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ABSTRACT 
Computing scientists generally agree that abstract thinking is a 
crucial component for practicing computer science. 
We report on a three-year longitudinal study to confirm the hy-
pothesis that general abstraction ability has a positive impact on 
performance in computing science. 
Abstraction ability is operationalized as stages of cognitive devel-
opment for which validated tests exist. Performance in computing 
science is operationalized as grade in the final assessment of ten 
courses of a bachelor’s degree programme in computing science. 
The validity of the operationalizations is discussed. 
We have investigated the positive impact overall, for two group-
ings of courses (a content-based grouping and a grouping based 
on SOLO levels of the courses’ intended learning outcome), and 
for each individual course. 
Surprisingly, our study shows that there is hardly any correlation 
between stage of cognitive development (abstraction ability) and 
final grades in standard CS courses, neither for the various group-
ings, nor for the individual courses. Possible explanations are dis-
cussed. 

Categories and Subject Descriptors 
K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information sys-
tems education. 

General Terms 
Experimentation, Human Factors. 

Keywords 
Abstraction, indicator, success, learning, computing science, CS. 

 

1. INTRODUCTION 
Abstraction is seen by most computing scientists as a defining 
characteristic of computing science and abstraction ability is 
viewed as an indispensable competence for a person to be suc-
cessful in computing science. 

Computer Science and Engineering is a field that attracts a dif-
ferent kind of thinker. I believe that one who is a natural com-
puter scientist thinks algorithmically. Such people are espe-
cially good at dealing with situations where different rules ap-
ply in different cases; they are individuals who can rapidly 
change levels of abstraction, simultaneously seeing things “in 
the large” and “in the small”.    [D. Knuth] 

The above quote by Don Knuth is presented by Juris Hartmanis in 
his Turing Award Lecture [35]. Hartmanis writes: “One of the de-
fining characteristics of computer science is the immense differ-
ence in scale of the phenomena computer science deals with. 
From the individual bits of program and data in the computers to 
billions of operations per second on this information by the highly 
complex machines, their operating systems and the various lan-
guages in which the problems are described, the scale changes 
through many orders of magnitude” (p. 39). 
In his Turing Award Lecture The Humble Programmer [28], 
Dijkstra writes: “We all know that the only mental tool by means 
of which a very finite piece of reasoning can cover a myriad cases 
is called ‘abstraction’; as a result the effective exploitation of his 
powers of abstraction must be regarded as one of the most vital 
activities of a competent programmer.” (p. 864). 
In Computing as a Discipline [23], the authors identify theory, 
abstraction, and design as the three major paradigms or processes 
fundamental to the discipline of computing. In the derived Com-
puting Curricula 1991 [29], the three processes are characterized 
as follows: “Among the three processes ⎯theory, abstraction, and 
design⎯ it is fair to assume that some undergraduate programs 
emphasize more theory than design, while others emphasize more 
design than theory. However, the process of abstraction will nor-
mally be prominent in all undergraduate curricula”. 
Aho and Ullman’s imposing textbook Foundations of Computer 
Science [3] was written as an answer to the Denning Report and 
the derived Computing Curricula 1991 [66].  In the first chapter 
Computer Science: The Mechanization of Abstraction, computer 
science is characterized as a science of abstraction: “Every other 
science deals with the universe as it is. The physicist’s job, for 
example, is to understand how the world works, not to invent a 
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world in which physical laws would be simpler or more pleasant 
to follow. Computer scientists, on the other hand, must create ab-
stractions of real-world problems that can be represented and ma-
nipulated inside a computer.” (p. 1). 
In [42], Kramer writes: “Why is it that some software engineers 
and computer scientists are able to produce clear, elegant designs 
and programs, while others cannot? Is it possible to improve these 
skills through education and training? Critical to these questions 
is the notion of abstraction.” (p. 37). 
Machanick [46] have described what he calls an “abstraction-
first” course idea: 

The fundamental principle I have attempted to use throughout 
the design of the new DAA [Data Abstraction & Algorithms] is 
to expose students to just as much detail as they need to under-
stand a specific concept but no more. The idea is that students 
cannot be expected to see the point of abstraction if the course 
itself dumps them into detail indiscriminately (p. 138-139)  

Machanick has also used the abstraction-first approach success-
fully in an introductory course [45]. 
Within mathematics education abstraction is also considered im-
portant.  Richardson and Suinn have developed the Mathematics 
Anxiety Rating Scale [54]. Ferguson showed that this scale was 
missing a factor: Abstraction Anxiety [32]. He found Abstraction 
Anxiety to be high when measured at a community college. 
Based on the above it is reasonable to anticipate a strong correla-
tion between abstraction ability and performance in computer sci-
ence education. 
In previous research [9] we specifically studied the correlation be-
tween abstraction ability and performance in introductory pro-
gramming. Most surprisingly we did not find a correlation be-
tween the two. In the conclusion we wrote: 

The result of this study is most surprising. From the outset we 
were certain that students at a higher stage of cognitive devel-
opment would get higher scores in the final exam of the intro-
ductory programming course. It is not so! 

There can be several explanations to this. In this programming 
course coding is prioritized over design. The cognitive require-
ments are therefore relatively low, and apparently there are 
other factors that influence the students’ success. (p 42) 

Our conjecture that the reason for lack of correlation is due to the 
characteristics of the introductory programming course suggests 
that we look for correlation with performance in other courses in 
the CS curriculum ⎯courses where the cognitive requirements 
are higher. 
Our previous research was restricted to only one course. In this 
research we report on a three-year longitudinal study to confirm 
the hypothesis that general abstraction ability has a positive im-
pact on performance in computing science. Our operationaliza-
tions of abstraction ability and performance are the same as in our 
initial study. 
We have followed a group of 145 students over a three year pe-
riod where we have investigated correlation of their performance 
in ten courses from a CS bachelor’s degree with their abstraction 
ability. This paper reports on our findings from the study. Surpris-
ingly, our findings confirm the result from our previous study [9] 
since we did not identify a correlation between abstraction ability 
and performance in learning computer science. 

In section 2 we briefly discuss the vast amount of related work on 
indicators of success; furthermore, we discuss related work on ab-
straction and abstraction ability in computer science education. In 
section 3 we present the operationalization of our hypothesis into 
the two research questions that are addressed in this paper. Sec-
tion 4 is a description of the experiment design we have applied, 
and in section 5 we present the results of our statistical analysis. 
Section 6 is a discussion of our findings and section 7 is the con-
clusion and a description of potential future work. 

2. RELATED WORK 
Over the years, lots of potential indicators of success have been 
investigated; a brief discussion of this strand of research is pre-
sented in section 2.1. 
Many computer science educators regard abstraction ability as a 
requirement for competence in computer science; section 2.2 de-
scribes in more detail research that address the relationship be-
tween abstraction ability and computer science. 

2.1 Indicators of Success 
In the 1960s, a lot of work on creating and validating psychologi-
cal tests to select programmers were performed. Much of the 
work of the Special Interest Group in Computer Personnel Re-
search (SIGCPR) was about psychological tests for the selection 
of computing staff. At that time not many people were educated 
in the field but industry had a huge demand for manpower. In 
1966 the number of programmers and system analyst was 
170.000–200.000; and the number was expected to rise to 400.000 
in 1970 [27]. Simpson [60] published a bibliography in 1973 con-
taining 152 publications describing test for programming ability. 
A substantial amount of research has been conducted to identify 
general variables that predict the success of students aiming for a 
university degree. The variables investigated encompass 

− gender [51, 56, 57, 68] 

− parents’ educational level [65] 

− ACT/SAT1 scores [16, 17, 57] 

− performance in prior courses [21] 

− emotional factors [10, 52, 63] 

− first language [51] 

− consistent mental models [20, 25, 26]. 
Research has been conducted within the general context of educa-
tion, within computer science and in the more topic specific area 
of introductory programming [8, 11, 18, 34, 44, 51]. 
Many of the aforementioned studies present interesting results; 
however, it is difficult to apply these results to new educational 

                                                                 
1 ACT: is formerly known as the American College Test. An American, 

nation-wide college entrance exam. It assesses high school students' 
general educational development and their ability to complete college-
level work. It is a multiple-choice test that covers four skill areas: Eng-
lish, mathematics, reading, and science. The Writing Test, which is op-
tional, measures skill in planning and writing a short essay [1]. SAT 
(formerly known as the Scholastic Aptitude Test and Scholastic As-
sessment Test) is a standardized reasoning test taken by U.S. high 
school students applying for college. It covers two areas – verbal and 
mathematics. [58] 
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settings where parameters may differ significantly from the con-
text where the findings were observed. Parameters may be differ-
ent in many respects: 

− course material (e.g. textbook, programming language, devel-
opment environment) 

− course structure (e.g. number of lectures and lab hours) 

− course work (e.g. mandatory assignments and project work) 

− availability of resources (e.g. support material, support for 
collaboration, and student/instructor ratio) 

− the degree of alignment (concordance between syllabus, 
course content, and assessment) 

− type of assessment (e.g. multiple choice, oral, written, and 
practical) 

− instructor (e.g. teaching experience, familiarity with the sub-
ject, and personal attitude) 

− students (e.g. age, study seniority, and major) 

− external factors (e.g. type of institution, nationality, and cul-
ture) 

This long list of possible variations among courses indicates how 
difficult it is to generalize findings from one context to another. 
The one finding that seems to be most consistent across various 
investigations ⎯although not strong⎯ is correlation between 
mathematics score in high school and performance in CS1, but 
even this result is questionable. 
First, we know nothing about the contents and focus of the pro-
gramming courses where mathematics has been shown to be a 
predictor of success. Traditionally, programming courses practice 
programming on problems of a highly mathematical nature (e.g. 
factorial, radix-conversion, exponentiation, and binomial coeffi-
cients). In such cases, it may be the choice of problems rather 
than programming per se that causes the result. 
Second, one might speculate whether the same findings would oc-
cur for other high school grades than mathematics; in fact, 
Rauchas et al. found that “contrary to the generally accepted view 
that achievement in high school mathematics courses is the best 
individual predictor of success in undergraduate computer sci-
ence, success in English at the first-language level in high-school 
correlates better with actual performance” [53] (p. 398). 
Third, Ventura’s research [67] did not find math ability to be a 
significant predictor of success in his introductory objects-first 
programming course: “the current research calls into question the 
importance of math in the objects-first CS1. First, there was no 
correlation between the number of math courses a student took in 
high school and any of the measures of success in the current 
study. Secondly, SAT math scores always appeared after meas-
ures of effort and comfort level. In the overall models the predic-
tive value of SAT math scores was negligible.” [68]. 
In conclusion, a large number of studies of indicators of success 
have been conducted and almost all of them have applied a quan-
titative approach in the positivistic research tradition [24]. Ben-
nedsen [7] and Caspersen [19] present more complete surveys of 
research in programming aptitude aiming at identifying indicators 
of success in introductory programming courses. 

2.2 Abstraction Ability 
Many computer science educators argue that abstraction is a core 
competency for computer professionals, and that it therefore must 
be a learning goal of a computer science curriculum — see, e.g., 
[5, 43, 48, 50, 62]. 
Nguyen and Wong [48] claim that it is difficult for many students 
to learn abstract thinking; at the same time they claim abstract 
thinking to be a crucial component for learning computer science 
in general and programming in particular. The authors describe an 
objects-first-with-design-patterns approach to introductory pro-
gramming with a strong focus on abstract thinking and developing 
the students’ abstractive skills. 
In [50], the authors argue that abstraction is a fundamental con-
cept in programming in general, and in object-oriented program-
ming, in particular. The authors describe a four-level ordering of 
cognitive abstraction activities that students employ when solving 
a given problem: 1) defining a concrete class, 2) defining an ab-
stract class with attributes only, 3) defining an abstract class in-
cluding methods, and 4) defining an abstract class including ab-
stract methods. They do not use a general definition of cognitive 
development, and therefore no standard test instruments that oth-
ers have proven valid and reliable. Their definitions (and test in-
strument) are very specific to object-orientation.  
Sprague and Schahczenski [62] also argue that abstraction is the 
key concept for computer science students. They furthermore ar-
gue that object-orientation “facilitates, and even forces, a higher 
level of abstraction than does procedural programming” (p. 211). 
Hudak and Anderson [38] found that a measurement of formal 
operation (the level of formal operations, measured by formal op-
erational reasoning test [55]) and learning style (concrete experi-
encing, measured via Kolb’s learning style inventory [41]) cor-
rectly classified 72% of computer science students using a cut-off 
of 80% or better as a criterion of success in the course. Similarly, 
Allert [4] and Thomas [64] report that reflective and verbal learn-
ers perform better in programming courses than active and visual 
learners. Contrary to this, a study conducted by Byrne et al. [18] 
concludes that there is no correlation between programming per-
formance and learning style.  
Kurtz [43] used what seems to be a sub-scale of Inhelder and Pia-
get’s stage theory [39] for his study, and found that the measured 
abstraction level strongly predicted programming success (it pre-
dicted 66% of the final score). However, the study’s sample was 
very small (n=23). He found that the first and last developmental 
levels were “strong predictors of poor and outstanding perform-
ance, respectively; and the [developmental] level predicts per-
formance on tests better than performance on programs” [43]. 
Barker and Unger [6] did a follow-up study (almost a replication 
but with a shortened version of Kurtz’s instrument [43]) with a 
much larger sample (n=353). They found that the intellectual de-
velopment level [39] accounted for 11.6% of the students’ final 
grade. 
In conclusion: Several studies have focused on the correlation be-
tween student performance and abstraction; however, it is difficult 
to draw a general conclusion from these. Our study will build up 
knowledge about the impact of abstraction ability on learning 
computing science. 
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3. ABSTRACTION ABILITY AND PER-
FORMANCE IN COMPUTING 
Clearly, abstraction and abstract thinking are fundamental con-
cepts in computer science and key components of learning it. For 
CS education it is therefore mandatory to explicitly aim at the de-
velopment of the students’ abstractive skills. Furthermore, we an-
ticipate general abstractive skills —abstraction ability— to be an 
indicator of success for learning computer science. Our hypothe-
sis is therefore: 

General abstraction ability has a positive impact on 
learning computer science. 

According to the research tradition in this area, we concretize the 
hypothesis into research questions that enable a quantitative 
study. We do this by operationalizing the two components of the 
hypothesis: abstraction ability and learning computer science. 

3.1 Quantification of Abstraction Ability 
To operationalize the first part of our hypothesis we need to de-
fine what we mean by abstraction ability and how it can be meas-
ured. 
One definition is made by Or-Bach and Lavy [50], who define ab-
straction ability in terms of object-oriented programming. How-
ever, abstraction ability is a much more general skill often defined 
as part of the cognitive development stage of a person [40]. 
Our measurement of abstraction ability is based on Adey and 
Shayer’s theory of cognitive development [2, 59]; this theory is a 
refinement of Inhelder and Piaget’s stage theory [40]. 
Adey and Shayer define eight stages of cognitive development of 
pupils [2] (Table 1). 

Stage Characterization 

1 Pre-operational 

2A Early concrete 

2A/2B Mid concrete 

2B Late concrete 

2B* Concrete generalization 

3A Early formal 

3A/3B Mature formal 

3B Formal generalization 
Table 1: Cognitive development stages 

Adey & Shayer based their stages of cognitive development on a 
very large research project, CASE, aimed at finding the cognitive 
development stages of pupils in secondary school [2]. The re-
search showed a different result than the direct connection be-
tween age and development stage originally proposed by Piaget, 
especially in the upper levels. One of the most important results 
was that only about 30% of the pupils follow the development ex-
pected by Piaget. 
Based on [40], Adey and Shayer describe what they call “reason-
ing patterns of formal operations” and group the eight patterns in 
three groups: Handling of variables, relationships between vari-
ables, and formal methods (see [2] for a more exhaustive descrip-
tion). A person can of course be at a higher development stage in 
one of these reasoning patterns, but “one would not find an indi-
vidual competently fluent with one or two of the reasoning pat-

terns who would not, with very little experience, become fluent 
with them all” [2]. 
Shayer and Adey have used the eight stages for pupils in the age 
range of five to 16; we intend to use it on students in the age 
range of 18 to 22. Shayer and Adey found that at the age of 16, 
30% of the pupils were at stage 3A and only approximately 10% 
at stage 3B. Furthermore they found that the curve describing the 
progression of stages was very flat at that age [2]. 
We use Adey and Shayer’s stage model of cognitive development 
to characterize the students’ abstraction ability. 
It is relevant to question whether Adey and Shayer’s scale can 
evaluate the group that is the focus of this study (young people 
approximately 20 years old). Their study was done in primary and 
secondary schools in England, whose pupils’ age was from five to 
16. The concern is that the variation of results for our group of 
students will be very limited and therefore not useful in the statis-
tical analysis. 
Epstein [30] concludes that, in general, only 34% of the eighteen 
year old persons have reached the formal operational level, so for 
the general population this scale will give results that can be sta-
tistically analysed. Others have used Adey and Shayer’s scale or 
the more coarse-grained scale by Inhelder and Piaget for students 
in college, e.g., [47, 49]. Nielsen and Thomsen [49] found that 
many students in Danish colleges have problems with theoretical 
exercises and found that their cognitive development stage could 
indeed be measured by Adey and Shayer’s test. McKinnon and 
Renner [47] as well as Hudak and Anderson [38] tested American 
college students for the Piagetian cognitive development level. 
We therefore conclude that the scale will be useful for the se-
lected group of first year university students. 
In conclusion: We use Adey and Shayer’s stage model of cogni-
tive development to characterize the students’ abstraction ability. 
To measure abstraction ability defined in this way, we use a rea-
soning ability test developed by Piaget and refined by Adey and 
Shayer for testing at the higher end of the stage model; the so-
called pendulum-test [13]. 

3.2 Quantification of Performance in CS 
To operationalize the second part of our hypothesis we need to 
define what we mean by learning computer science and how it 
can be measured. In this research we use the results of the final 
exams of the courses in computer science as a measurement of 
success. 

3.3 Research Questions 
Based on the quantifications discussed in the previous sub-
sections, our overall hypothesis is broken down into two research 
questions: RQoverall and RQ(g): 
The first research question address the overall performance in 
learning computing science measured as the average grade of 
courses in the bachelor’s degree programme: 

RQoverall: Is there a positive correlation between stage of 
cognitive development and overall performance 
in learning computing science? 

To get a more detailed picture of the lay of the land, we also want 
to investigate the performance in specific groupings of related 
courses. Thus, our second research question is parameterized with 
a variable describing a grouping of related courses: 
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RQ (g): Is there a positive correlation between stage of 
cognitive development and performance in 
courses in the grouping g? 

There are three specific groupings we want to investigate: Con-
tent-based grouping, SOLO2 level grouping, and atomic grouping. 
The notion of grouping is discussed further in section 4.4. 

4. EXPERIMENT DESIGN 
This chapter describes the design of the experiment we have con-
ducted. It describes the test instrument used for measuring ab-
straction ability, the students and courses involved, groupings of 
courses, the marking scale used, and the statistical analysis. 

4.1 The Test 
Shayer and Adey have developed several tests to determine the 
students’ cognitive stages. These tests focus on several of the rea-
soning patterns, but because “the students with very little experi-
ence, become fluent with them all” we find it sufficient to use 
only one test. We use the so called “pendulum test”; a test that has 
been used for a long time to test young persons’ understanding of 
the laws of the physical world [2]. Shayer and Adey argues that 
the pendulum test is particular focused on testing the cognitive 
development stages from 2B to 3B [2], the span of cognitive 
stages we find relevant for our target group. 
The pendulum test consists of questions focusing on the relation 
between the weight of the pendulum, the length of the wire and 
the force used to make the pendulum swing. From two concrete 
experiments (e.g. short wire, small push and heavy pendulum) the 
students shall try to understand the relation between these three 
variables and suggest further experiments to make a firm conclu-
sion. 
The students volunteered to participate in the test. It was given to 
them in a lecture hall in the first week of their introductory pro-
gramming course. They were all informed that the outcome of the 
test would not be exposed to the lecturers before the exam. 
Along with the test there is a detailed rubric for scoring the test. 
The actual evaluation of the test was done by a research assistant. 
Based on this —and the fact that it was a multiple choice test— 
we have confidence in the evaluation of the cognitive develop-
ment level. 

4.2 The Students 
The students in this study were participants of the introductory 
programming course at the University of Aarhus during the aca-
demic year 2005-2006. 

4.3 The Courses 
The courses used in this study are the mandatory courses in the 
bachelor’s degree in computer science at the University of Aar-
hus, Denmark. 
The general structure of an academic year at the Faculty of Sci-
ence at the University of Aarhus is four quarters (each of seven 
weeks), each followed by a two- to four-week examination pe-
riod. Students take three courses (each of five ECTS3) in each 

                                                                 
2 SOLO: Structure of Observable Learning Outcome, see [12]  
3 ECTS [31]: European Credit Transfer and Accumulation System. A full 

year of study is 60 ECTS points. 

quarter. The students need to pass individual exams of all courses 
in order to pass the bachelor’s degree programme in computer 
science. Some of the courses require that the students have passed 
an exam in a previous course (e.g. Algorithms and Data Struc-
tures 2 requires that the student have passed Algorithms and Data 
Structures 1 which in turn requires that the student have passed 
Introduction to Programming). Therefore, there will typically be 
fewer students participating in the later courses than in the first 
courses. The drop out rate in the first year is approximately 20 %. 
Table 2 presents the bachelor’s degree program in computer sci-
ence (the white boxes represent elective courses). 

First year 

1. Introduction to Pro-
gramming Perspectives on CS Calculus 1 

2. Programming 2 Usability Calculus 2 

3. Algorithms and Data 
Structures 1 Web Technology Computer Archi-

tecture 

4. Algorithms and Data 
Structures 2 

Programming Lan-
guages 

Regularity and 
Automata 

Second year 

1.  Computability and 
Logic Databases 

2. Software Architec-
ture   

3.    

4.    

Third year 
1. 

2. 

3. 

4. 

No mandatory courses. The students select among a number of 
elective courses. 

Table 2: Bachelor program in computer science 
The courses in italics are those with a grading scheme specific 
enough to be analysed. Calculus 2 is a math course that is re-
quired for the computer science majors to take. 
Table 3 gives a short description of the content of each course in-
cluded in this study4. The code in parentheses after the course 
name indicates the corresponding course in CC2001 [29] in those 
cases where such a course exists. 

Course Content 

Programming 2 
(CS111O) 

Language concepts (polymorphism, events, 
exceptions, streams, and threads); Program 
design; (Recursive) Data structures; Class 
hierarchies; Frameworks 

Usability (CS350) Human machine interaction; UI compo-
nents; Interaction; UI tools; Usability meth-
ods 

Calculus 2 Directional derivative, gradient vector, dif-
ferentials of functions in several variables; 
Double integrals over general domains and 
in polar coordinates; Taylor polynomials 

                                                                 
4 Course descriptions can be found at 

http://mit.au.dk/coursecatalogue/index.cfm?elemid=9045. 
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and -series; Eigenvalues and diagonaliza-
tion; Vector spaces and inner product. 

Web Technology Central technologies related to semi-
structured data, communication protocols, 
and programming of web applications: 
HTML and stylesheets, XML and schema 
languages, transformation of XML data, and 
web services 

Computer Architecture 
(CS220) 

Hierarchical computer architecture (digital 
level, micro architecture level, conventional 
level, and OS level); Assembly language; 
Hardware architecture; External devices 

Algorithms and Data 
Structures 2   (CS210T) 

Algorithmic paradigms (divide and conquer, 
dynamic programming, greedy algorithms); 
Graph algorithms (graph traversal, topo-
logical sorting, spanning trees, shortest 
paths, transitive closure); Text processing 
(pattern matching, tries, text compression, 
text similarity) 

Programming Lan-
guages (CS344 and 
CS345) 

Functional programming (higher order func-
tions, lazy evaluation, polymorphism, mod-
ules); Logic programming (unification, 
back-tracking, knowledge representation, 
logic grammars) 

Regularity and Auto-
mata 

Formal models of regularity (finite auto-
mata, regular expressions, regular gram-
mars); Proof techniques (invariance, struc-
tural induction); Applications in CS 

Computability and 
Logic 

Models for computation; Computable and 
semi-computable problem classes; Unsolv-
able problems; Propositional logic, predi-
cate logic, program logic, and logical proof 
systems. Gödel’s completeness and incom-
pleteness theorems. 

Software Architecture Software architecture and quality attributes; 
Responsibility-driven design; Design pat-
terns, frameworks, and variability manage-
ment; Techniques and tools for testing; 
Tools for large system development. 

Table 3: Description of the courses 

4.4 Groupings 
As mentioned briefly in section 3.3, there are three specific 
groupings we want to investigate: The first is a content-based 
grouping of courses; we identify a partition of courses based on 
formalism, technology, and design and implementation. The sec-
ond is a grouping based on SOLO level of courses; each course is 
assigned a SOLO level derived from the learning outcomes for the 
course. The third is the atomic grouping where we investigate the 
correlation between stage of cognitive development and perform-
ance in the individual courses in the bachelor’s degree pro-
gramme. 
In the content-based grouping, courses are grouped into one of 
three groups based on the content of the courses. The formalism 
group consists of courses with a strong emphasis on mathematical 
formalism and theory of computing: Calculus 2, Regularity and 
Automata, Computability and Logic, Algorithms and Data Struc-
tures 2, and Programming Languages. The technology group con-
sists of courses that specifically emphasise technology: Web 
Technology and Computer Architecture. The design and imple-
mentation group consists of the two courses Programming 2 and 
Software Architecture. The remaining course, Usability, is elimi-

nated from this grouping because its nature is very different from 
the rest of the courses. 
The SOLO taxonomy (short for Structure of Observable Learning 
Outcome) originates from the study of student learning outcomes 
in university teaching by Biggs and Collis [12] carried out in the 
early 1980s. The taxonomy distinguishes five different levels of 
learning outcome according to the cognitive processes required by 
students in order to obtain them: (1) the pre-structural level, (2) 
the uni-structural level, (3) the multi-structural level, (4) the rela-
tional level, and (5) the extended abstract level. 
Brabrand and Dahl [14, 15] have analysed the courses of the 
bachelor’s degree programme in computing science by careful as-
signment of a SOLO level to each of the verbs in the description 
of the intended learning outcomes for the course. The resulting 
SOLO average for each course is described in table 4. 

Course Average SOLO level 

Regularity and Automata 3.14 

Usability  3.17 

Calculus 2 3.20 

Computability and Logic 3.25 

Web Technology 3.25 

Algorithms and Data Structures 2 3.29 

Computer Architecture 3.50 

Programming 2  3.70 

Software Architecture 3.79 

Programming Languages 4.00 
Table 4: SOLO level of the courses 

Based on SOLO levels we have split the courses into two groups: 
Courses with a SOLO average below 3.50 and those with a SOLO 
average above 3.50. Somewhat arbitrary, Computer Architecture 
is placed in the upper group. 
Finally, in the atomic grouping we investigate each course in iso-
lation. 

4.5 Data 
Information about the score of final exam comes from the admin-
istrative system of the university. The data was collected in Feb-
ruary 2008. 
In general, the grading a student receives is solely determined by 
the exam at the end of the course, i.e. no marks for assignments, 
quizzes or other activities during the course are part of the final 
exam score. In some courses satisfactory performance in manda-
tory assignments during the course is a prerequisite for attending 
the exam. 
In Denmark, two scales of marks are used: A binary pass-fail 
scale and a more fine-grained scale. In 2007, the official scale in 
Denmark was changed from a scale with ten marks (00, 03, 5, 6, 
7, 8, 9, 10, 11, and 13) to an A-F scale5. Some exams have used 
the old scale and some have used the new. Consequently, we have 
used the official conversion from the old scale to the new scale. 
Table 5 shows the conversion. 

                                                                 
5 with two different fail marks: Fx and F 
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“Old” Danish scale 
of marks 

ECTS scale of 
marks 

North American 
scale of marks 

11 and 13 A A 

10 B B 

8 and 9 C C 

7 D C 

6 E D 

03 and 5 Fx F 

00 F F 
Table 5: Conversion between scales of mark 

A student can fail an exam and then later take a re-exam and pass 
the course. For all courses we have used the most recent score; we 
have not taken the number of failed exam attempts into account. 
Students have three attempts to pass any given exam. They are al-
lowed to withdraw from an exam. Students who have withdrawn 
are not part of the population for a given course. Students who did 
not show up for an exam (but did not withdraw) are given “F” as 
their score.  

4.6 Statistical Analysis 
In order to check for a correlation between the score of an exam 
and the cognitive development stage, we have used a Pearson cor-
relation coefficient test. In order to claim a significant correlation, 
we require that the confidence level (“p”) is less than 5% (i.e. 
there is less than five percent chance of the null-hypothesis ⎯no 
correlation). A Pearson correlation coefficient is a number be-
tween -1 and 1. 1 or -1 indicates a strict linear relation between 
the variables; 0 indicates no correlation at all. Provided that p is 
below 5%, a correlation is present if the Person correlation coeffi-
cient is numerically above 0.3. 
Before performing this type of empirical quantitative research, it 
is important to consider the required sample size so that the risk 
of rejecting a hypothesis when it actually is true (called a type II 
error, denoted ß), or the other way around (called a type I error, 
denoted α) is acceptable. In order to estimate the required sample 
size, we consider three concepts [22]: 

− effect size (f2), or the salience of the treatment relative to the 
noise in measurement  

− alpha level (α, or confidence level), or the odds that the ob-
served result is due to chance  

− power (1-ß), or the odds that you will observe a treatment ef-
fect when it occurs  

Having α=0.05, 1-ß=0.8 and f2 = 0.15, we can calculate the re-
quired sample size to be 54 [61]. Given that there are over 100 
computer science students, it seems more than reasonable to per-
form the statistical analysis. 
145 participated in the pendulum test. They are representative of 
the overall student group with respect to mathematical skills, age 
and gender. Some of the students participating follow other study 
programs, so the number of students who have taken the pendu-
lum test and the exam in a given course may be considerably 
smaller than 145. 121 students have taken at least one of the ex-
ams mentioned in table 3.The exact numbers are described in ta-
ble 7. 

The distribution of the observed cognitive development level as 
measured by the pendulum test is a number between 5 and 10. 
The actual distribution can be seen in Figure 1. 
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Figure 1: The distribution of the cognitive development level 

A Kolmogorov-Smirnov test verifies that the distribution can be 
described as normal. The test instrument used did give scores for 
cognitive development useful for statistical analysis. 

5. RESULTS OF STATISTICAL ANALYSIS 
This section describes the results of the statistical analysis. 

5.1 Abstraction and Learning Computer Sci-
ence 
The first research question, RQoverall, focuses on the overall rela-
tion between students’ abstraction ability and their performance in 
learning computer science. 
Based on a Person correlation test between the average exam 
score and the measured abstraction ability, we must conclude, that 
we can not find a correlation between those (p=0.187). 64 stu-
dents have participated in the pendulum test and taken at least one 
core computer science course (i.e. students who only have taken 
Calculus 2 are excluded). If we restrict the population to those 
who have participated in all exams we find the same picture 
(p=0.26, 25 students have participated in all exams) 
The answer to RQoverall is no, thus we must reject the hypothesis of 
a positive impact of abstraction ability on the overall perform-
ance.  

5.2 Groupings 
The second research question, RQ(g), focuses on the relation be-
tween students’ abstraction ability and performance in different 
groupings of courses. 
We have investigated the positive impact for two groupings of 
courses, a content-based grouping (Formalism, Technology, and 
Design and implementation) and a grouping based on SOLO lev-
els of the courses’ intended learning outcome (High SOLO and 
Low SOLO). 
For all groupings, except a few of the individual courses, the con-
fidence level was far above 5% meaning that the type I error was 
unacceptable. Consequently, we must reject the hypothesis of cor-
relation between abstraction ability and performance in various 
groupings of courses. 
Only for two individual courses, Algorithms and Data Structures 
2 and Regularity and Automata, did we find an acceptable confi-
dence level. For Algorithms and Data Structures 2, there is a cor-
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relation; for Regularity and Automata there is an indication of a 
correlation. 
The answer to RQ(g) is no, and thus we must reject the hypothesis 
of a positive impact of abstraction ability on the overall perform-
ance.  

Table 6 and 7 summarize the results of the statistical analysis; n 
indicates the number of students who have taken the exam, p the 
confidence level and R the Pearson correlation quotient. 

Grouping n p R Correla-
tion 

Formalism 35 0.136 N/A − 

Technology 33 0.640 N/A − 

Design and implementation 35 0.113 N/A − 

Low SOLO 28 0.456 N/A − 

High SOLO 32 0.149 N/A − 
Table 6: Correlation between abstraction ability and grouping 

 

Course n p R Correla-
tion 

Programming 2 66 0.21 N/A − 

Usability 56 0.41 N/A − 

Calculus 2 50 0.28 N/A − 

Web Technology 34 0.45 N/A − 

Computer Architecture 57 0.67 N/A − 

Algorithms and Data Struc-
tures 2 

45 0.003 0.423 + 

Programming Languages 38 0.67 N/A − 

Regularity and Automata 43 0.06 0.290 (+) 

Computability and Logic 40 0.43 N/A − 

Software Architecture 35 0.14 N/A − 
Table 7: Correlation between abstraction ability and individual 

courses 

6. DISCUSSION 
In this section, we will discuss the surprising result of our analy-
sis. The discussion is structured around three themes: (1) Rela-
tionship between the SOLO level of the learning goals and ab-
straction; (2) the teaching of, use of and requirements for abstrac-
tion in the curriculum; (3) our quantification of abstraction. 

6.1 SOLO vs. Abstraction 
It seems reasonable, that students who do well in courses where 
the expected learning outcome is at the relational level (or the 
multistructural level) show better abstraction ability than other 
students. However, we could not verify that performance in 
courses with a high average SOLO level learning outcome corre-
lates with abstraction ability. 
Of course, SOLO levels are not absolute. It might be the case that 
some courses have as a prerequisite that the student is capable of 
reasoning at a high level of abstraction. In this case, a learning 
outcome where the student must be able to give an overview of 
some concepts (SOLO level 3) based on this abstract reasoning 

might require more abstraction ability than a course where the 
student must be able to evaluate (SOLO level 5) some concrete 
phenomena, say computer programs. However, it is still surpris-
ing that we do not find any correlation at all between abstraction 
ability and performance in courses with a high average SOLO 
level. 

6.2 Abstraction as Product, not as Process 
A closer inspection of learning outcomes of courses and assign-
ments in the final examination reveals a pronounced degree of use 
and modification of existing abstractions rather than creation of 
new abstractions. To the extent that abstraction is a learning goal 
at all, it is abstraction as product, not as process. Abstraction abil-
ity as such, the ability to abstract and create new abstractions, is 
at best an implicit learning goal derived from repetitive use and 
modification of abstractions provided by the teacher. 
One example is the course on Computer Architecture; the course 
objectives of this course are listed in Table 8. 

Course objectives for Computer Architecture SOLO level 

explain the organization of computers as multiple 
levels of virtual machines 

4 

describe the individual levels 3 

apply instruction sets as interface between hardware 
and software 

3 

explain the structure of large and small networks of 
computers 

4 

Table 8: Objectives for Computer Architecture 
These objectives do not seem to be related to the creation of ab-
straction but rather to the use of already defined abstractions (e.g., 
the levels of virtual machines). One could speculate that the 
bachelor’s programme mostly focus on the use of already given 
abstraction and not on the creation of new abstractions. 

6.3 On Quantification of Abstraction 
A third potential explanation for the lack of correlation between 
abstraction ability and performance is the concrete instrument 
used to assess abstraction ability. 
The validity of the instrument is debatable at two levels. It is de-
batable whether abstraction ability can be measured as stage of 
cognitive development and it is also debatable whether cognitive 
development can be measured by the specific test instrument we 
have applied. As discussed in section 3.1 and 4.1, the latter is 
generally accepted as valid. 
It is harder to justify the validity of the former: whether abstrac-
tion ability can be measured as stage of cognitive development 
⎯in this case, the ability to control independent variables in a 
reasoning task. Abstraction ability is a wide concept which covers 
much more than the ability to perform sound reasoning. It could 
be that reasoning ability and variable control is not a prominent 
competence in the curriculum. However, this does not seem to be 
the case ⎯on the contrary. The CS curriculum at University of 
Aarhus is rather formal and theoretical and a core competence in 
several courses is that of conducting rigorous mathematical proofs 
about formally defined models and abstractions: Algorithms, 
automatons, grammars, and models of semantics. This is specifi-
cally the case for the courses Calculus 2, Regularity and Auto-
mata, Computability and Logic, Algorithms and Data Structures 
2, and Programming Languages. And it is indeed among these 
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courses that our research hints at some correlation: There is a cor-
relation for Algorithms and Data Structures 2 and an indication of 
a correlation for Regularity and Automata. 

7. CONCLUSIONS AND FUTURE WORK 
We have reported on a three-year longitudinal study to confirm 
the hypothesis that general abstraction ability has a positive im-
pact on performance in computing science. 
We have investigated the positive impact overall, for two group-
ings of courses (a content-based grouping and a grouping based 
on SOLO levels of the courses’ intended learning outcome), and 
for each individual course. 
Surprisingly, we did not find a correlation between abstraction 
ability and overall performance in learning computing science. 
Neither a closer inspection of a content-based grouping and a 
grouping based on SOLO level of courses could demonstrate a 
correlation between abstraction ability and performance in 
courses within the groupings. Investigation of correlation for ten 
individual courses revealed correlation in one case only (Algo-
rithms and Data Structures 2) and a weak correlation in another 
case (Regularity and Automata). 
Interviews with educators and inspections of textbooks’ definition 
of abstraction indicate that there are only vague and/or very gen-
eral descriptions of what abstraction is and how it applies to com-
puter science. With the exception of specific applications of the 
term in, say, abstract data types and abstraction mechanisms in 
programming languages, there is a general lack of explicit charac-
terization and addressing of abstraction not to mention develop-
ment of abstraction as a competence, the teaching and learning of 
abstraction ability. In this light it seems appropriate to embark 
upon a closer and qualitative inspection of the notion of abstrac-
tion and its role in computer science and computer science educa-
tion. Work in this area is ongoing within mathematics education, 
see e.g. [33]; there are a few examples within computer science 
[36] and software engineering [37]. 
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