
Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-1

Assessing Process and Product
– A Practical Lab Exam for an Introductory Programming Course

Jens Bennedsen1 and Michael E. Caspersen 2

1 Jens Benendsen, IT University West, Fuglsangs Alle 20, DK- 8210 Aarhus V, Denmark, jbb@it-vest.dk
2 Michael E. Caspersen, Department of Computer Science, University of Aarhus, DK-8200 Aarhus N, Denmark, mec@daimi.au.dk

Abstract - The final assessment of a course must reflect its
goals, and contents. An important goal of our introductory
programming course is that the students learn a systematic
approach for the development of computer programs.
Having the programming process as learning objective
naturally raises the question how to include this in
assessments. Traditional assessments (e.g. oral, written, or
multiple choice) are unsuitable to test the programming
process.
 We describe and evaluate a practical lab examination
that assesses the students’ programming process as well as
the developed programs. The evaluation is performed in
two ways: By analyzing the results of two lab examinations
(with more than 500 students) and by semi-structured
individual interviews with representatives of the involved
persons (students, TAs, lecturer, and examiner).
 The result of the evaluation is encouraging and
indicates the value of alignment and strong conformity
between goal, content and assessment of the introductory
programming course.

Index Terms – CS1, Examination, Evaluation, Programming
Process, Objects-First, Pedagogy.

INTRODUCTION

The final assessment must reflect aims, goals, and con-
tents of a course [1].

An important goal of our introductory programming cour-
se is that the students learn a systematic approach to the
development of computer programs. Learning a systematic
approach to programming implies that the students must gain a
clear understanding of the programming process and the
activities that are part of this process. They must also develop
the ability to apply these to develop programs.

Recognizing the importance of programming techniques
and the programming process when designing a programming
course implies the need for adoption of a suitable assessment
form. Traditional assessment forms (e.g. oral or written
examinations, multiple choice questions) are unsuitable to test
the programming process.

Another equally important argument for assessing the
programming process is that “The spirit and style of student
assessment defines de facto the curriculum” [2][p.1]. Ramsden
makes a similar observation: “the type of grading influences
the student’s learning approach” [3].

The bottom line is that it is essential to apply an
evaluation form where the students demonstrate their practical
programming skills as well as their understanding of the
fundamental concepts and theories from the curriculum of the
course. Consequently, we need to develop a new type of
assessment suitable to test the programming process as well as
the product.

The lab examination described and evaluated in this paper
has as characteristics that it

i. provides a valid and accurate evaluation of the student’s
programming capabilities,

ii. evaluates the process as well as the product,
iii. encourages the students to practice programming

throughout the course, and
iv. can be used assess 120-140 students pr. day.

The rest of the paper is structured as follows: Section 2
describes the context of the lab examination. Section 3 gives a
more thorough description of the final lab examination.
Section 4 presents and discusses the findings from the
evaluation of the lab examination. In section 5 we discuss
related and future work. The conclusions are drawn in section
6.

GOALS, CONTENT AND ASSESMENT

To provide an understanding of the context, this section
describes goal, form, and content of the introductory program-
ming course.

General Information

Our programming course spans the first half of CS1 at
University of Aarhus. The course runs for seven weeks, and
after the course there is a lab examination with a binary
pass/fail grading.

The grading is based solely upon the behaviour in and
result of the final examination; acceptable performance during
the course is a prerequisite for the final exam but does not
count as part of the grading.

There are approximately 250 students per year from a
variety of study programmes, e.g. computer science,
mathematics, geology, nano science, economy, multimedia.
40% of the students are majors in computer science, and they
are the only group of students that continue with the second
half of CS1. The rest of the students proceed to other
programming courses related to their fields (e.g. multimedia

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-2

programming, scientific computing) if they proceed with
programming at all.

The students are grouped in teams of 18-20 students;
typically there are 13-14 teams per year. Each team has its
own teaching assistant (TA) – a PhD or MSc student.

Goals

The purpose of the course is that students learn the
foundation of systematic construction of simple programs and
through this obtain knowledge about the role of conceptual
modelling in object-oriented programming. Furthermore, it is
the goal that students become familiar with a modern
programming language, fundamental programming language
concepts, and selected class libraries.

After the course the students must be able to explain and
use fundamental elements in a modern programming
language, use conceptual modelling in relation to preparing
simple object-oriented programs, implement simple object-
oriented models in a modern programming language, and use
selected class libraries.

Form

The course runs for seven weeks; every week there are
four lecture hours and one lab hour plus three class hours with
a TA. In addition to the scheduled hours, students work
approximately seven hours per week in study groups or on
their own.

The four lecture hours per week are used for presentation
and discussion of general concepts and the programming
process. The programming process is revealed through live
programming in front of the students in the lecture theatre
using computer and projector and through process recordings
(narrated, screen-captured video recordings of program
development sessions), see [4].

Every week (except for the first) there is a mandatory
assignment that must be submitted to the TA. The TA
examines the assignments and gives personal as well as
collective feedback to the students. Approval of five out of six
weekly assignments is a prerequisite for the final exam but
does not count as part of the grading. The weekly assignments
are primarily used to keep the students up to the mark on the
practice of programming.

Content

The course content is fundamental programming language
concepts, object-orientation, and techniques for systematic
construction of simple programs.
• Fundamental programming language concepts:

variable, value, type, expression, object, class,
encapsulation, control structure, method/procedure,
recursion, type hierarchies.

• Object-orientation: modelling; class structures
(specialization, aggregation and association); use of
selected class libraries (in particular collection libraries),
interfaces and abstract classes.

• Systematic development of small programs:
modularization, stepwise refinement/incremental
development, test.

This is a logical listing of the course contents; it is not the
order in which the content is covered. The content is covered
using a spiral approach [5]; for further details of the structure
and content of the course, see [6, 7].

ASSESSMENT THROUGH A LAB EXAMINATION

This section discusses the examination requirements, the
organization of the lab examination and the actual lab
examination.

Conformity between Goals, Content, and Assessment

As mentioned in section “Goals”, the goals of the course
are that the student must be able to explain and

• use fundamental elements in a modern programming
language,

• use conceptual modelling in relation to preparing
simple object-oriented programs,

• implement simple object-oriented models in a modern
programming language, and

• use selected class libraries.
During the course, as in real life, programs are developed

using a standard development environment running on a
computer. An ordinary written exam with pen and paper is an
artificial situation and therefore insufficient and inappropriate
to test the student’s ability to develop programs. For the same
reasons an ordinary oral examination and a multiple choice
test would be inappropriate.

To ensure alignment and maximum conformity between
goals, content, and assessment we have designed a practical
examination organized in a lab.

Organization of the Lab Examination

The examination resembles an ordinary lab session. 20
students are tested concurrently.

We schedule one hour per group of 20 students, but only
30 minutes for the actual lab examination. The rest of the time
is used for administrative activities and as buffer.

Each group of students receives a different assignment
consisting of nine small progressive programming tasks. In
principle the assignments are identical (they are all instances
of the same generic assignment), but the students does not
know nor realize this. The similarity of the assignments is
important for fairness as well as comparability of the students’
results. The sample assignment in Figure 1 deals with tracks
and play lists; other exercises concern luggage and flights,
employees and departments, museums and paintings, etc.
Although the concepts modelled by the classes vary, the
assignments have similar structure.

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-3

Assessment of Product and Process

In test for completed apprenticeship of traditional crafts,
the examiner inspects the apprentice while they construct their
exam product; the quality of the apprentice’s construction

process as well as the quality of the final product counts in the
final grading.

Because of similar goals regarding the assessment of
process and product, we have adopted a similar examination
form where the lecturer and the external examiner evaluate the
programming process as well as the program produced by
each student by inspecting the students during the
examination.

To avoid practical problems during start-up and
finalization of the lab examination (e.g. login problems,
applying naming conventions, delivery of the exam products),
and to ensure that minor unimportant programming errors, tool
problems, etc. does not hinder the student’s problem solving
and programming, five TAs are present during the lab
examination to support the students. If the TAs have doubts
about their role (e.g. how much to interact with the students),
they consult the lecturer or external examiner on-the-fly.

To let the students settle down and get started, they are
not inspected until they have passed a checkpoint after the first
three programming tasks. The students are instructed to call
upon a TA or the lecturer when they reach the checkpoint to
show and demonstrate their solution. When a student has
passed the checkpoint, the lecturer and external examiner start
inspecting the student’s behaviour. The poorest students never
reach the checkpoint i.e. the inspection time is focused on
those students who have a chance of passing.

The examiner and lecturer note the time when the first
three tasks are done. After five to seven minutes, they start
inspecting the process of each student; around that time, and
after a short inspection of the students programming process,
it is usually possible to determine the pass grade. This is a
very efficient way to know when and in what order to look at
the students’ solutions. This is also a method to ensure that the
students have some silence and can concentrate during the
exam.

To allow for efficient inspection, the students are
instructed to keep all editor windows open and tiled on the
screen.

The students’ behaviour as well as the quality of the
programs they produce count in the final grading but not on
equal footing. An appropriate and systematic programming
process can compensate for minor flaws and errors in the
product and result in a pass mark for the student, and similarly
a poor process can be the determining factor when the product
is on the edge. Although we emphasize the programming
process, it is not the case that a nice product will be turned
down due to a poor process (which is unlikely anyway).

EVALUATION

In this section, we present and discuss an evaluation of
the lab examination described above.

Evaluation Method

The evaluation of the lab exam was performed in two
ways: By analyzing the results of three consecutive lab
examinations (2003, 2004 and 2005) and by semi-structured

Lab Exam Exercise (30-minute exam)
1. Create a class, Track, that represents a piece of music; the

Track class is specified in the following UML diagram.

Track

String artist
String songName
int min
int sec

String toString()

The four field variables must be initialized in a constructor
(through four parameters of suitable types). The method
toString must return a string representation for a piece of
music, e.g.

 ”Yesterday: The Beatles (2:05)”
2. Create a test method named exam in class Driver. The

method must be static, have return type void, and have no
parameters.

3. Create two Track objects in the exam method using object
references t1 and t2; print the two Track objects using the
toString method.

4. Create a new class, Playlist, representing a collection of
Tracks; the Playlist class and its relation to the Track class is
specified in the following UML diagram:

Playlist

String playlistName

void addTrack(Track t)
void removeTrack(Track t)
Track findShortestTrack()

Track

String artist
String songName
int min
int sec

String toString()

*

5. Implement the method addTrack (and removeTrack) so that

it adds (removes) the object t to (from) the Playlist object.
6. Create a Playlist object in the exam method in the Driver

class; associate the two existing Track objects with the
Playlist object.

7. Implement the method findShortestTrack. The method must
return a shortest (measured in playing time) Track object
from a Playlist object. You can assume a non-empty Playlist
object. In other words, you need not worry about the playlist
being empty.

8. Use methods findShortestTrack (from class Playlist) and
toString (from class Track) to print the shorter of the two
Track objects created in task 3.

9. Let the Track class implement the Comparable interface. The
natural order of Track objects is defined by the length of the
song.

Figure 1: Sample Lab Exam Exercise

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-4

individual interviews with students, TAs, the examiner, and
the lecturer.

Quantitative Evaluation

For each of the three years we have collected data about
the students for four variables (and two derived). The
description of the variables can be found in Table 1.

Variable Description
students students enrolled for the course
abort students that aborted the course before the final exam
exam students allowed to take the final exam
skip students that did not show up for the final exam but

was allowed to
fail students who failed the final exam
pass students who passed the final exam

Table 1: Description of type of data

The numbers in table 1 are related as follows:
 students = abort + exam
 exam = skip + fail + pass
From these numbers we calculate exam rate, pass rate

and retention rate (exam/students, pass/exam, pass/students).
The results are presented in Table 2.

 2003 2004 2005
students 276 220 295
abort 63 26 28
exam 213 194 267
exam rate 77.2 % 88.2 % 90.5 %
skip 13 5 3
fail 15 19 29
pass 185 170 235
pass rate 86.9 % 87.6 % 88.0 %
retention rate 67.0 % 77.3 % 79.7 %

Table 2: Statistics from three years of practical lab exams

The figures in Table 2 reveals two interesting aspects: the
improved exam rate (and retention rate) from 2003 to the
following years, and the high pass rate in general.

The curriculum was radically redesigned in 2003 going
from a semester structure to a quarter structure; consequently
the traditional CS1 course was split in two courses with an
exam in between. The students of 2003 were the first to take
the new course with the new examination form, and therefore
there where no tradition for the students to lean on. In the
following years (2004-2005) the students have had the old
exam questions to use for practice, and older students to hear
war stories from. In the following years the lecturer could be
more explicit when describing the requirements for the exam
and the exam form. We believe that this is the primary reason
for the improved exam rate.

The pass rate is high compared to what others report [8,
9]. We believe that this primarily is due to the alignment and
the strong conformity between goal, content and assessment of
the course.

Qualitative Evaluation

The semi-structured interviews were conducted two to
three weeks after the final exam. Ten students were selected to
get a mixture of major and gender. One interviewer conducted
each interview. The interviews were audio taped for later
analysis. The interviews followed an interview guide focusing
on three topics: The lab exam form in general, this specific
exam, and the evaluation form compared to other evaluation
forms. In the analysis that follows, quotations from the
interviews are presented that describes the general attitude of
the group. The interviews were done in Danish, and the
quotations translated into English by the authors.

The Students

There was a very little difference in the way that the
interviewed students had experienced the lab exam; their
answers were largely similar. We find therefore that the
students are representative of the general attitude towards the
exam, although we cannot be sure.

All of the interviewed students found the evaluation form
fair. They defined fair as “if you have practiced during the
course, you can expect to pass the exam”. They all found that
the form and content of the exercise was very adequate with
respect to the goals of the course. As one student noticed:
“Programming requires very abstract thinking, but it is also a
craft ... the examination form perfectly suits this mixture.”

One of the students did not like that a TA was looking
over her shoulder. She felt insecure and nervous. However,
she was the only one having this experience – no one else
minded having the TAs around (some even found their
presence to give more peace of mind).

The examination incited the students to practice
programming. As an option for the students, exam exercises
from the previous year were available for preparation for the
exam. As one student replied when asked about his
preparations, “I solved all the [old] exam exercises”.

Students were instructed to call the TA after solving the
first three tasks of the exercise (Figure 1) to demonstrate what
they had achieved. None of the students found this to be
problematic, but some of them pointed to the possible
problem, that the slow students might feel this as an extra
stress factor (knowing that many of the other students have
finished). In conclusion, only one of the interviewed students
felt the examination to be stressful.

All of the interviewed students felt that a more fine-
grained marking could take place, but it would require more
time and more tasks. Most thought that one hour would be
sufficient for this.

The Teaching Assistants

The interviews with the teaching assistants in many ways
supported the statements from the students. They also found
the exam to be fair and had the impression that it evaluates the
students programming skills.

In the beginning, the TAs had some difficulties knowing
to what extent they could answer questions. During the exam,

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-5

the TAs developed a practice: they helped a student who had
spent several minutes trying to figure out a simple problem,
but did not help with problems that were more fundamental. If
in doubt, the TAs asked the lecturer or examiner. Apart from
this, they did not feel uncomfortable with they role.

The Lecturer and the External Examiner

Both the lecturer and the examiner found the exam form
to be both fair and evaluating the learning objectives of the
course. The external examiner found that the exam evaluated
the student’s understanding of the general concepts although it
was impossible to evaluate that the student was “able to
explain [...] fundamental elements in a modern programming
language”. They found that it was easy to assess an objective
pass/fail criterion due to the generic exercises. The examiner
thought that a little longer time would give an even better eva-
luation criterion.

The examination gave a good impression of the students
programming skills including their programming process. As
the examiner said: “When you get an error message from the
compiler you must be able to figure out what is wrong … that
is a part of a practical programming skill”.

Concluding the Evaluation

The exam tests the process as well as the product. In some
cases the process was the decisive factor. One special example
of this was a student that was ill and therefore worked very
slowly; however slow, her programming process was very
good demonstrating a systematic approach to solving the
problems.

The evaluation indicates that the lab examination supports
the learning objective of the course. The students and the
lecturer/examiner consider the lab examination fair. The
assessment does not require many resources: 250 students can
be handled using less than 90 person-hours.

Low retention is one of the main problems in CS1
courses. As noticed by [10][p.40] their retention “has been
around 50%”. In this course, the retention is around 75%. We
have found that the examination form kept the students up to
the mark; they did actually practice programming. We think
this is one of the explanations of the relatively high retention
rate.

For computer science students the examination form must
be seen in conjunction with the examination form of the
following course (the second part of CS1), which is an oral
examination focusing more on the conceptual aspects of
introductory programming. There is a progression from the
first exam to the next, from testing practice to testing
conceptual knowledge.

RELATED AND FUTURE WORK

Recently, a growing number of papers reporting on
laboratory exams for introductory programming courses have
been published [11-15]. All report good results using this
apparently novel assessment form. However, a common
characteristic of the assessment methods presented in these

articles, and a deficiency compared to the method described
herein, is that the evaluation and grading is based solely upon
the end product, the students’ final solutions.

In [12] the authors describe the grading in their lab final
(their word for lab exam): “Grading on the exam is focused on
working programs”. Only the result of the process is
evaluated, not the process. Barros [11][p.18] report on the use
of lab exams during the course, but the final exam is a
traditional written exam. The “rationale behind maintaining
code written in the final exam was to evaluate the students in
an environment where trial and error is simply not possible”.
Again, they do not include an evaluation of the programming
process in their lab exam; the focus is on the final product
only.

Focus on the programming process during the course is
very important. We are currently investigating the idea of
having the students supply information about their
programming process (in the form of a screen capture of a
programming session) and include this as part of their weekly,
mandatory assignment. We expect this information to be
valuable and useful for the TAs and the lecturer in order to
provide feedback on the process as well as the product, and in
general to improve the ability to address the actual needs of
the students.

CONCLUSION

We have described and evaluated a lab exam which has a
number of advantages. It is simple to evaluate the student’s
programming process as well as the product (the result of the
student’s efforts). It is a fair and effective exam. We use
standardized exercises that each covers more than 80% of the
curriculum. The environment for the exam is the normal daily
work environment. It is a lightweight exam easy to prepare
and carry out. It requires a couple of days to prepare the
exercises for the exam, and we had a throughput of 100
students per day. Everyone involved, in particular the students,
regard form as well as content of the exam to be very good
and in excellent correspondence with the learning objectives
of the course.

ACKNOWLEDGEMENT

It is a pleasure to thank Gudmund Frandsen for valuable
comments during development and practice of the lab exam
described and evaluated in this paper. We will also like to
thank the students and TAs who participated in the interviews.
A special thank to Michael Kölling for valuable comments on
an earlier version of this article.

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-6

REFERENCES

[1] J. C. Prior and R. Lister, "The backwash effect on SQL skills grading," in
ITiCSE '04: Proceedings of the 9th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, 2004, pp. 32-36.

[2] D. Rowntree, Assessing Students. how Shall we Know them? , vol. rev. ed.,
repr., London: Kogan Page, 1988,

[3] P. Ramsden, Learning to Teach in Higher Education. London: Routledge,
1992,

[4] J. Bennedsen and M. E. Caspersen, "Revealing the programming process,"
in SIGCSE '05: Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education, 2005, pp. 186-190.

[5] J. Bergin. Fourteen pedagogical patterns. Available:
http://csis.pace.edu/~bergin/PedPat1.3.html

[6] J. Bennedsen and M. E. Caspersen, "Programming in context: A model-
first approach to CS1," in SIGCSE '04: Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education, 2004, pp. 477-481.

[7] M. E. Caspersen and H. B. Christensen, "Here, there and everywhere - on
the recurring use of turtle graphics in CS1," in ACSE '00: Proceedings of the
Australasian Conference on Computing Education, 2000, pp. 34-40.

[8] R. Andersson and T. Roxå , "Encouraging students in large classes," in
SIGCSE '00: Proceedings of the Thirty-First SIGCSE Technical Symposium
on Computer Science Education, 2000, pp. 176-179.

[9] J. Börstler, T. Johansson and M. Nordström, "Teaching OO concepts - a
case study using CRC-cards and BlueJ," in Proceedings of the 32nd
ASEE/IEEE Frontiers in Education Conference, 2002, pp. T2G-1-T2G-6.

[10] A. N. Kumar, "The effect of closed labs in computer science I: an
assessment," J. Comput. Small Coll., vol. 18, pp. 40-48, 2003.

[11] J. P. Barros, L. Estevens, R. Dias, R. Pais and E. Soeiro, "Using lab
exams to ensure programming practice in an introductory programming
course," in ITiCSE '03: Proceedings of the 8th Annual Conference on
Innovation and Technology in Computer Science Education, 2003, pp. 16-20.

[12] M. E. Califf and M. Goodwin, "Testing skills and knowledge:
Introducing a laboratory exam in CS1," in SIGCSE '02: Proceedings of the
33rd SIGCSE Technical Symposium on Computer Science Education, 2002,
pp. 217-221.

[13] A. T. Chamillard and K. A. Braun, "Evaluating programming ability in
an introductory computer science course," in SIGCSE '00: Proceedings of the
Thirty-First SIGCSE Technical Symposium on Computer Science Education,
2000, pp. 212-216.

[14] C. Daly and J. Waldron, "Assessing the assessment of programming
ability," in SIGCSE '04: Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, 2004, pp. 210-213.

[15] N. Jacobson, "Using on-computer exams to ensure beginning students'
programming competency," SIGCSE Bull, vol. 32, pp. 53-56, 2000.

