
Teaching Programming to Liberal Arts Students 
— a Narrative Media Approach 

 
 

Peter Bøgh Andersen*, Jens Bennedsen, Steffen Brandorff+, Michael E. Caspersen and 
Jesper Mosegaard 

 
*Department of Computer Science 

Aalborg University, Denmark 
pba@cs.auc.dk 

+Department of Information 
Studies 

University of Aarhus, Denmark 
sbrand@imv.au.dk 

Department of Computer Science, 
University of Aarhus, Denmark 

{jbb, mec, mosegard} 
@daimi.au.dk 

 
 

ABSTRACT 
In this paper we present a new learning environment to be used in 
an introductory programming course for students that are non-
majors in computer science, more precisely for multimedia stu-
dents with a liberal arts background. 
Media-oriented programming adds new requirements to the craft 
of programming (e.g. aesthetic and communicative). 
We argue that multimedia students with a liberal arts background 
need programming competences because programmability is the 
defining characteristic of the computer medium. We compare 
programming with the creation of traditional media products and 
identify two important differences which give rise to extra compe-
tences needed by multimedia designers as opposed to traditional 
media product designers. We analyze the development process of 
multimedia products in order to incorporate this in the learning 
process, and based on this we present our vision for a new learn-
ing environment for an introductory programming course for 
multimedia students. 
We have designed a learning environment called Lingoland with 
the new skills of media programming in mind that hopefully can 
help alleviate the problems we have experienced in teaching 
programming to liberal arts students. 

Categories and Subject Descriptors 
K.3.2 [Computing Milieux]: Computers and education– Com-
puter science education, Information systems education  

General Terms 
Human Factors. 

Keywords 
non-majors, narration, literal arts students, introductory program-
ming, programming education. 

 

1. INTRODUCTION 
Teaching introductory programming to non-computer-science 
students and in particular to multimedia students with a liberal 
arts background is a big challenge for several reasons (an in-depth 
discussion of this issue can be found in [4] and [2]). Programming 
is not a primary interest of the students and many students con-
sider programming to be “nerdy”. Most liberal arts students are 
more inclined to “open-ended topics” in which analysis, discus-
sion and interpretation are core competencies, and are less in-
clined to take interest in “closed, absolute topics” like math and 
programming. Almost all students are lacking in mathematical 
qualifications, or even worse: many are scared of math and typi-
cally have had very bad school experience in that subject. Conse-
quently, most students are de-motivated already at the outset and 
do not possess the habits and qualifications that “normal” CS 
students do.  For these and other reasons it is necessary to ap-
proach the task of teaching introductory programming to liberal 
arts students in a new and untraditional way. 
Our approach is based on an innovative learning environment, 
Lingoland, that is used in the first weeks of learning the basics of 
programming in Lingo (the built-in language of Macromedia’s 
media authoring tool, Director). This paper is a presentation of 
our motivation for developing Lingoland, the vision for it, as well 
as a brief description of the product as it has materialized so far. 
(It is difficult to pay justice to an interactive media like Lingoland 
in a paper; we therefore invite the interested reader to visit 
www.daimi.au.dk/lingoland/ for a more thorough presentation of 
the tool.) 
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

ITiCSE’03, June 30–July 2, 2003, Thessaloniki, Greece. 

Copyright 2003 ACM 1-58113-672-2/03/0006…$5.00. 

 



2. WHY MULTIMEDIA STUDENTS NEED 
PROGRAMMING 

Given that teaching programming to multimedia students is a big 
challenge, and that learning programming skills is very frustrat-
ing, one might consider whether programming skills are at all 
necessary for this group of students. 
We believe it to be very important (as did Alan Kay and Adele 
Goldberg when they invented Smalltalk [5]); the main argument is 
the following [1]: for the past two hundreds years, two cultures of 
research have differentiated themselves. On one hand, Science 
sought the laws of nature and put them to use in building tools and 
machines. On the other hand, the Liberal Arts concerned them-
selves with human culture and art, and applied their knowledge to 
analyzing and producing media objects, such as books, plays, 
movies, television, and newspapers. But with the advent of the 
computer, something came into the world that was a tool, a ma-
chine and a medium at the same time. This fact necessitates a re-
negotiation of established knowledge borders. Qua machine and 
medium, the computer requires from its user both types of qualifi-
cations, and therefore the liberal arts need to take an interest in 
utilizing its characteristic features. 
The basic characteristic of the computer medium is that it can be 
programmed. This feature distinguishes the computer from other 
media, and enables the interactivity that most people recognize as 
the unique new feature of this medium. 
If multimedia students were allowed to study a curriculum with-
out programming, they would miss the defining characteristic of 
one of the media of interest, which again would reduce their 
analyses and products concerning the computer to replicas of old 
media works.  
 

3. COMPETENCES FOR CREATION OF 
INTERACTIVE MEDIA PRODUCTS 

When we compare programming to the creation of traditional 
media products, we will focus on two important differences: 
1. Direct vs. indirect creation: In many traditional media (lit-

erature, graphic art, etc.) the product is created directly by 
the designer. In programming, the product—the program 
execution—is created indirectly through the program which 
is a description of (an infinite number of) possible program 
executions. Programmers create tools rather than works. 

2. The temporal aspect: In some media, the designer has full 
control over time. This is not the case in interactive computer 
systems in which the user determines part of the execution. 

The creation of some media products (e.g. movie scripts, drama, 
and music compositions) differ in this respect and are similar to 
programming in respect to indirect creation. In these art forms the 
author/composer will have to keep in mind how his instructions in 
the manuscript or score will be understood by the actors or per-
formers. 
A programmer does not produce a program execution directly, but 
must plan and write a description of the execution. Thus, pro-
gramming involves a more analytical and less directly involved 
stance than painting or writing.  
The outcome of a programming effort is not a single tangible 
“thing”, but rather a (possibly infinite) set of “execution in-

stances”, each different from the other, but all based on the de-
scription of the execution. Thus, the outcome of programming can 
be considered as more abstract than the result of e.g. painting.  
These differences are caused by the inherent properties of the 
computer media, and there is no escape: the students must learn to 
handle them if they want to stay in the game. 
However, this does not mean that pedagogical methods and cur-
ricula should be transferred wholesale from the computer science 
traditions to interactive media. Most programming curricula 
evolved in an earlier period in which computer systems were 
automata or tools. In such applications, predictability, robustness, 
and correctness are important properties. In media applications, 
however, new requirements are added: like other media, they 
must be understandable, entertaining, aesthetically satisfying, edu-
cational, provocative, etc. Although the traditional media skills, 
such as writing good texts or drawing instructive pictures, are still 
important, programming skills are just as indispensable, since they 
allow you to exploit the special powers of computers to communi-
cate your message. 
 

4. THE PROCESS OF DEVELOPING 
MEDIA PRODUCTS 

The main function of a medium is to enable its user to create 
attractive interpretations of the representations it carries. The 
value of a media product lies in what it can mean to somebody.  If 
we cannot understand the subject of a textbook we have bought, 
we have wasted our money; if the newspaper does not give us 
interesting news we have reason for complaint; and if the horror 
movie does not scare us we want our money back.  
The process of writing a book resembles the development process 
for interactive media products and gives clues to what we want to 
obtain in the learning process. A writer moves phrases around and 
exchanges words in his manuscript until he hits upon the formula-
tion that best expresses his thought. Similarly a painter keeps re-
painting and correcting until the image composition is as he envi-
sioned. This is a basic technique in media work, called commuta-
tion in linguistics: replace a property of a sign by another property 
and observe the difference of meaning caused by the change. 
Repeat until satisfied. 
It follows that commutation could play an important part in a 
media-oriented programming course, not only because it is a good 
pedagogical trick, but also because it is a basic professional tech-
nique the students must master. 
Consequently we have to modify the traditional computer science 
method, and object-orientation in particular, of first building a 
model of the domain of interest, then devising the functionality 
required by the application area, and finally adding a suitable 
interface. Otherwise we risk constructing a product e.g. a story 
that nobody will take any interest in at all! The building of the 
model, the definition of functionality, and the design of the inter-
face must go hand in hand. 
Of course, not all aspects of an interactive media product can be 
written with this direct link to the interface. A sculptor must con-
struct a steel scaffold that can maintain his sculpture; likewise, the 
programmer will have to construct an architecture that indirectly 
is a prerequisite for the effects that impact the user. 
 



5. LINGOLAND – THE VISION 
Theorists like Niklas Luhmann (cf. [8]) view communication as a 
“perturbation” of the already established closed system of the 
learner. What the teacher can do is to challenge, “irritate”, the 
student’s system; however it is the student himself that must adapt 
to the irritation. A consequence of this theory is the following: if 
you can present a programming environment that the student can 
understand through his current set of competences, and you are 
able to challenge these competences, this may cause the students 
to change their preconceived notions about a subject. This is 
another way of stating the old rule of “talking to students in a 
language they know”. Liberal arts students often possess a num-
ber of the qualifications involved in problem solving at a general 
level, but most often have no explicit knowledge hereof. If we 
choose a metaphor already known to them, we could be halfway. 
If one wants to learn a new foreign language, say German, the 
most efficient approach is to spend some time among Germans. 
We are not arguing that learning a programming language is like 
learning a natural language, but we find the metaphor of spending 
time among native speaking inhabitants when learning a language 
useful also when it comes to learning a programming language. 
Like all metaphors, the metaphor of viewing programming educa-
tion as learning a new natural language breaks down at some 
point. In order to support the metaphor from the outset, the pro-
gramming language is presented as the language of mechanical 
creatures in a fictive world. Hopefully the students will then 
accept the primitive and strange way these machine-born creatures 
communicate. 
In a media-oriented approach, learning a programming language 
means to understand the meaning effects it can offer to produce! 
What happens on the screen or in the loudspeakers if I change this 
line of code to something else? Does it change my story? Does it 
express what I want to express? 
We envisage a learning tool, Lingoland, to support the learning of 
the programming language Lingo. The environment is designed to 
also meet the requirements of the other part of the curriculum, 
media design. It builds on the game-and-story metaphor. We have 
staged the learning process as a game where we have left various 
lacunae open for the students to discover and enhance. The stu-
dent simply edits scripts and watches the resulting behavior 
changes, switching back and forth between the so-called play 
mode (execution) and transform mode (scripting) of the tool. 
 Moreover, Lingoland tries to move the students from the game 
illusion they know into the world of programming, from the “in-
terface” to the “system”. In the user-interface of the environment 
we graphically make explicit the change from “playing the game” 
to “programming the game” (transforming the rules of the game). 
In this respect it exploits the notion of “Verfremdung”1 in 
Brecht’s dramaturgy [3]. 

                                                                 
1 “Verfremdung” (or estrangement) means to historicize, that is, 
consider people and incidents as historically conditioned and 
transitory. The spectator will no longer see the characters on stage 
as unalterable, uninfluencable, helplessly delivered over to their 
fate. He will see that his man is such and such, because circum-
stances are such. And circumstances are such, because man is 
such. But he in turn is conceivable not only as he is now, but also 
as he might be –that is, otherwise– and the same holds true for 
circumstances. Hence, the spectator obtains a new attitude in the 

The programming challenges unfold when the student wanders 
around in the fictive world. All the inhabitants you meet “speak” 
and understand Lingo. You learn by observing the way they be-
have, and you communicate with them in their own language. In 
this respect Lingoland builds on Papert’s well-known ideas of 
creating an abstract world of mathematics [6]. 
One of the ways programming languages differ from natural 
languages is the required degree of formality and precision when 
communicating in the language. Through their experience and 
education students with a liberal arts background have developed 
and refined a series of competences used in discussion, communi-
cation, and life in general. Such competences have a rich set of 
tools to deal with inaccuracies, incompleteness, and errors but still 
works satisfactorily in a great number of contexts. The flexibility 
of this relies on the experience of the individual, based on an 
ability to generalize and transfer conceptual structures. In contrast 
programming requires precision and rigid formal expressivity, as 
the recipient of the communication is a machine. The computer 
does not possess even a minimum of the customary social compe-
tences, implicitly expected from any communication partner by 
the computer novice. On the contrary, interpreters or compilers 
mercilessly track down even the smallest of syntax errors and 
produce disillusion, blocking the progress of the learner. The 
creatures of Lingoland are not human and rather unfriendly to 
“non-Lingoists” (i.e. the students) so students are forced to be 
precise in the way that they express their communication. Hope-
fully, this motivates formal and precise communication. 
The best teaching environment is one that itself demonstrates 
what is being taught, i.e. the environment should itself be a good 
media product that stages the learning process. There are two 
aspects of being a good multimedia product, an external and an 
internal. From an external point of view, the product must be 
understandable, entertaining, aesthetically satisfying, educational, 
provocative, etc. From an internal point of view the product must 
posses traditional software engineering qualities such as modular-
ity, low coupling and high cohesion, etc. Good quality is hope-
fully inspiring to the students, but more importantly it is necessary 
when demonstrating the system architecture: how interface func-
tionality and model works together. 
 

6. LINGOLAND – THE PRODUCT 
Lingoland is a game where you control a person walking around 
and your mission is to rescue the world from various evil viruses 
that have infected all the other inhabitants. All inhabitants are 
products from a local software factory, and the student’s final goal 
is to locate this plant and correct their production; only then, 
Lingoland will again become the peaceful place it once was. 
During the mission you are given a number of quests that have to 
be solved in order to proceed and fulfil the mission. 
A typical quest in the beginning is “There is going to be a party 
for which we need some water, and agent Snegom is going to get 
the water at the well and bring it to the barn, where the party will 
take place. Snegom walks too far; you must change his behaviour 
so that he only walks 50 steps back and forth”. The mission is: 

                                                                                                           
theatre. He will be received in the theatre as the great “trans-
former”, who can intervene in the natural processes and the social 
processes, and who no longer accepts the world but masters it. 



1. find the agent Snegom 
2. look at the Lingo-code that defines his behaviour 
3. change the code to make Snegom do the right thing 
4. verify that the result is as desired. 

Once Snegom is found, the student exits the play mode and enters 
the transform mode. In transform mode all the active objects in 
the game gets assigned a name. The student can edit the behaviour 
of the desired object (Snegom) by invoking an edit method on the 
edit tool and giving Snegom as a parameter. This helps learning 
the student about method calls and parameter passing. 
When the edit method is invoked, the code for Snegom is shown 
in a little box: 

if distance>100 then  
  ... 
  distance=0  
end if  
distance=distance+1 

 
This piece of code contains an if-statement that needs to be altered 
in order to obtain the desired behaviour. 
When returning to play mode, the behaviour of Snegom changes 
right away and there is an immediate feedback to the students (in 
case of a syntax error, the student is informed about it by the 
agent and help is provided).  
Later in the game the same topic is re-addressed. This time the 
quest could be: “During the party we want to have some nice 
flashing lights, but the fire-fly won’t flash. Find it and make it 
flash, then we will have a nice party”. The student does the same 
again (find the relevant object, change the code that defines the 
behaviour of the object, and observe the result), but this time there 
is no if-statement at the beginning, the student has to figure it out 
by himself. 
Later again, the quests are “phrased” in Lingo, and as the quests 
get harder, the student has to use more advanced problem solving 
techniques to modify and correct the creatures of Lingoland. In 
this way the student is introduced to the constructs of the pro-
gramming language; in the beginning the tasks are fairly easy, but 
gradually they become harder and harder, and over time the stu-
dent improves his expressability in the language. 
All the elements of Lingoland are written in Lingo. This implies 
that the student can inspect the way they are written and learn 
from this. This also gives him the idea that programming can be 
used for writing educational software and games and hence moti-
vates the need for learning programming. 
Lingoland has a strict object-oriented user interface where all 
interaction takes place through method invocations on objects. 
Even the editor that is used to transform the Lingoland objects is 
an object and the interaction with it reflects that. In this way the 
students learns to solve a problem by finding (and, eventually, 
creating) suitable objects with relevant methods for solving the 
problem. 
To support the “Verfremdung” (see §5) that challenges students 
not only to play but also to think, we clearly signal a mode change 
from play mode (see figure 1)  to transform mode (transform-
ing/creating behaviours in Lingo – see figure 2). When you exit 
the game and enter transform mode, a semi-transparent lid slides 
over the Lingoland world and presents the world as contained in a 
machine-like device. The fictive world turns out to be an illusion 

running on a machine. The student can still see the world through 
the lid but is no longer a participant – now he is creating or modi-
fying it. 

 

Figure 1: Lingoland (play mode) 

The product is designed as a framework. In the framework there 
are two aspects: the game-story and the learning objectives, and in 
the system architecture these two aspects are clearly separated. 
The story and quests are generated on-the-fly according to the 
learning objectives defined by the teacher and the progress of the 
student. In the framework the teacher define learning objectives 
and how these objectives can be made concrete in Lingoland by 
quests.  This implies that different pedagogies can be used. In the 
example above a spiral approach is use, but it is up to the designer 
of the story and learning objectives to make the decision. Further 
description of the framework design and the consequences for the 
learning environment will be addressed in another paper. 

 

Figure 2: Lingoland (transform mode) 

 

7. CONCLUDING REMARKS 
Other approaches and tools address the task of introducing stu-
dents to programming through a programmable virtual world (e.g. 
Turtle World [6] and Karel the Robot [7]).  However, our ap-



proach differs radically in at least five respects: 1) it is a learning 
environment created as a professional multimedia production 
using different senses, 2) the notion of “Verfremdung” is used 
explicitly to differentiate and integrate the play mode and the 
transform mode of the tool, 3) the learning model is explicit in the 
tool, and it is changeable, 4) the internal design of the tool is 
created in such a way that it is suitable for inspection and 
modification by the students later in their learning process, and 5) 
the tool represents in every aspect an outstanding example of the 
kind of multimedia productions the students should be able to 
create when they graduate. 
We suggest a narrative as the framework for learning good pro-
gramming practices as well as a specific language (e.g. Lingo). A 
popular kind of narrative among students is the computer game, 
among which we have chosen the genre adventure game. By 
letting all learning activity relate to the fictive world, “Lingo-
land”, and to communication with its inhabitants, the “Lingoland-
ers”, we hope to ignite the initial spark of interest of the student. 
We also hope to keep down frustrations of the student by three 
main ingredients: 
1) a reasonably interesting learning environment without the 
hassles and hazards of most compilers and programming frame-
works, which in itself demonstrates the type of media applications 
the students are expected to produce; 
2) smooth and quick transitions between the play and transform 
modes gives the student immediate feed-back to every program-
ming effort and supports commutation as a design technique;  
3) a ”spiral” learning pattern with a bearable learning curve re-
quiring the student to learn bit by bit.  
These are the main reasons we have hopes for Lingoland as a 
learning environment for programming courses offered to multi-
media students with a liberal arts background. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although Lingoland is not fully completed, the environment has 
been used with success for two years in an introductory object-
oriented programming course for multimedia students. Also, the 
environment has been tested with a group of multimedia educators 
from community colleges.  The reaction from both groups was 

very positive and encouraging. A more formal evaluation of the 
environment is planned. 
Lingoland and various documents related to the system is avail-
able on the web: www.daimi.au.dk/lingoland/. 
 

8. ACKNOWLEDGEMENTS 
We thank IT University West for financial support. 
 
References 
[1] Andersen, P. Bøgh (forthcoming). Acting Machines. To 

appear in Gunnar Liestøl et al.  (eds.): Innovations – Media, 
Methods and Theories. Cambr., Mass:   MIT press. 

[2] Bennedsen, J., Teaching Java To Liberal Arts Students, Java 
& the Internet in the Computing Curriculum Conference 
Proceedings 7, 2003 

[3] Brecht, B. (1960). Om Tidens Teater (Schriften zum Thea-
ter). Gyldendal: Copenhagen. In danish. 

[4] Guzdial, M. & E. Soloway (2002).  Teaching the Nin-
tendo Generation to Program.  Communication of the ACM 
(4), 2002, pp. 17-21. 

[5] Kay, A. & A. Goldberg (1977). Personal dynamic media, 
IEEE Computer (3), 1977, pp. 31-41. 

[6] Papert, S. (1980).  Mindstorms: Children, Computers and 
Powerful Ideas. Basic Books: New York. 

[7] Pattis, R. E (1995), Karel the Robot, John Wiley & Sons, Inc. 
0-471-59725-2 

[8] Qvortrup, L. (1998). Det hyperkomplekse samfund (The 
hyper complex society). Gyldendal: Copenhagen. In danish. 

 


