Eq. 3), it is also
sensitive to commenting. When recomputing PHD without factor Lines (see PHD2 in
Table 5), it neither correlates significantly with CD nor does it with TOD. However, it still
correlates with SRES, but not as strongly and significantly as before (—0.633%** in
Table 4). Its correlation with NOS becomes almost 1. This seems to corroborate that the
B&W-measure is very sensitive to size Posnett et al. (2011).
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Table 5 Spearman’s rank correlations for PHD measure without factor Lines (PHD2)

SRES B&W PHD E MI CC/NOS TOD NOS CD

PHD2 —0.577% 0247 0.446* —0.858** 0.550* —0.759** 0.195 —0.939** 0.118

* Significant at 2 <0.01
** Significant at «<0.001

Besides the Lines-factor, SRES and PHD are based on the same underlying ideas as
common text readability scores: The properties and the distribution of “tokens” in a
program (text) are the key factors that affect its readability. Whereas SRES considers
average word and sentence lengths as key factors, PHD is based on token entropy and V,
which are both forms of token distribution. Entropy measures have also been used suc-
cessfully in other areas in the software measurement literature (Arnaoudova et al. 2010;
Marcus et al. 2008). The factor Lines in the formula for PHD (see Equation 3) makes PHD
very sensitive to commenting and whitespace, though. It is therefore more sensitive to
legibility issues (“things that affect the readers’ eyes” (Hargis 2000), see Sect. 5.1) as
SRES, which tries to capture inherent factors of software readability (“things that affect the
readers’ ... minds” (Hargis 2000)).

7 Conclusion and future work

In this paper, we have discussed quality aspects of (object-oriented) example programs.
Research from the learning sciences supports that example quality affects learning. To
measure a key aspect of example program quality-readability, a simple measure, the
Software Readability Ease Score (SRES), has been proposed and compared with other
readability measures as well as traditional software measures.

SRES correlates well with Halstead’s Effort E, the Maintainability Index MI, and the
quality of object-oriented example programs as perceived by human experts (TOD). SRES
might therefore be a useful tool for helping educators in the selection and development of
suitable example programs.

Since SRES correlates well with the quality of textbook examples, it would be inter-
esting to investigate the relationship between SRES and the quality of programs written by
students. Such a measure could for example be integrated into teaching tools to give
students immediate feedback on certain qualities of their programs.

Since software readability also is an important factor for software maintenance in
general, it would also be interesting to investigate the utility of SRES in predicting various
aspects of software maintainability.

Although, the current version of SRES is quite “crude”, the results presented here are
promising. SRES performs as well or better as other code readability measures (B&W
(Buse and Weimer 2010) and PHD (Posnett et al. 2011)) on common Java textbook
examples. It is also less sensitive to legibility issues like commenting and whitespace.
Complementing SRES with measures that take into account further aspects that might
affect software readability and understandability, like, for example, token entropy (as in
PHD) or identifier naming issues could improve its utility. More research is, however,
necessary.
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Appendix: Measurement results

Table 6 Measurement results for the Beauty, the Beast and the example programs E1..E26 from (Borstler
et al. 2011)

Example SRES B&W  PHD PHD2 E MI CC/NOS TOD NOS CD
< > > > < > < > < >

Beauty 4.22 0.0175  —3.63 —2443 4,641 12140 0.077 - 26 0.154
Beast 5.04 0.0006  —6.11 —24.94 12,655 99.23 0.135 - 26 0.115
El 4.70 0.0002 1560 —15.60 3,056 126.60 0.043 14.17 23 1.609
E2 3.61 0.4754 16.60 —6.60 1,140 132.89 0.091 1642 11 2.636
E3 3.02 0.0084 15.90 —5.70 932 141.89 0.071 17.00 14 1.643
E4 4.40 0.0935 847  =20.73 6,354 12472 0.037 990 27 0.704
E5 2.90 0.0 21.61 —14.39 1,406 142.09 0.043 1333 23 2130
E6 3.70 0.2239 376 —11.84 2,269 127.58 0.057 990 21 0.286
E7 3.31 0.8499 8.03 —-1.97 501 13431 0.143 18.00 7 1.429
E8 2.40 0.3853 5.03 —8.57 735 14333 0.059 622 17 0.0

E9 2.50 0.4654 1464 —2296 1,252 13550 0.048 2150 21 2.190
E10 5.50 04933  —1.72 5132 12,135 110.61 0.031 6.80 39 0.872
Ell 6.60 02589 —532  —78.12 28,869 119.02 0.015 455 74 0811
E12 4.50 0.2786 6.47  —68.33 15,147 12576 0.013 16.00 84 1.179
E13 5.27 0.0 —-096 —18.16 2,762 126.13 0.066 —1.08 19 0579
E14 7.60 0.9960 2.07 —9.93 4,143 106.76 0.222 0.70 9 0333
E15 5.45 0.0442 —-1.09 -30.29 9,599 112.76 0.054 —-2.60 28  0.179
El6 4.50 0.3277 575 —29.85 5,829 121.40 0.039 1500 34 0941
E19 4.30 0.0553 7.25 —1595 2,100 13250 0.063 7.00 16 1.375
E20 3.50 0.7231 352 —13.28 3,885 121.31 0.050 16.67 20  0.350
E21 5.60 0.4267 6.17  =30.63 11,781 118.99 0.031 19.63 32 0.969
E25 5.60 0.0 —2520 —102.80 41,031 118.74 0.019 —2.33 103 0.427
E26 3.50 0.0 17.69  —44.71 3,734 13341 0.030 2388 43 1.651

TOD-measures for the Beauty and the Beast are not available. A < (>) indicates that lower (higher) values
are “better”
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