
Educating Novices in
The Skills of Programming

Michael E. Caspersen

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

 Educating Novices in
The Skills of Programming

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Michael E. Caspersen

February 26, 2007

Abstract

Programming is recognised as one of seven grand challenges in computing
education. Decades of research has shown that the major problems novices
experience are composition-based ⎯they do not know what the pieces are
and do not know how to put them together. Despite this fact, textbooks, edu-
cational practice, and programming education research hardly address the
issue of teaching the skills needed for systematic development of programs.

We provide a conceptual framework for incremental program development,
called stepwise improvement, which unifies best practice in modern software
development such as test-driven development and refactoring with the pre-
vailing perspective of programming methodology, stepwise refinement. The
conceptual framework enables well-defined characterizations of incremental
program development; in particular, it enables a notion of degree of correct-
ness, which plays a key role in stepwise improvement.

We utilize the conceptual framework to provide a derived programming
methodology for novices and an instructional design for an introductory pro-
gramming course in which stepwise improvement is supported explicitly by
the programming process and a model-driven approach to object-oriented
programming and implicitly through cautious design of the teaching mate-
rial.

Our approach is founded in cognitive science and educational psychology,
primarily cognitive load theory, cognitive skill acquisition, and cognitive
apprenticeship, as well as research in programming methodology.

 v

Acknowledgments

It is a privilege and a great pleasure to thank the many people who made this
dissertation possible.

Gitte Møldrup, director of IT University West, suggested that I pursued a
PhD and has provided resources and support for making it possible.

Ole Lehrmann Madsen, my advisor, who urged me for seven years before I
gave in, has for more than a decade been a rich source of inspiration and
knowledge.

David Gries, my friend, colleague, and long-distance mentor, the latter for
almost twenty-five years and not all the time to his knowledge, has offered
help and support at a scale far beyond the call of friendship.

Erik Meineche Schmidt, my first teacher in computer science and mentor for
many years, taught me programming and how to teach it, and he introduced
me to the work of Dijkstra and Gries.

Jens Bennedsen, my close colleague and friend for almost twenty years, has
been a wonderful playmate and an endless source of energy throughout our
common endeavours.

Ole Eriksen, my colleague and friend for more than twenty years, has been
an endless source of inspiration. Many ideas about programming and pro-
gramming education have matured through countless talks, letters, emails,
and cycling tours.

Michael Kölling, my colleague and friend for more than ten years, has made
my educational life much easier with his contributions. Through close inter-
action he continuously influence my way of thinking about teaching pro-
gramming.

Henrik Bærbak Christensen, my colleague and friend for almost ten years,
taught me how to integrate advanced object-oriented concepts into pro-
gramming education for novices.

Numerous people have contributed to my research. Jens Bennedsen, Henrik
Bærbak Christensen, Michael Kölling, Jürgen Börstler, Marie Nordström,
Carl Alphonce, Adrienne Decker, and Kasper Dalgaard Larsen are co-
authors of one or more of my publications.

Klaus Marius Hansen, Erik Ernst, Aino Corry, Henrik Bærbak Christensen,
Carl Alphonce, Adrienne Decker, David Gries, Michael Clarkson, and Mi-
chael Schwartzbach offered their time and help as subjects for my study of
programming experts in action.

From 2003 through 2006, more than one thousand students from the course
Introduction to Programming have volunteered as subjects in various ex-
periments and evaluations.

 vii

I also take the opportunity to thank Owen Astrachan, David Barnes, Moti
Ben-Ari, Joe Bergin, Claus Bossen, Mats Daniels, Anna Eckerdal, Sally
Fincher, Gudmund Frandsen, Mark Guzdial, Poul Henriksen, Lew Hitchner,
Jens Dybkjær Holbech, Joe Hummel, Michael Jackson, Bruce Klein, Morten
Kyng, Bengt Lennartsson, Morten Lindholm, Raymond Lister, Lauri Malmi,
Helle Mathiasen, Dung “Zung” Nguyen, Rich Pattis, Eric Roberts, Axel
Schmolitzky, Ian Utting, Niklaus Wirth, Stephen Wong, and the members of
the Scandinavian Pedagogy of Programming network for occasional interac-
tion and support.

Thanks to all colleagues at DAIMI for providing a wonderful atmosphere of
friendship, support, enthusiasm, and professional ambitions.

Last but not least, heartfelt thanks to the most precious in my life, my wife
Susanne, my daughter Christina, and my son Christopher; without you it
would all be meaningless; for your immense support I shall remain forever
grateful.

Thank you all!

Michael E. Caspersen,
Aarhus, 26 February 2007

 viii

Contents

Abstract v

Acknowledgments vii

I Overview 1

1 Introduction 3
1.1 Theses and research questions 3
1.2 Contributions and organization of the dissertation 7

2 Programming Education: A Grand Challenge 9
2.1 Programming is hard 9

2.1.1 An explorative activity of discovery and invention 10
2.1.2 A tale of two companies 11

2.2 Grand challenges in computing education 12
2.2.1 Failure rates in introductory programming 13
2.2.2 Grand challenges in computing 13

3 Cognition and Learning 17
3.1 Cognitive science and educational psychology 18

3.1.1 Schemas 18
3.1.2 Chunking 19
3.1.3 Summary 20

3.2 Learning versus problem solving 21
3.2.1 A failed experiment 21
3.2.2 Misguided advice 21

3.3 A survey of cognitive load theory 22
3.3.1 Milestones in cognitive load theory 24
3.3.2 Development of cognitive load theory 27

3.4 Worked examples and cognitive skill acquisition 27
3.4.1 The power law of practice 30
3.4.2 Transfer 32

3.5 Conclusion 32

4 Programming Education Research 33
4.1 Selected conferences and publications 33

4.1.1 SIGCSE 34
4.1.2 ITiCSE 34
4.1.3 Koli Calling 34
4.1.4 Workshop in “killer examples” for design patterns 35
4.1.5 ICER 35
4.1.6 Joint Modular Language Conference 35
4.1.7 Informatics Education Europe (IEE) 35
4.1.8 Scandinavian Pedagogy of Programming Network (SPoP) 36
4.1.9 The ACM Education Board and Council 36
4.1.10 Personal involvement and commitment 36

4.2 Research areas 37

 ix

4.2.1 Student understanding 37
4.2.2 Animation, visualization, and simulation 41
4.2.3 Teaching methods 42
4.2.4 Assessment 46
4.2.5 Educational technology 48
4.2.6 Transferring practice into the classroom 50
4.2.7 Incorporating new developments and new technologies 50
4.2.8 Transferring to distance education 51
4.2.9 Recruitment and retention 51
4.2.10 Constructing the discipline 52

4.3 Conclusion 53

5 Programming Aptitude 55
5.1 Related work 56
5.2 Local replication of previous studies 59
5.3 Abstraction ability 60

5.3.1 Operationalization of hypothesis 60
5.3.2 Students and data 61
5.3.3 Findings 61
5.3.4 Discussion 62

5.4 Mental models 62
5.4.1 The test instrument 62
5.4.2 Failure of verification 63

5.5 Conclusion 66

6 Programming Methodology 67
6.1 A contemporary perspective 68

6.1.1 CC2001 on teaching programming skills 69
6.1.2 A textbook survey 70
6.1.3 Two educator surveys 71
6.1.4 The programming education research perspective 71

6.2 A historical perspective 73
6.2.1 Emphasis in education 74
6.2.2 Two misconceptions 75
6.2.3 Stepwise enhancement 76
6.2.4 From structured to object-oriented programming 77
6.2.5 Conclusion 80

6.3 A future perspective 80
6.3.1 Best practice 80
6.3.2 A study of the programming practice of experts 81
6.3.3 Horizontal programming 85

6.4 Conclusion 87

7 Stepwise Improvement 89
7.1 Toward a unified programming methodology 89

7.1.1 The refinement calculus 90
7.1.2 A conceptual framework for program extension 91
7.1.3 Unification of methodologies 101
7.1.4 Programming strategies 104
7.1.5 Degrees of correctness 106
7.1.6 Two examples 107

7.2 Incremental development and OOP 111

 x

7.2.1 Programming as a modeling process 111
7.2.2 Implementing specification models 113

7.3 Conclusion 114

8 A Programming Method for Novices 115
8.1 Random walk or guided tour 115

8.1.1 Random walks 116
8.1.2 Guided tours 118
8.1.3 Cognitive apprenticeship using videos 122

8.2 STREAM 122
8.2.1 Stubs 123
8.2.2 Tests 123
8.2.3 Representations 124
8.2.4 Evaluation 124
8.2.5 Attributes 125
8.2.6 Methods 125
8.2.7 The mañana principle 125

8.3 An example 127
8.3.1 Stubs 127
8.3.2 Tests 127
8.3.3 Representations 128
8.3.4 Evaluation 128
8.3.5 Attributes 128
8.3.6 Methods 129
8.3.7 Discussion 132

8.4 Graspability of STREAM 133
8.5 Conclusion 133

9 Instructional Design 135
9.1 Principles of programming education 135

9.1.1 Consume before produce 136
9.1.2 Worked, exemplary examples 138
9.1.3 Reinforce specifications 139
9.1.4 Reveal process and pragmatics 140
9.1.5 Hands-on 140
9.1.6 Progression in terms of complexity of tasks 141
9.1.7 Reinforce patterns and conceptual frameworks 142
9.1.8 Constructive alignment 142
9.1.9 Care and support 142

9.2 A model-driven approach to OOP 143
9.2.1 Goal 144
9.2.2 Getting started 144
9.2.3 Learning the basics 146
9.2.4 Conceptual framework and coding recipes 147
9.2.5 Programming method 149
9.2.6 Subject specific assignments 149
9.2.7 Practice 150
9.2.8 Final examination 150
9.2.9 Patterns and frameworks 151
9.2.10 Conclusion 152

9.3 Evaluation of process competence 152
9.4 Related work 153

 xi

9.5 Conclusions 154

10 Future Work 155
10.1 Books 155
10.2 Evaluation of instructional design 155
10.3 Tools 155

10.3.1 A notional machine workbench 156
10.3.2 Tool support for STREAM 157
10.3.3 Tool support for incremental program development 158
10.3.4 An educational programming language 158

10.4 Programming methodology 159
10.4.1 Extension of STREAM 159
10.4.2 Theoretical foundation of conceptual framework 160
10.4.3 Extension of conceptual framework 160

11 Conclusion 163

Bibliography 167

II Papers 189

12 Potential Success Factors 191

13 Abstraction Ability as an Indicator of Success? 203

14 Mental Models and Programming Aptitude 211

15 Exposing the Programming Process 219

16 A Novice’s Process of Object-Oriented Programming 235

17 CS1: Getting Started 247

18 Frameworks in CS1 263

19 Model-Driven Programming 271

20 Killer “Killer Examples” for Design Patterns 289

21 Assessing Process and Product 297

22 Beauty and the Beast 305

 xii

I Overview

 1

1 Introduction

Programming education is indeed a grand challenge. Fifty percent failure
rates for introductory programming courses are not unusual; study after
study have demonstrated that students after six to twelve month of instruc-
tion cannot fluently apply basic constructs such as loops; and several studies
recognize that even after two years of programming instruction at university,
many students have only rudimentary understanding of programming. The
community has promoted research and development in the area for thirty-
five years without significantly improving the state of affairs.1

In 2004 programming education was recognized as one of seven grand chal-
lenges in computing education: the challenge of programming education is
to understand the programming process and programmer practice to deliver
effective educational transfer of knowledge and skills.

Our aim is to address the challenge of programming education by capturing
the essence of the programming process and programmer practice in order to
devise effective education for novices in the skills of programming.

In our endeavour, we shall refrain from discussing the educational inade-
quacy of modern programming languages. We shall do so not because it is
irrelevant ⎯on the contrary⎯ but because it is a separate concern and be-
cause our aim is to address the challenge of programming education inde-
pendently of specific (kinds of) programming languages. Although ex-
pressed in terms of object-oriented programming and Java, the dominating
teaching language of our time, the essence of our work is applicable to pro-
gramming education in general, independently of choice of programming
language technology.

Programming education, i.e. teaching and learning programming, is the heart
of the matter, but teaching and learning are two very different things. Learn-
ing is a cognitive, psychological activity that ultimately takes place in the
mind of the learner through recoding of cognitive structures; teaching is a
social activity in a social system aiming at transferring and constructing
knowledge and skills. It is the combination of the two that is our concern and
we shall address both aspects of programming education in this dissertation.

1.1 Theses and research questions
As a starting point for this dissertation we propose three theses about teach-
ing and learning introductory programming. The theses are based upon more

1 This chapter takes the form of an extended abstract without documentation of
claims and assertions; everything will be readdressed and documented in the follow-
ing chapters.

 3

than twenty years of personal experience teaching introductory programming
at the tertiary level and have been refined through the PhD study.

Thesis 1 (T1): Revealing the programming process to novices eases
and promotes the learning of programming.

Thesis 2 (T2): Teaching skills as a supplement to knowledge promotes
the learning of programming.

Thesis 3 (T3): Anybody can learn to program.

Theses of this nature, of course, are difficult if not impossible to verify, but
they are still useful because they form the scope and fundamental perspec-
tive of our work. From the three theses, we shall derive the more concrete
and specific research questions to be addressed in the dissertation.

As always, it is mandatory to investigate relevant research to look for sup-
port or the opposite of the statements put forward in the theses above. The
word ‘learning’ occurs in all three theses, and the learning domain is pro-
gramming education; therefore, the first two research questions to explore
are pretty obvious:

Research question 1 (Q1): What is the foundation in learning theory
for programming education that supports T1-T3? The question is re-
fined to four more specific questions:
Q1.1: Is there a foundation in learning theory that supports (or contra-

dicts) T1-T3?
Q1.2: If so, what are the major relevant results?
Q1.3: What is the scientific validity and reliability of these results?
Q1.4: Do the results generalise to the context of programming educa-

tion?

Research question 2 (Q2): Does programming education research
support T1-T3? The question is refined to two more specific questions:
Q2.1: What is programming education research all about?
Q2.1: Does some of the research support or contradict the claims of

T1-T3?

Thesis T3 is a very strong claim, particularly in the light of the current state
of affairs as mentioned above. Due to high failure rates in introductory pro-
gramming courses, it is a common assumption that not everybody can learn
to program. This attitude was recently promoted in very strong terms by re-
searchers who claimed to have found a test for programming aptitude to
cleanly separate programming sheep from non-programming goats. As suc-
cinctly expressed in T3, we strongly disagree with the attitude that not every-
body can learn to program. Of course, we do not mean to suggest that any-
body can become a brilliant programmer, but we claim that anybody ⎯pro-
vided that they are motivated and that the body of knowledge is suitably
structured⎯ can learn the basic knowledge and skills of programming. The

 4

thesis is inspired by Jerome Bruner2 and his attitude toward structure of
knowledge. Bruner requests that educators must specify the ways in which a
body of knowledge should be structured so that it can be most readily
grasped by the learner. Bruner explains it this way: “Any idea or problem or
body of knowledge can be presented in a form simple enough so that any
particular learner can understand it in a recognisable form” [Bruner 1960].
However, some students learn programming more easily than others and per-
form much better; it is therefore reasonable to search for explanations, i.e. to
search for pre-study as well as in-study indicators of success for introductory
programming. To the extent that we as a community are able to identify such
indicators, we may be able to use them to improve students’ background and
prerequisites to increase their performance and chances of success. This
leads us to the third research question to be explored:

Research question 3 (Q3): Are there indicators of success for learning
and performance in introductory programming? The question is re-
fined to four more specific questions:
Q3.1: Has programming education research identified indicators of

success for introductory programming courses?
Q3.2: If so, can we generalise the results of others to our local con-

text?
Q3.3: Can we identify novel indicators of success in introductory pro-

gramming?
Q3.4: If so, can we exploit these to improve students’ performance

and chances of success?

When talking about programming and programming competencies we shall
distinguish between knowledge and skills. Knowledge is facts, definitions,
language constructs, specific algorithms, etc., whereas skills are strategies
for using knowledge. We unfold the definition later, but this shall suffice for
now.

Typical introductory programming textbooks devote most of their content to
presenting knowledge about a particular language [Robins et al. 2003]. Ex-
posing students to the process of programming is merely implied but not
explicitly addressed in texts on programming, which appear to deal with
‘program’ as a noun rather than as a verb. But teaching programming is
much more than teaching a programming language [Knudsen et al. 1988].
Knowledge about a programming language is a necessary but far from suffi-
cient condition for learning the practice of programming. Students also need
knowledge about the programming process, i.e. how to develop programs,
and they need to extend that knowledge into programming skills as ex-
pressed by theses 1 and 2.

As David Gries once wrote [Gries 1974]:
Let me make an analogy to make my point clear. Suppose you attend a
course in cabinet making. The instructor briefly shows you a saw, a
plane, a hammer, and a few other tools, letting you use each one for a
few minutes. He next shows you a beautifully-finished cabinet. Fi-

2 Jerome S. Bruner (1915), an American psychologist from Harvard, has made valu-
able contributions to cognitive psychology and cognitive learning theory in the field
of educational psychology known as social constructivism [Bruner 2006].

 5

nally, he tells you to design and build your own cabinet and bring him
the finished product in a few weeks. You would think he was crazy!

— David Gries, 1974

Clearly, cabinet making cannot be taught simply by teaching the tools of the
trade and demonstrating finished products; but neither can computer pro-
gramming. Nevertheless, judged by the majority of past as well as contem-
porary textbooks, this is what seems to be attempted. In [Kölling 2003b], a
survey of 39 major selling textbooks on introductory programming was pre-
sented. The overall conclusion of the survey was that all books are structured
according to the language constructs of the programming language; the
process of program development is often merely implied rather than explic-
itly addressed. A typical structure of a section on a specific language con-
struct (e.g. the while loop), is the presentation of a problem followed by a
presentation of a program to solve that problem and a discussion of the pro-
gram’s elements. From the viewpoint of a student, the program was devel-
oped in a single step, starting from a problem specification and resulting in a
working solution. The fact that we all start by developing sub-optimal and
partial implementations on our way to a solution, which we later refine and
improve, seems to be one of the best kept secrets of programming education!
We need to supplement the teaching of tools, concepts, and programming
language constructs on the one hand and finished example programs on the
other with education in the process of programming. We need to provide the
missing link between the tools of the trade and products created by these
tools, as indicated by Figure 1-1.

?

Products

Finished
programs

Tools

Concepts

Language
constructs

The tools of the trade

The missing link

Figure 1-1: The missing link between the tools of the trade and products

But in order to incorporate the programming process in programming educa-
tion for novices, we need to understand what it is. Programming methodol-
ogy, the study of methods for making programs, aims at increasing pro-
grammers’ ability to compose programs; theses 1 and 2 are just another way
of saying that programming methods ought to permeate programming educa-
tion in order to ease and promote learning. But where is the field of pro-
gramming methodology today, and how does it relate to best-practice of
modern software development? This becomes our fourth research question:

Research question 4 (Q4): How does best-practice in modern soft-
ware development relate to the research area of programming method-
ology? The question is refined to four more specific questions:
Q4.1: How has programming methodology influenced programming

education in the past?

 6

Q4.2: How can we characterize best-practice of modern software de-
velopment?

Q4.3: How does best-practice in modern software development relate
to programming methodology?

Q4.4: Can we provide a characterization of the programming process
that unifies programming methodology and best-practice of
modern software development?

Once we have an understanding of the missing link expressed as a model of
the programming process, the follow-up question becomes how to teach this
to novices. Consequently, our fifth and last research question is:

Research question 5 (Q5): How can we educate novices in the skills
of programming? The question is refined to four more specific ques-
tions:
Q5.1: How can we down-scale modern software development me-

thods to a programming process for novices?
Q5.2: How can we structure the relevant body of knowledge so that it

can be most readily grasped by the learner?
Q5.3: How can we organize efficient learning paths/courses that in-

crementally approximate best-practice in modern software de-
velopment at the level of novices?

Q5.4: How can we adopt results of cognitive science and educational
psychology to the instructional design3 of introductory pro-
gramming education?

In the dissertation we provide answers for these questions; how and where
we do that is exposed in the next section.

1.2 Contributions and organization of the
dissertation

The contributions of the PhD study as documented in this dissertation en-
compass answers to the research questions presented in the previous section.

The first research question: What is the foundation of learning theory for
programming education that supports T1-T3?, is addressed in chapter 3,
where we provide a survey of relevant theories and models of cognitive sci-
ence and educational psychology with focus on their relevance to introduc-
tory programming education. This survey is my own and has not been pub-
lished.

The second research question: Does programming education research sup-
port T1-T3?, is addressed in chapter 4, where we present a map of key activi-
ties and publications in programming education research as well as a com-
prehensive overview of the research field, with special focus on its relevance
to my work. This work is my own and has not been published.

3 Instructional design concerns detailed specification of teaching/instruction as op-
posed to curriculum design which concerns specifications of learning outcome.

 7

The third research question: Are there indicators of success for learning and
performance in introductory programming?, is addressed in chapter 5,
where we present an overview of related work in the area and three local
studies which are described in detail in three papers included in the second
part of the dissertation. All of this work was carried out with Bennedsen.
Larsen, an undergraduate student, joined us in one of the local studies.

The fourth research question: How does best-practice in modern software
development relate to the research area of programming methodology?, is
addressed in chapter 6 and 7. Chapter 6 addresses question Q4.1 and Q4.2 by
presenting a historical perspective on the role of programming methodology
in programming education and providing a brief overview of best-practice of
modern software development. Chapter 7 provides answers to Q4.3 and Q4.4
by exposing the fundamental difference of stepwise refinement and modern
techniques of incremental program development and presenting a model of
the program process that unifies the two. This work is my own and has not
yet been published.

The fifth research question: How can we educate novices in the skills of pro-
gramming?, is addressed in chapter 8 and 9, Chapter 8 provides a brief pres-
entation of a down-scaled programming process for novices. The presenta-
tion of the process is structured so that it can most readily be grasped, re-
membered, and applied by the learner. In chapter 9 we discuss the overall
organization of an introductory programming course that incrementally ap-
proximates best-practice of modern software development. In doing so, we
apply results of cognitive science and educational psychology in general and
cognitive load theory in particular to ensure an instructional design of an
introductory programming course that balances the cognitive load in order to
optimize learning. The work reported in section 8.1.3 was carried out with
Bennedsen and is described in detail in the paper in chapter 15. The work
reported in section 8.2-0 was carried out with Kölling and is described in
detail in the paper in chapter 16. Parts of the work reported in chapter 9 was
carried out with Christensen, Bennedsen, Alphonce, and Decker and is de-
scribed in the chapters 17-21 in the second part of the dissertation. The in-
corporation of cognitive science and educational psychology is my own
work, as is the description of course organization to incrementally approxi-
mate best-practice of modern software development; none of this has yet
been published.

An important aspect ⎯perhaps the most important aspect⎯ of scientific
work is the new questions it makes possible to conceive and express. In this
light, we consider chapter 10 on future work to be an important contribution
of the dissertation, perhaps the most important. With Börstler and Nord-
ström, we have already pursued one of the questions generated from the PhD
study; the result of our initial investigations is incorporated as the last of the
eleven papers in the second part of the dissertation.

However, before addressing the five research questions we have put forward,
we shall elaborate on the challenge of programming education.

 8

2 Programming Education: A Grand
Challenge

Programming education is a grand challenge partly because programming
intrinsically is hard. To emphasize this point, we begin our endeavour with a
broader perspective on programming and a few examples that demonstrate
some of the challenges that practitioners experience and education should
prepare for.

2.1 Programming is hard
In his speech at the occasion of Edsger W. Dijkstra’s 70th birthday and re-
tirement, Niklaus Wirth said:

Once he visited us at ETH in Zürich. I was very proud to show to the
master my work and explaining some of the difficulties I encountered
being well aware that they would probably be difficulties which he
understood if he had cared about them, but I was sure he had not.
We had one of these rather unfortunate machines, CDC called, with
an instruction set now called RISK, but certainly not particularly well
suited for our tasks of implementing Algol and higher level languages
in an elegant way.
I tried to explain to him the difficulties I had been fighting with, and
the confessions one had to make, and then ⎯of course with a some-
what haughty look⎯ he said: “Well, I didn’t expect anything else
from a genuine Swiss puritan”. I was a bit puzzled, but I knew enough
that I wouldn’t take this as exactly a compliment. So I asked him to
explain, and he said: “well, the puritans are people who have learned
to love their miseries”.

— Niklaus Wirth, 2000

Programming is a creative process; when developing a program for a given
problem, programmers are free to invent whatever structures suit their needs,
though eventually these structures must be realized in a formal, executable
language. It is wise not to worry too early about the final realization of data
and processes but instead to invent suitable abstractions for the problem at
hand and then —as two separate concerns— solve the problem in terms of
the invented abstractions and realize these abstractions on the underlying
machine and thereby extend the machine. This strategy can be applied re-
peatedly and at any level of abstraction.

In principle, the two activities generated when introducing an abstraction are
independent in the sense that an abstraction represents a conceptual as well
as practical separation of concerns. In practice, of course, the development
of suitable abstractions, their use, and their realization on an underlying ma-
chine go hand in hand in an incremental, iterative refinement process aiming

 9

at optimizing the abstractions according to the requirements and the prevail-
ing criteria of quality.

2.1.1 An explorative activity of discovery and invention

The programming process generated from this strategy —in fact the pro-
gramming process generated from any strategy— is a process of trial and
error; it is not a strictly progressive process. If we were always able to pick
the right abstractions and get the code right, it would be a strictly progressive
process, but we are not. The programming process can be characterized as an
explorative activity of discovery and invention where the programmer inves-
tigates the problem and the underlying machine, makes hypothesis, and tries
to verify these by writing and executing code. In doing so, the programmer
creates abstractions, applies these, and realizes the abstractions on the under-
lying machine.

Ever so often in the process a hypothesis breaks and the programmer must
alter or reject it. Either way, it affects the code that has been written, includ-
ing abstractions that have been created, applied, and realized. Consequently,
code must be modified or erased and new hypotheses must be made, from
which new code is written and executed.

In order to control the overwhelming complexity that follows from the ex-
plorative and non-linear nature of the programming process where hypothe-
ses are altered and the course toward the goal changed, it is vital to base the
process on well-defined abstractions. The following parable by Herbert
Simon [Simon 1973] explains why:

There once were two watchmakers, named Hora and Tempus, who
manufactured very fine watches. Both of them were highly regarded,
and the phones in their workshops rang frequently. New customers
were constantly calling them.
However, Hora prospered while Tempus became poorer and poorer
and finally lost his shop. What was the reason?
The watches the men made consisted of about 1000 parts each. Tem-
pus had so constructed his that if he had one partially assembled and
had to put it down --to answer the phone, say-- it immediately fell to
pieces and had to be reassembled from the elements. The better the
customers liked his watches the more they phoned him and the more
difficult it became for him to find enough uninterrupted time to finish
a watch.
The watches Hora handled were no less complex than those of Tem-
pus, but he had designed them so that he could put together sub-
assemblies of about ten elements each. Ten of these subassemblies,
again, could be put together into a larger subassembly and a system
of ten of the latter constituted the whole watch. Hence, when Hora
had to put down a partly assembled watch in order to answer the
phone, he lost only a small part of his work, and he assembled his
watches in only a fraction of the man-hours it took Tempus.

— Herbert A. Simon, 1973

The main reason for advocating this approach is that it is the best (and only)
known way of handling the complexity of programming; also, when carried
out properly, it produces the most generic solution in the sense of being least
dependent on the underlying machine; a third reason for adopting this ap-

 10

proach is not to clutter ones thoughts and the program description unneces-
sarily at too early a stage.

Programming, understood as the process of inventing suitable structures for
the problem at hand and, as a separate concern, realizing those as software
abstractions of a given software and hardware platform, is notoriously diffi-
cult for novices as well as experienced practitioners. We will give two ex-
amples of personal experience of the latter.

2.1.2 A tale of two companies

A long time ago, I gave a programming course for programmers in a Danish
financial institution. At the introduction on the first day, one group of the
participants, the batch programmers, presented themselves with bowed heads
and a low voice while the other group, the online programmers (with at least
three years of prior experience as batch programmers), proudly and with a
loud, clear voice presented themselves. I was puzzled, but being young and
inexperienced, I did not realize the magnitude of the distinction. I wanted to
understand, so decided to write two COBOL programs, a batch program and
an online program, for some trivial computational problem. In doing so, I
learned the difference between batch programs and online programs and the
reason for the severe distinction between who was allowed to practice what;
the batch program took me less than an hour to finish, while the online pro-
gram took the rest of the day. The point was (and is!) that the runtime envi-
ronment for online programs4 does not support I/O: a program that executes
an I/O statement is swapped to the disk and restarted in its initial state when
input is ready (the program counter and all variables are cleared). Conse-
quently, for every program, application programmers must implement a ma-
jor part of a process administration algorithm and interleave it with the ap-
plication code. This is ridiculous and error prone, and it is a waste of the
time and mental resources of the programmer —resources that with a proper
tool could either have been saved or spent on the real problem. This was the
first time I encountered a professional tool that should be categorized as be-
longing to the problem set rather than to the solution set, and it was an im-
portant lesson of the misery that poor tools and lack of education impose on
industry.

Many years later, I was involved in a research project collaborating with in-
dustrial partners from the domain of embedded, distributed real-time sys-
tems; we were researching the applicability of object technology in that do-
main. In collaboration with a Danish manufacturer of AV-products, we de-
veloped a prototype of object-oriented software for an integrated CD player,
radio, video recorder, and television. In the existing product developed by
the company using traditional software, a real-time operating system (with
low-level support for processes, communication, and synchronization) was
used to make up for shortcomings of the programming language with respect
to support for concurrency. Elements of the real-time operating system were
used by so-called task programmers to implement processes, process com-
munication, and process synchronization. However, these aspects of the
software was not supported by abstractions but closely interwoven with the

4 CICS (Customer Information Control System), the runtime environment for online
COBOL programs on IBM installations.

 11

application code ⎯in exactly the same way as the process scheduling of
online programs was closely interwoven with application code in the previ-
ous example.

In both of the previous examples, poor tools, with no direct support for the
computational structures of the requirements specification and a conceptual
model of the problem domain, caused programmers to struggle unnecessarily
to develop application code and —as an integrated part of that— middleware
code to make up for shortcomings of their tools. The result is poorly de-
signed software that is hard and, in the long run, almost impossible to main-
tain. Of course, the chief software architects of the two companies could
have developed middleware tools to make up, once and for all, for the short-
comings of the tools. But they did not. Instead they practiced their trade as
proud puritans who had learned to (almost) control and therefore love their
miseries —the complexity of the tools of their trade.

To the extent practitioners do not invent software abstractions to capture the
essential computational structures of the problem and avoid or remove the
shortcomings of their tools, I can think of two reasons. The first, and in this
context the most important, is poor education. The second is the psychologi-
cal phenomenon of the prisoner falling in love with his chains; the ability to
control complex technology yields respect and admiration from colleagues
and peers and generates a feeling of competence, which makes it difficult to
realize the fundamental shortcomings of the technology. Eventually, this can
also be traced to poor education. It is therefore extremely important to pro-
vide excellent programming education to novices as well as experienced
programmers. However, providing excellent programming education is not a
trivial task either.

2.2 Grand challenges in computing educa-
tion

In spite of more than forty years of experience, teaching programming is still
considered a major challenge; in fact it is considered one of seven grand
challenges in computing education. A countless number of sources discuss
the difficulties of teaching and learning programming; we will discuss two
of those: a review article from 2003 and a report from the British Computer
Society on grand challenges for computing education.

In 2003 Robins together and Roundtree published a comprehensive review
article on learning and teaching programming [Robins et al. 2003]. In the
opening paragraph they write:

In recent years the demand for programmers and student interest in
programming has grown rapidly, and introductory programming
courses have become increasingly popular. Learning to program is
hard however. Novice programmers suffer from a wide range of diffi-
culties and deficits. Programming courses are generally regarded as
difficult, and often have the highest dropout rates. It is generally ac-
cepted that it takes about 10 years of experience to turn a novice into
an expert programmer [...].

— Robins et al., 2003

 12

2.2.1 Failure rates in introductory programming

In a recent survey of failure rates for introductory programming courses
[Bennedsen et al. 2007d], we recently found that the average failure rate in
the introductory programming course is 33%. For universities outside the US
the result is 41% (Table 2-1). Quite a few major European universities re-
ported failure rates of more than 50%. The maximum failure rate reported
was 95%.

 Universities Students Avg. fail rate

Total 54 5,513 33%

Non US 17 2,653 41%

Table 2-1: Average failure rate for introductory programming courses

The investigation was carried out by sending direct mail to almost 600 au-
thors of recent CS education research papers. By definition, the target group
has a strong concern for CS education and, consequently, is unlikely to be
representative for the community as a whole. We expect the average failure
rate in general to be even higher than what we found, and we have indica-
tions that point in this direction. A colleague from the ACM Education
Council [Mark Guzdial. 2006] mentioned an internal report of community
colleges (two-year schools) in the US who were in a coalition to improve
their retention rates in CS. One school reported an average failure rate, over
a ten year period, of 90%! A university with 4000 students, where CS is the
second largest major, reported a failure rate of 72%. For comparison, we
mention that the failure rates of the past four years of the introductory pro-
gramming course at the Department of Computer Science at University of
Aarhus are 13%, 12%, 12%, and 7% (for a population of approximately 300
students per year).

2.2.2 Grand challenges in computing

In March 2004, the British Computer Society held a conference on the grand
challenges in computing [GCC 2004]. GCC ’04 was a collection of three
conferences. Two were on grand challenges in computing; these were organ-
ised into strands focusing on grand challenges for computing research and
grand challenges for computing education. The education strand identified
seven grand challenges:

1. Perception of computing. Promote an improved and ultimately very
positive public image of computing—ensuring that the public gains
respect for the field and the professionals who practice within it.

2. Innovation. Provide simpler models of computing as a discipline, and
have this simplicity reflected in a better mix of high quality computing
courses that genuinely accommodate a broad spectrum of student abil-
ity and interest.

3. Competencies. Ensure that that the quality and currency of computing
skills and competence are recognized as important by graduates
throughout their career and put in place an infrastructure to provide
support and guidance on a career-long basis.

 13

4. Programming issues. Understand the programming process and pro-
grammer practice to deliver effective educational transfer of knowl-
edge and skills.

5. Formalism. Ensure that students of computing see relevant mathemat-
ics and formalisms in a very positive light, as providing support, guid-
ance, and illumination.

6. About e-learning. Establish e-learning as a credible, viable comple-
ment to face-to-face education.

7. Pre-university issues. Rationalize the situation at the pre-university
level directed toward the promotion of computing to would-be stu-
dents. Create for students a smooth transition from school to univer-
sity by enthusing and informing potential students and by creating a
positive influence affecting pre-university computing.

One of the seven grand challenges in computing education is 4. Program-
ming issues [McGettrick et al. 2005]. In the report from the conference the
authors write:

One can generally observe that a strong correlation exists between
programming ability and other computing skills, reflecting, as it does,
skills in abstraction, conceptualization, design and evaluation. How-
ever, major concerns exist among the academic community interna-
tionally that when we set out to teach programming skills to students,
we are less successful than we need to be and ought to be [...].
Given the situation described above, the computing challenge for this
area is as follows: Understand the programming process and pro-
grammer practice to deliver effective educational transfer of know-
ledge and skills.

— McGettrick et al., 2004

Two aspects of the challenge are particularly important: understand the pro-
gramming process and transfer of skills. In programming education in gen-
eral, judged by contemporary textbooks and computing education research,
there is hardly any concern for the programming process; the focus seems to
be on transferring knowledge rather than skills (for an elaboration, see sec-
tion 3.5 and 6.1). Invited speaker Peter Denning [Denning 2004a] posed the
challenge for us as a field to adopt a new orientation toward programming:
as a practice, not a technology. Suppose that programming and problem
solving is seen as the essence of our intellectual cachet, and that program-
mers can have different levels of skill —beginner, advanced beginner, com-
petent, proficient, expert, master— that can be learned through teaching and
practice; that effective team skills and customer skills are as essential to pro-
gramming competence as programming technology; and that software archi-
tecture, which concentrates on form and function for good design, is as im-
portant as software engineering. Something along these lines is certainly
needed if we aim at systematically educating people to design quality soft-
ware and eventually escape from the miserable state of affairs that was indi-
cated by the two tales in the previous section. As a strategic direction,
Denning suggests that a task force examine programming as a core compe-
tence of computing, explore what this means, define the levels of compe-
tence, and tell us how to teach all this through recommendations for educa-
tional objectives and curricula to achieve them.

The question of aptitude for programming was addressed by several partici-
pants; Greg Michaelson in his position paper phrased the challenge as fol-

 14

lows [Denning et al. 2004]: “If we could somehow characterise the qualities
displayed by ‘good’ programming students we might be able to deploy ap-
propriate selection criteria at entry level to better match students to comput-
ing courses, find more effective ways of teaching programming both to po-
tential experts and non-experts, and give better support to students who sub-
sequently flounder”. Greg Michaelson proposed a sustained programme of
investigation of contributors to and indicators of programming ability in-
cluding (1) large scale quantitative studies of qualifications and attainments
of both successful and unsuccessful programming students; (2) smaller scale
longitudinal, cognitive studies of cohorts studying programming in different
environments and taught with different approaches; (3) investigation and
characterisation of best and worse practice educational approaches to teach-
ing programming.

In another position paper [Denning et al. 2004], Huggard summarises the
challenges as how to

a. overcome the negative aptitudes many students have toward pro-
gramming;

b. establish student aptitude for programming;
c. incorporate the results of psychological studies into our curricula and

textbooks;
d. encourage students to practice programming;
e. establish assessment methods that assess individual programming

competency effectively;
f. prevent students “hiding” behind their more able peers.

Huggard mentions that individual researchers have sought to address indi-
vidual issues but concludes that a more coherent approach is needed if we
are to radically alter the learning environment in which programming is
taught and assessed.

As mentioned in chapter 1, we address challenge a and b in chapter 5. The
rest of the dissertation focuses on educating novices in the skills of pro-
gramming, with particular focus on the programming process and systematic
ways of incrementally developing programs and their specifications hand in
hand with the latter leading the way. Challenge c is addressed in chapter 3
and 9; challenges d, e, and f are addressed in chapter 9 and 21.

 15

3 Cognition and Learning

A dissertation on educating novices in the skills of programming that does
not take the learner into account is of limited value. The purpose of this sur-
vey on aspects of cognitive science and educational psychology is to provide
a basic conceptual framework for use in the rest of the dissertation when dis-
cussing related research and instructional design of programming education
for novices. Unfortunately, there is little discussion and research of the
teaching of programming that relates to pedagogy, and almost none that ad-
dress how the process of learning might or should affect instruction [East et
al. 1996, p. 1]. The report on strategic directions in computer science educa-
tion concurs: “We must view changes in pedagogy as opportunistically as
we view changes in research specialties” [Tucker 1996]. There is, however,
a slow but increasing awareness of the benefits of applying models and re-
search results from cognitive science and learning theory to instructional
design and cognitive skill acquisition.

Learning theory is a huge area of which we shall only touch a very small
part. The following people (just to mention a few) have all made significant
contributions to cognitive science, educational psychology, and learning the-
ory, but we shall refrain from elaborating on their contributions. Still, we
may occasionally make references to their work.

• Jean Piaget (1896−1980): the theory of cognitive development and
(individual) constructivism [Piaget 2007].

• Benjamin Bloom (1913−1999): the classification of educational objec-
tives and the theory of mastery learning [Bloom 2007].

• Jerome Bruner (1915−): the development of curriculum theory, in-
structional design, spiral curriculum, and social constructivism (in-
spired by the work of Lev Vygotsky (1896−1934)) [Bruner 2006].

• Seymour Papert (1926−): the theory of constructionism, built upon
Piaget’s work on constructivism but went beyond it to assert that
learning happens especially well when people are engaged in con-
structing a product [Papert 2007].

• John B. Biggs (?): the SOLO model of constructive alignment in
teaching and assessment [Biggs 2003]

• David A. Kolb (1939−): the theory of experiential learning and the as-
sociated learning model known as Kolb’s learning cycle [Kolb et al.
1975].

• Howard Gardner (1943−): the theory of the multiple intelligences
[Gardner 1983].

• Etienne Wenger (1952−) and Jean Lave (1968−): the theory of situ-
ated cognition and communities of practice [Lave et al. 1991].

• Allan Collins, John Brown, and S.E. Newman: the theory of cognitive
apprenticeship, which holds that masters of a skill often fail to take
into account the implicit processes involved in carrying out complex
skills when they are teaching novices [Collins et al. 1991].

 17

The survey starts with a short introduction to the basic models and terminol-
ogy of cognitive science and educational psychology. Via an interlude on a
failed experiment that marked the birth of cognitive load theory, we move on
to discuss cognitive load theory, which offers guidance for the design of ef-
fective instructional design in general. Finally we turn to the area of worked
examples and cognitive skill acquisition (acquiring the ability to solve prob-
lems in intellectual tasks). The major sources for the survey are [Atkinson et
al. 2000, Clark et al. 2006, Paas et al. 2003, Posner 1993, VanLehn 1996].
Other references appear in the text.

3.1 Cognitive science and educational psy-
chology

We begin by discussing aspects of human cognitive architecture. All human
learning and work activities rely on two of our memory systems: working
memory and long-term memory and the partnership they share. As its name
implies, working memory is the active partner (as you read this and think
about its relevance to the dissertation, it is your working memory that does
the processing). While in learning mode, new information from the envi-
ronment is processed in working memory to form knowledge structures
called schemas, which are stored in long-term memory. Schemas are mem-
ory structures that permit us to treat a large number of information elements
as if they are a single element. New information entering working memory
must be integrated into pre-existing schemas in long-term memory. For this
to take place, relevant schemas in long-term memory must be activated and
decoded into working memory, where integration takes place. The result is
an encoding of extended schemas stored in long-term memory. The process
is known as schema acquisition, and this model of the human cognitive ar-
chitecture is presented in Figure 3-1. Our model is adopted from Newell,
Rosenbloom, and Laird’s Soar model described in [Newell et al. 1989].
More detailed models exist, e.g. [Penney 1989], but this one suffices for our
purpose.5

3.1.1 Schemas

There are two general categories of schemas: schemas that encode know-
ledge and schemas that encode strategies for using knowledge; we shall call
these knowledge schemas and skill schemas. We have schemas for all as-
pects of our cognitive lives. We have knowledge schemas for letters, words,
and combinations of words that allow us to read easily and rapidly, and we
have skill schemas that allow us to write reports, essays, scientific papers,
and dissertations. Schemas for the solution to specific mathematical prob-
lems may make us competent at mathematics. And, as programmers, we may
have knowledge schemas for programming language constructs and skill
schemas for systematically developing a loop from its specification.

5 Cognitive psychology attempts to present theories of thinking based upon models
of the human cognitive architecture. From the point of view of an educator, it is not
really important if a cognitive theory truly describes how we think; what is impor-
tant is the possibility of deriving pedagogically useful insights from the theory [Ben-
Ari et al. 2004a].

 18

Schemas are variously named chunks, plans, templates, or idioms. It is
tempting to introduce yet another synonym: pattern. However, to avoid con-
fusion, we shall use the term schema for cognitive memory structures and
reserve the term pattern for concrete representations of schemas in a specific
domain, e.g. program design (design patterns), algorithm design (elementary
patterns and algorithmic patterns), or education (pedagogical patterns). We
shall use chunk as a general concept for schema, pattern, and any other or-
ganization of information or unit of understanding.

Long-term memory:
Schemas

Working memory:
Integration

encoding decoding

recoding/chunking
(unconscious)

decision
(conscious)

Senses Muscles

Environment

Figure 3-1: A model of the human cognitive architecture

3.1.2 Chunking

In his seminal paper [Miller 1956], George A. Miller observed that the num-
ber of chunks of information is constant for working memory. More pre-
cisely, Miller found that short-term memory has a capacity of about “seven
plus or minus two” chunks ⎯independent of the number of bits per chunk.6
Recoding or chunking is the process of reorganizing information from many
chunks with few bits of information to fewer chunks of many bits of infor-
mation. By recoding information, we can make more efficient use of short-
term memory and consequently increase the amount of comprehensible in-
formation. But there is no free lunch; when recoding we must also learn the
associated schemas for decoding/interpretation of information. However,
once learned, these schemas are kept in long-term memory and therefore do
not affect the cognitive load of short term memory.

6 Miller’s simple hypothesis is no longer tenable. Chase and Ericsson have showed
that purposeful training, based upon metacognitive mnemonic strategies [Allsopp
2007], can triple the apparent working memory capacity [Chase et al. 1981]. How-
ever, the fundamental theory of chunking and schema acquisition still applies.

 19

In contrast to working memory, long-term memory has a massive capacity
for information storage; however, it is the inert member of the memory part-
nership. All conscious processing takes place in working memory, but work-
ing memory and long-term memory work closely together. The more knowl-
edge and skill schemas stored in long term memory, the greater the virtual
capacity of working memory as a result of larger, more complex schemas.

For example, a mid-play chess board includes about twenty-four elements of
information for a novice player. However, experts represent the chess board
in play patterns involving clusters of several pieces. Each cluster translates
into a schema. Therefore a mid-play chess board of twenty-four pieces con-
tains approximately eight or nine schemas for a chess expert. When asked to
recall the configuration of the pieces, the experts recalled considerably more
of the pieces than did the novices. How would a random placement of pieces
on the board affect the recall results? We might expect that experts would
lose their advantage and recall about the same number of pieces as novices.
Chase and Simon [Chase et al. 1973] tested this hypothesis, and expert
player performance was actually worse than novice performance when try-
ing to reconstruct a random configuration! The experts were trying to apply
their schemas for chess play patterns to a meaningless environment. The ex-
tra psychological work they expended trying to make sense of what they
were viewing depressed their memory performance, so they were worse off
than the novices. Similar results have been found in programming [Adelson
1981, McKeithen et al. 1981, Shneiderman 1976].

Research on expert-novice differences in problem solving and cognitive skill
acquisition indicate that speed and accuracy of experts is not accomplished
by major, qualitative changes in their problem solving strategies [VanLehn
1989, p. 563]. The effects of their expertise are more subtle. For instance,
whenever an expert and a novice are deciding which chess move to make,
both consider the same number of moves and investigate each move for
about the same amount of time. The difference is that the expert considers
only the good moves and usually chooses the best one, whereas the novice
considers mediocre moves as well, and often does not choose the best move
from those considered. Thus, expertise lies not in having a more powerful
overall strategy or approach but rather in having better knowledge for mak-
ing decisions at the points where the overall strategy calls for a problem-
specific choice. Similarly, experts seem better at monitoring the progress of
their problem solving and allocating their efforts appropriately. [Schoenfeld
1981] concludes that metacognitive or managerial skills are of paramount
importance in human problem solving. The same sort of managerial moni-
toring is evident in numerous studies including studies of programmers and
software design [Jeffries et al. 1981].

3.1.3 Summary

As a result of their enhanced schemas, experts have significantly different
psychological capabilities than novices. Experts are able to tackle complex
tasks that overwhelm the less experienced. When learning new skills in their
domain, experts are enabled by their rich set of schemas to process much
larger amounts of information as well as to guide much of their own learning
process. Novices, in contrast, lack such schemas and therefore need learning
environments that compensate for them. Well-designed learning environ-
ments for novices provide metacognitive managerial guidance to focus the
students’ attention and schema substitutes by optimizing the limited capacity

 20

of working memory in ways that free working memory for learning. Good
instruction will segment and sequence the content in ways that reduce the
amount of new information novices must process at one time and, as much
as possible, reinforce domain patterns to support schema acquisition and im-
prove learning.

3.2 Learning versus problem solving
Cognitive load theory, a special branch of cognitive science and educational
psychology, studies how to reduce the load on working memory to optimize
learning. The origins of cognitive load theory can be found in the results of a
failed experiment [Clark et al. 2006].

3.2.1 A failed experiment

John Sweller and his students were studying transfer effect and how people
learn while solving problems [Sweller et al. 1982]; in a specific series of
experiments it turned out that the students learned nothing! It was a failed
experiment with respect to studying transfer, but it sparked the field now
known as cognitive load theory.

Seventy-two undergraduate students were given transformation problems in
which they were given a start number that had to be transformed into a goal
number by finding the right sequence of moves; the only moves permitted
were multiplying by 3 or subtracting 69. Problem solvers could use each of
these moves as many times as they needed and in any order until they
reached the goal number. Each move could be made by pressing a key on a
computer keyboard, so no mental arithmetic was involved. At any time, the
problem solvers could undo moves. There were many problems, but each
problem could be used only by alternating the two possible moves a certain
number of times. The aim of the experiment was to see what factors would
assist problem solvers in learning the rule, but the researchers faced an im-
mediate and inexplicable difficulty. The problems were not very difficult
(most people solved them relatively quickly), but despite easily solving the
problems, and despite the fact that successfully solving a problem meant
applying the alternation rule, very few problem solvers realized the rule! All
evidence suggested that most of the problem solvers learnt very little despite
being bright university students. It seemed as if learning and problem solv-
ing were incompatible! But if learning and problem solving are incompati-
ble, that incompatibility suggested a need for a new view of problem solv-
ing, because the field was embarking on a long excursion in which learning
through problem solving was a basic assumption ⎯an excursion which also
transcended to computer science education in general and programming
education in particular.

3.2.2 Misguided advice

Newell and Simon’s book on problem solving [Newell et al. 1972] inaugu-
rated a flowering of the field; for about twenty years, problem solving be-
came one of the central fields of cognitive psychology, and the assumption
and advice was that problem solving in one form or another was the best

 21

form of learning.7 While it is now quite clear that this advice was misguided,
it is instructive to consider why such erroneous views could become so in-
fluential. Proponents of learning through problem solving collected a vast
amount of data on the process used by problem solvers, but they avoided
running controlled experiments in which learning was compared under prob-
lem solving as opposed to alternative conditions. Cognitive load theory, the
topic of the next section, has proved successful not only because of its reli-
ance on a particular view of human cognition but also because no instruc-
tional recommendation generated by the theory has been offered without
first being extensively tested using controlled experiments.

Back to the failed experiment: The failure of the problem solvers to learn
anything useful about the structure of the problems presented to them, led to
the obvious question: How should we have taught them? In the case of the
puzzle problems, the answer is as obvious as the question. If you show peo-
ple the alternating rule (×3, −69) rather than have them attempt to discover
it, they will learn it immediately. As confirmed by both common sense and
controlled experiments, while the alternating rule may be hard to discover, it
is trivially easy to learn.

Most of the research in cognitive load theory, and in particular the research
on worked examples (see section 3.3), was conducted at a time when prob-
lem solving practice was a preferred instructional approach, endorsed by
many prominent educators and researchers including Newell and Simon as
mentioned above. As we shall see in the next section, Sweller’s research pro-
gram accumulated empirical evidence showing that traditional, practice-
based problem solving was less than an ideal method for improving problem
solving performance when compared to instruction that paired practice prob-
lems with worked examples.

3.3 A survey of cognitive load theory
Working memory is the bottleneck of the memory partnership⎯a very small
bottleneck! Cognitive load theory is a set of learning principles that deals
with this bottleneck. To be a bit more precise:

Cognitive load is the load on working memory during problem solving,
thinking, and reasoning (including perception, memory, language, etc.).

Cognitive load theory is a universal set of learning principles that are proven
to result in efficient instructional environments as a consequence of leverag-
ing human cognitive learning processes [Clark et al. 2006].

John Sweller [Sweller 1988] suggests that novices who are unable to recog-
nize a schema to solve a problem must resort to ineffective problem solving
strategies like means-ends analysis [Newell et al. 1972]. Sweller suggests
that problem solving by means-ends analysis requires a relatively large
amount of cognitive processing capacity, which may not be devoted to

7 It is paramount not to confuse problem solving with problem-based learning. Prob-
lem solving is only what it says, solving problems; problem-based learning is a
pedagogical strategy of active learning driven by challenging open-ended problems.

 22

schema construction. Instead of problem solving, Sweller suggests that in-
structional designers limit cognitive load by designing instructional materials
like worked-examples, or goal-free problems. We return to these later.

The fundamental axiom of cognitive load theory (based upon the model of
cognitive architecture) is that learning outcome is optimized when cognitive
load fully utilizes the capacity of working memory with elements that allow
for optimal schema acquisition. Too little as well as too much cognitive load
results in low learning outcome. Routine activities do not advance cognitive
development (if there is no new information, no encoding/recoding of sche-
mas take place), and overwhelming with cognitive load does not leave ca-
pacity for schema acquisition. Consequently, optimizing learning is a ques-
tion of balancing, not minimizing nor maximizing, cognitive load (see
Figure 3-2).

Learning outcome

Cognitive load

Figure 3-2: Learning outcome as a function of cognitive load

However, it is a bit more complicated than that, but also more informative.
Cognitive load (L) is currently divided into three disjoint categories:

• Extraneous cognitive load (E) is caused by instructional procedures
that interfere with, rather than contribute to, learning. Extraneous cog-
nitive load might impede learning, since it requires working memory
resources that can no longer be devoted to cognitive processes associ-
ated with learning. Furthermore, cognitive resources required by ex-
traneous cognitive load might result in an overall cognitive load that
exceeds the limits of working memory capacity.

• Germane cognitive load (G) is a non-intrinsic cognitive load that con-
tributes to, rather than interferes with, learning by supporting schema
acquisition. Germane cognitive load is imposed by adding higher-
level cognitive processes that aid schema acquisition and automation.

• Intrinsic cognitive load (I) is cognitive load intrinsic to the problem
that cannot be reduced without reducing understanding. Intrinsic cog-
nitive load depends on the relational complexity of the to-be-learned
content (so-called element interactivity) and the learner’s degree of
prior knowledge.

Informally, we can express the relationship between L, E, G, and I as:

 L = E + G + I .

In these terms, the challenge of balancing cognitive load for optimal learning
becomes a question of minimizing E and maximizing G.

 23

3.3.1 Milestones in cognitive load theory

Most of the research in cognitive load theory is focused on identifying so-
called effects (with associated instructional techniques). Initially, researchers
in cognitive load theory equated L with E, and all research focused on identi-
fying effects to decrease E. In 1994, cognitive load researchers in the Neth-
erlands identified the variability effect (if examples had high variability,
cognitive load was increased, but learning was better/more efficient than
with low variability examples) [Paas et al. 1994]. This lead to the notion of
germane cognitive load, hence L = E + G. At the same time, researchers in
Australia identified the element-interactivity effect (some earlier identified
effects could be obtained only with material with highly interrelated ele-
ments; for sequencable material that could be processed in working memory
one or two elements at a time, the effects invariably failed) [Sweller 1994a,
Sweller et al. 1994b]. This lead to the notion of intrinsic cognitive load,
hence L = E + G + I. For eight years, the conception was that intrinsic cogni-
tive load is immutable; it could not be varied because it was “intrinsic” to the
material. The focus of cognitive load theory was continually to identify ef-
fects to reduce E, but now complemented with research to identify effects to
increase G. Only in 2002 [Pollock et al. 2002], researchers realized that there
had to be ways of reducing intrinsic cognitive load; otherwise very complex
material could not be learned. Consequently, the theory was modified to say
that I cannot be reduced without reducing understanding. Learning can be
facilitated by reducing the number of interacting elements and only reintro-
duce them later when the essential elements have been learned. However,
recent research in cognitive load theory suggests that intrinsic load in fa-
vourable circumstances can be reduced without reducing understanding
[Gerjets et al. 2004, van Merriënboer et al. 2003]. The milestones are cap-
tured in Figure 3-3.

1994 2002 1982 t

L = E L = E + G + Iimmutable L = E + G + I

1989

Figure 3-3: Milestones in the development of cognitive load theory

The major effects identified so far by cognitive load theory are (in chrono-
logical order):

Early years (1982-1994)
• Lack-of-transfer effect (1982): The experiment described in section

3.2, marked the birth of cognitive load theory and the L = E assump-
tion [Sweller et al. 1982].

• Goal-free effect (1983): Practising through goal-free problems in-
crease learning outcome (an example of a goal free problem in pro-
gramming is to implement as many methods of a class or system as
possible as opposed to telling the students to implement a particular
method [Sweller et al. 1983].

• Worked examples effect (1985): Alternation of worked examples and
problems increase learning outcome and transfer (a worked example is

 24

a demonstration of problem solving by the instructor) [Sweller et al.
1985].

• Split-attention effect (1988): Split attention (e.g. combining informa-
tion in text and diagrams) depress learning. The split-attention effect
was demonstrated in worked-examples but applies to all educational
material [Chandler et al. 1992, Sweller et al. 1990, Tarmizi et al.
1988, Ward et al. 1990].

• Refinement of the human cognitive architecture model (1989): Penney
published the paper “Modality effects and the structure of short term
verbal memory” which presents an extended model of the human cog-
nitive architecture. The main assumption of the model is that informa-
tion presented to the auditory and visual modalities is processed in
separate working memory streams with independent processing capa-
bilities, i.e. that auditory and visual working memory can be used si-
multaneously, thus to some extent increasing the capacity of working
memory [Penney 1989]. This refinement of the human cognitive ar-
chitecture was subsequently used to demonstrate the modality effect
(1995) and forms with it the basis for recent theories of multimedia
learning (2003).

• Redundancy effect (1991): Reduce E by reducing redundancy. This ef-
fect was rediscovered by many but forgotten because it was counter-
intuitive; demonstration of a counter-intuitive effect without a proper
theoretical explanation tended to be forgotten and that may be why
early examples of the redundancy effect had no impact on the field.
Cognitive load theory provides an explanation of the redundancy ef-
fect: Most educators intuitively feel that presenting learners with the
same information in several different ways cannot be harmful and
could be beneficial. But if we have to unnecessarily coordinate multi-
ple sources of the same information, scarce working memory re-
sources are being used for activities unrelated to schema acquisition
and automation, depressing learning [Chandler et al. 1991].

• Example-completion effect (1992): Rather than giving full worked ex-
amples, Paas gave learners completed problems that had to be com-
pleted. Partially completed problems presented to learners are as ef-
fective as worked examples and better than full problems [Paas 1992].
This effect was subsequently used to demonstrate the guidance-fading
effect (2003).

Middle years (1994-2002)
• Variability effect (1994): Worked examples with high variability in-

crease cognitive load and learning (if intrinsic load is sufficiently
low). Identification of this effect lead to the notion of germane cogni-
tive load: L = E + G [Paas et al. 1994].

• Element-interactivity effect (1994): (some earlier identified effects
could be obtained only with material with highly interrelated ele-
ments; for sequencable material that could be processed in working
memory one or two elements at a time, the effects invariably failed)
Identification of this effect lead to the notion of intrinsic cognitive
load: L = E + G + Iimmutable, where I, as indicated by the subscript des-
ignation, is assumed to be immutable [Sweller 1994a, Sweller et al.
1994b].

• Modality effect (1995): Mousavi et al. demonstrated this effect under
split-attention assumptions (i.e. where two sources of information are

 25

unintelligible in isolation). Controlled experiments comparing geome-
try diagrams and written or spoken text demonstrated the superiority
of the spoken text [Mousavi et al. 1995]. Morano and Mayer extended
the result to computer animations with on-screen text and animations
[Moreno et al. 1999]. The modality effect, and the extended human
cognition architecture model, forms the basis for recent theories of
multimedia learning (2003).

• Expertise-increase, effect-decrease effect of worked examples (late
1990s): The correlation that effects gradually disappear as students
develop expertise was identified in the late 1990s but not published as
a result in itself. It was subsequently used to demonstrate the exper-
tise-reversal effect as well as the guidance-fading effect (2003).

Recent years 2002-
• Isolated-interacting-elements effect (2002): Pollock et al. realized that

there had to be ways of reducing intrinsic cognitive load; otherwise
very complex material could not be learned. Consequently, the as-
sumption that I is immutable was abandoned and cognitive load the-
ory was modified to say that I cannot be reduced but only at the ex-
pense of a corresponding reduction of understanding [Pollock et al.
2002]. L = E + G + I.

• Expertise-reversal effect (2003): All previous effects were demon-
strated using novices; in the late 1990s, effects were tested under the
new conditions of students that had developed some expertise. As
mentioned in the expert-increase, effect-decrease effect (1999) effects
gradually disappear as students develop expertise. But it turned to be
worse than that; it was demonstrated that with further expertise, ef-
fects reverse, i.e. the learning outcome was reduced [Kalyuga et al.
2003].

• Guidance-fading effect (2003): The expertise-reversal effect was used
to demonstrate the guidance-fading effect: complete-examples fol-
lowed by partially completed examples followed by full problems is
superior to any of the three used in isolation [Renkl et al. 2003].

• Handling large intrinsic cognitive load (2003-2004): The realization
that intrinsic load is not immutable has lead researchers to look for
ways to reduce intrinsic load without sacrificing understanding. One
contribution is a framework for scaffolding practice and just-in-time
information presentation to effectively control intrinsic cognitive load
[van Merriënboer et al. 2003]. Another contribution represents an in-
structional technique that applies to problems that can be recursively
decomposed to simpler problems that exhibit the same characteristic
as the original problem while being simpler [Gerjets et al. 2004].

• Multimedia learning (2003-): The demonstration of the modality-
effect (1995) and technological development has spawned a new and
comprehensive thread of research in cognitive load theory related to
multimedia learning [Brünken et al. 2003, Brünken et al. 2004, Mayer
et al. 2002, Mayer et al. 2003, Moreno 2004, Schnotz et al. 2005].

Cognitive load theory in general, and the two contributions on handling
large intrinsic cognitive load in particular, seems highly relevant to pro-
gramming education; in chapter 9 we discuss application of cognitive load
theory for the instructional design of an introductory object-oriented pro-
gramming course.

 26

Recent developments of cognitive load theory is available via special issues
of the journals Learning and Instruction, Educational Psychologist, Instruc-
tional Science, and Educational Technology Research and Development
[Kirschner 2002, Paas et al. 2003, Paas et al. 2004, van Merriënboer et al.
2005]; together the four special issues contain 37 papers (including the four
editorials). Furthermore, a textbook is available that presents the theory in
accessible form to educators at large [Clark et al. 2006].

3.3.2 Development of cognitive load theory

Researchers in cognitive load theory are careful not to generalise their find-
ings more than controlled experiments allow. An effect that has been dem-
onstrated under some conditions does not necessarily extend to new condi-
tions, and cognitive load theory has developed through a sequence of failed
experiments when trying to extend findings to new conditions (e.g. the split-
attention effect was identified via failed experiments of extending the
worked examples effect; the redundancy effect grew from the split-attention
effect in the same manner). Whenever an effect failed to extend to new con-
ditions, cognitive load theory itself was used to explain the failure and pro-
vide inspiration for improvement of the theory. In most cases, however, re-
searchers have been able to extend effects to new conditions. In conclusion,
we note that a large part of the development of cognitive load theory may be
characterised as direct or indirect derivation of effects (direct meaning suc-
cessful extension of an effect to new conditions and indirect meaning failure
of extension and subsequent alteration of the theory).

The anchorage in controlled experiments is good because it means that cog-
nitive load theory represents sound research. However, it is also bad because
it means that we cannot as a matter of course claim that results generalise to
the context of programming education. But we may anticipate that they do,
and it seems more than worthwhile to apply cognitive load theory to the in-
structional design of programming education; we pursue this in chapter 9.

3.4 Worked examples and cognitive skill ac-
quisition

The survey of cognitive load theory in the previous section is comprehen-
sive, but it represents only a fraction of the amount of research in educa-
tional psychology, learning, and pedagogy. As mentioned in the beginning
of the chapter we shall not discuss all of this, but we will briefly review the
major results of a couple of areas related to and partly overlapping with cog-
nitive load theory. The areas are the worked examples research and cognitive
skill acquisition. The primary resources for this section are two recent re-
view articles: Learning from Examples. Instructional Principles from the
Worked Examples Research [Atkinson et al. 2000] and Cognitive Skill Ac-
quisition [VanLehn 1996].

Studies of students in a variety of instructional situations have shown that
students prefer learning from examples rather than learning from other forms
of instruction (e.g. [Chi et al. 1989, LeFevre et al. 1986, Pirolli et al. 1985]).
Students learn more from studying examples than from solving the same
problems themselves [Carroll 1994, Cooper et al. 1987]. A three-year pro-

 27

gram in algebra was completed in two years by students who studied only
examples and solved problems without lectures or other direct instruction
[Zhu et al. 1987].

The relevance of the two areas to programming education is explicitly ex-
pressed by the authors: “The worked examples literature is particularly rele-
vant to programs of instruction that seek to promote skill acquisition, e.g.
music, chess, and programming” [Atkinson et al. 2000]; and “Frequently
studied tasks include [...] computer programming” [VanLehn 1996]. Atkin-
son et al. continues: “[L]earning from worked examples causes learners to
develop knowledge structures representing important, early foundations for
understanding and using the domain ideas that are illustrated and empha-
sized by the instructional examples provided. These representations guide
problem solving, and they may be conceptualized as representing early
stages in domain schema development and in the acquisition of expertise.”

Atkinson et al. have organized their review to emphasize a particular per-
spective regarding three major categories that influence learning from
worked examples; we present the categories as how-to principles of con-
structing and applying examples in education:

1. How to construct examples
2. How to design lessons that include examples
3. How to foster students’ thinking process when studying examples

1. How to construct examples
• Accentuate subgoals. Structuring worked examples so that they in-

clude cues or beacons that highlight meaningful chunks of information
reflecting a problem’s and its solution’s underlying conceptual struc-
ture and meaning significantly enhances learning [Catrambone 1998].
Catrambone demonstrates that formatting an example’s solution to ac-
centuate its subgoals can assist a learner in actively inducing the ex-
ample’s underlying goal structure, and that this cognitive activity pre-
sumably helps promote induction of deeper structure representing
domain principles, or schemas [Atkinson et al. 2000]. Two techniques
have particular efficacy: labels (e.g. verbal specification) and visual
separation of steps. Catrambone found that it is the presence of a la-
bel, not its semantic content, which influences subgoal formation.

2. How to design lessons that include examples
• At least add a second example. Educators must decide how many ex-

amples to provide for each problem type. The number may be con-
strained by external factors, but [Reed and Bolstad 1991] indicates
that one example may be insufficient for helping students to induce a
usable idea, and that the incorporation of a second example, especially
one that is more complex than the first, increases students’ learning
outcome significantly. Others have found similar results: education
that helps to develop schemas helps in solving problems, and multiple
examples of the same schema improves learning and transfer [Gick et
al. 1983, Hesketh et al. 1989].

• Vary form of problem type. Novices categorize problems according to
surface features of the problem statement itself, whereas experts cate-
gorize problems according to features and structural similarities of
their solution [VanLehn 1989 p. 563]. Variation of form (e.g. cover
story) can help novices to realize that there is a many-to-one relation-

 28

ship between form and problem type and vice versa: “when students
see the same battery of cover stories used across problem types, they
are more likely to notice that surface features are insufficient to dis-
tinguish among problem types” [Quilici et al. 1996]. This principle is
a supplement to the variability-effect of section 3.3.

• Alternate examples and practice problems. Lessons that pair each
worked example with a practice problem and intersperse examples
throughout practice will produce better outcomes than lessons in
which a blocked series of examples is followed by a blocked series of
practice problems [Trafton et al. 1993].

3. How to foster students’ thinking process when studying examples
• Induce self-explanations in example-based instruction. The message

from the large amount of self-explanation literature is clear: students
who self-explain outperform students who do not. Furthermore, there
are different forms of self-explanation, and students often fail to self-
explain successfully; most learners self-explain in a passive and super-
ficial way [Chi et al. 1989, VanLehn 1996]. A good deal of self-
explanation research has been conducted in the context of program-
ming education, e.g. [Pirolli 1991, Pirolli et al. 1994].

• Beware of social incentives. Social incentives rarely work. Due to the
fact that most learners are passive and superficial self-explainers, Re-
searchers have made controlled experiments of initiatives aiming at
increasing the quality of degree and quality of self-explanation in
various social contexts. In one experiment, students were assigned the
role of teacher. The hypothesis was that teaching expectancy would
motivate learners to thoroughly self-explain worked examples. In an-
other experiment, students were paired and told to explain examples to
each other. Surprisingly, the result of all these experiment was
counter-intuitive: Neither teaching expectancy nor peer explanations
improved performance; in fact it appeared to hamper learning partly
because of increased stress and reduced intrinsic motivation on the
part of the students [Atkinson et al. 2000].

Researchers identify three phases of skill development in general, which also
apply to cognitive skill development: the early phase, the intermediate
phase, and the late phase.

The early phase: In this phase, the subject is trying to understand the domain
knowledge without yet trying to apply it. This phase is dominated by read-
ing, discussion, and other general-purpose information acquisition activities.
In programming education, however, the image is blurred due to the benefits
of technology, which can be used to explore basic domain knowledge by
“playing” with the computer (e.g. learn about the development environment
and basic language constructs by editing, compiling, and executing simple
programs spelled out in the teaching material). In programming education,
the early phase includes writing as well as reading, but not problem solving.

The intermediate phase: The intermediate phase begins when students turn
their attention to solving problems. When students enter the intermediate
phase, they have some relevant knowledge for solving problems but cer-
tainly not all of it. There will be flaws in the domain knowledge (i.e. misun-
derstandings and missing knowledge). The purpose of the intermediate phase
is to correct flaws and acquire heuristic, experiential knowledge that expe-

 29

dites problem solving [VanLehn 1996]. Eventually, students remove all (or
most) flaws in their knowledge and can solve problems without conceptual
errors, although they may still make unintended errors, or slips [Norman
1981]. This capability signals the end of the intermediate phase and the be-
ginning of the late phase.

The late phase: During the late phase, students continue to improve in speed
and accuracy as they practice, even though their understanding of the do-
main and their basic approach to solving problems does not change. Practice
effects and transfer are the main research issues in this phase.

Of course, this three-phase chronology is an idealization. The boundaries
between phases are not as sharp as the description suggests. Moreover, in-
struction on a cognitive skill is divided into courses, topics, chapters, and
sections. Students are introduced to a component of the skill, given substan-
tial practice with it, then moved on to the next component. Thus, at any
given time, students may be in the late phase with respect to some compo-
nents of their skill but in other phases with respect to other components.
Nonetheless, it is useful to make the three-phase distinction. [VanLehn
1996].

Hardly any research in cognitive skill development relates to the early phase.
Most of what we have discussed so far in this and the previous section re-
lates to the intermediate phase of cognitive skill development. In the remain-
ing part of the section we shall therefore concentrate on the late phase, which
is often ignored in higher education. Perhaps the most ubiquitous finding
about the late phase of cognitive skill development is the power law of prac-
tice. Another interesting finding is the effect of transfer.

3.4.1 The power law of practice

The power law of practice states that the logarithm of the response time for a
particular task decreases linearly with the logarithm of the number of prac-
tice trials taken. In other words, response time as a function of number of
trials can be expressed as a power function:

)(log2)(bxaxf ⋅=

where a is the response time for the first trial and b is the learning percent-
age (a learning percentage of 80% means that a doubling of the number of
trials will reduce the response time with 20%). A learning curve is the graph
of a function describing the power law of practice. Figure 3-4 shows the
learning curve of a power function with a 50% learning effect and an initial
response time of 120 minutes.

 30

2 4 6 3 1 5 7 8 9 10 20 15

10

60

120

Trial response time in minutes

 Number of
practice trials

Figure 3-4: Learning curve with 50% learning effect

In an influential review [Newell et al. 1981] the authors found that the power
law applies to simple cognitive skills as well as perceptual motor skills. Sev-
eral studies of cognitive skill development found that the speed of applying
individual components of knowledge increased according to a power law
thus indicating that practice benefits those components rather than the skill
as a whole [Anderson et al. 1989, Anderson et al. 1994]. Accuracy also in-
creases according to a power law [Anderson et al. 1994, Logan 1988].

According to [VanLehn 1996], several theories of the power law have been
advanced; [Newell 1990, Newell et al. 1981] claimed that chunking of
knowledge in long-term memory was the reason, thus allowing the same task
to be accomplished by applying fewer schemas. [Anderson 1993] claimed
that the speedup is due to two mechanisms: Knowledge in long-term mem-
ory is converted from a slow format (declarative format) into a fast format
(procedural format), and the speed of individual pieces of procedural knowl-
edge also increase with practice.

The power law of practice is an example of the learning curve effect on per-
formance. The learning curve effect and the closely related experience curve
effect express the relationship between experience and efficiency. As indi-
viduals and/or organizations get more experienced at a task, they usually
become more efficient at it. The concepts originate in the adage “practice
makes perfect”, and the concepts are opposite to the popular misapprehen-
sion that a “steep” learning curve means that something is hard to learn. In
fact, a “steep” learning curve implies that something gets easier quickly
[Wikipedia 2007b].

Heathcote et al. question the theory that response time is a power function of
the number of practice trials; they argue that the evidence for a power law is
flawed, because it is based on average data. Heathcote et al. report on a sur-
vey that assessed the form of the practice function for individual learners and
learning conditions in paradigms that have shaped theories of skill acquisi-
tion. They found that the exponential function fit better than the power func-
tion in all unaveraged data sets. They argue that averaging produced a favour
of the power function and conclude: “Clearly, the best candidate for the law
of practice is the exponential or APEX function, not the generally accepted
power function” [Heathcote et al. 2000]. We have not been able to find fur-
ther evidence for the claim put forward by Heathcote and his colleagues.
However, validity of the claim implies that performance (time and accuracy)

 31

of individual learners improves even faster than anticipated with a power
law and hence strengthens the argument for practice in favour of increased
learning and transfer.

3.4.2 Transfer

Transfer is expressed as a ratio: the time saved in learning the transfer task
divided by the time spent learning the training task. One major finding re-
garding transfer is that the degree of transfer can be predicted by the number
of pieces of knowledge shared between the training and transfer tasks (e.g.
[Bovair et al. 1990, Singley et al. 1989]). This is a major argument in favour
of pattern-based learning (i.e. reinforcement of domain patterns to support
schema acquisition and thereby improve learning). The patterns of a domain
(e.g. programming) are abstractions of recurring phenomena in that domain
or in other words: “pieces of knowledge shared between tasks”. Thus, mas-
tering of patterns becomes a guarantee for increased transfer.

As mentioned earlier, practice affects individual pieces of knowledge and
not the skill as a whole. When practice on the training task speeds up certain
subskills, use of such subskills continues to be fast when used in the transfer
task [VanLehn 1996].

3.5 Conclusion
This chapter has offered an overview of elements of learning theory that we
consider particularly relevant to our work. Based on a model of the human
cognitive architecture, we have provided a survey of cognitive load theory
that highlights the major relevant achievements of the quarter of a century in
which the area has existed. Along the same lines, we have provided a survey
of the research in worked examples and cognitive skill acquisition. Both ar-
eas are known and respected for their reliance on empirical research through
controlled experiments.

Some of the research on worked examples has been carried out in the area of
programming education and has thus demonstrated the applicability of the
theories to our field. Overall, we conclude that there are strong indications of
a learning-theoretic foundation that supports the two first of the three theses
T1, T2, and T3. (T1: Revealing the programming process to novices eases and
promotes the learning of programming. T2: Teaching skills as a supplement
to knowledge promotes the learning of programming. T3: Anybody can learn
to program.)

In chapter 9, we discuss the application of results from cognitive load theory,
worked examples, and cognitive skill acquisition to the instructional design
of a course aiming at educating novices in the skills of programming.

Whenever relevant, terminology from this chapter will be used throughout
the dissertation.

 32

4 Programming Education Research

A vast amount of development and research in computing education is pub-
lished in journals and proceedings from conferences and workshops. In this
section, we provide an overview of the field by describing activities and
publications as well as the major research areas. We restrict the overview to
issues related to programming education. As we shall see, the prevailing per-
spective is teaching programming as knowledge; hardly any of the research
explicitly addresses the challenge of teaching programming as a skill. Thus,
the chapter provides an answer for the second research question:

Research question 2 (Q2): Does programming education research
support T1-T3? The question is refined to two more specific questions:
Q2.1: What is programming education research all about?
Q2.1: Does some of the research support or contradict the claims of

T1-T3?

The first section provides an overview of the field by describing the essential
conferences and publications relevant to programming education research. In
section 4.2 we present a comprehensive overview of the overwhelming
amount of research structured according to ten major research areas.

4.1 Selected conferences and publications
In this section, we provide a brief overview of selected journals, periodicals,
conferences, and workshops that relate to programming education (the num-
ber in parenthesis marks the year of origin). The selection covers:

• Journals, Magazines, and Periodicals
o inroads − The SIGCSE Bulletin (quarterly, 1970)
o International Journal of Human-Computer Studies (empirical

studies of programming and software engineering), Elsevier,
Academic Press (monthly, 1974)

o Computer Science Education (quarterly, 1990)
o Education and Information Technologies, Kluwer Academic

Publishers (bimonthly, 1996)
o Journal on Educational Resources in Computing (JERIC) (quar-

terly, 2001)
o Informatics in Education (twice a year, 2002)

• Annual Conferences
o SIGCSE: The Annual Technical Symposium on Computer Sci-

ence Education (1970)
o FIE: Frontiers in Education (1971)
o OOPSLA Educators’ Symposium (1992)
o ITiCSE: The Annual Conference on Innovation and Technology

in Computer Science Education (1996)
o ACE: Australasian Computing Education Conference (1996)

 33

o Koli Calling (2001)
• Annual Workshops

o PPIG: Psychology of Programming Interest Group (1987)
o ECOOP (OOPSLA) Workshop on Pedagogies and Tools for the

Teaching and Learning of Object-Oriented Concepts (1997)
o Program Visualization Workshop (2000, biannual, held in even

years in conjunction with the ITiCSE conference)
o OOPSLA “Killer Examples” for Design Patterns and Objects

First Workshop (2002)
o ICER: International Computing Education Research Workshop

(2005)

4.1.1 SIGCSE

The ACM Special Interest Group in Computer Science Education, SIGCSE,
was established in 1968 [SIGCSE 2006]. The first issue of the newsletter,
SIGCSE Bulletin, was published in 1969. The first annual technical sympo-
sium on computer science education was held in 1970, and the 38th sympo-
sium is coming up in March 2007. The symposium, which is hosted in the
US, attracts 1200+ attendees every year; the average number of submissions
is 300, and the acceptance rate is approximately 33%.

4.1.2 ITiCSE

In 1996, ITiCSE, a conference similar to the SIGCSE technical symposium
but hosted in Europe, was initiated to tempt European educators and re-
searches to join the community. The initiative has been a moderate success;
ITiCSE attracts approximately 200 attendees every year; the average number
of submissions is 200 (from 35 different countries covering every continent
excluding Antarctica); the acceptance rate is 30%. A distinguished feature of
ITiCSE is the working groups. Every year, four to six working group pro-
posals are accepted, and working group leaders gather researchers with
common interests to collaborate on a research topic. The groups initiate their
work a couple of months before the conference and convene at the confer-
ence to finish their work. A report documenting the work is reviewed and
published. Examples of working group topics from the past 11 conferences
are: Interacting factors that predict success and failure in a CS1 course; Role
and impact of visualization (recurring topic); Study of assessment of pro-
gramming skills (recurring topic); Research perspectives on the objects-early
debate; Assessment; Student cheating; and Teaching introductory program-
ming using LEGO© Mindstorms. Some working groups have produced re-
markable research results (in particular the recurring working groups on al-
gorithm visualization and the 2001 and 2004 working groups that conducted
multi-institutional studies of programming skills [Lister et al. 2004,
McCracken et al. 2001]), and quite a few have been seminal and spawned
ongoing research activities and networks.

4.1.3 Koli Calling

In 2001, a group of Finnish researchers in computer science education initi-
ated the Koli Calling conference series [Koli 2006]. The main reason for
arranging the conference was to attract interested scholars and educational
technologists within the universities in Finland to join their efforts to figure

 34

out the future prospects of the field. The conference was also open for fellow
participants from Baltic Sea and Nordic countries. Since 2004, the scope of
the conference has been broadened to be world-wide, and the best research
papers are published in the international journal Informatics in Education.
The conference and publication in Informatics in Education represent a most
welcome opening toward the Baltic countries and Eastern Europe.

4.1.4 Workshop in “killer examples” for design patterns

The OOPSLA “Killer Examples” for Design Patterns and Objects First
Workshop series was initiated in 2001 [Alphonce 2006]. The Jargon File
[Jargon 2003] defines a killer app as an “application that actually makes a
sustaining market for a promising but under-utilized technology”. A killer
example provides clear and compelling motivation for some concept. The
theme of this workshop is killer examples for design patterns and object-
oriented concepts. Object orientation is an excellent approach to managing
the complexity of large, real-world software systems. Design patterns are an
essential part of an object-oriented approach to managing complexity. The
purpose of killer examples is to motivate students and pique their curiosity
about object orientation and design patterns. The goal of the workshop is to
elicit, share, analyze, and critique killer examples from educators and devel-
opers from industry. As OOPSLA in general, one of the primary assets of
this workshop is that it brings together practitioners, educators, and re-
searchers to achieve the best from all three perspectives.

4.1.5 ICER

Many attendees at education conferences have their primary research interest
in other fields of computing but care enough about teaching and education to
attend conferences and publish in this area as well. In the second half of the
1990s, an increasing number of “pure” CS education researchers appeared,
and the field began to emerge as a discipline in itself [Dale 2002]. The ICER
workshop was initiated in 2005 to accommodate the increasing number of
researchers with computing education as their primary research area. The
ICER workshop is annual; in odd years it is hosted in the US and in even
years it is alternately hosted in Europe and Australia. The first European
ICER workshop was held in Canterbury in England; the second will be in
Aarhus in 2010. From 2008, the doctoral consortium for PhD students in
computing science education research will be moved from SIGCSE to ICER,
where it really belongs.

4.1.6 Joint Modular Language Conference

The mission of the Joint Modular Languages Conference, which is held
every third year, is to explore the concepts of well-structured programming
languages and software and those of teaching good design and programming
style.

4.1.7 Informatics Education Europe (IEE)

The conference series IEE ⎯sponsored by ACM, and the British Computer
Society ⎯started in 2006 and aims to bring together Informatics Educators
across Europe and to provide a forum for sharing experience, discussing in-
novative ideas, and identifying common issues to be addressed within

 35

Europe. IEE II (2007) will focus on “Developments in South-East and East
Europe” as its main theme. Despite the significant developments in East and
South-East European countries in recent years, including the changes in their
technological infrastructure and the emergence of competitive software
companies, academic staff in the region have not always responded effi-
ciently. The conference will investigate the reasons for this, address prob-
lems common among educators related to the development, improvement,
delivery and evaluation of Informatics curricula, and provide an opportunity
for sharing experiences and best practice examples from all over Europe.

As a supplement to the list of journals, periodicals, conferences, and work-
shops related to programming education, it is relevant to mention two con-
gregations that address computing education (though in very different ways),
the Scandinavian Pedagogy of Programming Network (SPoP), and the ACM
Education Board and Council.

4.1.8 Scandinavian Pedagogy of Programming Network
(SPoP)

The SPoP network was established in 2004 as a forum for Scandinavian re-
searchers and educators with a special interest in programming education
[Bennedsen et al. 2006c]. A considerable amount of interesting work in
computing education is being done in Scandinavia, and all who work in the
field can benefit from better opportunities of exchange and co-operation.
The network is intended as a rather informal, low overhead group that aims
at advancing our field. The long term aim is to establish a multi-location,
multi-disciplinary group with regular (if infrequent) meetings that helps fa-
cilitating computing education projects. This group should include experts
from computer science, pedagogic disciplines, psychology, and others. 24
members of the network are currently finishing the book Reflections on the
Teaching of Programming to be published as a volume of Lecture Notes in
Computer Science by Springer-Verlag in 2007 [Bennedsen et al. 2007a].

4.1.9 The ACM Education Board and Council

The general scope of the ACM Education Board is to promote computer sci-
ence education at all levels and in all ways possible. The Board is an execu-
tive-like committee overseeing the Education Council and will initiate, di-
rect, and manage key ACM educational projects. This includes activities
such as the promotion of curriculum recommendations, the coordination of
educational activities, and efforts to provide educational and information
services to the ACM membership.

4.1.10 Personal involvement and commitment

My personal involvement and commitment so far in the community of CS
education and CS education research can be summarized as follows:

• Publication in 12 of the above mentioned 17 publications (2000−)
• Member of ACM’s Education Council (2006−)
• Member of the editorial board of Journal of Computer Science Educa-

tion (2006−)
• Originator and founding member of the Scandinavian Pedagogy of

Programming Network (2004)

 36

• Conference chair for ITiCSE 2002 (Aarhus)
• Program committee member for ICER 2007
• Program co-chair for ICER 2008 (Sydney)
• Program co-chair for ICER 2009 (Berkeley)
• Conference chair and program co-chair for ICER 2010 (Aarhus)
• Program committee member for ITiCSE (2000−2002)
• Program committee member for Koli Calling (2002−)
• Program committee member for Joint Modular Language Conference ,

JMLC (2006−)
• Program committee member for Informatics Education Europe II,

(2007−)
• Co-organizer of the OOPSLA “Killer Examples” for Design Patterns

and Objects First Workshop (2005−)
• Reviewer for the SIGCSE and ITiCSE conferences (1994−)

4.2 Research areas
Research in computer science education covers a lot of ground. In the book
Computer Science Education Research, edited by Sally Fincher and Marian
Petre, the authors identify ten broad areas that motivate research activities
within the field [Fincher et al. 2004]. The areas are not disjoint, but the clas-
sification represents a useful map of the territory of topics encountered in CS
education research. The ten areas are:

1. Student understanding
2. Animation, visualization, and simulation
3. Teaching methods
4. Assessment
5. Educational technology
6. Transferring professional practice into the classroom
7. Incorporating new developments and new technologies
8. Transferring from campus-based teaching to distance education
9. Recruitment and retention
10. Construction of the discipline

For each of the areas we present a brief and selective overview of research
activities that relate to programming education in general and the topic of
this dissertation in particular. The research most relevant to this dissertation
may be mentioned but will not be discussed in detail in this section; the de-
tailed discussion is postponed to the relevant chapter to allow for a more
complete treatment of the research and its relations to, and perhaps implica-
tions for, our work.

4.2.1 Student understanding

This area is characterized by investigation of students’ mental and concep-
tual models, their perceptions and misconceptions. Research in this area is
primarily analytical and concerned with understanding why students have
trouble with a particular topic, concept, or construct and how students (or
novices) and experts differ in their understanding and perception of things.

 37

A great deal of the research in this area is conceived as multi-disciplinary
research in cognitive science and cognitive psychology as well as CS educa-
tion research. The Psychology of Programming Interest Group (PPIG) [PPIG
2005] arose from ad hoc meetings of researchers and was established as a
group in 1987. [Petre et al. 2005] is a special issue of Computer Science
Education with a selection of papers from the 2003 and 2004 PPIG work-
shops.

We organize our overview of this area into five categories: psychological
studies, conceptions and misconceptions, phenomenographic studies, novice
behaviour, and educator understanding.

Psychological studies: Psychological studies of programming started in the
1970s but, as Sheil notes, many of the earlier studies of programming were
methodologically weak due to poor experiment design, variability of indi-
vidual programmers, and an underlying naive view of programming skill
shaped more by the fashions of contemporary computing practice than by
any reasonable appreciation of the complexity of the programming process.
The effects reported are small, and yet they are presented as if they establish
claims that go far beyond their data [Sheil 1981]. Since then, a number of
research psychologists have entered the field and the methodology has im-
proved considerably. [Gilmore 1990] is an example of several papers on ex-
periment design and methodology to be used in programming studies.

In the 1980s, fueled by the growing body of cognitive science, a number of
people conducted research in novice programmers’ performance. Much of
the work focused on identifying the particular problems that students have
when learning to program.

In distinguishing between the ability to read and trace programs (program
comprehension) and the ability to write or compose programs (program gen-
eration), Winslow concludes that “Studies have shown that there is very little
correspondence between the ability to write a program and the ability to read
one” [Winslow 1996].

Studies by Spohrer and Soloway [Soloway 1986, Soloway et al. 1983, So-
loway et al. 1989, Spohrer et al. 1986] and many others conclude that novice
programmers know the syntax and semantics of individual statements but do
not know how to combine these features into valid programs. In [Spohrer et
al. 1986] the authors distinguish between composition-based problems (dif-
ficulties in putting the pieces together) and construction-based problems
(misconceptions about language constructs); empirical studies demonstrated
that students’ difficulties are due to composition-based problems, not con-
struction-based. The authors conclude that “Educators may be able to im-
prove their students’ performance by teaching them strategies for putting the
pieces of program code together”. This result was confirmed by many con-
temporaries [Linn et al. 1985, Mayer 1981].

Spohrer and Soloway’s findings have been confirmed by similar research in
the 1990s. The ability to solve a problem requires aptitude beyond the syntax
and semantics of a programming language, and errors in students’ programs
are commonly related to deficiencies in problem solving strategies and insuf-
ficient planning, not syntax [Anjaneyulu 1994, Scholtz et al. 1992,
Shackelford et al. 1993, Wiedenbeck et al. 1993].

 38

The fact that these problems persist today is documented in more recent
studies. The famous ITiCSE 2001 working group [McCracken et al. 2001]
investigated first-year student programming proficiency covering 216 stu-
dents from four universities. Attempting to refine this work, the ITiCSE
2004 working group [Lister et al. 2004] focused on students’ capabilities in
program comprehension (i.e. to trace programs); this study covered 556 stu-
dents from 12 universities. A follow-up to the study on program comprehen-
sion is documented in [Lister et al. 2006] where Biggs’ SOLO taxonomy is
used for classification. In another multinational study covering 314 students
from 21 institutions in the US, UK, Sweden, and New Zealand, Eckerdal et
al. analyzed the design proficiency of graduating computer science students
[Eckerdal et al. 2006]. In conclusion, these studies found that students could
not generate programs, comprehend programs, or design programs at accept-
able levels [Mead et al. 2006].

Robins et al. provides a comprehensive review of the literature relating to
the psychological/educational study of programming and reach the following
conclusion: “A major recommendation to emerge from the literature is that
instruction should focus not only on the learning of new language features,
but also on the combination of those features, especially the underlying issue
of basic program design. [...] We suggest that programming strategies should
receive more and more explicit attention in introductory programming
courses. One way to address this would be to introduce many examples of
programs as they are being developed (perhaps ‘live’ in lectures), discussing
the strategies used as part of this process” [Robins et al. 2003]. Interestingly,
but also sadly, Soloway suggested essentially the same more than twenty
years ago [Soloway 1986].

In conclusion: over the past 25 years, study after study, even multi-
institutional and multi-national studies, have provided empirical evidence
that students cannot program and that the major problems they experience
are composition-based ⎯how to put the pieces together. We have a long-
standing problem of international scale, which we are aware of, and yet we
persist to teach programming primarily by explaining language constructs
and show-casing finished programs even though it is procedural knowledge
and strategies for putting the pieces together, that is needed!

Conception and misconception: Identifying misconceptions and their
causes, and devising ways to address them, constitutes a significant area of
science research, and there is a considerable amount of literature on how
misconceptions and inappropriate attitudes complicate learning [CUSE
1997]. An interesting perspective on misconceptions is provided by Smith et
al. in the paper “Misconceptions Reconceived”; the authors’ perspective is
that misconceptions are key components of learning and perhaps ought not
to be viewed so negatively [Smith et al. 1993].

Clancy provides an overview of research involving misconceptions related
to computer programming [Clancy 2004]. The exposition covers background
on how misconceptions form, a survey of research that reveals program-
ming-related misconceptions (indicating that the primary reasons for mis-
conceptions are inappropriate transfer/over- and undergeneralization and
confusion about computational models). Finally, Clancy discuss ways of
dealing with misconceptions and suggests directions for research in the area.

 39

Ragonis and Ben-Ari describe the results of a long-term investigation of the
comprehension of object-oriented programming concepts by high school
students [Ragonis et al. 2005a, Ragonis et al. 2005b]. The findings were
classified as difficulties of misconceptions, and most of them were interme-
diate, i.e. at the end of the course the students understood the basic principles
of object-oriented programming. In total, 58 misconceptions and difficulties
were identified and grouped in four categories: object vs. class (17), instan-
tiation and constructors (12), simple vs. composed classes (16), and program
flow (13). An example of a misconception is: “After a composed class is
defined, new methods cannot be defined in the simple class”, and an exam-
ple of a difficulty is “understanding the influence of method execution on the
object state”. Of the 58 findings, only 11 were classified as difficulties.
Along the same lines, Teif and Hazzan report on a study of high school stu-
dents’ major misconceptions in two more conceptual categories: confusion
of (a) taxonomy and (b) partonomic hierarchies with classes, objects, and
their interrelations [Teif et al. 2006].

Phenomenographic studies: Phenomenography is a research approach that
focuses on the differences in how people experience, perceive and under-
stand a phenomenon [Lister 2003, Marton et al. 1997]. In the early 1970s,
early phenomenographers identified two different approaches that students
bring to learning. In the “deep” approach, students attempt to develop a
genuine understanding of what they are studying, while students using the
“surface” approach seek merely to complete the tasks set by the teacher.
That phenomenographical research inspired the development of teaching
practices for encouraging deep learning [Biggs 2003].

In computer science, Booth conducted the seminal phenomenographic work
studying how students experience programming and identified different
ways in which students understand recursion [Booth 1997]. More recently,
phenomenography has been applied to novices understanding of basic con-
cepts in object-oriented programming [Bruce et al. 2004, Eckerdal et al.
2005a, Eckerdal et al. 2005b, Stamouli et al. 2006]. Currently, Lindholm is
conducting a phenomenographic study aiming at understanding how students
from the humanities as well as computer science students learn the concepts
of ‘object’, ‘class’, and ‘part-whole relationship’ during an introductory pro-
gramming course [Lindholm 2005, Lindholm 2007].

Student behaviour: Empirical studies of novice programming typically rely
on code solutions or test responses as the basis of their analyses. While such
data can provide insight into novice programming knowledge, they say little
about the programming processes in which novices engage [Hundhausen et
al. 2006]. For those interested in improving novice programming environ-
ments, a key research question arises: How can we collect and analyze data
on novice programming that will enable us (a) to analyze and compare the
programming processes promoted by alternative novice programming envi-
ronments and (b) ultimately to build better novice programming environ-
ments?

In order to address this question, Hundhausen et al. have collected a large
video corpus of novices as they construct code solutions. Through detailed
post-hoc analyses of the video corpus, the authors have developed a method-
ology for compiling the moment-by-moment evolution of novice code solu-
tions. Based on an analysis of a model code solution’s key semantic compo-
nents, the methodology enables researchers to document, on a second-by-

 40

second basis, (a) what part of a code solution a programmer is focusing on
and (b) where the semantic feedback provided by the programming envi-
ronment is helping. Although it is time and labour intensive, the methodol-
ogy provides researchers with a standard set of data and representations for
comparing the programming processes promoted by alternative program-
ming environments [Hundhausen et al. 2006].

Jadud has explored what he calls compilation behaviour of novices, i.e. the
programming behaviour a student engages in while repeatedly editing and
compiling programs [Jadud 2006]. Based on a sequence of compilation
events from a student’s programming session, Jadud defines the so-called
error quotient (EQ) which is a number between 0.0 and 1.0 that character-
izes how much or how little a student struggles with compilation errors
while programming. Jadud found a distinct correlation between a student’s
EQ and both average grades received on assignments and the final exam”.
While there is a correlation between EQ and performance, Jadud concludes
that he cannot make any strong claims about whether a first-year student’s
compilation behaviour can be used as a predictor for the performance on
traditional exam-based metrics.

Educator understanding: Although this topic clearly falls outside the scope
of this section, it is interesting to note that a few researchers recently, or
even currently, are extending some of the studies made with students as sub-
jects to educators. Bennedsen and Schulte have conducted a quantitative
study of educators’ perception of ‘objects-first’ [Bennedsen et al. 2007f],
and Thompson is currently conducting a phenomenographic study of percep-
tions of object-oriented software development by academics teaching object-
orientation and experienced practitioners’ [Thompson 2006].

4.2.2 Animation, visualization, and simulation

This area covers research that uses software tools to enhance student learn-
ing. Animation and visualization of algorithms and data structures is domi-
nating the area (e.g. [Naps 2006]); related topics are visualization of recur-
sion and visualization of variables and their roles. Computer architecture
visualization and network simulations of differing situations and conditions
are other popular topics, and so is visualization of parallelism and computa-
tional models (e.g. Turing machines, finite automata, and formal languages)
[Ben-Ari 2006a, Ben-Ari 2006b, Ibbett et al. 2006, Rodger 2006b, Rodger et
al. 2006a]. The biannual Program Visualization Workshop, which in even
years is held in conjunction with the ITiCSE conference, is a fruitful activity
for researchers in this area [PVW 2000, PVW 2002, PVW 2004, PVW 2006]
as is the recurring working groups at the ITiCSE conferences:

• 1996: An overview of visualization: its use and design: report of the
working group in visualization [Bergin et al. 1996]

• 1997: Using the WWW as the delivery mechanism for interactive,
visualization-based instructional modules [Naps et al. 1997]

• 2002: Exploring the role of visualization and engagement in computer
science education [Naps et al. 2002]

• 2003: Evaluating the educational impact of visualization [Naps et al.
2003]

• 2006: Merging interactive visualizations with hypertextbooks and
course management [Rössling et al. 2006]

 41

More general activities are the ACM Symposium on Software Visualization
[SoftVis 2006] and workshops at other major conferences (e.g. OOPSLA
and ICSE workshops on software visualization).

Algorithm visualization systems research dominated the field until the mid-
1990s, and systems research fell primarily into two main efforts: expanding
the communicative expressiveness of the visualizations and facilitating the
creation of the visualizations [Stasko et al. 2004]. In particular, the technique
of interactive prediction was introduced to allow students to become interac-
tively involved in animations and visualizations. In the mid-1990s, research-
ers’ attention turned toward pedagogical effectiveness of animation and
visualization, and a body of empirical research was conducted using distinct
empirical methods such as controlled experiments, observational studies,
questionnaires and surveys, ethnographic field techniques, and usability
studies. In 2002, Hundhausen, Douglas, and Stasko made a meta-study of
the effectiveness of algorithm visualization (AV) where they present a com-
prehensive review of 24 experimental studies of controlled experiments, in-
cluding a classification and analysis with respect to underlying learning
theories [Hundhausen et al. 2002]. The general conclusion of the meta-study
is that “how students use AV technology, rather that what students see, ap-
pears to have the greatest impact on educational effectiveness. [...] In par-
ticular, our meta-study suggests that the most successful use of AV technol-
ogy are those in which the technology is used as a vehicle for actively en-
gaging students in the process of learning algorithms [...] in such activities as
what-if analyses of algorithmic behaviour, prediction exercises, and pro-
gramming exercises [...]. Rather than being an instrument for the transfer of
knowledge, AV technology serves as a catalyst for learning“.

The positive affective effect of using program visualization, which are typi-
cally claimed by the developers of such systems, has recently been docu-
mented [Ebel et al. 2006].

A comprehensive and interesting research project on roles of variables (vari-
able patterns) [Ben-Ari et al. 2004b, Sajaniemi 2006] has produced 35 publi-
cations in the past five years and includes the development of PlanAni, a
role-based program animator [Sajaniemi et al. 2003].

4.2.3 Teaching methods

This is a very broad area which we shall break down into six sub-areas:
learner-centered education, constructivism, case studies and apprenticeship,
the inverted curriculum, patterns, and teaching and learning object-oriented
concepts.

Learner-centered education: In a special issue of Communications of the
ACM, Norman and Spohrer wrote a short editorial, which begins: “A revolu-
tion is taking place in education, one that deals with the philosophy of how
one teaches, of the relationship between teacher and student, of the way in
which a classroom is structured, and the nature of curriculum” [Norman et
al. 1996]. The basic issues can be described through such keywords as con-
structivism, learner-centered, and problem-based. At the heart is the idea
that people learn best when engrossed in the topic, motivated to seek out
new knowledge and skills because they need them in order to solve the prob-
lem at hand. The goal is active exploration, construction, and learning rather
than the passivity of lecture attendance and textbook reading.

 42

There is an important difference between learning through problem solving
(section 3.2) and problem-based learning. From their designation, the two
are easy to mix or equate, but if we take a closer look, they are obviously
very different. In the past, the focus has been on the content; curriculum is
structured around the basic topics of the content area, and experts divide the
topics into small, manageable bundles taught according to a prescribed les-
son plan, and the learners practice by solving problems⎯the more problems
that are solved, the better. The new learner-centered approach is somewhat
akin to the “user-centered” focus of modern interface design. Here, the focus
is on the needs, skills, and interests of the learner. Learner-centered is often
accompanied by a problem-based approach, where the problems are picked
to fit the interest and needs of the learners. The focus is on the learner and
authentic problems rather than on the structured analysis of the curriculum
content though both are clearly necessary.

In the paper How Much Choice is Too Much? [Becker 2006], the author
writes: “Providing a learner-centered perspective is in keeping with modern
constructivist approaches to learning, and this means that courses must be
designed with learner attributes and choice in mind. Concerns over accredi-
tation and the need for accountability at the post-secondary level seem to
contradict freedom of choice and flexibility of term work, but this need not
be the case.” Becker outlines numerous strategies for offering choice and
flexibility to students in a freshman programming course. Approaches in-
clude flexible deadlines, the ability to re-submit work that has already been
assessed, writing tasks, contributing to course content, bonuses for embel-
lishments and extra work, and choices about which problems to solve. All of
the strategies have been employed in classes, and students’ reactions as well
as effects on student engagement and quality of work are described in the
paper. Along the same lines, Bergin et al. report on a study on an examina-
tion of the effect of self-regulated learning in introductory programming per-
formance. The results of the study indicate that self-regulated learning is
important in learning how to program and can be used to partially predict
performance in the course. The study represents initial investigations into the
area that warrants further research [Bergin et al. 2005b].

Constructivism: Several researchers and educators in CS have addressed
learner-centered education through the notion of constructivism, i.e. that
knowledge is constructed from experience: “Learning takes place through
the active behaviour of the student: it is what he does that he learns, not what
the teacher does”, [Tyler 1949]. Basically, there are two schools of construc-
tivism: the Piaget school of individual (or cognitive) constructivism and the
Vygotsky-school of social constructivism. Ben-Ari has addressed both in
two separate papers [Ben-Ari 2001, Ben-Ari 2004]. Hadjerrouit discuss a
constructivist approach to object-oriented design and programming [Hadjer-
rouit 1999] and constructivism as a guiding philosophy for software engi-
neering education [Hadjerrouit 2005]. A more elaborate discussion of con-
structivism can be found in [Phillips 1995].

Case studies and apprenticeship: In the 1990s, several related tracks were
followed in an attempt to find more effective ways of motivating and pre-
senting material in introductory programming courses [Kölling et al. 2004].
Seminal among these attempts was Pattis’ paper A Philosophy and Example
of CS-1 Programming Projects [Pattis 1990] and the work of Linn and
Clancy [Linn et al. 1992], who made a strong argument for the use of case
studies to support program design. Particularly effective in their study was

 43

the use of expert commentary to accompany a design. Also significant is the
work of Astrachan and his colleagues on an applied apprentice approach to
CS1 and CS2, which encourage students to read, study, modify, and extend
programs written by experienced programmers [Astrachan et al. 1995, As-
trachan et al. 1997].

One of the principles of the apprentice-based approach to programming edu-
cation is that particular applications are the motivation for introducing new
programming constructs or data structures, rather than studying constructs
and facts about algorithms and data structures as ends in themselves. Kölling
and Barnes have written a textbook according to this pedagogical principle
[Barnes et al. 2006]. In [Kölling et al. 2004], they describe in detail the ra-
tionale, motivation, and goals of the problem-based approach of the book. In
the problem-driven approach, it is not the lecture content that drives the as-
signment, but the assignment problems that drive the lectures. Also, the
problem-driven approach makes it possible to achieve the inclusion of mod-
ern software engineering tasks into the computing curriculum early on. Tra-
ditionally, early computing assignments often use a blank screen approach:
students start with nothing more than a problem specification. They then
start designing and coding a new application from scratch. The essential as-
signment task is to write code. This style does not reflect realities in the con-
temporary computing industry, where tasks like reading and understanding
of existing code, maintenance and refactoring, adaptation and extension are
far more common than the development of new applications. Following
Barnes and Kölling’s approach, first students observe the teacher demon-
strating and extending an existing piece of software using new techniques or
constructs introduced for the purpose, then students apply the new material
to the project under guidance, and finally the students design their own tasks
as extensions of the project at hand. In this way, the order of student activi-
ties is exactly reversed compared to classical, clean-slate assignments; there,
students typically have to start with design, followed by applying new mate-
rial before they observe behaviour.

All of these initiatives correspond to the pedagogical theory of cognitive ap-
prenticeship [Collins et al. 1989] and Wenger’s theory of situated cognition
and communities of practice [Lave et al. 1991] (see also the introduction to
chapter 3).

The inverted curriculum: A radical proposal⎯at least considering the time
when it was put forward⎯ along the lines of postponing the teaching of
facts until they are actually needed, is Reek’s paper on a so-called top-down
approach to teaching introductory programming focusing on understanding
the abstractions represented by the classical data structures without regard to
their physical implementation; only after the students are comfortable with
the behaviour and applications of the major data structures do they learn
about their implementations or the basic data types like arrays and pointers
that are used [Reek 1995].

Reek’s proposal is an incarnation of Meyer’s idea of the inverted curriculum
[Meyer 1993]. However, Reek was not the first to implement this approach;
[Decker et al. 1993] describe a similar approach. More recent incarnations of
this idea are [Roumani 2006] and [Pedroni et al. 2006].

In [Buck et al. 2000], Buck and Stucki claim that “traditional approaches to
CS1 and CS2 are not in congruence with cognitive learning theory” and pro-

 44

vide arguments for a reversed order of topics based on Bloom’s classifica-
tion of educational objectives. The title of the paper is “Design early consid-
ered harmful: Graduated exposure to complexity and structure based on lev-
els of cognitive development”, and the message of the paper is that the or-
dering of topics that best matches Bloom’s hierarchy of cognitive develop-
ment is the reverse of the order of activities in the classical software lifecy-
cle model. The authors first do implementation of methods within an exist-
ing design, then later they move to design, analysis, and requirements in
later courses. “This is counter-intuitive, because it is not the order we work
in when we develop systems” [Buck et al. 2000]. The approach is character-
ized as “teaching software development from the inside out rather than be-
ginning with either console apps or monolithic designs.

Patterns (for schema creation): The fundamental motivation for a pattern-
based approach to teaching programming is that patterns capture chunks of
programming knowledge; according to cognitive science and educational
psychology, explicit teaching of patterns reinforces schema acquisition as
long as the total cognitive load is “controlled”.

Over the past ten years, a number of computer science educators have begun
to incorporate software patterns into their undergraduate courses [Walling-
ford 2000]. Ideas similar to patterns can be traced back to the work of Mayer
[Mayer 1981], Soloway [Soloway 1986], Rist [Rist 1989], and Linn and
Clancy [Linn et al. 1992], but consideration of patterns accelerated following
the appearance of the pioneering book Design Patterns [Gamma 1995]. The
so-called “Gang-of-Four” book documented patterns of object-oriented (OO)
design at a time when many CS educators were struggling to master the dis-
cipline. Encouraged by the benefits they realized from studying design pat-
terns, some educators began to teach design patterns in their OO courses.
The design pattern aspect of teaching patterns is covered in greater detail in
section 4.2.6 Transferring practice into the Classroom.

East [East et al. 1996] and Wallingford [Wallingford 1996] were among the
first to accept the challenge put forward by Soloway in 1986, but soon after,
others followed [Astrachan et al. 1997, Astrachan et al. 1998, Reed 1998].

A group of people have developed a catalogue of so-called elementary pat-
terns particularly intended for novices [Bergin 2006a].

Some have pursued the idea of patterns to capture pedagogical knowledge
and experience in computer science education in general [Bergin 2006b] and
object-oriented programming education in particular [Eckstein 2001]. Com-
puter Science Education recently had a special issue on pedagogic patterns
[Fincher 2006] with two local contributions [Bennedsen 2006e, Bennedsen
et al. 2006f]. Fincher and Utting discuss potential improvements of peda-
gogical patterns [Fincher et al. 2002].

We shall return to this issue and discuss it with more focus and in greater
detail in section 6.1.4.

Teaching and learning of object-oriented concepts: The special area of
teaching and learning object-oriented concepts attracts much attention. The
OOSPLA Educators’ Symposium and the ECOOP (OOPSLA) Workshop on
Pedagogies and Tools for the Teaching and Learning of Object-Oriented
Concepts were mentioned in section 0. The SIGCSE and ITiCSE confer-

 45

ences always have at least a session or two on the topic. In 2003, Computer
Science Education devoted a special issue to the topic [Börstler et al. 2003].
Recently, Sicilia provided a discussion of strategies for teaching object-
oriented concepts with Java [Sicilia 2006]. However, these are just the tip of
the iceberg; many of the references in the other sections in this chapter could
have been categorized under this label as well.

4.2.4 Assessment

We break this broad area into three sub-areas: assessment methods, auto-
mated assessment, and validity of assessment. Assessment may be formative
(conducted during learning to promote, not merely judge or grade, student
success), or summative (administered after learning is supposed to have oc-
curred to determine whether it did), and it may address different kinds of
learning such as acquisition of factual knowledge, change in conceptual un-
derstanding, or acquisition of skills [Fincher et al. 2004].

Assessment methods: There are many alternative assessment methods.
[Stiggins 2005] enumerates four main categories: selected response (multi-
ple choice questions and short answer questions), essay (poster presentation,
written report), performance assessment (case study, practicum, project, and
reflective journal/diary), and personal communication (class presentation,
interview, and learning contract). A typical oral examination is classified as
personal communication (interview), and a written examination is classified
as selected response (short answer question). According to [Stiggins 2005],
each category has advantages in assessing different learning outcomes. For
example, a selected response assessment task, such as a series of multiple-
choice questions, is able to assess all areas of mastery of knowledge but only
some kinds of reasoning.

Multiple choice tests have recently been coming into favour as a useful
evaluation tool at the university level [Brown 2001, Roberts 2006, Woodford
et al. 2005], in contrast to the earlier view that they support only superficial
learning [Biggs 2003]. A recent result regarding multiple choice is that five
self-evident axioms are sufficient to determine completely the unique correct
scoring strategy for multiple choice tests where students are allowed to
check several boxes to convey partial knowledge [Frandsen et al. 2006].

Based upon Bloom’s classification of educational objectives [Bloom et al.
1956], Lister and Leaney have developed a criterion-referenced grading
scheme to cope with diversity among students in an introductory program-
ming class. In the traditional norm-referencing approach to grading, all stu-
dents attempt the same programming tasks, and the attempts are graded “to a
curve”. The danger is that such tasks are aimed at a hypothetical average
student. Weaker students can do few of these tasks and learn little. Mean-
while, these tasks do not stretch the stronger students, so they too are denied
an opportunity to learn: “Our contribution has been to bring disparate grad-
ing techniques together, uniting them in a coherent grading philosophy”
[Lister et al. 2003].

Automated assessment: There are at least three motives for conducting
automated assessment in programming courses in which the outcome of an
assessment is one or several programs or program fragments. One motiva-
tion is to reduce the workload of grading assignments, another is to detect
plagiarism. The third motivation is that it is difficult to visually inspect pro-

 46

gram source code and determine whether it is syntactically and dynamically
correct, let alone whether it will meet a given specification. Automated as-
sessment systems can be classified according to the notions of formative and
summative introduced above; formative automated assessment systems are
also known as intelligent tutoring systems. Summative automated assess-
ment systems can be bipartited according to whether they test program com-
prehension or program generation.

[Brusilovsky et al. 2005a] is an example of a system that assesses program
comprehension. Edwards is an example of an inclusive system that assesses
program generation based upon a test-driven approach to programming
[Edwards 2003a, Edwards 2003b]. The system provides concrete feedback
about which portions of the program require (further) testing and about cod-
ing style. [Kumar 2005b]is an example of an intelligent tutoring system that
can automatically generate problems, answers, grades, and feedback. The
system is targeted at a programming language course, but the author is cur-
rently developing a suite of automated tutors for an introductory CS course;
the tutors are adaptive i.e. the tutors generate problems tailored to the learn-
ing needs of the student. A group of systems use evaluation-based ap-
proaches to assess student knowledge about algorithms and data structures;
the systems TRAKLA and TRAKLA2 [Malmi et al. 2005], which are spe-
cifically designed to assess algorithm simulation exercises and allow stu-
dents to resubmit their solutions after obtaining feedback, are among the best
known in this category. Two course designs applying the TRAKLA systems
are described in [Malmi et al. 2007].

Automated assessment is covered by two recent reviews; Ala-Mutka pro-
vides a survey of automated assessment approaches for programming as-
signments [Ala-Mutka 2005], and JERIC (Journal of Educational Resources
in Computing) recently had a special issue on automated assessment of pro-
gramming assignments [Brusilovsky et al. 2005b]. From this special issue
we particularly recommend the review paper by Douce et al. on automatic
test-based assessment of programming [Douce et al. 2005].

Plagiarism is a major issue in CS education as exposed by an ITiCSE 2002
working group [Dick et al. 2002]. Several assessment systems incorporate
plagiarism detection; [Lancaster et al. 2004] provides a comparison of
source code plagiarism detection engines. Daly and Horgan present a system
based on watermarks, allowing them to distinguish supplier and recipient
[Daly et al. 2005].

As in the case of algorithm visualization, systems research has dominated
the field of automated assessment systems so far, but some evaluations are
beginning to appear [Karavirta et al. 2006, Korhonen et al. 2002, Kumar
2005a, Malmi et al. 2005, Traynor et al. 2006]. However, a challenge yet to
be met is to conduct meta-studies that compare different systems.

Validity of assessment: Finally, some research is aimed at understanding
whether the assessment is valid, i.e. whether it represents the kind of knowl-
edge the educator wants it to assess [Fincher et al. 2004]. An example of this
concerns assessment of early programming competence. With reference to
the findings of [McCracken et al. 2001], which shows that many computing
students are not able to develop straightforward programs after the introduc-
tory programming sequence, [Daly et al. 2004] argue that normal student
assessment should have highlighted this problem; since it did not, normal

 47

assessment of programming ability does not work. The authors examine why
current assessment methods (written exams and programming assignments)
are faulty and investigate another method of assessment: the lab exam. Fur-
thermore, the authors show that this form of assessment is more accurate,
and they explain why accurate assessment is essential in order to encourage
students to develop programming ability. This is of particular relevance to
our work because we have adopted a lab exam for our introductory pro-
gramming course; we discuss this issue in section and in chapter .9.2.8 21

4.2.5 Educational technology

A number of integrated development environments (IDEs), micro worlds,
and tools have been developed to support various aspects of program devel-
opment and programming for novices.

Integrated development environments: The BlueJ system [Kölling et al.
2003] is the best known educational development environment for Java with
excellent support for unit testing [Patterson et al. 2003]. BlueJ started as the
Blue project aiming at developing a programming language [Kölling et al.
1996a] and an associated development environment [Kölling et al. 1996b]
for teaching object-oriented programming to novices. The development en-
vironment is particularly strong in its support for dynamic object inspection
and interaction [Rosenberg et al. 1997]. With the appearance and prevalence
of Java, the Blue project teamed up with Sun Microsystems in a joint effort
at providing a pedagogical development environment for Java. BlueJ became
the name of the environment [Nourie 2002], and with that, development of
an object-oriented teaching language ceased. There are a number of evalua-
tions that report on the use of BlueJ in introductory programming courses
[Haaster et al. 2004, Hegna et al. 2006, Ragonis et al. 2005a].

Another widely used Java environment is DrJava [Allen et al. 2002], which
is a Java variant of DrScheme [Findler et al. 2002]. The important feature
about DrJava is its interaction pane, which allows any expression or state-
ment to be evaluated or executed immediately. This allows for simple dem-
onstrations and facilitates the delay of requiring a method main to the latter
part of the course. Yet another educational IDE for Java is jGRASP [Cross et
al. 2006] but it has a very limited dissemination. Recently, the BlueJ team
and Sun Microsystems announced the Netbeans IDE 5.0 BlueJ Edition,
which provides seamless transition from BlueJ to the professional Netbeans
development environment [Netbeans 2006].

Micro worlds: The best known micro world for programming is probably
LOGO developed by Papert and others at MIT in 1967 [Papert 1993]. Karel
J Robot is the best known and most widely used micro-world for object-
oriented programming [Bergin 2007, Bergin et al. 2005]. Alice is another
example of a well-known micro world for object-oriented programming
[Cooper et al. 2003]. By programming within the context of a micro world,
students can work with a rich set of primitive objects to illustrate the key
concepts of object-oriented languages.

Tools: Other types of tools are being developed to support programming
education. Greenfoot is an interesting novel tool, which is a framework that
allows easy construction of micro worlds implemented in Java; us-
ers/students can extend the behaviour of the micro world by writing Java
code that defines the behaviour of objects in the micro world [Henriksen et

 48

al. 2004, Kölling et al. 2005]. Greenfoot is developed by members of the
BlueJ team and builds upon the principles of direct interaction from BlueJ.
Greenfoot is targeted at programming education at the secondary level but
has potential for being used at the tertiary level as well.

Java Power Tools (JPT) is a Java toolkit designed to enable students to rap-
idly develop graphical user interfaces in freshman computer science pro-
gramming projects. Because it is simple to create GUIs using JPT, students
can focus on the more fundamental issues of computer science rather than on
widget management. Also, JPT can help freshman students to learn about the
basics of algorithms, data structures, classes, and interface design [Proulx et
al. 2002, Rasala et al. 2001].

UML8 class diagrams are used quite commonly in introductory object-
oriented programming courses, and some tools have been developed or
adopted for this use. Green is a simple, flexible, and extensible UML class
diagramming tool provided as a plug-in for Eclipse, which allows students to
alternate between class and code view of their projects [Alphonce et al.
2005]. Ideogramic UML is a tool for gesture-based collaborative modeling
with UML, which can be used to collaboratively teach and learn modeling
[Hansen et al. 2002].

Webworlds is a characterization of web-based learning environments created
for programming and software engineering education; many of the specific
tools in this category are animation and visualization tools. A somehow
dated overview of webworlds for learning software engineering is provided
by [Chalk 2000]. A more recent and very comprehensive webworld is
Kumar’s online tutor system, Problets [Kumar 2007]. Problets are problem
solving software assistants for learning, reinforcement and assessment of
programming concepts. They are designed to help students learn program-
ming concepts through small-scale problem-solving, and as a supplement to
large-scale programming traditionally used in introductory programming
courses. The Problets have been extensively evaluated, and there is evidence
that the use of Problets help students learn: “Students who use the tutor for
practice learn better than those who use a printed workbook. Students who
receive both graphic visualization and text explanation learn better than
those who receive only graphic visualization. Students who use graphic
visualization learn better than those who receive no explanation” [Kumar
2005a].

A special sub-area is the use of new technology in the classroom, e.g. tablet
PCs. Examples of initiatives of this kind is presented in [Anderson et al.
2004, Denning et al. 2006, Wilkerson et al. 2005]. Koile and Singer report
on two pilot studies that evaluate the use of Tablet PCs and a Tablet-PC-
based classroom presentation system in an introductory computer science
class; the preliminary results seem to indicate that the use of educational
technology increase the students’ performance [Koile et al. 2006].

A more detailed overview of the environments literature can be found in
[Guzdial 2004]; it is suggested by Guzdial that “the greatest contributions to
be made in this field is not in building yet more novice programming envi-

8 Unified Modeling Language [UML 2007].

 49

ronments but in figuring out how to study the ones we have”. Gross and
Powers have just started to undertake that challenge [Gross et al. 2005].

4.2.6 Transferring practice into the classroom

Computer science is a vocational discipline, which means that a large group
of professionals are developing and expanding the practices of the discipline,
in parallel with academia. One research strand takes as its focus the transfer
of professional practice into the classroom [Fincher et al. 2004]. Examples
of recent major contributions to the programming practices primarily offered
by people outside academia are design patterns and frameworks, extreme
programming, refactoring, agile development, and test-driven development
[Beck 1999, Beck 2003, Cockburn 2002, Fowler 1999, Gamma 1995, Martin
2003].

Design patterns have made their way into the standard curriculum as new
courses on software architecture [Christensen 2004]. A recurring OOPSLA
workshop, recruiting participants from industry as well as academia, is de-
voted to discussions on how to best teach design patterns [Alphonce 2006]
(see section 4.1.4); highlights from the workshop series are covered in the
paper included as chapter 20. Several others have addressed the issue of
teaching design patterns in the introductory courses [Astrachan et al. 1998,
Clancy et al. 1999, Gelfand et al. 1998, Nguyen et al. 1999, Preiss 1999].
Some even argue that the objects-first approach to introductory program-
ming courses should be modified into a design patterns first approach [Peci-
novský et al. 2006]. In chapter 18 we argue that frameworks should be intro-
duced early to train programmers to become software re-users as much as
software producers and as a conceptual way of addressing event-driven pro-
gramming and the associated design patterns; the chapter also illustrate the
pedagogical principle consume before produce9 by applying minimal
frameworks to build understanding (schemas) and thereby provide stepping
stones toward real and more complex frameworks (e.g. GUI frameworks).

Extreme programming typically manifests itself in the classroom as pair pro-
gramming [Bergin et al. 2004, Williams et al. 2001].

Agile software development in education is covered by a special issue of
Computer Science Education [Williams et al. 2002]; practical software engi-
neering education was the topic for another special issue of the same journal
in 2001 [Saiedian 2001].

Several educators promote rethinking of the introductory programming
course in terms of test-driven programming [Edwards 2004, Janzen et al.
2006, Jones 2004].

4.2.7 Incorporating new developments and new technolo-
gies

Almost by definition, this area is the most ephemeral of CS education re-
search. However, not all topics that fall in this category are gone tomorrow.

9 The principle consume before produce is described in section 9.1.1.

 50

The use of robots in introductory programming courses is very popular, and
the development of Lego Mindstorm has generated quite a few initiatives as
documented by an ITiCSE 2002 working group [Lawhead et al. 2002] and
several papers [Blank et al. 2003, Harlan et al. 2001, Imberman et al. 2005].
Fagin and Merkle provide a comprehensive study among more than 800 stu-
dents (including a control group) of the effectiveness of robots in teaching
computer science [Fagin et al. 2003].

In the late 1990s, several researchers and educators argued that introductory
computer science education was entrenched in an outdated computational
model of computation as calculation and that the model ought to be altered
to computation as interaction; computation as it occurs in spreadsheets,
video games, web applications, and robots [Stein 1998]. In the wake of this
movement, course designs and textbooks encompassing the computation as
interaction model were developed [Bruce et al. 2001, Bruce et al. 2005,
Hansen et al. 2004, Stein 2003].

Some topics are conceived as new, although the fundamental principles are
old; thought-provoking examples of this are presented in [Ben-Ari 2006c,
Standage 1998].

4.2.8 Transferring to distance education

Like all other disciplines, CS is increasingly taught as distance education or
elearning; this holds particularly for part-time education. Most programming
education publications in this area report on transformations of courses from
face to face education to elearning. Edwards reports from a workshop on
“Establishing a Distance Education Program” [Edwards et al. 2000], and
Gersting reports on computer science distance education experiences in Ha-
waii [Gersting 2000]. Bennedsen and Caspersen describe a web-based intro-
ductory programming course for adults and the rationale for choosing tech-
nologies and organizing the course in order to provide flexibility and com-
pensate for the drawbacks inherent in this kind of teaching [Bennedsen et al.
2003].

An early and special pioneer in this field is the Runestone project [Daniels et
al. 1999]. Within Runestone, students work on a computer science project in
teams, under academic supervision. The especially interesting feature of
Runestone is that half the students in each team are from Sweden and half
are from the US [Last et al. 2002]. They live and work in different time
zones and never meet face to face. Yet they work on the same project, for
which they are assessed as in any other similar piece of academic work
[Fincher et al. 2004].

4.2.9 Recruitment and retention

Due to the recent large decline in enrolments, this area has currently more
focus than normal.

One of the big issues in this area is the search for success indicators of pro-
gramming aptitude. However, we postpone the discussion of the issue to
chapter 5, where our own research in the area is presented.

Other topics of interest in this area are attrition rates, diversity, and gender
issues. Beaubouef and Mason investigate the possible causes for high attri-

 51

tion rates for computer science students [Beaubouef et al. 2005]. Cuny and
Aspray report from a workshop that convened a group of experts to discuss
the recruitment and retention of women in computer science and engineering
graduate programs [Cuny et al. 2002]. Fisher and Margolis conducted a four-
year study of gender issues in the undergraduate computer science program
at Carnegie Mellon University; the significant and colourful findings, and
the subsequent dramatic increase in the number of women in the program
(from 7% in 1995 to 42% in 2000), are reported in [Margolis et al. 2002].

At Georgia Tech, Guzdial and his colleagues have developed a first course
in computer science based on media computation and aimed especially at
non-majors; of 121 students taking the course, 2/3 were female students.
Data from interviews with women from the class is provided in [Rich et al.
2004].

4.2.10 Constructing the discipline

This category is of a different kind than the previous, concerning questions
about the construction of the discipline of computer science education and,
derived from that, computer science education research.

We don’t have the same consensus as, say, mathematics or physics about
what the basic concepts are and how to teach them. In some domains, for
example mathematics, there is a didactics, a sense of what should be taught,
an acknowledgement of what fundamental principles should be covered, and
an associated understanding of which curricular areas are advanced and
which are optional. There can also be a sense of how subjects should be
taught. We clearly do not have agreement on that in computer science, al-
though the ACM computing curricula [ACM 2005] and, in particular, the
computing curricula CC2001 [ACM 2001] have generated a real discourse
around these areas.

ACM’s Education Board (recently reorganized to Board and Council) was
established in order to develop curriculum recommendations and has worked
on this for almost 40 years resulting in five recommendations: Curriculum
’68 [Atchison et al. 1968], Curriculum 78 [Austing et al. 1979], Computing
Curricula 1991 [Turner 1991], Computing Curricula 2001 [ACM 2001], and
Computing Curricula 2005 [ACM 2005]. Computing Curricula 2005 repre-
sents a broadening of the area to cover computer engineering, information
systems, software engineering, and associate degree programs along with
traditional computer science, and computing is becoming the general concept
that covers all of the more specific areas. Currently, ACM’s Education
Council has formed four task forces addressing accreditation, curriculum
recommendations, enrolment, and technology & tools.

As well as curriculum construction, the area encompasses questions concern-
ing the nature of the discipline: Is it an engineering discipline? Is it mathe-
matics? Is it design? Is it business? And this leads to discussions of interpre-
tations and scope; of how many things the discipline actually embraces
[Fincher et al. 2004]. A contemporary example of this is Denning’s column
in Communications of the ACM on the profession of IT [Denning 2001,
Denning 2002, Denning 2003, Denning 2004b, Denning et al. 2005]. Impor-
tant examples from the last couple of decades are [Comer et al. 1989, Dahl-
bom et al. 1997, Denning et al. 1997, Dijkstra 1989, Dijkstra et al. 1989,
GCC 2004, Simons et al. 1991, Wegner et al. 1996].

 52

Strategic directions in computer science education are outlined in [Tucker
1996]. One of the elements of the strategy concerns research in curriculum
and teaching methodologies: “it is imperative that faculty remain actively
engaged in the discipline via a continuing scholarly activity [...], this might
mean conducting research in “non-traditional” areas such as curriculum and
teaching methodologies themselves. Institutions that strongly emphasize
teaching must moderate their teaching loads and increase their real support
for scholarly activities such as these”. As far as we know, this is the first
mention of a strategic initiative in computer science education research. The
more recent conference on grand challenges in computing education has al-
ready been mentioned [McGettrick et al. 2005].

In [Clancy et al. 2001], five senior people from the community present their
perspective on CS education research; the paper is a suite of five short pa-
pers, which aim to provide an overview of several aspects of CS education
research, especially: previous work of interest, current projects and results,
suggestions and resources for getting started in CS education research, and
for forming and entering research communities. The book Computer Science
Education Research [Fincher et al. 2004] was a natural follow up to [Clancy
et al. 2001] with contributions from more or less the same group of people.
This book is a valuable contribution to the construction of the discipline of
computer science education research⎯or computing education research
which, in the light of the general broadening of the discipline, perhaps is a
more appropriate designation.

4.3 Conclusion
We have presented a comprehensive overview of the overwhelming amount
of programming education research by describing key conferences and pub-
lications relevant to the community and by capturing the essence of the re-
search in programming education structured according to ten major research
areas. Apart from providing the overview, which is worthwhile in itself, the
primary motivation for the chapter was to answer the second of our research
questions:

Research question 2 (Q2): Does programming education research
support T1-T3? The question is refined to two more specific questions:
Q2.1: What is programming education research all about?
Q2.1: Does some of the research support or contradict the claims of

T1-T3?

For convenience, we repeat the three theses from section 1.1. T1: Revealing
the programming process to novices eases and promotes the learning of pro-
gramming. T2: Teaching skills as a supplement to knowledge promotes the
learning of programming. T3: Anybody can learn to program.

The most striking indirect support for T1 and T2 in the huge body of research
in programming education is the research on student understanding reported
in section 4.2.1. The conclusion is clear and unambiguous: students struggle
to learn programming, they are not very successful, and the major problem
they experience is not syntax but how to put the pieces together.

 53

The research on case studies and apprenticeship and the pattern-based ap-
proach to teaching programming described in section 4.2.3 on teaching
methods aim at teaching the skill of programming; as such it also supports
our perspective, and our work is closely related to and inspired by these ap-
proaches. However, except for a few authors who mention live programming
in class as a teaching method, virtually no research address the challenge of
revealing, let alone teaching, the programming process to novices.

In conclusion: to the extent that research addresses the issues of teaching
skills and process, it supports theses T1 and T2. We pursue this issue in chap-
ter 6, 7, 8, and 9.

There is no support of T3 in the literature, on the contrary! The general the-
me of much research, and the specific results of some, is that (teaching) pro-
gramming is hard and that students learn much less than we expect from
them. A thorough discussion of this issue follows in the next chapter.

 54

5 Programming Aptitude

Thesis T3 of this dissertation is that anybody can learn to program. As men-
tioned in chapter 1, we do not mean to suggest that anybody can become a
brilliant programmer; we claim that anybody ⎯provided that they are moti-
vated and that the body of knowledge is suitably structured⎯ can learn the
basic knowledge and skills of programming. Even this interpretation is per-
haps overly optimistic, maybe even naive, but so be it. The purpose of thesis
3 is not to claim a universal truth but rather to present the fundamental per-
spective of our approach to students and to programming education. There
are of course exceptions, but in general we believe that anybody can learn to
program provided the material is presented in a suitable form and that the
student wants to learn.

However, while it may be true that anybody can learn to program, it is evi-
dent that some students learn programming much easier than others and per-
form much better; it is therefore reasonable to search for explanations, i.e. to
search for indicators of success in introductory programming and thereby
approach an understanding of what constitutes programming aptitude. To the
extent that we as a community are able to identify such indicators, we may
be able to use them to improve students’ background and prerequisites to
increase their performance and chances of success. This perspective is our
motivation for doing research in this area.

Understanding programming aptitude was established as one of the aspects
of the grand challenge of programming education recognized by the GCC
‘04 conference on grand challenges in computing [GCC 2004]. Greg
Michaelson in his position paper phrased the challenge as follows [Denning
et al. 2004]: “If we could somehow characterise the qualities displayed by
‘good’ programming students we might be able to deploy appropriate selec-
tion criteria at entry level to better match students to computing courses, find
more effective ways of teaching programming both to potential experts and
non-experts, and give better support to students who subsequently flounder”.
Greg Michaelson proposes a sustained programme of investigation of con-
tributors to and indicators of programming ability including (1) large scale
quantitative studies of qualifications and attainments of both successful and
unsuccessful programming students; (2) smaller scale longitudinal, cognitive
studies of cohorts studying programming in different environments and
taught with different approaches; (3) investigation and characterisation of
best and worse practice educational approaches to teaching programming.

This has lead to the formulation of the following research questions which
are addressed in this chapter:

Research question 3 (Q3): Are there indicators of success for learning
and performance in introductory programming? The question is re-
fined to four more specific questions:
Q3.1: Has programming education research identified indicators of

success for introductory programming courses?

 55

Q3.2: If so, can we generalise the results of others to our local con-
text?

Q3.3: Can we identify novel indicators of success in introductory pro-
gramming?

Q3.4: If so, can we exploit these to improve students’ performance
and chances of success?

We shall answer these questions by first providing an overview of research
and known results in this area (section 5.1). In section 5.2, we briefly de-
scribe our initial investigations of eight potential success factors of which
only two was found to be significant: the math grade from high school and
student effort. Realizing that it hardly is specific math competencies such as
calculus, geometry, or trigonometry that have a positive impact on pro-
gramming performance, we hypothesised that it is the more general notions
of abstraction and reasoning ability that indicates programming aptitude. Our
investigations of this hypothesis are described in section 5.3. In late 2005,
colleagues in U.K. announced a “scientific breakthrough”; they claimed to
have found a simple test for programming aptitude to cleanly separate pro-
gramming sheep from non-programming goats. In section 5.4 we describe
our failed attempt at verifying this result. Section 5.5 is a conclusion on our
efforts in this area.

The research presented in this chapter was carried out in collaboration with
Bennedsen and is documented in the published papers in chapter 12-14 in
the second part of the dissertation. Larsen, an undergraduate student, joined
us in the study on mental models described in section 5.4 and chapter 14.

5.1 Related work
Many researchers have investigated programming aptitude aiming at identi-
fying predictors of success for introductory programming courses. The
dominating research method is quantitative studies based on statistical re-
gression models [Fox 1997]. An overview of the field is provided by [Bergin
et al. 2006]; the essence of Bergin and Reilly’s overview, supplemented with
other results, is succinctly presented in the following table (Table 5-1).

Researcher(s)
and year N Language Significant predictors

[Newsted
1975] 131 FORTRAN Perceived ability, college GPA10, and student

effort accounted for 41% of the variance.11

[Kurtz 1980] 23 FORTRAN Level of formal reasoning accounted for 63% of
the variance.

[Leeper et al.
1982] 92 Not speci-

fied

Number of high school English, mathematics,
science, and foreign language units, SAT12 verbal
score, SAT mathematics score, and high school
rank accounted for 26% of the variance.

10 College GPA is college grade point average.
11 ‘Factors accounts for x% of the variance’ means that knowing these factors will
lead to predictions that are x% more accurate.
12 SAT is the U.S. College Board’s standardized admission test for colleges.

 56

[Barker et al.
1983] 353 Two lan-

guages13
Piagetian intellectual development accounted for
12% of the variance.

[Konvalina et
al. 1983] 382 BASIC

Students who completed the course (228) had
significantly more mathematics background than
students who withdrew (154).

[Hostetler
1983] 79 FORTRAN

GPA, diagramming and reasoning score, mathe-
matics background, and personality accounted for
77% of the variance.

[Nowaczyk
1983] 286 COBOL

Performance in prior mathematics and English
courses accounted for a statistically significant
amount of variation (does not say how much).

[Werth 1986] 58 Pascal

Significant correlation found for high school
mathematics, hours working at a pert-time job,
Piagetian intellectual development, and cognitive
style.

[Mayer et al.
1986] 57 BASIC Word problem translation skills accounted for

50% of the variance.

[Austin 1987] 76 Pascal

High school composite achievement, quantitative
and algorithmic reasoning abilities, vocabulary
and general information abilities, self-assessed
mathematics ability, and measures of an intro-
verted/analytical style and extroverted level ac-
counted for 64% of the variance.

[Cafolla 1988] 23 BASIC Cognitive development accounts for 34% of the
variance.

[Evans et al.
1989] 117 BASIC

High school mathematics courses, prior BASIC
experience, hours playing video or computer
games accounted for at most 23% of the variance
of six different outcome variables (e.g. homework
score, mid-term exam, and final exam).

[Gibbs 2000] 50 BASIC
Within a constructivist learning environment,
cognitive style was not found to influence pro-
gramming achievement.

[Goold et al.
2000] 39 C

Dislike for programming, gender, average on
other modules, and raw secondary score (English
plus other courses) accounted for 43% of the
variance.

[Hagan et al.
2000] 97 JAVA

The more programming languages a student knew
prior to taking the course, the higher the perform-
ance.

[Byrne et al.
2001] 110 BASIC Mathematics (r = 0.353) and science (r = 0.572)

correlates with programming performance.

[Rountree et
al. 2002] 472 Java The strongest single indicator of success was the

grade the student expected to get on the course.

[Stein 2002] 160 Java Students who study calculus do at least as well as
students who study discrete math.

[Wilson 2002] 105 C++

Comfort level, mathematics background, and
attribution of success/failure to luck accounted
for 44% of the variation.
The number of hours playing computer games
prior to the course had a negative effect while
experience of a prior formal programming class
had a positive effect.

13 In [Bergin et al. 2006], Bergin et al. indicate C++ and C as the languages used by
Barker et al., but this is due to a misinterpretation of a paragraph on grading; the
authors only mention that two languages are used, not which.

 57

[Holden et al.
2003] 159 Java

Prior experience (independent of language) is an
advantage in the first course in a programming
sequence, but not in later courses.

[Ramalingam
et al. 2004] 75 C++

Mental model, self-efficacy, and previous pro-
gramming and computer experience accounted
for 30% of the variance.

[Ventura et al.
2004] 499 Java Prior programming experience was not a predic-

tor of success for their objects-first CS1.

[Bergin et al.
2005a] 80 Java

Student’s perception of his/her own understand-
ing of the course, gender, mathematics score, and
comfort level accounted for 79% of the variance.

[Ventura
2005] 499 Java

Percent lab usage, comfort level, and SAT math
score accounted for 53% of the variance.
Measures of effort are the primary predictors of
success followed by comfort level, and then aca-
demic predictors (e.g. math) with marginal gains.

[Wiedenbeck
2005] 120 C++

Prior computer and programming experience,
self-efficacy, and knowledge organization ac-
counted for 30% of the variance.

[Bergin et al.
2006] 102 Java

Mathematics score, number of hours playing
computer games, and programming self-esteem
accounted for 80% of the variance.
Mathematics score and programming self-esteem
were found to have a positive relationship with
performance while number of hours playing com-
puter games was found to have a negative effect.

Table 5-1: Overview of research in programming aptitude

Even though many of the 25 studies in Table 5-1 have interesting results, it
can be hard to know how to apply the results to new educational settings
where parameters may differ significantly from the context where the find-
ings were observed. Parameters may be different in many respects:

• course material (e.g. textbook, programming language, development
environment)

• course structure (e.g. number of lectures and lab hours)
• course work (e.g. mandatory assignments and project work)
• availability of resources (e.g. support material, support for collabora-

tion, and student/instructor ratio)
• the degree of alignment (concordance between syllabus, course con-

tent, and assessment)
• type of assessment (e.g. multiple choice, oral, written, and practical)
• instructor (e.g. teaching experience, familiarity with the subject, and

personal attitude)
• students (e.g. age, study seniority, and major)
• external factors (e.g. type of institution, nationality, and culture)

This long list of possible variations among courses indicates how difficult it
is to generalise findings from one context to another.

The one finding that seems to be most consistent across various investiga-
tions ⎯although not strong⎯ is correlation between mathematics score in
high school and performance in CS1, but even this result is questionable.
First, we know nothing about the contents and focus of the programming
courses where mathematics has been shown to be a predictor of success; tra-

 58

ditionally, programming courses practice programming on problems of a
highly mathematical nature (e.g. factorial, radix-conversion, exponentiation,
and binomial coefficients). In such cases, it may very well be the choice of
problems rather than programming per se that causes the result. Second, one
might speculate whether the same findings would occur for other high
school grades than mathematics; in fact, Rauchas et al. found that “contrary
to the generally accepted view that achievement in high school mathematics
courses is the best individual predictor of success in undergraduate computer
science, success in English at the first-language level in high-school corre-
lates better with actual performance” [Rauchas et al. 2006]. Some of the
findings in Table 5-1 show similar results. Third, Ventura’s research did not
find math ability to be a significant predictor of success in his introductory
objects-first programming course: “the current research calls into question
the importance of math in the objects-first CS1. First, there was no correla-
tion between the number of math courses a student took in high school and
any of the measures of success in the current study. Secondly, SAT math
scores always appeared after measures of effort and comfort level. In the
overall models the predictive value of SAT math scores was negligible”
[Ventura 2005, p. 240].

While local predictors of success have been identified, there is no evidence
that these predictors generally hold. To draw local conclusions, we need to
perform local studies.

5.2 Local replication of previous studies
With the motivation of improving the course design of our introductory pro-
gramming course, which is a model-based approach to object-oriented pro-
gramming with heavy emphasis on the programming process, we decided to
study potential indicators of success for the course aiming at answering
questions about the relationship between various factors and success in the
course. We investigated five factors: mathematical ability, gender, major,
student effort, and study seniority, all motivated by previous research in the
field [Hagan et al. 2000, Leeper et al. 1982, Ventura 2003, Wilson et al.
2001].

Our research shows that a complete regression model encompassing all five
factors accounts for 36% of the variance. However, some factors turned out
to be insignificant, and we developed a reduced model with only two factors:
math ability and student effort. The reduced model accounts for 24% of the
variance. Calculation of the squared partial correlation coefficients reveals
that math ability is twice as strong a predictor than student effort: student
effort alone accounts for 7% and math ability alone accounts for 15% of the
variance. This is similar to the findings of Leeper and Silver who found that
math ability accounted for 14% [Leeper et al. 1982]. Gender, major, and
study seniority were not significant, neither at the 95% confidence interval,
nor at the 90% interval. Details of this research are documented in the paper
in chapter 12 and published in the proceedings of ICER 2005 [Bennedsen et
al. 2005b].

As many others, we found math ability to account for a fair share of the vari-
ance in programming performance. Realizing that it hardly is specific math
competencies such as calculus, geometry, or trigonometry that have a posi-

 59

tive impact on programming performance, we hypothesised that it is the
more general notions of abstraction and reasoning ability that indicates pro-
gramming aptitude. Adherence to strict notations with a formal syntax and
semantics may also be something that comes more natural to people with
good mathematical abilities, but we have not pursued that line of thought.

5.3 Abstraction ability
Many computer science educators argue that abstraction is a core compe-
tence [Alphonce et al. 2002, Kurtz 1980, Nguyen et al. 2001, Or-Bach et al.
2004, Sprague et al. 2002]. Nguyen and Wong [Nguyen et al. 2001] claim
that it is difficult for many students to learn abstract thinking; at the same
time they claim abstract thinking to be a crucial component for learning
computer science in general and programming in particular. The authors de-
scribe an objects-first-with-design-patterns approach to CS1 with a strong
focus on abstract thinking and development of the students’ abstractive
skills. In [Or-Bach et al. 2004] the authors argue that abstraction is a funda-
mental concept in programming in general and in object-oriented program-
ming in particular. Clearly, abstraction and abstract thinking are fundamental
concepts in computer science and key components of learning programming.
For programming education (and CS education in general) it is therefore
mandatory to explicitly aim at the development of the students’ abstractive
skills. But furthermore, we anticipate general abstractive skills —abstraction
ability— to be an indicator of success for learning programming. Our hy-
pothesis is therefore: General abstraction ability has a positive impact on
programming ability.

5.3.1 Operationalization of hypothesis

To operationalize the first part of our hypothesis we need to define what we
mean by ‘abstraction ability’ and how it can be measured. [Or-Bach et al.
2004] define abstraction ability in terms of object-oriented programming.
However, abstraction ability is a much more general skill often defined as
part of the cognitive development stage of a person as described by Inhelder
and Piaget in [Inhelder et al. 1958]. Our approximation of abstraction ability
is based on Adey and Shayer’s theory of cognitive development [Adey et al.
1994, Shayer et al. 1981]; this theory is a refinement of Inhelder and Piaget’s
stage theory. Adey and Shayer define eight stages of cognitive development
(Table 5-2).

Identification Description
1 Pre-operational

2A Early concrete

2A/2B Mid concrete

2B Late concrete

2B* Concrete generalisation

3A Early formal

3A/3B Mature formal

3B Formal generalisation

Table 5-2: Stages of cognitive development

 60

We use Adey and Shayer’s stage model of cognitive development to charac-
terize the students’ abstraction ability. To measure abstraction ability defined
in this way, we use a reasoning ability test developed by Piaget, and refined
by Adey and Shayer, for testing at the higher end of the stage model. In this
research, we use the results from the final exam of the introductory pro-
gramming course as an indicator of the students’ programming ability. Thus,
the specific research question we have investigated is: Is there a positive
correlation between the stage of cognitive development and the student’s
result in the final exam of a model-based introductory programming course?

5.3.2 Students and data

The investigation was carried out in the fall of 2005; 256 students took the
final exam, and 145 of these had volunteered to participate in the research.
The distribution of the subjects’ cognitive development according to the test
and the distribution of the grades of the final exam are shown in Figure 5-1
(in both diagrams, the unit of the y-axis is (the number of) subjects).

0

10

20

30

40

50

60

1 2A 2A/2B 2B 2B* 3A 3A/3B 3B
0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Fail Pass

Figure 5-1: Distribution of subjects with respect to stage of cognitive devel-
opment and grade in the final exam

We were concerned that the cognitive development would not follow a nor-
mal distribution since the test is developed for pupils in the age range of 5 to
16, and we are using it for students in the range 18 to 24. Shayer and Adey
found that 30% of the pupils were at stage 3A at the age of 16 and 10% at
stage 3B. However, they also found that the curve describing the progression
of stages was very flat at that stage [Adey et al. 1994 p. 40]. We found 37%
of the students to be at stage 3A and 16% to be at stage 3B. Overall we
found our observations of cognitive development to follow a normal distri-
bution as indicated by the left histogram of Figure 5-1.

5.3.3 Findings

We found no correlation between the stage of cognitive development and the
students’ results at the final exam. This was a major surprise, particularly
because others have reported that cognitive development accounts for 34%
of the variance of the exam score [Cafolla 1988]. Cafolla’s study was based
upon students learning programming in BASIC; it seems unlikely that pro-
gramming in BASIC should require a higher degree of cognitive develop-
ment than object-oriented programming.

 61

We have checked for correlation between cognitive development stage and
performance in other subjects than introductory programming. We have
checked math grade from high school and performance in three courses fol-
lowing the introductory programming course (the second programming
course, a course on computer architecture, and a course on regularity and
automata theory); in all four cases the result was the same: no correlation
between cognitive development stage and performance in the course!

5.3.4 Discussion

The result of this study is most surprising. From the outset we were certain
that students at a higher stage of cognitive development would get higher
scores in the final exam of the introductory programming course. It is not so.

There can be several explanations to this. In our programming course, cod-
ing is prioritized over design. The cognitive requirements are therefore rela-
tively low, and apparently there are other factors that influence the students’
success. Another potential explanation is the instrument used to assess the
cognitive stage: the pendulum test. The pendulum test measures the stu-
dent’s ability to control independent variables in a reasoning task. It could be
that this particular competence is not prominent in our course. Finally, of
course, it is questionable to which extend the result of the final exam is a
reasonable measure of a student’s ability to learn programming.

Further details of this research are documented in the paper in chapter 13
and published in the SIGCSE Bulletin [Bennedsen et al. 2006a].

5.4 Mental models
In a teaser email circulated in late 2005, shortly before the PPIG workshop
in January 2006, Bornat wrote: “We have a scientific breakthrough that we’d
like to announce at your little PPIG. The breakthrough is that Saeed has a
test which picks out, with 100% accuracy, those people who have a chance
of learning to program and rejects, with 100% accuracy, those who have no
chance. Don’t believe it? Neither did I, at first, but it’s true. And I’m not tell-
ing you, before the little PPIG, just how it’s done. But of course I will tell
you all there.” We learned about the test in conjunction with the PPIG work-
shop in January 2006. Having searched for predictors of success for intro-
ductory programming courses, we were certainly intrigued by the promotion
material, and we decided to try to verify Dehnadi and Bornat’s findings.

5.4.1 The test instrument

Dehnadi and Bornat [Arthur 2006, Dehnadi 2006b, Dehnadi et al. 2006a]
claim they have found a way to identify students who will not succeed in
learning programming. Based on a test of 60 students, they claim: “We have
found a test for programming aptitude, of which we give details. Remarka-
bly, we can predict success or failure even before students have had any con-
tact with any programming language, and with total accuracy” [Dehnadi et
al. 2006a].

Dehnadi and Bornat classified students according to their consistency in an-
swering a set of similar questions. The overall hypothesis is that consistent

 62

students and consistent students only will be able to learn to program. To
determine consistency, Dehnadi and Bornat used a questionnaire with 12
small Java programs. Each program consists of two variable declarations and
one, two, or three assignment statements; Figure 1-1Figure 5-2 shows a sam-
ple.

5. Read the following state-
ments and tick the box next to
the correct answer in the next
column.

int a = 10;
int b = 20;

b = a;
a = b;

The new values of a and b are:
 a = 30 b = 50
 a = 10 b = 10
 a = 20 b = 20
 a = 10 b = 0
 a = 0 b = 20
 a = 30 b = 0
 a = 40 b = 30
 a = 0 b = 30
 a = 20 b = 10
 a = 30 b = 30
 a = 10 b = 20

Any other values for a and b:
 a = b =
 a = b =

 a = b =

Figure 5-2: A sample question from Dehnadi and Bornat’s questionnaire

Dehnadi and Bornat have identified 11 different mental models of assign-
ment which are captured by the 11 options in the questionnaire (along with
the last option: other); each option corresponds to a certain mental model of
assignment. The questionnaire contains 12 questions similar to the one in
Figure 5-2, giving rise to a 12-tuple describing the mental models applied by
a student (e.g. (m7, m3, ..., m7)) where mi represents a mental model. The 12-
tuple is used to assign each student to one of three categories:
• The consistent group. The students who use the same mental model for

most of the questions (irregardless of which model).
• The inconsistent group. The students who use varying mental models for

the questions.
• The blank group. The students who refuse to answer the questions.

In [Dehnadi 2006b], the authors write: “The consistent/inconsistent/blank
assignment which is the basis of our preliminary result was rather subjec-
tive” and the authors devise a more objective instrument for categorisation
of the students⎯an instrument which we shall use in our investigation.
Dehnadi and Bornat found that 44% of their students belong to the consistent
group, and 39% belong to the inconsistent group; 8% left the questionnaire
blank (the remaining 9% are missing).

Dehnadi and Bornat conclude that the test, although not perfect, is the first
test to be able to claim any degree of success. It is indeed very interesting if
Dehnadi and Bornat have found a predictive test as they describe.

5.4.2 Failure of verification

We have conducted a study to verify Dehnadi and Bornat’s findings by ex-
amining the predictive power of a student’s mental model for his or her suc-

 63

cess in learning introductory programming. The hypothesis is that there is a
positive correlation between a student’s mental model and the student’s abil-
ity to learn programming. The specific research question we investigated is
the following: Is there a correlation between the students’ consistency in the
mental model applied in questionnaire and their performance in the final
exam of a seven-week introductory, model-based, object-oriented program-
ming course?

The population for this study was 142 students following the introductory
programming course in the fall of 2006; of the 150 students who volunteered
to participate at the beginning of the course, 142 attended the final exam.

The students answered the questionnaire in the first week, before the as-
signment statement was taught. To determine the consistency of the mental
model for each of the students, we used the categorization instrument pro-
posed by Dehnadi [Dehnadi 2006b]. From the 12-tuple that describes the
mental models applied by a student in the questionnaire, we divided the stu-
dents into five categories Ci, 0 ≤ i < 5, of decreasing consistency, C0 being
the most consistent category and C4 the least consistent category. A student
is in consistency category C0 if at least eight mental models in the student’s
12-tuple are identical. For the coarse-grained categorization used by Dehnadi
and Bornat, students in C0 are considered consistent while students in any of
the other categories are considered inconsistent. For further details, see
[Dehnadi 2006b].

The final exam resembles an ordinary lab session. The students are tested in
groups of up to 25 at a time. The effective examination time is 30 minutes
(occasionally, for various reasons, we allowed a bit more time). There are
two checkpoints in the assignment which consists of ten subtasks: one after
task three and one after task eight. The students are instructed to call upon an
examiner to demonstrate their solutions when they reach either of the check-
points. For each student, we noted the elapsed time at both checkpoints as
well as when (if) they finished the assignment (first interval, second interval,
and final time), thus providing a rough measure of the student’s efficiency
and competence.

The grading schema for the exam is a binary pass/fail which is too coarse-
grained to allow for statistical analysis. Therefore, we subdivided the stu-
dents into four groups, Gi, 0 ≤ i < 4. G0 represents the students that failed the
exam; G1 represents the students who barely passed the exam (i.e. reached
the second checkpoint in the very last minute), G2 represents the students
who produced an average performance (i.e. reached the second checkpoint in
due time but did not finish the assignment), and G3 represents the students
who finished the assignment within the time limit with a program that fulfils
the complete specification.

The distribution between consistent and inconsistent broken down to the
exam result and prior programming experience is shown in Table 5-3.

N = 142 Consistent Inconsistent
Total 124 18

Pass at the final exam 120 16
Fail at the final exam 4 2

Prior programming experience 85 2

 64

No prior programming experi-
ence 39 16

Table 5-3: Number of consistent and inconsistent students

In order to verify Dehnadi and Bornat’s findings, we have used a Pearson
correlation coefficient test to find if, for students with no prior programming
experience, there is a significant correlation between the consistency level
and the grading level (according to the C- and G-categories described above.
The correlation coefficient is −0.072 and we conclude that there is no corre-
lation between consistency of the mental model and performance in our in-
troductory programming course, i.e. we cannot verify Dehnadi and Bornat’s
findings.

To take a closer look at this contradictory result, we have tested for correla-
tion for a more fine-grained partitioning than the five competence-levels and
four grading levels applied above. We made a more fine-grained partitioning
of the mental models by refining the Ci categories: Ci represents the stu-
dents’ whose maximum number of answers of the same mental model equals
i, thus providing 13 different categories of mental models. Similarly, we
have refined the Gi categories to reflect the students’ performance according
to the second interval (the time elapsed when reaching the second check-
point), i.e. Gi is the students for whom the second interval is i minutes. The
distribution of the data certainly does not indicate a correlation (see Figure
5-3). A Pearson correlation test confirms this impression with the same re-
sult as before (P=−0.075).

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Ci : maximum number of answers of the same mental model

G
i: t

he
 ti

m
e

el
ap

se
d

w
he

n
re

ac
hi

ng
 th

e
se

co
nd

ch

ec
kp

oi
nt

:

Figure 5-3: Second interval versus maximum number of identical
mental models in 12-tuple

Our result is a clear and unequivocal rejection of the research question: there
is absolutely no correlation between students’ consistency of the mental
model applied in the questionnaire and their performance in the final exam
of a seven-week introductory, model-based, object-oriented programming
course. If the hypothesis of positive correlation between a student’s mental
model and ability to learn programming is to be confirmed, it requires an
interpretation of the mental model which is different than the one reflected in
Dehnadi’s questionnaire or another interpretation of ability to learn pro-

 65

gramming than the one reflected by the exam of our introductory program-
ming course.

Our unequivocal result gives rise to a number of questions. One question is
whether Dehnadi and Bornat’s interpretation of their results is viable. An-
other question is the validity of the test instrument and speculations about
other and better test instruments. These questions and further details of this
research are addressed in the paper in chapter 14 which is submitted for
ITiCSE 2007.

5.5 Conclusion
In his regular column in SIGCSE Bulletin [Lister 2005a], Lister addressed
the issue of programming aptitude. Lister phrases the challenge as identify-
ing a “programmer quotient” (PQ). Inspired by the concept of an IQ, a PQ
would be “a measure of programming ability, relative to the whole popula-
tion, that would remain the same independent of programming experience”.
However, the long history of attempts to find predictors of success in pro-
gramming has so far not managed to come up with anything like this. Al-
though recent linear regression models have accounted for almost half the
variation of student performance, such models are only a weak indicator of
an individual’s PQ. Lister concludes: “One thing is certain: there is no ‘sil-
ver bullet’. If there was a silver bullet, then we would already have found it”
[Lister 2005a].

Our own research in this area has neither revealed new predictors of success
nor been able to confirm the findings of others except for a weak impact
from math grade in high school, but this impact might exist for other grades
from high school as well as indicated by the findings of [Rauchas et al.
2006] that English at the first language level in high school correlates better
with performance in programming than does math ability.

Our results may be regarded as negative results, but we don’t consider it that
way. In the light of our thesis that everybody can learn to program, the re-
sults are quite encouraging, and we speculate whether our special flavour of
an introductory programming course ⎯a model-based approach to object-
oriented programming with heavy emphasis on the programming process⎯
has something to do with this. However, further research is required to con-
clude anything along these lines.

In closing, we would like to chime in with Lister [Lister 2005a] and Hazzan
et al. [Hazzan et al. 2006] and conclude that perhaps the way forward is not
to look for more statistical variables to add to regression models, but instead
to conduct qualitative research based on observations of and interviews with
students. Eventually, qualitative research might provide new insights that
lead to factors for incorporation into predictive models such as a PQ.

 66

6 Programming Methodology

It is time to address the fourth research question:

Research question 4 (Q4): How does best-practice in modern soft-
ware development relate to the research area of programming method-
ology? The question is refined to four more specific questions:
Q4.1: How has programming methodology influenced programming

education in the past?
Q4.2: How can we characterize best-practice of modern software de-

velopment?
Q4.3: How does best-practice in modern software development relate

to programming methodology?
Q4.4: Can we provide a characterization of the programming process

that unifies programming methodology and best-practice of
modern software development?

In this chapter, we address Q4.1 and Q4.2 by presenting a historical perspec-
tive on the role of programming methodology in programming education and
providing a brief overview of best-practice of modern software development.
The two remaining questions are addressed in chapter 7.

Under the headline, Where is Programming Methodology These Days?,
David Gries wrote an invited editorial in the December 2002 issue of in-
roads − SIGCSE Bulletin [Gries 2002]; the occasion was Edsger W.
Dijkstra’s passing on 6 August the same year. Gries wrote:

For several years, I have been thinking about the influence ⎯or lack
thereof⎯ that the field of programming methodology has had on pro-
gramming and how we teach it [...].
In terms of knowledge ⎯facts, definitions, particular algorithms, etc.
⎯ there has been much progress. The development of OO has helped
tremendously, in the sense that it has given us a tool for organizing
our programs and our thoughts about them [...].
However, programming is more than a bunch of facts. It is a skill, and
teaching such a skill is much harder than teaching physics, calculus,
or chemistry. People expect a student coming out of a programming
course to be able to program any problem. No such expectations exist
for a calculus or chemistry student. Perhaps our expectations are too
high. Compare programming to writing. In high school, one learns
about writing in several courses. In addition, every college freshman
takes a writing course. Yet, after all these courses, faculty member
still complain that students cannot organize their thoughts and write
well! In many ways, programming is harder than writing, so why
should one programming course produce students who can organize
their programming thoughts and program well.
In any case, teaching programming as a skill means more than teach-
ing facts. It means teaching students how to think when designing, de-
veloping, testing, and debugging a program. It means extending their

 67

problem-solving abilities. It means giving them effective strategies
and principles that will shorten programming time and reduce the
need for debugging (but not for testing). It means teaching good
thought habits. In addition, it means teaching basic theory that pro-
vides understanding and that they can put into practice.
In this regard, based on the textbooks I have looked at, we are failing.
Few texts teach important basic theory. Few texts discuss important
strategies and principles, and if they do, they don’t practice them
within the text; instead, they are caught up with teaching more and
more features. Few texts discuss program development; instead, they
simply present programs and leave development principles and
strategies for students to discover on their own [...].
Throughout his career, Dijkstra thought deeply about programming
methodology [...], perhaps more than anyone else. This is the time to
pause and reflect on whether we are making use of all that he has
given us.

So, let us pause and reflect on where programming methodology is in educa-
tion these days, where it was in the past, and where it ought to be.

6.1 A contemporary perspective
To a large extent, the joint ACM and IEEE curriculum recommendations set
the scene for textbook contents and teaching practice. The Computing Cur-
ricula 2001 (CC2001) [ACM 2001] characterize the current state of affairs
of programming courses as follows:

Programming courses often focus on syntax and the particular char-
acteristics of a programming language, leading students to concen-
trate on these relatively unimportant details rather than the underly-
ing algorithmic skills. This focus on details means that many students
fail to comprehend the essential algorithmic model that transcends
particular programming languages.
Moreover, concentrating on the mechanistic details of programming
constructs often leaves students to figure out the essential character of
programming through an ad hoc process of trial and error. Such
courses thus risk leaving students who are at the very beginning of
their academic careers to flounder on their own with respect to the
complex activity of programming.

Apart from echoing the observations of Gries, the excerpt from CC2001 ex-
hibits the traditional interpretation of “skills” as algorithmic problem solv-
ing. However, as Gries indicates, teaching programming as a skill is much
more than that.

In the editorial, Gries demonstrates what he means about teaching principles
and strategies used during program development by presenting a derivation
of selection sort (instead of just presenting a fait acompli) using informally
the theory of loop invariants and the checklist for developing or presenting a
loop. The point is: to learn an algorithm, memorize concepts, not code. The
basic techniques are stepwise refinement and separation of concerns. The
theory that Gries applies was developed by Dijkstra in the mid-1970s
[Dijkstra 1975, Dijkstra 1976] and polished for novices more than a quarter
of a century ago [Gries 1981]; however, it is still not part of the common

 68

interpretation of the vague terms used in curriculum descriptions (e.g. algo-
rithmic problem solving and structured decomposition).

To provide a more complete picture, we prefer to characterize teaching pro-
gramming as a skill as:

• describing strategies, principles, patterns, and techniques of program
development

• demonstrating how to apply these in action, and
• giving novices the opportunity to practice while receiving feedback in

order to improve their skills.

The strategies, principles, patterns, and techniques of (object-oriented) pro-
gram development encompass:

• development strategies (e.g. incremental development, responsibility-
driven development, model-driven development, test-driven develop-
ment),

• design and programming principles (e.g. the single-responsibility
principle, the information hiding principle, the substitution principle,
the mañana principle),

• problem-solving patterns (e.g. design patterns, algorithmic patterns,
elementary patterns, variable patterns),

• design and programming techniques (e.g. CRC-cards, design-by-
contract, system invariants, class invariants, loop invariants, factoring
out of inner loops, factoring out of heavy functionality).

Complementary to these are skills related to finding and correcting errors,
refactoring program design, and optimizing the performance of programs.

Clearly, we cannot and should not teach all of this at once, but we need to
understand the nature of modern program development in order to devise an
instructional design for programming education that can bring students from
the level of novice toward the level of expert. If we also want the instruc-
tional design to be efficient (i.e. advance the programming skills to the re-
quired level for as many students as possible), we must take modern cogni-
tive learning theories into account.

6.1.1 CC2001 on teaching programming skills

To get closer to an answer to the question, Where is Programming Method-
ology These Days?, let us see what CC2001 says about programming skills.
The programming fundamentals (PF) part of the CS body of knowledge has
the following to say about programming skills:

• PF1: Topic: Structured decomposition. Learning objectives: Apply the
techniques of structured (functional) decomposition to break a pro-
gram into smaller pieces.

• PF2: Topic: Problem-solving strategies; the role of algorithms in the
problem-solving process; debugging strategies. Learning objectives:
Discuss the importance of algorithms in the problem solving process;
create algorithms for solving simple problems; describe strategies that
are useful in debugging.

• PF4: Topic: Divide-and-conquer strategies; recursive backtracking.
Learning objectives: Describe the divide-and-conquer approach; dis-
cuss problems for which backtracking is an appropriate solution.

 69

We shall not discuss the formulation of the learning objectives; for our pur-
pose it suffices to note that there is very little focus on programming skills;
the CC2001 recommendations and our description of programming skills
above are miles apart. Except for a bit about recursion and debugging, all
that is mentioned is the vague terms of structured decomposition and prob-
lem solving strategies⎯abstract terms that, without a modern interpretation,
easily become echoes from a distant past or even worse: buzzwords.14

Of course they need not become buzzwords in the classroom; it could be that
textbook authors and educators provide the contemporary interpretation nec-
essary to revitalise the CC2001 recommendations on programming skills.
However, as the following two subsections indicate, this does not seem to be
the case.

6.1.2 A textbook survey

In 2002, Pauline H. Mosley conducted a survey of the most popular first-
level computer science texts on object-oriented programming adopted by
universities [Mosley 2002]. Mosley found that the average number of pages
used for elaboration on design (the term that comes closest to programming
methods and programming skill) is only two pages, and on design proce-
dures less than one page! Mosley concludes: “This lack of elaboration may
be the reason why practitioners stated that they were unclear as to how to
apply design concepts to various software engineering problems.”

The Unified Modeling Language is mentioned in only two of the ten books
(two pages in one book and 29 pages in another). Mosley speculates: “The
absence of the Unified Modeling Language is perhaps an indicator of the
complexity of design, or that learning about system design is something dif-
ferent from learning how to program. It could be that instructors perceive
design as a separate subject, unrelated to object technology.”

Mosley concludes the survey: “Academicians feel that design should be
taught in conjunction with object-oriented programming, at least in the best
of all possible worlds. This suggests the question that if programming text-
books are not addressing design, perhaps college instructors are incorporat-
ing design concepts on an ad hoc basis. Perhaps students learning Java in
college are exposed to more design along the way” [Mosley 2002].

Mosley’s findings concur with Kölling’s observations: In [Kölling 2003b], a
survey of 39 major selling textbooks on introductory programming was pre-
sented. The overall conclusion of the survey was that all books are structured
according to the language constructs of the programming language; the
process of program development is often merely implied rather than explic-
itly addressed.

While textbooks do not seem to address programming as a skill, it might be
the case, a Mosley suggests, that educators incorporate design concepts on
an ad hoc basis.

14 According to Wikipedia, buzzwords are words or terms that, although apparently
ubiquitous in a certain environment, often have unclear meanings.

 70

6.1.3 Two educator surveys

In 2004, Nell Dale conducted a survey among 350 CS educators from the
SIGCSE community [Dale 2004]. In [Dale 2005], Dale reported that on the
question “Should problem solving and design be explicitly taught?”, 78%
responded that it is very important to teach these topics explicitly; while
16.7% responded that it is important to teach problem solving and design,
but that a few concrete examples should suffice. Dale concludes: “Algorithm
development, regardless of the design methodology used, is clearly a focus
for most instructors in CS1: 80.3% described it as a thread spread throughout
multiple lectures and 13.3% reported devoting several lectures.” In [Dale
2006], Dale reported from the same survey on the topic that educators felt
was the most difficult for beginning students. Four categories emerged, the
first being problem solving and design. In summary: problem solving and
design is important to teach, but it is very difficult for beginning students.
However, more interesting is that neither the survey designer nor the respon-
dents are explicit about what they mean by problem solving and design.

In [Raadt et al. 2004a], the authors report on the findings of a census of in-
troductory programming courses; 85 courses from Australian and New Zea-
land universities are included. Instruction on problem-solving strategies var-
ies greatly in the courses covered by the census, as does estimates of the pro-
portion of lecture time devoted to the instruction of problem-solving strate-
gies. Some participants indicated that teaching problem-solving strategies
was not a part of their course; several of these instructors felt that the prob-
lems used in their teaching were not of a large enough scale to warrant
teaching problem-solving strategies explicitly. Others said that their entire
lecture time focused on teaching of problem-solving strategies; these instruc-
tors did not distinguish explicit teaching of problem-solving strategies from
other parts of their teaching. The authors conclude that the variation may be
due to instructors not having a common definition of what is involved in the
explicit teaching of problem-solving strategies.

From this and the previous section, we conclude that to the extent that pro-
gramming as a skill is addressed in textbooks and by educators in their
teaching, it seems to be based upon vague interpretations of such terms as
problem solving and algorithm development.

6.1.4 The programming education research perspective

To complete the picture, we will take a look at how programming education
research addresses the issue of teaching programming as a skill.

A minor but remarkable collection of programming education research from
the past ten to fifteen years concerns a pattern-based approach to instruction
which utilize a shift from emphasis on learning the syntactic details of a spe-
cific programming language to the development of general problem-solving
and program-design skills [East et al. 1996] (see also the parts on case stud-
ies and apprenticeship and patterns (for schema creation) in section 4.2.3).
The approach was motivated by a shared perception that too many students
cannot write reasonable programs even after one or two semesters of pro-
gramming education. The approach was also motivated by the fact that
“textbooks address top-down design by admonishing students to break larger
problems into smaller problems and by giving static examples that illustrate

 71

a very dynamic process.” A static program example presented in a textbook
reveals nothing about the process of developing the program. Consequently,
students get no insight into how problems can be broken down and solved.
The last motivating factor was an urge to take pedagogical issues into ac-
count: “There is indeed little discussion of the teaching of programming that
relates to pedagogy and almost none that address how the process of learning
might or should affect instruction.” [East et al. 1996].

In the light of section 3.1, we may characterize the emerging pattern-based
approach to instruction as a way of compensating for novices’ lack of sche-
mas by identifying domain patterns and make them first-class citizens in
education⎯by injecting schemas directly into memory, so to speak. And
from section 3.3, we may well expect a pattern-based approach to instruction
to be superior to the traditional syntax-oriented approach; experience as well
as solid research (section 4.2.1) tells us that students don’t build suitable
schemas (or identify patterns) by themselves no matter how many programs
they develop. But, as in the case of the alternating rule in the number trans-
formation problem of section 3.2, the best solution is there for the picking:
tell them! Make the patterns explicit to the students so they can focus their
resources and optimize learning.

Others have practiced a pattern-based approach to programming education,
and much earlier than the references mentioned earlier. At DAMI15, Schmidt
introduced algorithmic patterns in CS1 [Schmidt 1980]. An algorithmic pat-
tern is an abstract algorithm with variation points; the abstract algorithm
captures the behaviour of a family of algorithms. Concrete algorithms are
achieved by providing concrete bindings to the variation points in the ab-
stract algorithm. An example is an abstract algorithm for searching which
can be concretized to various concrete searching algorithms, e.g. linear
search, binary search, and randomized search. To defuse the formalism of
invariant techniques, and thereby making them more accessible and applica-
ble to novices, Schmidt [Schmidt 1980] introduced pictures as invariants.
Schmidt never published this, but Astrachan did a decade later [Astrachan
1991].

Inspired by Polya’s classic book on problem solving in mathematics [Polya
1957], Dromey wrote a wonderful textbook, How to Solve it by Computer
[Dromey 1982]. In the preface to the book, the author writes: “many begin-
ners in computer science stumble not because they have difficulty with
learning a programming language but rather because they are ill prepared to
handle the problem-solving aspects of the discipline. [...] If we can develop
problem-solving skills and couple them with top-down design principles, we
are well on the way to becoming competent at algorithm design and program
implementation. Emphasis in the book has been placed on presenting strate-
gies that we might employ to ‘discover’ efficient, well structured computer
algorithms” [Dromey 1982 p. xiii]. Unfortunately, Dromey’s book never
became widely used.

The importance of teaching underlying patterns and principles was stressed
by Knudsen and Madsen in the context of teaching object-oriented pro-
gramming languages. In [Knudsen et al. 1988], the authors argue that it is

15 DAIMI is the pet name for the Department of Computer Science at the University
of Aarhus.

 72

vital to provide a theoretical foundation ⎯a conceptual framework⎯ upon
which the students can base their understanding of concrete languages and
language constructs: “The prime message to be told is that working from a
theoretical foundation pays off. Without a theoretical foundation, the discus-
sions are often centered around features of different languages. With a foun-
dation, discussions may be conducted on solid ground. Furthermore, students
have significantly fewer difficulties in grasping the concrete programming
languages when they have been presented with the theoretical foundation
than without it” [Knudsen et al. 1988].

A recent comprehensive approach to pattern-based instruction is described
by Muller [Muller 2005b, Muller et al. 2004, Muller et al. 2005a]. Muller’s
approach utilizes a course orientation that shifts from emphasis on learning
the syntactic details of a specific programming language to the development
of general problem-solving and program-design skills. Apart from describ-
ing the pattern-based approach, Muller also characterizes the current state of
affairs in introductory programming courses: “courses often focus more on
the programming language syntax rather than on developing algorithmic
problem-solving skills. The main organizational guideline for preparing syl-
labus and textbooks usually focuses mainly on the programming language
features. Algorithmic problem solving is commonly practiced through exer-
cises in the use of language features that have been taught beforehand. Most
of the attention and effort are devoted to language details and to running
programs. General problem-solving issues are discussed but often not in the
explicit and structured manner needed” [Muller 2005b]. A consistent obser-
vation is made by Raadt Toleman, and Watson: “Traditionally [program-
ming] strategies are taught mainly through implicit instruction where nov-
ices undertake extensive sets of practical exercises. Students are expected to
learn from their successes and failures in order to develop highly structured
problem-solving strategies, and so become able to solve future problems.
Using this implicit approach to problem-solving instruction can mean some
novices do not develop appropriate skills and risk failing courses or being
unprepared for later programming practice” [Raadt et al. 2004b]. Raadt et al.
summarize: “It is our belief that the current implicit approach to instruction
could be replaced with a carefully structured methodology which incorpo-
rates explicit instruction of problem-solving strategies”.

From the above, we conclude that except for a few far-sighted researchers
that promote various forms of patterns and techniques, programming skills
and the programming process does not have a solid seat in the joint aware-
ness of what to teach in introductory programming courses. In general, there
seems to be a restricted, vague, and highly varying interpretation of what
constitutes (teaching of) problem-solving strategies. In the next section, we
explore the background for this state of affairs.

6.2 A historical perspective
Programming methodology emerged in the late 1960s through accomplish-
ments of prominent people like Dahl, Dijkstra, Hoare, Naur, and Wirth who
all later became Turing award winners [Dijkstra 1969, Naur 1966, Naur
1972, Dahl et al. 1972, Wirth 1971, Wirth 1974]. The programming method-
ology fashion of the time became known as structured programming, step-
wise refinement, and top-down programming. IFIP established working

 73

group 2.3 on programming methodology in 1969 [IFIP 2006]. A comprehen-
sive collection of seminal publications by members of WG 2.3 is provided in
[Gries 1978].

6.2.1 Emphasis in education

In 1974, Knuth wrote: “A revolution is taking place in the way we write pro-
grams and teach programming, because we are beginning to understand the
associated mental processes more deeply,” [Knuth 1974]. Indeed, the devel-
opment in programming methodology and the notions of structured pro-
gramming, stepwise refinement, and top-down design spawned a lot of inter-
est and activities in programming education and programming education
research during the 1970s and 1980s [Bagert 1988, Basili et al. 1974,
Danielson et al. 1975, Dupras et al. 1984, Riley 1981, Taylor 1977, Weiner
1978]. Ulloa provide a good overview of initiatives from the first of the two
decades [Ulloa 1980]. The growing awareness of the importance of the in-
troductory programming course is reflected by Dupras et al.: “The first con-
tact of the student with programming should be planned very carefully. This
must be reflected in the choice of instructor, the choice of textbook, the
choice of methodology, and the choice of programming language, etc. The
first programming language course must concentrate on teaching a pro-
gramming methodology rather than a programming language. The concern
for program correctness must be taught from the very first course of pro-
gramming. This means that the difference between early programming
courses and advanced programming courses should not be in how much em-
phasis is placed on program correctness but rather in the complexity of the
applications to be programmed” [Dupras et al. 1984].

In 1988, Means conducted a textbook analysis on ten introduction-to-
programming textbooks to determine the development of content over time.
The books were divided into two categories: the first category consisted of
three pairs of books with first editions from 1983 or earlier and second edi-
tions from 1985 or later; the second category consisted of four books of dif-
ferent authors, two from 1978 and two from 1986. “An increased emphasis
on the problem solving aspect of computer science was noted in the increase
in space devoted to this topic [...]. Algorithmic development also demon-
strated an increase [...]. Top-down design also increased in space [..]. The
changes may reflect a change in the view that a competent programmer
needs to know more than just the syntax of the language” [Means 1988].

Clearly, there was a strong and increasing emphasis on problem solving, di-
vide-and-conquer, top-down design, and stepwise refinement in introductory
programming education during the 1970s and 1980s and this emphasis was
echoed in programming education research of that time, e.g. [Rist 1989, So-
loway et al. 1983, Soloway et al. 1989, Spohrer et al. 1986] (for further ref-
erences, see section 4.2.1).

While many addressed stepwise refinement, top-down design, and divide-
and-conquer in programming courses, textbooks, and programming educa-
tion research, there was also a growing awareness that students had a hard
time grasping and applying the principles of strict top-down development
and that teaching programming as stepwise refinement and top-down design
perhaps was fundamentally flawed.

 74

As early as 1980, Ulloa identified the difficulty of learning top-down pro-
gramming as one of three major problems of teaching problem solving to
novices [Ulloa 1980]. In 1981, Riley wrote: “it is evident that many students
entering college have problem-solving skills that are woefully inadequate”
[Riley 1981]. In 1989, Gantenbein observed: “Attempts have been made to
teach problem solving in introductory programming texts. Unfortunately,
most of the time the rules are too general to be fully understood or too spe-
cific to be widely applicable” [Gantenbein 1989]. In 1986, Hoare ⎯in his
usual succinct style⎯ delivered the ultimate verdict:

You cannot teach beginners top-down programming, because they
don’t know which end is up.

— C.A.R. Hoare, 198616

In 1993, Pattis followed up on Hoare’s verdict: “an emphasis on early design
is misplaced. It is too much to ask beginning students to learn good design
principles first”, and Pattis concluded: “it is not a good idea for them to ap-
ply stepwise refinement solely as top-down design” [Pattis 1993]. Pattis did
more than point out the problem, he also devised a solution. We return to the
latter part of Pattis’ contribution in section 6.2.3.

The good thing about the development of programming education in the
1970s and 1980s was that early achievements of programming methodology
were adopted by the community and quickly found their way into the cur-
riculum of the introductory programming course. The unfortunate thing was
that the adopted approach was a narrow and flawed interpretation of struc-
tured programming and stepwise refinement which ⎯for good reasons⎯ did
not succeed.

6.2.2 Two misconceptions

In 1975, Denning pointed out two serious and prevalent misconceptions
about structured programming that he had observed turning up with “alarm-
ing frequency” in writings on the topic [Denning 1975]. First, structured
programming is not necessarily top-down programming, but rather, it en-
compasses any approach leading to well-structured modularization. Second,
he emphasized that it is not true that the means to achieve a structured pro-
gram have always to be structured themselves. Denning wrote: “It is a mis-
conception that top-down programming is the only way in which a good
program can be developed and that structured programming limits us to this
scheme of modularization”. Denning recognizes that oft-quoted texts and
writings contain many examples of programs whose modularization is ex-
plained by this technique, e.g. [Dijkstra 1969, Wirth 1971, Wirth 1974].
Denning points out: “The confusion is in failing to distinguish the product
from the process that created it”.

However, from the initial writings of Dijkstra and Wirth, one can easily be
led astray to conclude that top-down stepwise refinement is the way to com-
pose programs and teach programming. Before the first example of stepwise
program composition in his Notes on Structured Programming, Dijkstra

16 Tony Hoare’s verdict was delivered at a 1-1 meeting with Richard Pattis at Uni-
versity of Washington on 23rd October 1986.

 75

writes: “Instead of presenting (as a ready-made product) what I would call a
well-structured program I am going to describe in very great detail the com-
position process of such a program. I do this because programs are not there:
on the contrary they have to be made” [Dahl et al. 1972 p. 26].

In his seminal paper, Program Development by Stepwise Refinement, Wirth
characterized stepwise refinement as follows [Wirth 1971 pp. 227-228]:

1. Program construction consists of a sequence of refinement steps. In
each step a given task is broken up into a number of subtasks. [...]

2. The degree of modularity obtained in this way will determine the ease
or difficulty with which a program can be adapted to changes or ex-
tensions [...]

3. During the process of stepwise refinement, a notation that is natural to
the problem in hand should be used as long as possible. The direction
in which the notation develops during the process of refinement is de-
termined by the language in which the program must ultimately be
specified, i.e. with which the notation ultimately becomes identical.
[...]

4. Each refinement implies a number of design decisions based upon a
set of design criteria. [...] Students must be taught to be conscious of
the involved decisions [...]. In particular, they must be taught to re-
voke earlier decisions, and to back up, if necessary, even to the top.

Three years later, Wirth recognized (as a post rationalization?) that those
who read his examples of programming by stepwise refinement might con-
clude that the process as well as the product had a top-down structure; as a
consequence Wirth wrote: “I should like to stress that we should not be led
to infer that actual program conception proceeds in such a well organized,
straightforward, ‘top-down’ manner. [...] But this neat, nested factorization
of a program serves admirably well to keep the individual building blocks
intellectually manageable, to explain the program to an audience and to one-
self, to raise the level of confidence in the program, and to conduct informal,
and even formal proofs of correctness” [Wirth 1974 p. 251]. Denning con-
cluded: “By all means, let us advise our fellow programmers to evolve pro-
grams explainable by a top-down method. But let us not confuse the end
with the means” [Denning 1975].

History has revealed that Wirth’s “disclaimer” and Denning’s advice were
both ignored by the programming education community (section 6.2.1).

6.2.3 Stepwise enhancement

As mentioned at the closing of section 6.2.1, Pattis did more than point out
the problem of interpreting stepwise refinement solely as top-down design;
he also devised an alternative interpretation.

In 1990, Pattis criticised traditional stepwise refinement and proposed step-
wise enhancement as a more viable and useful alternative [Pattis 1990]. Pat-
tis describe stepwise enhancement as follows:

First, students must reduce the program specification to a minimum, concen-
trating on the main structural features and ignoring all the complicated de-
tails that will make the program difficult to write. Then, students design, im-
plement, and test a complete version of the program that meets the simplest

 76

specification. Then students proceed to the next stage, enhancing the specifi-
cation to include some of the complicated details that were previously ig-
nored. Once again, students design, implement, and test an enhanced version
of the program, which meets the enhanced specification. The students con-
tinue repeating this process ⎯at each stage enhancing the specification and
writing an enhanced program that meets the specification⎯ until the com-
plete problem as described in the original specification has been solved.

Pattis argues: “Fundamentally the stepwise-enhancement technique is useful
because it is easier to design, implement, and test a series of increasingly
more sophisticated complete programs than it is to attempt writing one large
program that solves the original problem specifications at the outset; that is,
it is easier to solve a series of many small problems than it is to solve one
big problem (commonly called ‘divide and conquer’). This technique also
allows students to test their original ideas on how to solve the main features
of the problem in a simple program first. They receive feedback, at very
short intervals that tell them whether or not they are on the correct path to a
solution program. So, if their initial ideas are incorrect, they can recognize
this fact quickly and discard the ideas early in the programming process,
without committing a lot of time and effort to pursuing them; such feedback
is critical for students who are learning in parallel the language features and
how to use these features when writing programs” [Pattis 1990].

Pattis continued his critique in [Pattis 1993], where he pointed out that it is
not a good idea to apply stepwise refinement solely as top-down design; in-
stead, beginning students should use model programs or other divide-and-
conquer variants of stepwise refinement, e.g. prototyping or iterative devel-
opment. Pattis wrote: “Iterative development allows programmers to estab-
lish landmarks on the path to a solution: they can test their code on realistic
data at each of these landmarks (without stubbing) to evaluate their design; if
it works, they can confidently proceed to the next landmark. Therefore, stu-
dents can interleave the design and implementation phases, using each to
check the quality of the other“. Pattis also pointed out that an early emphasis
on design is misplaced; instead, students should start by coding programs
designed by their instructor. We return to Pattis’ suggestion of stepwise en-
hancement later in this and in the following chapters.

Unfortunately, Pattis’ description of stepwise enhancement was not adopted
by the community ⎯perhaps because object-oriented programming entered
the stage and, along with the eternal language debate, dominated the agenda.

6.2.4 From structured to object-oriented programming

Objects as programming entities were introduced in the 1960's in Simula, a
programming language designed for making simulations, created by Dahl
and Nygaard at the Norwegian Computing Centre in Oslo [Dahl et al. 1966].

During the 1980s, object-oriented programming became part of the curricu-
lum at many universities ⎯mostly due to Smalltalk [Goldberg et al. 1983,
Ingalls 1978], C++ [Stroustrup 1985, Stroustrup 2000], and Eiffel [Meyer
1987, Meyer 1997]. In 1989, object-oriented programming in BETA became
part of the introductory curriculum at the Department of Information Studies
at University of Aarhus [Kristensen et al. 2007, Madsen et al. 1994].

 77

Decker and Hirshfield were some of the first to make a case for teaching
OOP in CS1 [Decker et al. 1992], but many others followed in the early
1990s [Berman 1996, Berman et al. 1994, Decker et al. 1993, Decker et al.
1994, Kölling et al. 1995, Luker 1994, Wallingford 1996, Willshire 1995,
Wolz et al. 1994].

In the 1990s, the language debate was quite dominating and many languages
were proposed as the first object-oriented (or object-based) language: Ada
[Temte 1991], Smalltalk [Skublics et al. 1991], Turing [Holt 1994], C++
[Berman et al. 1994], Blue [Kölling et al. 1996a], and Java [Culwin 1997].
Brilliant and Wiseman provide an overview of the first programming para-
digm and language dilemma in the post-Pascal era [Brilliant et al. 1996]. In
the mid-1990s, C++ temporarily “won” the language war and became the
dominating CS 1 programming language; in 1995 the College Board decided
that C++ should supplant Pascal as the language for the AP program.17 This
most unfortunate decision was highly criticised by many prominent univer-
sity professors, e.g. [Abelson et al. 1995]. Around the same time, Java en-
tered the stage, and it quickly became the primary language of choice for
introductory programming courses at universities. In 2000, only two years
after the C++ decision about the AP program was implemented, the College
Board decided that Java should supplant C++ in the AP program; that deci-
sion was implemented in 2003. Today, Java is by far the most widely used
introductory programming language; in a survey conducted in the spring of
2004, Dale found that 65% of 148 responding educators were using Java and
25% were using C++. The remaining 10% were shared by languages such as
Scheme, C, Ada, Python, and VB) [Dale 2005].

With the emergence of object-oriented programming languages in the intro-
ductory programming course, programming methodology virtually vanished
from the programming education research agenda. It is reasonable to assume
that the new paradigm and complex programming languages drew attention
away from the methodological focus; educators seemed to be preoccupied
with other concerns and dealing with more technological issues. Clearly,
C++ is a very complicated language, but even Java makes people struggle;
for example, due to the lack of simple I/O mechanisms in Java, many early
textbooks on object-oriented programming in Java focused on graphical user
interfaces!

Despite the fact that an increasing number of institutions are moving to
adopt Java in their introductory curriculum, those institutions do not by any
means report universal satisfaction with Java as a teaching language. The
problems that arise in using Java at the introductory level were analyzed in
more detail in a paper by Roberts [Roberts 2004a], and in early 2004, the
ACM Education Board initiated the ACM Java Task Force to review the
Java language, APIs, and tools from the perspective of introductory comput-
ing education and to develop a stable collection of pedagogical resources
that will make it easier to teach Java to first-year computing students without
having those students overwhelmed by its complexity [Roberts 2004b]. The
result of the efforts of the Java Task Force is available online [Roberts et al.
2006].

17 The advanced placement program, known as AP, offers high school students in
the U.S.A. the opportunity to receive university credit for their work during high
school. The AP program is administered by the College Board [Wikipedia 2007c].

 78

The switch to teaching object-oriented programming has been treated more
as a revolution than as an evolution; in doing so, important fundamental is-
sues such as elements of programming methodology have been abandoned.

One of the few people who raised his voice on programming methodology
and object-oriented programming was Meyer; under the headline Design by
Contract, Meyer carried some of the key principles and techniques from
structured programming to object-oriented programming [Meyer 1992,
Mitchell et al. 2002]. However, Meyer also pointed to some of the differ-
ences between structured programming and object-oriented programming:
“One of the differences involves the notion of top-down functional design,
which, after the work of Wirth [Wirth 1971] and Mills [Mills 1971], has be-
come almost uniformly identified with good software practice“ [Meyer
1989]. Meyer argues that bottom-up design, where the programmer starts
from available components and builds on them, is what characterises object-
oriented programming. “Rather than attempting to produce the best possible
solution for the current problem, you try to produce a good solution, mini-
mizing the effort by building on previous achievements, and striving for the
highest possible degree of generality to facilitate future developments”
[Meyer 1989, p. 20]. Meyer point at another of the ideas and attitudes that
emerged from the initial structured programming wave, the general hostility
toward testing: “Tests were frowned upon in the structured programming
literature, following Dijkstra’s often quoted remark [Dahl et al. 1972, p. 6]
that ‘testing can never be used to show the absence of bugs, only to show
their presence’ with the understanding that only proofs will succeed in
achieving the former goal” [Meyer 1989, p. 21].

Of course, the creators of structured programming did not really advocate
full formal proofs but rather a general method of software production which,
as described by Dijkstra [Dijkstra 1976] and Gries [Gries 1981], associates
partly formal correctness arguments with the programs as they are being
built. But, as in the case with stepwise refinement, the message was inter-
preted in a more narrow way than it deserved and due to that was mostly
ignored.

Programming methodology has developed into the area known as formal
methods. In that area, people meet biannually for a conference on Teaching
Formal Methods [Dean et al. 2004]; however, the area has had little impact
on CS education in general. The major, current methodological develop-
ments which influence educational practice come from expert consultants
outside academia, e.g. Kent Beck, Ward Cunningham, Erich Gamma, Martin
Fowler, Alistair Cockburn, and covers topics such as design patterns and
frameworks, extreme programming, refactoring, agile development, and test-
driven development [Beck 1999, Beck 2003, Cockburn 2002, Fowler 1999,
Gamma 1995, Martin 2003]. See also section 4.2.6.

It would be a pleasure to see practitioners and theoreticians unite their forces
and work more closely together for the development of theories, methods,
tools and techniques for practical development of quality software; however,
it does not seem likely that this unification will become reality in the fore-
seeable future.

 79

6.2.5 Conclusion

Initially, there were many attempts at addressing programming methodology
as problem solving, top-down design, and stepwise refinement in introduc-
tory programming education. However, stepwise refinement interpreted
solely as top-down design is at best insufficient, at worst it does not work.
Pattis suggested stepwise enhancement as a more viable and useful alterna-
tive to stepwise refinement. Although Pattis’ idea seems more than promis-
ing, it never caught on in the programming education community ⎯proba-
bly because object-oriented programming entered the stage and required the
attention of educators for reasons other than methodological ones.

6.3 A future perspective
A necessary prerequisite of strict top-down stepwise refinement is that the
programmer has to have the big plan from the outset. It can come as a vision,
a revelation, by magic, or by some other means, but it has to be there. The
conception that software can be developed in this way is fundamentally
wrong. However, the imagination flourished for decades. It is the same
imagination that drove the development of the waterfall methods of software
engineering, and it is now realised that it was severely misleading in that
area as well. Today, we know that software development does not work like
that. It does not work for small systems, and it does not work for large sys-
tems either.

6.3.1 Best practice

In early 2001, motivated by the observation that software teams in many
corporations were stuck in a quagmire of ever-increasing process, a group of
industry experts met to outline the values and principles that allow software
teams to work quickly and respond to change. They called themselves the
Agile Alliance [AgileAlliance 2007]. Some of the principles of the Agile
Alliance are: working software over comprehensive documentation, cus-
tomer collaboration over contract negotiation, and responding to change over
following the plan.

It is the ability to respond to change that often determines the success or
failure of a software project. When we build plans, we need to make sure
that our plans are flexible and ready to adapt to changes in the requirements
specification. In [Cockburn 2002], the author discusses stability with respect
to software development. Cockburn argues that program development starts
in a situation of instability and that, over time, the amount of instability is
reduced. Just prior to a design review, the work is relatively stable, but at
that point reviewers and users provide new information that makes the work
less stable again for a period. It is tempting to strive for maximum stability,
and the simplest approach is to postpone design until requirements are stable
and to postpone programming until design is stable ⎯i.e. the waterfall ap-
proach to software development. However, this approach has a number of
drawbacks. The first is that the elapsed time needed for the project is the
straight sum of the times needed for requirements, design, programming, etc.
The second problem is that surprises usually do crop up during the project
(e.g. a supplier does not deliver on time, an algorithm does not scale as ex-
pected, and there are changes in the requirements); when it does, it causes

 80

unforeseen revisions of the requirements or design. The third and perhaps
most severe problem is the absence of feedback from the downstream activi-
ties to the upstream activities. A different strategy ⎯concurrent develop-
ment⎯ shortens the elapsed time, provides feedback opportunities, and al-
lows seamless integration of changes in requirements and design.

We are not concerned with large-scale software development, but we are
concerned with educating novices in programming skills that scale to situa-
tions where requirements are not fixed. Furthermore, the upstream feedback
that concurrent development provides is even more important to novices as
Pattis has pointed out (section 6.2.3).

6.3.2 A study of the programming practice of experts

To organize education for novices in the skills of programming, we need to
know what to aim for. Best practice in industry, as described by expert con-
sultants in object-oriented programming, provides part of the answer, but in
order to get a closer look at the programming process of experts, we con-
ducted a small qualitative study of experts undertaking an extempore pro-
gramming assignment of an unfamiliar problem. Research of expert and
novice programmers was conducted in the 1980s (see section 4.2.1), but we
are not aware of recent studies of expert programmers.

Our aim was to conduct a small number of studies (five to ten) in order to
get an impression of how details of the programming process of experts un-
fold over time when addressing a non-trivial and unknown programming
task. We designed a programming problem that was easy to explain but still
complicated enough to represent a challenge to experts; it should be possible
to finish the task within three to four hours.

The problem was to develop software for the short message system of a cell
phone (SMS). Using the numeric keyboard and a built-in dictionary of a cell
phone, it is possible to write short text messages by pressing only one button
for each character to be generated. In the cases where a sequence of digits
has no corresponding word in the dictionary or when more than one word
matches a sequence of digits, special action is needed. If a sequence of digits
does not match a word, there is a special mode where it is possible to enter
the word by pressing the digit keys repeatedly. A user-interface was pro-
vided, and so was a cell phone, which allowed the subjects to make experi-
ments in order to fully understand the intended behaviour of the system. The
problem called for a small but non-trivial state machine and a data structure
for the dictionary.

Programming is a cognitive activity; therefore, understanding a person’s pro-
gramming process is a question of chasing cognitive structures ⎯’a beetle in
a box’ to use Wittgenstein’s example, in a box that can never be opened
[Wittgenstein 1953]. Interviews have serious shortcomings in how they rely
upon the reflective skill of the subjects; first, it is just too complex to get to
describe what you do when you program; second, interviews also rely upon
post-hoc justification of what the subject did rather than the in-situ practice
of programming as pointed out in [Brown 2006]. A reflection after-the-fact
will therefore be very superfluous and of little use for our purpose.

A general issue to consider for this kind of experiments is the so-called
Hawthorne effect, i.e. the phenomenon that when people are observed in a

 81

study, their behaviour or performance temporarily changes [Wikipedia
2007a]. The Hawthorne effect is not a serious issue in this case since we are
not particularly interested in the actual performance of the elected experts.
Our ultimate goal is to identify ideal programming behaviour to aim for
when planning and organizing programming education. Therefore, it is un-
problematic if the subjects’ performances in the experiments differ from a
normal programming session. It is the essence of the performance that is of
interest, not the details of effectiveness or precision.

We observed and video taped the subjects while they worked on the prob-
lem. Also, their computer screen as well as their voice was recorded during
the experiment. In order to make the subjects reveal their thoughts during the
process, we organized the experiments as pair-programming events. In two
cases, the experiments were made with only one programmer; in both cases
we interrupted and asked questions if the subjects forgot to think aloud. We
conducted six experiments with nine subjects (three pairs and three individu-
als). Except for one subject, who was a PhD student, all subjects were pro-
fessors at CS departments at research universities and experienced software
developers. Five subjects were from Denmark, and four from the U.S.

The subjects addressed the problem in many different ways, but a number of
techniques and principles were common to all or most of the experiments.
One pair decided to follow a strict test-driven approach, and one pair spent
almost all the time modeling, aiming at achieving a thorough understanding
of the problem. One subject, the PhD student, approached the problem dif-
ferently than the rest of the subjects, mixing different aspects of the task, and
he did not get very far in the process; clearly, he was not as experienced a
programmer as the other subjects. The remaining three experiments were
very similar with respect to process as well as outcome. Except for the pair
that pursued a strict test-driven approach that took a slightly different ap-
proach, all other subjects identified and addressed the essential part of the
problem first. In all cases the rationale was: “once we have understood this,
we are more or less done”. Most of the subjects established understanding of
the problem (and sub-problems) through programming experiments; only
one pair used modeling activities at a white board to establish understanding
of the problem. Thus, while the subjects had different approaches to estab-
lishing understanding, they all tried to establish understanding of the key
aspects of the problem as quickly as possible.

Experiment 1: An interesting observation about the pair that followed a
strict test-driven approach was that they had a well-defined set of techniques
and principles and a corresponding vocabulary to guide them in their proc-
ess, which in that respect became very foreseeable. But realizing the positive
effect of applying the explicit techniques of test-driven programming was an
interesting observation. Another interesting observation of this pair of sub-
jects was their behaviour when they encountered a serious error. Lacking a
corresponding set of techniques and terminology for the debugging process,
their process became much more ad-hoc and less systematic in that phase.

Experiment 2: The pair that took a modeling approach embarked on the
problem by discussing model issues and spent most of the time at a white-
board constructing a static class model and a dynamic state model of the
specified system. They tried to be very complete in the modeling, making
sure that the model captured every aspect of the problem. When eventually
they did start coding, it went fairly smoothly. We did not take the time to

 82

finish the system, and within the time frame we had reserved, the pair did
not produce much working code.

Experiment 3: The PhD student addressed the problem in a very bottom-up
fashion. This subject decided to address the problem of the dictionary and
started considering various data structures for representing the dictionary.
Only after approximately 60 minutes, and considerations of several alterna-
tive data structures and some sporadic coding, did he start worrying about
the interface to the dictionary, i.e. how the dictionary would be used in the
program. This subject did not get much further with the problem.

Experiment 4-6: One pair and two individual subjects were surprisingly
similar in their approach to the problem. They all addressed the problem by
applying the solve-a-simpler-problem-first-heuristic, i.e. by identifying or
constructing simple part-problems that were solved one at a time. Of course,
there were variations in the sequence of specific problems that were ad-
dressed, but overall they approached the problem in the same manner. As
everybody else, they started to question the problem specification and try the
cell phone in order to understand the exact problem specification. The next
things all subjects did was to investigate the code that was provided as part
of the problem specification.

In two of the experiments, the subjects first embarked upon the data struc-
ture for the dictionary, in the third experiment, the subjects assumed the ex-
istence of a dictionary with a specific interface and addressed client code
that used the dictionary, i.e. code that implemented the state machine. None
of the subjects modeled the state machine prior to programming it.

All subjects programmed incrementally or “sideways” (as opposed to top-
down or bottom-up), i.e. they ignored most of the problem specification and
addressed only a small part of the specification and developed code to im-
plement that part; then they went on to address a new part of the original
problem specification. In terms of the state machine, they focused upon one
state at a time, and for that state considered only one entry transition at a
time. In two of the experiments, the software was tested after almost every
increment. In the third case, the software was tested ‘by need’, i.e. the sub-
ject tested only when he felt the need for it. The subject that started with the
data structure for the dictionary did so by choosing a standard data structure
from the API, realizing that it might not be an optimal choice with respect to
time and space but that it surely would be optimal with respect to program-
mer resources.

Three of the four subjects (two of the three experiments) deliberately de-
cided to produce a quick and dirty solution; one subject explicitly said that
he always plans to produce two solutions. The first is made to fully under-
stand the problem and get experience with one set of ideas for solving the
problem. This subject also ‘admitted’ to producing poorly structured code in
the first solution. After the experiment, this subject said, “While my first
solutions very well might work, they are typically very coarse-grained in the
class structure and need a lot of refactoring in order to survive as candidates
for second solutions. Many of my programs end up with a lot of ‘global’
variables, i.e. I typically have very complex representation invariants for my
classes; however, I still think of the code in ‘equivalent classes’ so to speak
⎯I just don’t waste time on premature refactoring because I know I have a
second shot”. In other words: when making the first solution, this subject

 83

sacrifices refactoring for the benefit of quick progress, realizing that a decent
factorization is one of the primary concerns of the second solution, which is
created only when the problem is properly understood and ideas for the solu-
tion have been exploited.

While the solutions that were produced were relatively poorly structured
according to standard measures, the subjects still applied systematic tech-
niques such as (implicit) class invariants to capture the purpose of the vari-
ables in a class. The notion of class invariant was only mentioned explicitly
by one subject, but most of the subjects applied the technique “silently”;
when the problem specification was enhanced (i.e. a new part-problem con-
sidered) and extra behaviour was needed in order to fulfil the specification,
the subjects systematically ensured that the implicit class invariant was
maintained by updating all relevant variables ⎯wherever they were declared
and whether encapsulation was applied or not. When confronted with this
behaviour afterward, the subjects explained their behaviour with reference to
the aforementioned principle of always making two solutions and deferring
decent factorization and modularization to the second round.

All subjects progressed in two fundamentally different ways. In cases where
the part-problem under consideration was well understood at once, and a
solution immediately came to mind, a classical strict top-down or bottom-up
approach was applied. However, in cases where the problem currently under
consideration was not fully understood, the programming efforts of the sub-
jects are best characterized as a discovering, opportunistic activity not de-
termined in advance. This kind of activity involves making small experi-
ments to verify hypotheses of what could be in the efforts of conceiving a
solution. Not all of these hypotheses needed being implemented to be re-
jected; due to the subjects’ level of expertise, many flawed hypotheses were
discarded without writing any code.

Robillard has studied human behaviour in software engineering [Robillard
2005]. Robillard found a similar behaviour in his studies: “Experienced
software engineers and programmers often don’t need a lot of detail to un-
derstand the task to be done, so they can adopt a systematic or breadth-first
approach. In contrast, novices often rely on their own understanding of de-
tailed programming language statements. They thus adopt an opportunistic
or depth-first approach ⎯they must go to the detail level to get enough in-
formation to understand the task to be done. Any engineering activity that
involves some creativity will result in a mixture of opportunistic and sys-
tematic approaches [...]. Both systematic and opportunistic cognitive actions
are often coupled with problem-solving activities, so software engineering
practices should take this into consideration and provide guidelines to sup-
port both behaviours” [Robillard 2005, p. 63]. Winslow made a similar ob-
servation when studying expert and novice programmers: “Experts, when
given a task in a familiar area, work forward from the givens and develop
subgoals in a hierarchical manner, but given an unfamiliar problem, fall back
on general (opportunistic) problem solving” [Winslow 1996, p. 18].

The overall conclusion of the six experiments is that almost all the experts
proceeded according to a strategy that we may characterize as solve a sim-
pler problem first. Some subjects planned on producing two solutions: the
first to understand and the second to produce a teachable/comprehensible
structure. The subjects practised strict top-down or bottom-up programming
only locally (i.e. in the individual increments of the overall strategy) and

 84

only in the cases where the problem was well understood and the solution
was obvious; in all other situations, their behaviour is best characterised as
an explorative activity of discovery and invention in search for a solution to
the problem under consideration.

It is very rare (if ever) that novices are in a situation where the problem is
well understood and the solution is obvious; it is therefore a natural conse-
quence to identify and teach other programming skills and techniques than
the classical top-down or bottom-up interpretations of stepwise refinement.

6.3.3 Horizontal programming

Adhering to the principles of agile development, and in concordance with
the programming practice of experts as demonstrated by our small study de-
scribed in the previous subsection, we abandon the idea of stepwise refine-
ment as strict top-down programming as it is illustrated in Figure 6-1.

Specification

Existing machine

Figure 6-1: Strict top-down programming

The obvious alternative to top-down programming, and the one promoted in
the early days of object-oriented programming by Meyer [Meyer 1989] and
others, is bottom-up programming as illustrated in Figure 6-2.

Specification

Existing machine

Figure 6-2: Strict bottom-up programming

Bottom-up programming is much more realistic than top-down program-
ming, and it offers many of the qualities praised by Pattis in his description
of stepwise enhancement (e.g. design, implementation, and test of a series of
many small problems as well as frequent feedback). However, strict bottom-
up programming, as described by Figure 6-2, is based upon the assumption
that the total specification is known from the outset and thus does not ac-
commodate (seamless integration of) changes in requirements.

Instead, we suggest an approach to program development similar to what
Pattis describes as stepwise enhancement. Since we consider it an alternative
to the vertical variants of top-down and bottom-up programming, and for
lack of a better term, we denote it horizontal programming (see Figure 6-3).

 85

Specification

Existing machine

Figure 6-3: Horizontal programming

Of course, top-down and bottom-up programming do take place in the small
as subprocesses within the major refinement process, but it is sensible to
think of the overall progression of the refinement process as horizontal
rather than vertical. There are several reasons for this, some of which was
mentioned in section 6.2.3 in our description of stepwise enhancement and
some of which was mentioned in the previous section on experts’ program-
ming process: (1) this view provides a seamless transition from initial devel-
opment to further development or maintenance, i.e. incorporation of new
requirements; (2) practicing programming this way provides instant feed-
back, which is extremely important to novices in a learning process; (3) it is
easier to design, implement, and test a series of increasingly more sophisti-
cated complete programs than it is to attempt to write one large program that
solves the original problem specifications at the outset.

From a learning-theoretic point of view, the horizontal approach is also bet-
ter because it smoothly integrates with worked examples, example-
completion, and the principle of faded guidance as described in section 3.3.
This aspect is illustrated in Figure 6-4; the black area indicates what is pro-
vided as worked examples by the instructor ⎯over time, the students must
solve more and more of the problem and eventually even provide the speci-
fications of new requirements that are added to the initial problem specifica-
tion.

Specification

Existing machine

+ + . . . +

Figure 6-4: Faded guidance, horizontal programming,
and new requirements

Sweller’s research program in cognitive load theory (see section 3.3) accu-
mulated empirical evidence showing that traditional, practice-based problem
solving was less than an ideal method for improving problem-solving per-
formance when compared to instruction based upon worked examples, ex-
ample completion and faded guidance. As mentioned in section 3.3, the
worked examples literature is particularly relevant to programs of instruction
that seek to promote skill acquisition, e.g. music, chess, and programming
because learning from worked examples causes learners to develop knowl-
edge structures representing important, early foundations for understanding
and using the domain ideas that are illustrated and emphasized by the in-
structional examples provided. These representations guide problem solving,

 86

and they may be conceptualized as representing early stages in domain
schema development and in the acquisition of expertise.

For learning-theoretic reasons, we therefore adopt an approach to program-
ming education where novices first do very simple tasks, e.g. modify a
method or add a method similar to an already existing method in a class.
From there, they go on to implement complete methods for stubs and speci-
fications which are provided. Then they “graduate” to adding complete
methods and specifications on their own but to existing classes. Students
write only small bits of code; they do not yet design classes. Class design is
indeed very hard; coding from specifications is not trivial for novices, but it
is orders of magnitudes simpler than doing class design. Later again, new
requirements to an existing project are provided, and students design a small
number of new classes to represent the key concepts from the new require-
ments. Eventually, after half a year or so, students are ready to design and
implement small systems from scratch. As indicated above, this approach
smoothly integrates with horizontal programming.

There are other reasons for our approach than the learning-theoretic argu-
ments just provided. In practical software engineering, systems are rarely
developed from scratch; they are grown. Thus, our approach to programming
education resembles common programming practice.

Our approach is different from traditional approaches, but there are good
reasons for it ⎯practical as well as learning-theoretic⎯ and our experiences
demonstrate that it works extremely well.

6.4 Conclusion
This chapter has provided answers for the two first parts of research question
four: Q4.1: How has programming methodology influenced programming
education in the past? and Q4.2: How can we characterize best-practice of
modern software development?

In the 1970s and 1980s, early development in programming methodology
(divide-and-conquer, top-down design and stepwise refinement) had a sig-
nificant impact on programming education and programming education re-
search. However, in spite of warnings from Wirth and Denning, stepwise
refinement and structured programming was primarily interpreted as strict
top-down design and programming.

With the emergence of object-oriented programming in the early 1990s, pro-
gramming methodology vanished from the agenda of the programming edu-
cation research community. It is reasonable to assume that the new paradigm
and complex languages drew attention away from the methodological focus;
educators seemed to be preoccupied with other concerns and dealing with
more technological issues.

Pattis’ suggestion of stepwise enhancement as an alternative to the tradi-
tional interpretation of stepwise refinement seems to better match best-
practice of modern software development; however, Pattis’ suggestion was
not picked up by the community.

 87

We are concerned with educating novices in programming skills that scale to
situations where requirements are not fixed and correspond to best practice
in industrial software engineering. Our study of the programming process of
experts ⎯which are confirmed by other studies ⎯ has revealed that experts
primarily progress according to a horizontal solve-a-simpler-problem-first-
strategy similar to Pattis’ stepwise enhancement. In the process, program-
mers apply opportunistic problem-solving, and the programming process is
best characterised as an explorative activity of discovery and invention. Ver-
tical approaches are only applied in simple and trivial situations ⎯the kind
of situations that by definition never occur to novices. We therefore abandon
vertical approaches to programming education and instead focus on a hori-
zontal approach that corresponds to best practice and at the same time has
obvious educational advantages.

 88

7 Stepwise Improvement

In this chapter, we shall address the remaining parts of research question 4:
Q4.3: How does best-practice in modern software development relate

to programming methodology?
Q4.4: Can we provide a characterization of the programming process

that unifies programming methodology and best-practice of mo-
dern software development?

In the previous chapter, we argued that programming methodology, best
practice, and programming education research have drifted apart. In this
chapter, we propose a conceptual framework that indicates a potential (re-)
unification of research in programming methodology, best practice, and pro-
gramming education research. From our perspective, the key common de-
nominator is specifications ⎯formal or informal expressions of the intended
behaviour of a program.

Assertions and specifications play a key role in the sub-area of programming
methodology known as the refinement calculus; assertions also play a key
role in Meyer’s design by contract perspective on object-oriented program-
ming; finally, specifications ⎯in the form of (assertions in) test cases and
test suites⎯ play a key role in the specific best practice form of software
development known as test-driven development.

Specifications may be expressed in many ways, e.g. as formal specifications
in predicate calculus or some special specification language, as informal
specification expressed in (more or less structured) natural language, or as a
set of test cases. The exact form of specifications is not important to us; it is
the notion of specification itself, the possibility of interpreting specifications
as contracts, and the role of specifications in the programming process that is
our concern.

Despite the variety of methodological approaches and their diverse degrees
of formalisation, it is possible to unify the methodologies in a conceptual
framework with specifications as the key common denominator. Section 7.1
presents the conceptual framework that ⎯although inspired by object-
oriented programming⎯ is independent of any particular programming
paradigm. Section 7.2 provides a discussion on the nature and role of speci-
fications, programming activities and programming techniques at various
levels of abstraction in object-oriented programming. Section 7.3 concludes
the chapter.

7.1 Toward a unified programming method-
ology

This section is about programming methodology, the study of methods for
making programs. The particular task we address is the systematic, horizon-

 89

tal development of programs from their specifications. For this task, we pro-
vide a uniform model that captures a variety of programming methods of
varying degrees of formality, feasibility, and scalability.

Our model is macroscopic in the sense that the atomic items are mechanisms
and their specifications. Our concern is neither interior structure nor syntac-
tic form of mechanisms and specifications; our concern is how mechanisms
come into existence from their specifications. Our concern is the process of
development, not the structure or syntax of the developed.

The model is a conceptual framework, a system of well-defined terminology,
that enables discussions about and characterization of programming methods
in general, independently of the premises of specific methods and program-
ming paradigms. Special emphasis is put on concepts for the characterization
of program development as a goal-directed activity targeting a contract or
specification that describes the intended behaviour of the program to be de-
veloped.

The conceptual framework can serve as an aid in gaining a coherent under-
standing of programming methodology that can be exploited for the devel-
opment of that area (theories, methods, guidelines, languages, development
tools, etc.) as well as for the development of programming education. The
latter opportunity is exploited in chapter 8, where we present a programming
method for novices and in chapter 9, where we discuss implications and op-
portunities for the instructional design of programming education based on
the model for incremental development developed in this chapter.

We begin our endeavour with an example of a programming method with a
rigorous, formal foundation: the refinement calculus. As pointed out in the
previous chapter, the method is of limited practical feasibility and, conse-
quently, does not scale well to larger programming tasks. However, it pro-
vides a basic terminology applicable for our purpose.

7.1.1 The refinement calculus

The refinement calculus is a formal approach to stepwise refinement for
program construction [Back 1978, Morgan 1994, Morgan et al. 1992, Morris
1987]. It is a theory and a set of rules for deriving imperative programs from
their specifications.

A fundamental idea is to regard specifications as programs but to distinguish
between abstract programs and concrete programs, i.e. non-executable pro-
grams and executable programs. In short, the refinement calculus is a theory
of programming based upon behaviour-preserving program transformations
from abstract to concrete programs. (The emphasis on behaviour-preserving
transformations more than anything indicates that the programmer has to
have to big plan from the outset as discussed in the previous chapter.)

The refinement process is about transforming abstract code (specifications)
to concrete code while preserving the behaviour of the program. Fundamen-
tal to the calculus is the refinement relation ≤, which is a relation between
programs. P ≤ Q means that program Q is better than program P in the sense
of being less abstract. The relation ≤, between programs, is called refine-
ment, and we say that Q refines P.

 90

If p is a program, p.concrete expresses that p contains only executable code,
and p.refine denotes a behaviour-preserving transformation that reduces
(does not increase) the amount of abstract code in p.

In algorithmic form, and with a few notational liberties, we can describe the
programming process as the transitive closure of refinement steps. The proc-
ess is described algorithmically in Schema 7-1.18

 p:= spec ;
 { inv spec ≤ p }
 do ¬ p.concrete → p.refine od
 { p.concrete ∧ spec ≤ p }

Schema 7-1: Program refinement

This is a special case of our model (to be developed in section 7.1.2) in the
sense that the extra requirement we have in our model, that a program be
total (i.e. fulfils the requirements), is trivially true in the case of program
refinement.

Provided that spec is computable, the process described in Schema 7-1 is
partially correct; if (patiently) applied and if it terminates, it will lead to a
concrete program that satisfies its specification. However, as demonstrated
in section 6.3 there is little evidence, to say the least, that this is the way ex-
perts develop programs let alone could develop programs.

There are indeed many useful techniques in the refinement calculus, and re-
finement as such plays an important role in software development; however,
it is not rich enough to count as a general model of systematic development
of programs from their specifications. Not even close! However, the basic
notation and terminology from the refinement calculus is useful; we will use
it and extend it for our purpose.

7.1.2 A conceptual framework for program extension

Our interest is not in behaviour-preserving program transformations from
abstract to concrete programs. On the contrary, our interest is in behaviour-
improving program transformations from partial to total programs (the ter-
minology is precisely defined later in this section). Our perspective is or-
thogonal to the existing refinement calculus, i.e. we extend the classical re-
finement theory in a new, independent dimension. The refinement calculus
operates along the abstract-concrete dimension of programs (moving from
abstract to concrete); our extension operates along the partial-total dimen-
sion of programs (moving from partial to total).

The principle of refinement ⎯specify today, implement tomorrow⎯ is well-
known and supports separation of ‘what’ from ‘how’. The principle of in-
cremental development ⎯solve a simpler problem first⎯ is less well-

18 We denote these algorithmic descriptions as schemas since they are schemas of
cognitive processes applied by programmers in the process of program develop-
ment; they are not meant to be executed by machines but to be applied by people
(see section 3.1).

 91

known, but frequently practised. It is one of the many tacit competences of
experts and supports the creation of simpler ‘what’s. We use it all the time in
programming and in all other aspects of life for that matter ⎯not least in
research! Solving a simpler problem is realised by ignoring for a while parts
of the requirements and only address a smaller part of the problem. Gradu-
ally, an increasingly larger part of the requirements is considered until even-
tually the original problem is solved. The reason for applying the principle is
always to get things going, make some progress, learn more about the prob-
lem and eventually fully understand it, and get ideas for (the structure of) a
solution to the problem. It is an incarnation of one of Dijkstra’s mantras:
separation of concern. It is a superb way of mastering complexity and one of
our primary instruments of thought.

If we were to build a traffic warning system aimed at providing early warn-
ing to vehicles about road conditions, such as whether the road is slippery,
we would break the problem down into a number of sub-problems to be in-
vestigated separately and for each sub-problem we would first address a very
simple variant of the problem and then, gradually, improve our solution to
address an increasingly larger part of the requirements. One sub-problem is
data collection; another is data distribution. We want cars to exchange in-
formation when passing each other on the road; thus, one sub-problem con-
cerns how to provide safe and efficient communication between moving ve-
hicles. Regarding data collection, we might start out with initial experiments
on data collection by building a sensor prototype and test it in a controlled
test environment, say a freezer with a black, spinning plate simulating the
hard top of a road and the movement of a car. Later, when the basic technol-
ogy for data collection is in place, we might want to test it in the real envi-
ronment and conduct experiments with cars driving around to test the proto-
type under various conditions.

A more trivial example of solving a simpler problem first and then gradually
improve the solution to finally cover the full set of requirements is the con-
struction of a program to simulate a calculator. For a calculator program, we
could for a while ignore multi-digit numbers, operators, precedence rules,
and decimal-point numbers. In small increments we could add more and
more functionality to the program, and eventually end up with a program
meeting the full set of requirements.

In the following we define a taxonomy that allows us to be more precise
about key aspects of the process of incremental development of mechanisms
from their requirements.19 Specifications play a central role as already indi-
cated.

Definition 1: A mechanism has two specifications and an implementation.
One specification, which we denote by req, or just r, describes the ultimate
requirements of the mechanism; the other specification, which we denote by
spec, or just s, describes the specification (intended behaviour) of the current
implementation of the mechanism. The implementation is denoted by impl,
or just i. For mechanism m we refer to the two specifications as m.r and m.s
and to the implementation as m.i.

19 Developing programs from their requirements does not mean that the full set of
requirements must be available before the programming process begins. The process
we propose accommodates seamless integration of new requirements.

 92

Starting with the requirements m.r, we want to develop a specification m.s
that implies m.r and an implementation m.i that meets specification m.s. But
as the development process proceeds, the specification may not imply the
requirements and the implementation may not meet the specification. The
slack in two places gives room for incremental development in two ways:
improve the specification to better match the requirements and improve the
implementation to better match the specification. The refinement calculus is
concerned only with the latter.

A non-deterministic description of the incremental process we propose for
constructing a mechanism from its requirements can be sketched as a proc-
ess of two (or more) independent activities. In Schema 7-2, the first guarded
command models repeated improvements of the specification and the second
guarded command models refinement of the implementation to meet the cur-
rent specification. A new guarded command is added for each additional
activity we may choose to include in our model of the programming process
(e.g. refactoring and optimization).

spec:= the empty specification ;
do spec does not imply req → improve spec
 [] impl does not meet spec → improve impl
od

Schema 7-2: Sketch of stepwise improvement

In the refinement calculus, there is no distinction between spec and req, i.e.
there is only on specification; in this situation, the programming process de-
generate to the second guarded of Schema 7-2 (as described in Schema 7-1).

In the remaining part of this chapter, we ignore the second guarded com-
mand and concentrate on the first, i.e. we concentrate on aspects of stepwise
improvement of the specification of a mechanism toward its requirements.

Specifications

The programming process we envisage is characterised by a sequence of
intermediate specifications, s0, s1, s2, ..., sn where s0 is the initial specification
and sn is (or implies) the ultimate requirements. The intermediate specifica-
tions correspond to the sequence of values held by spec during iterations of
the first guarded command of Schema 7-2.

Definition 2: A specification is a description of the (intended) behaviour of a
mechanism or an implementation. It takes the form of a contract with mutual
obligations between a client of a mechanism and the mechanism and is ex-
pressed in two components called the precondition and the postcondition
respectively. For specification x, we denote the two components by x.pre and
x.post.

For example, a specification of a mechanism may express that it backs up 1
Gb/sec (postcondition) provided there are at least 40 Gb free disk space
(precondition).

A concrete specification may be expressed in many ways; it may be a formal
specification expressed in predicate calculus or some special specification
language, or it may be an informal specification expressed in (more or less

 93

structured) natural language or in pictures; it may be provided as a set of test
cases; it may even be implicit, based upon naming conventions and/or
friendly interpretation of names of mechanisms. The exact form of specifica-
tions is not important to us; what matters is the notion of specification itself,
the possibility of interpreting specifications as contracts, and the role of
specifications in the programming process.

The notion of mechanism may be used to describe many things. In the con-
text of object-oriented programming, one may think of a mechanism as a
generalisation of method and class. However, the notion of mechanism is
more general and allows a multitude of interpretations across programming
language paradigms. Consequently, the conceptual framework we are going
to present provides a uniform model that captures a variety of programming
methods across language paradigms.

We take the client’s view in describing and discussing specifications. Rela-
tion S ≤ T means that specification T is better than specification S, i.e. T
makes more requirements than S. The relation ≤, between specifications, is
called extension, and we say that T extends S and S reduces T. We also say
that T is stronger than S and that S is weaker than T.

Definition 3: T extends S (and S reduces T) is written S ≤ T where

S ≤ T ≡ S.pre ⇒ T.pre ∧ T.post ⇒ S.post

In plain English, a specification is extended by increasing the requirements,
i.e. weakening the precondition or strengthening the postcondition. Weaken-
ing the precondition means increasing the number of initial cases for which
the specification is defined; strengthening the postcondition means reducing
the set of possible results.

For example, a specification that a watch is splash-proof is weaker (i.e.
worse for the client) than a specification that it is water resistant to 100 me-
ters, and a specification that a piece of software requires at least 30 Mb is
stronger (i.e. better for the client) than a specification that it requires at least
60 Mb.

Definition 4: For notational convenience, we write S = T, S ≠ T, and S < T
with obvious semantics; in the latter case, we say that T is a strict extension
of S (and S is a strict reduction of T).

Definition 5: Two specifications that are not related by the relational opera-
tor ≤ are incomparable. Incomparability of specifications is denoted by the
relational operator #:

S # T ≡ ¬(S ≤ T) ∧ ¬(S ≥ T)

The specification that a book costs $20 in paperback and $300 in hardback is
not related to the specification that the lift capacity is 750 kg. Similarly, the
specification that the water temperature is at least 24° Celsius in July is not
related to the specification that the water temperature is at least 10° Celsius
in December.

Remark: We express weakening and strengthening of conditions as logical
implications because basically that is what it is. However, we do not mean to

 94

suggest that specifications need to be expressed formally; the model is appli-
cable regardless of the concrete expression of specifications. End of remark.

Remark: Despite the notational and semantic uniformity, it is expedient for a
while to distinguish our use of ≤ from its use in the refinement calculus. Our
definition of the operator is the same as in the refinement calculus, but we
use it for a different purpose: extension rather than refinement. We change
the specification and modify the implementation accordingly; in the refine-
ment calculus the specification is kept constant and the program is made
more concrete. Later we shall unify the two theories. End of remark.

Definition 6: A specification with precondition Q and postcondition R is
written as [Q, R].

The weakest specification of all is [false, true]. From a client’s perspective, it
is the worst specification of all, for it is not guaranteed to operate in any state
(precondition false), and if it does, it has complete freedom to do anything
(postcondition true). Similarly, the strongest specification of all is [true,
false]. From a clients perspective it is the best specification of all; a mecha-
nism with specification [true, false] always operates (precondition true) and
establishes the impossible (false).

Definition 7: The extreme specifications abort and miracle are defined as:

abort ≡ [false, true]
miracle ≡ [true, false]

It is trivial to build a mechanism with specification abort and impossible to
build a mechanism with specification miracle. Still, the extreme specifica-
tions play a role in iterative and incremental implementation of mechanisms
(e.g. abort is a trivial first value of spec in its incremental approximation of
the ultimate requirements req of a mechanism).

The set of specifications equipped with the relational extend operator forms
a complete lattice with meet (∧) and join (∨) defined as

S ∧ T ≡ [S.pre ∨ T.pre , S.post ∧ T.post]
S ∨ T ≡ [S.pre ∧ T.pre , T.post ∨ S.post]

S ∧ T describes a mechanism that behaves as S and T, and S ∨ T describes a
mechanism that behaves as S or T.

abort is the bottom element and the unit with respect to the join operator;
miracle is the top element and the unit with respect to the meet operator (join
and meet is standard lattice terminology [Davey et al. 2002]).

The lattice of specifications can be sketched as in Figure 7-1 with the strong-
est specification at the top and the weakest at the bottom.

 95

abort

miracle

T

R(T)

E(T)

C(T) C(T)

Figure 7-1: The lattice of specifications partitioned by T

A specification T divides the complete lattice of specifications into three
subsets E(T), R(T), and C(T) characterized as:

E(T) = { S | S ≥ T } extension set
R(T) = { S | S ≤ T } reduction set
C(T) = { S | S # T } crossover set

E(T), the set of stronger specifications, is called the extension set of T. R(T),
the set of weaker specifications, is called the reduction set of T. C(T), the set
of incomparable specifications, is called the crossover set of T. The exten-
sion set and the reduction set are also lattices.

For the characterization of specification lattices, we introduce the notion of
span.

Definition 8: For two specifications S and T such that S ≤ T, we define the
span of S and T as:

〈S, T〉 ≡ { X | S ≤ X ≤ T }

The span of two specifications is itself a complete lattice. Using the span
notation, we can characterize the universe, the extension set, and the reduc-
tion set of a specification S as:

 〈abort, miracle〉 the complete lattice of all specifications, the universe
 〈abort, S〉 the reduction set of S
 〈S, miracle〉 the extension set of S
 〈S, T〉 the extension set of S targeting T and
 the reduction set of T targeting S

Totality, extension, and development traces

As previously mentioned, our concern is the process a programmer applies
to systematically develop a program from its specification. We will not pre-
tend that programmers are capable of instantly writing code that satisfies the
requirements specification ⎯not even for a single method. The game we
will play is to model incremental development of mechanisms.

 96

For a moment, we assume that a mechanism’s implementation meets its
specification and concentrate on the potential slack between specification
and requirements. The notions of total and partial capture this aspect of
mechanisms.

Definition 9: A mechanism m is total if the specification of its implementa-
tion is stronger than (or the same as) the requirements. A mechanism is par-
tial if it is not total.

m.total ≡ m.s ≥ m.r
m.partial ≡ ¬ m.total

For example, if the requirements of a mechanism is that it backs up 1Gb/sec
provided there are at least 40 Gb free disk space, and we have build a
mechanism that backs up 2 GB/sec provided there are at least 30 Gb free
disk space, then the mechanism is total. If on the other hand the current
specification is that the mechanism requires 60 Gb free disk space and backs
up 1Gb/sec, then it is partial.

Figure 7-2 is a visualization of a mechanism ⎯a so-called box view. The
outer (white) box describes the mechanism. The borderline of the mecha-
nism describes its specification, r. The inner (grey) box describes the im-
plementation of the mechanism. The borderline of the implementation de-
notes its specification, s. The white area between s and r is called the slack.
The slack can informally be characterized as r − s.

s

slack
r

Figure 7-2: Box view of a mechanism during incremental development

Incremental development of a mechanism means that a mechanism over time
(due to behaviour-altering transformations) may have different implementa-
tions; an early implementation fulfils a small part of the requirements while
a later implementation fulfils a larger part of the requirements. To capture
the notion of incremental development, we define a development trace as
follows:

Definition 10: The development trace of a mechanism m is a sequence of
specifications si, 0 ≤ i ≤ n, where s0 = abort and sn ≥ r.

It follows from the definition that a development trace has length at least 2.

Figure 7-3 visualizes a subsequence (of length six) of the development trace
of a mechanism. Each specification of the trace is visualized in the context
of the mechanism being developed (the previous specifications are shown as
dashed boxes).

 97

s1

r
si

r

sj

r

r

sk

r sn
r

s0

... ...

Figure 7-3: Subsequence of the development trace of a mechanism

Example: Development of a setToNextDay method of a class representing a
date may exhibit the following development trace:

 r: [true, this is the next date according to the Gregorian calendar]

 s0: the method does nothing

 s1-s5: the method gives the correct result provided
 s1: the day is not the last of the month
 s2: there are 30 days in every month
 s3: the day is not 28 February of a leap year
 s4: the day is not 28 February of a century
 s5: the day is not 28 February of a 4-century

 s6: r

End of example.

The goal of any development process is as smoothly as possible to get from
s0 to sn. Some development traces are more optimal than others; the ideal is a
monotone development trace, like the one sketched above.

Definition 11: A development trace si, 0 ≤ i ≤ n, is monotone iff it is a se-
quence of extensions, i.e. (∀ i | 0 ≤ i < n : si ≤ si+1). Similarly, a develop-
ment trace is strict monotone iff it is a sequence of strict extensions (<).

Figure 7-4 shows two alternative visualizations of a monotone development
trace of a mechanism, the box view and the lattice view.

 98

r

s0 = abort

s1

s2

s3

s4

s5

s6 ≥ m.r

Figure 7-4: Box view and lattice view of a monotone development trace

In terms of lattice theory, a monotone development trace of mechanism m is
a monotone path from the weakest specification, abort, to m.r or, more pre-
cisely, to a specification sn that implies m.r.

In practice, unfortunately, monotone development traces are rare. Often one
gets stuck in the sense of not being able to develop an implementation for an
extension of the current specification. If one gets stuck, a reduction or a
crossover (a reduction followed by an extension) is the only option.

Remark: Figure 7-5 provides a complete characterization of the possibilities
of how one can proceed from a given stage in a development process for the
situation where the current stage satisfies sk ≤ r. The current stage in the de-
velopment process is described by specification sk, which defines three dis-
joint sets of specifications that exhaust the options for the next stage: (1) ex-
tend to a stronger specification, (2) reduce to a weaker specification, and (3)
crossover to an incomparable specification. The first case has three sub-
cases; the second has two.

1. Extent to a stronger specification: sk+1 > sk.
a. Extend to sk+1 where sk+1 ≥ r. In this case, the mechanism is total.
b. Extend to sk+1 where sk < sk+1 < r. In this case, the mechanism is

not yet total, but we are on target.
c. Extend to sk+1 where sk < sk+1 < miracle ∧ sk+1 # r. In this case,

we have a better mechanism, but we are off the specific target r.
However, this may be a smoother way to a solution, i.e. a specifi-
cation in the extension set of r.

2. Reduce to a weaker specification: sk+1 < sk.
a. Backtrack to the previous specification sk−1, i.e. sk+1 = sk−1.
b. Reduce to sk+1 where sk+1 < sk.

3. Crossover to an incomparable specification: sk+1 # sk.

 99

s0 = abort

sk

miracle

r 1.3

1.1

3

1.2

2.1
2.2

Figure 7-5: Extension, reduction, and crossing over

A similar enumeration can be made for the case where we already are off
target, i.e. where ¬(sk ≤ r). However, it is not the specific details of these
enumerations that are important; the point is to emphasize that the general
non-linearity of the programming process is captured by the notion of non-
monotone development traces that are precisely defined in terms of specifi-
cations that describe the behaviour of the current version of the program un-
der development. End of remark.

In the remaining part of the dissertation, we restrict ourselves to incremental
development processes with monotone development traces. We do so not
because it best captures realistic program development scenarios ⎯on the
contrary⎯ but because it is sufficient for the way we intend to apply the the-
ory in our discussion of instructional design for novices.

It is important to note that incremental development of mechanisms, mono-
tone or not, copes seamlessly with new requirements. New requirements just
mean that the finish line moves further away and, consequently, that we have
to perform more increments and that the development trace becomes longer.
It is still the same game we are playing. Because the current specification
(sk) is between the implementation (i) and the requirements (r), nothing is
changed from the programmer’s perspective by changing the requirements.
It is always programming toward a moving target.

Consistency and refinement

We now turn to the situation where a mechanism’s implementation not nec-
essarily meets its specification. This situation introduces another kind of

 100

slack, namely between implementation and specification; the notion of con-
sistency captures this aspect of mechanisms.20

Definition 12: A mechanism m is consistent if its implementation is stronger
than (or the same as) its specification, i.e. if the implementation behaves ac-
cording to its specification and inconsistent if it is not consistent:

m.consistent ≡ m.i ≥ m.s
m.inconsistent ≡ ¬m.consistent

A mechanism where the specification (s) is provided as a set of test cases
and where the implementation (i) satisfies the test cases is consistent. The
mechanism may or may not be total; that depends on how well the test cases
cover the requirements (r).

An improvement of a mechanism’s behaviour with respect to its specifica-
tion is called a refinement. Figure 7-6 describes refinement of the implemen-
tation of a mechanism for fixed specification and requirements. The green
and red areas of the inner box describe how well the implementation meets
the current specification. In the case where the current specification is pro-
vided as a set of test cases and unit testing is applied, the red area corre-
sponds to red bar and the green area to green bar [Beck 2003].

s

r

s

r

s

r

Figure 7-6: Box view of mechanism during refinement of its implementation

7.1.3 Unification of methodologies

In this section, we present a process for iterative, incremental development
of mechanisms based on transformations of the specification of mechanisms
and, consequently, transformations of implementations of mechanisms. The
approach embraces the refinement calculus, and there is strong evidence that
it is superior to the traditional refinement calculus with respect to capturing
expert programmer’s behaviour and best practice in general.

As mentioned in the previous section, we restrict attention to incremental
development processes with monotone development traces; we consider only
extensions of specifications, not reductions or crossovers. To enable a pre-
cise (schematic) expression of the notion of incremental development, we
define a bit of notation:

20 To enable expressions of relations between implementations and specifications,
we expand the domain of the ≤ operator to cover implementations as well as specifi-
cations. (This is similar to the refinement calculus where specifications are consid-
ered to be programs and the operator is defined between programs.)

 101

Definition 13: Specification extension of a mechanism is denoted by the
imperative m.extend and implementation refinement of a mechanism is de-
noted by the imperative m.refine. The semantics of the two are:21

m.extend denotes a transformation that extends the specification of m,
i.e. m.s´ ≥ m.s

m.refine denotes a transformation that refines the behaviour of m, i.e.
m.impl´ ≥ m.impl

Extension and refinement of a mechanism may generate new mechanisms
(decomposition). For example, when we extend the specification and refine
the behaviour of method setToNextDay to work for varying number of days
per month, it may generate the need for a method to return the number of
days of the current month. And when we extend the specification and refine
the behaviour of a method to deposit an amount to an account to store the
transaction for later retrieval, it may generate the need for a new class to rep-
resent the concept of a transaction.

The purpose of a development process is to construct a program P, i.e. a set
of mechanisms that fulfils their requirements. Using the terminology of sec-
tion 7.1.2, we can express the goal of a development process as:

goal: (∀ m∈P | : m.consistent ∧ m.total)

If we let PM denote the set of partial mechanism and IM the set of inconsis-
tent mechanisms, i.e.

PM = { m ∈P | ¬m.total }
IM = { m ∈P | ¬m.consistent }

Using PM and IM, the goal can be rephrased as:

goal: PM = ∅ ∧ IM = ∅

In the following, we describe incremental development of programs (sets of
mechanisms) in algorithmic form as schemas. Initially, we describe a simple
development process that is gradually improved to capture more and more
aspects of best practice. In Schema 7-2, we presented a sketch of stepwise
improvement; a more well-defined description is provided in the following
Schema 7-3. 22 23 24

21 We employ the standard notation to relate values before and after a transforma-
tion: v and v’ denote the values before and after the transformation.
22 All operations on mechanisms generalise trivially to sets of mechanisms.
23 ⊥ denotes the bottom value for a mechanisms implementation; it can be anything,
but in practice, we provide the simplest possible implementation: an empty stub.
24 For any relational operator, ◊, the assignment statement v:◊ exp ensures v ◊ exp
(for suitable substitutions of free occurrences of v in exp).

 102

P.s, P.i:= abort, ⊥ ;

do PM ≠ ∅ → m:∈ PM ; m.extend
[] IM ≠ ∅ → m:∈ IM ; m.refine
od
{ goal: PM = ∅ ∧ IM = ∅ }

Schema 7-3: Stepwise improvement

A typical step in incremental programming involves altering a set of mecha-
nisms at a time. An alternative description, which more realistically captures
the practice of programming, is presented in Schema 7-4.

P.s, P.i:= abort, ⊥ ;
do PM ≠ ∅ → M:⊆ PM ; M.extend
[] IM ≠ ∅ → M: ⊆ IM ; M.refine
od
{ Goal: PM = ∅ ∧ IM = ∅ }

Schema 7-4: Advanced stepwise improvement

Refactoring is the process of changing a program in such a way that it im-
proves its internal structure without altering its external behaviour. It is a
disciplined way to clean up code that minimizes the chances of introducing
bugs. In essence, refactoring is improving the design of the code after it has
been written [Fowler 1999].

If we extend our vocabulary about program transformations and the state of
programs with a few new loosely defined terms25, we can incorporate refac-
toring (and thereby achieve a more comprehensive description of the pro-
gramming process as it is carried out by professional software developers on
large scale projects) by adjusting the goal and by adding an extra guarded
command to the loop. The result is shown in Schema 7-5.

P.s, P.i:= abort, ⊥ ;
do PM ≠ ∅ → M:⊆ PM ; M.extend
[] IM ≠ ∅ → M: ⊆ IM ; M.refine
[] BM ≠ ∅ → M: ⊆ BM ; M.refactor
od
{ Goal: PM = ∅ ∧ IM = ∅ ∧ BM = ∅ }

Schema 7-5: Stepwise improvement unified with refactoring

In Schema 7-5, the first guarded command models repeated improvements
of the specification, the second guarded command models refinement of the
implementation to meet the current specification, and the third guarded
command models refactoring. A new guarded command is added for each
additional activity we may choose to include in the model.

25 m.wellDesigned indicates that m is well designed (the opposite as “bad smell”
[Fowler 1999]). BM = { m ∈ P | ¬m.wellDesigned }. The imperative m.refactor is
an activity that improves the design of m.

 103

Software optimization is the process of modifying a mechanism to optimize
its use of resources (e.g. time, space, and bandwidth) but without altering its
external behaviour. Optimization can be incorporated in the process in the
same way as refactoring simply by adding an extra guarded command to the
inner loop.

Every other criterion to be addressed is treated in a similar way. It must be
suitably incorporated in the goal and in the invariant, and it adds a new di-
mension to the process modeled as an extra guarded command of the loop.

This finishes our development of a model for incremental program develop-
ment by stepwise improvement. In the following section we shall see how
elimination of some of the non-determinism and reinterpretation of compo-
nents in Schema 7-5 can lead to a model for test-driven development.

7.1.4 Programming strategies

As described in Schema 7-5, program development is navigation in an n-
dimensional space (depending on the number of activities considered).

A programming strategy is a prescription of a more specific ordering and
execution of the activities of the programming process.

Test-Driven Development (TDD) is an example of a programming strategy.
TDD is an evolutionary approach to software development which combines
the use of tests as specifications written before the production code with
refactoring [Beck 2003]. Three of the more important goals of TDD are
specification of required behaviour, support for refactoring, and validation of
production code. The latter is the traditional purpose of testing; the first two
are more innovative and relates to extreme programming and agile develop-
ment methods [Beck 1999, Martin 2003].

In the context of systematic development of programs from their require-
ments, TDD provides a pragmatic approach to specifications. The funda-
mental idea in TDD is that tests are written before production code to serve
as specification of the next chunk of functionality to be implemented. In this
sense, TDD complements formal specifications of software.

Extension of the specification of a mechanism moves the boundary between
the specification and the implementation; it is precisely in this situation that
test cases that operationalize (the new part of) the specification must be cre-
ated. Restriction of some of the non-determinism to ensure that extension is
the primary driver of progression, ensuring that all m mechanisms become
consistent and well-designed for each extension, and reinterpretations of the
imperative extend (to cover development of test code) and the predicate in-
consistent26 (to cover execution of test code) is all that is needed to unify our
description of stepwise improvement with TDD (see Schema 7-6).

26 The predicate inconsistent is part of the definition of the first guard of the inner
loop, IM ≠ ∅.

 104

P.s, P.i:= abort, ⊥ ;
{ inv: IM = ∅ ∧ BM = ∅ }
do PM ≠ ∅ →
 M:⊆ PM ;
 M.extend ;
 { inv: m∈PM ≡ m.partial ∧ m∈BM ≡ m.badSmell }
 do IM ≠ ∅ → M: ⊆ IM ; M.refine
 [] BM ≠ ∅ → M: ⊆ BM ; M.refactor
 od
od
{ Goal: PM = ∅ ∧ IM = ∅ ∧ BM = ∅ }

Schema 7-6: Stepwise improvement unified with test-driven development

Whether TDD is an effective strategy for software development is not im-
portant here. The point is that TDD seamlessly unifies with our description
of an incremental development process. This, of course, increases our confi-
dence in the viability of the description.

In TDD, as always, the initial state of mechanism m = 〈r, s, i〉 is: s = abort
and i = ⊥ (partial and consistent), and we are aiming for a final state in
which the mechanism is total and consistent. The potential slack between
requirement and specification on the one hand (r − s) and between specifica-
tion and implementation on the other (s − i) means that a mechanism can be
total or partial and, independently, consistent or inconsistent. In a develop-
ment process, all four states are legal and meaningful.

A state diagram describing development processes according to TDD
(Schema 7-6) is presented in Figure 7-7 (we ignore refactoring not to clutter
the diagram; > marks the initial state).

refine extend

refine

extend

refine

inconsistent 2

3 0

1

>

refine

consistent

partial total

extension

refinement

Figure 7-7: State-transition diagram for incremental development processes

There are degrees of partialness as well as degrees of inconsistency. This is
reflected in an unlimited number of intermediate states depending on the
length of the development trace (the number of intermediate specifications)
and the number of refinement steps for each of the intermediate specifica-
tions. Or, to put it differently, depending on the number of repetitions of the
outer loop (partialness) and inner loop (consistency) of the incremental de-
velopment process described in Schema 7-4 in the previous section. A con-
crete development scenario is described in Figure 7-8.

 105

abort = s0

100%

100%

Consistency

Partialness s1 s2 s3 s4 s5 s6 ≥ r

Figure 7-8: Fine-grained states and sequence of progression

Including quality of design as a criterion and refactoring as the activity to
ensure it adds a new dimension to the state space; consequently, finding an
optimal development path becomes more complicated. Similarly, as already
mentioned, every other criterion to be included adds a new dimension to the
state space and complicates the programmer’s navigation.

7.1.5 Degrees of correctness

Traditionally, correctness is an absolute criterion; either a program is correct
or it is not. In our model, correctness becomes a relative notion; furthermore,
we can quantify the degree of correctness of a consistent mechanism.

Operating with two specifications, r and s, allow us to quantify the degree of
correctness of a mechanism. Assume a consistent but partial mechanism, i.e.
there is a slack between r and s, r > s. This means that the precondition of r
is weaker than the precondition of s or that the postcondition is stronger.
Another way of expressing this is that the number of initial cases that satis-
fies r is larger than the number of initial cases that satisfies s or that the num-
ber of results that satisfies r is smaller than the number of results that satis-
fies s.

Definition 14: The number of states satisfying a predicate p is denoted by
|p|.

In general, the following properties hold for specifications.

Property 1: (∀ s, t | s ≤ t : |s.pre| ≤ |t.pre| ∧ |s.post| ≥ |t.post|).

Property 2: (∀ s, t | s < t : |s.pre| < |t.pre| ∨ |s.post| > |t.post|).

We can define the degree of totality of a mechanism and the degree of cor-
rectness (of a consistent mechanism) in terms of sizes of sets of states satis-
fying pre- and postconditions, as follows:

Definition 15: The degree of totality of a mechanism m = 〈r, s, i〉 with s ≤ r
is defined as:

 106

|.|
|.|

|.|
|.|

posts
postr

prer
pres

⋅

Definition 16: For consistent mechanisms the degree of totality is also called
the degree of correctness.

In the next section we provide examples of degrees of correctness of incre-
mental versions of a mechanism.

7.1.6 Two examples

In this section, we provide two simple examples to vitalize the conceptual
framework of the previous sections. We sketch the development of a mecha-
nism representing a date and a mechanism representing an account. The
paradigm is object-oriented programming, and the syntax is Java.

The first example, date, demonstrates how methods can be developed in a
number of increments where more and more aspects of the requirements are
taken into consideration.

The second example, account, demonstrates how a program with several
classes can be developed in a number of increments by first focusing on a
single class and a few methods of that class and later taking other classes,
relations between classes, and new methods of the first class into considera-
tion.

In both cases, we provide semi-formal specifications for the stages in the
development trace. This is not to suggest that this is what programmers
should do, we do it to make precise what the stages are and how they can be
captured by a sequence of specifications of a monotone development trace.
As we shall see in the next section, specifications can take many different
forms at many different levels of abstractions.

Date

The first programming task we consider is the implementation of class Date,
specified as follows:

Date

int day()
int month()
int year()
int daysInMonth()
String toString()
void setToNextDay()

Figure 7-9: Class model for Date

The mechanism we must develop, class Date, consists (at this stage) of six
part-mechanisms, methods day, month, year, daysInMonth, toString and set-
ToNextDay. The requirements of the compound mechanism Date is the re-
quirements of the six part-mechanisms:

 107

day: r = [true, = the day of the month] 27

month: r = [true, = the month of the year]
year: r = [true, = the month of the date]
daysInMonth: r = [true, = the number of days in month()]
toString: r = [true, = the date in the format dd-mm-yyyy]
setToNextDay: r = [true, this is the next date acc. to the Gregorian calendar]

In the following we ignore the basic queries and concentrate on the derived
query toString and the command setToNextDay (the query and command
terminology is from [Mitchell et al. 2002]).

For each of the two methods, we suggest a monotone development trace, i.e.
a sequence of specifications leading to the requirements of the method. For
each specification in the development trace we denote the degree of correct-
ness of a program with the specified behaviour.28

toString: s0: abort 0%
 s1: [day() ≥ 10 ∧ month() ≥ 10, r.post] 8,3%
 s2: r 100%

setToNextDay: s0: abort 0%
 s1: [day() < daysInMonth(), r.post] 96,71%
 s2: [“daysInMonth() = 30”, r.post] 97,80%
 s3: [“year is not a leap year”, r.post] 99,93%
 s4: [“year is not a century”, r.post] 99,99%
 s5: [“year is not a 4-century”, r.post] 99,99%
 s6: r 100%

The degrees of correctness expressed in percentage, deserves some explana-
tion. For example, the degree of correctness of s1 of command setToNextDay
stems from the fact that the method misbehaves in only 12 out of 365 cases
(when a Date object is in a state representing the last day of a month); it be-
haves according to the specification in the remaining 353 cases.

Remark: This example demonstrates the well-known fact that x% of the de-
velopment time is devoted to 100−x% of the functionality where x is a num-
ber closer to 100 than to 0. End of remark.

We can merge the two development traces any way we want; in total, there
are ten increments in the development of the complete program, and for each
increment ⎯improvement of the specification⎯ there is a lot of refinement
to do. However, this aspect of the development process is not our concern
here. A detailed description of principles and techniques to apply in the re-
finement process is presented in the paper in chapter 16.

Account

27 Postconditions for queries take the form ‘= exp’ indicating that the result of the
query is exp.
28 The preconditions in quotes are approximations to the precise (but more compli-
cated) preconditions. For example, the precondition for setToNextDay in s3 should
have been day() = 28 ∧ month() = 2 ⇒ year is not a leap year.

 108

The next task to consider is the implementation of the following class model:

<<interface>>
Criterion

int getAmount()
String toString()
boolean forAll(List<Criterion> cl)

Transaction

Account

int balance()
void deposit(int amount)
void withdraw(int amount)
void transfer(int amount, Account a)
List <Transaction> transactions()
List <Transaction> selectTrans(Criterion c)
List<Transaction> selectTrans(List<Criterion> cl)

*

boolean holdsFor(Transaction t)

Figure 7-10: Ultimate requirements model of Account program

The requirements of the commands deposit, withdraw, and transfer are:

deposit: r = [true, = if amount ≥ 0 → balance()’ = balance() + amount
 [] amount < 0 → NegativeAmountException
 fi
]
withdraw: r = [true, = if amount ≤ balance()
 → balance()’ = balance() − amount
 [] amount > balance → NoCoverageException
 fi
]
transfer: r = [true, = if 0 ≤ amount ≤ balance()
 → balance()’ = balance() − amount ∧
 a.balance()’ = a.balance() + amount
 [] amount > balance → NoCoverageException
 [] amount < 0 → NegativeAmountException
 fi
]

Each of the commands deposit, withdraw, and transfer generates a transac-
tion, which can later be retrieved by suitable queries. The functional re-
quirements of the queries transactions, selectTrans (both of them), and
forAll are as follows:

transactions: r = [true, = [t | t corresponds to a command on this]]
selectTrans(c): r = [true, = [t ∈ transactions | c.holdsFor(t)]] 29

selectTrans(cl): r = [true, = [t ∈ transactions | forAll(cl)]]
forAll(cl): r = [true, = ((∀ c ∈ cl |: c.holdsFor(this)))]

29 [e ∈ aList | p(e) : f(e)] is a list builder expression that describes the list of ele-
ments f(e) where e is the elements from aList that satisfy predicate p. If f is the iden-
tity function, the last part can be omitted and the expression written as [e ∈ aList |
p(e)].

 109

To demonstrate that new requirements may be added during the develop-
ment process, assume that the requirements are provided in two stages. The
initial requirements are captured by the model in Figure 7-11, and the ulti-
mate requirements are those presented in the model in Figure 7-10.

Account

int balance()
void deposit(int amount)
void withdraw(int amount)
void transfer(int amount, Account a)

Figure 7-11: Initial requirements model of Account program

Stage 1: In this stage, no requirements relate to transactions; thus, the three
commands deposit, withdraw, and transfer are not requested to generate
transaction objects. For each of the three commands, an obvious develop-
ment trace presents itself:

s0: abort s1: normal case s2: special case (exception)

This gives in total six increments in the process for this stage (plus the first
step of producing stub methods to implement abort).

Stage 2: In this stage we address the “new” requirements which, as always,
can be broken down into a number of increments.

Applying a bottom-up or do-simple-things-first strategy, a natural first thing
to do is to implement class Transaction while ignoring its relation to the rest
of the system including method forAll.

The next obvious thing is to implement the query transactions and modify
commands deposit, withdraw, and transfer to generate a Transaction object
for each normal invocation (and add it to a suitable collection object).

The last thing to do is to implement the small set of framework methods
(forAll, selectTrans(c), and selectTrans(cl)) that allow general selection cri-
teria to be created in clients of class Account.

In doing so, the programmer may adopt an opportunistic or depth-first ap-
proach and go to a more detailed level to get enough information to under-
stand the task to be performed, as discussed in section 6.2.3. The program-
mer may want or need to make experiments in order to gain understanding
of the intended behaviour and potential implementation of the generic
framework methods. One way to do this could be to invent a new selection
method with a hard-wired selection criterion:

 r = [true, [t ∈ transactions| lower ≤ t.getAmount() ≤ upper]]
 List<Transaction> selectTransInInterval(int lower, int upper)

Once this method is implemented, the programmer may have gained enough
information and insight into the problem to generalise the specific solution
of method selectTransInInterval to the generic method selectTrans(c), and
from this to method selectTrans(cl).

 110

In total, stage 2 as described here encompasses five to ten increments (de-
pending on the granularity), and for each increment a number of refine-
ments. As in the first example, a systematic incremental process is crucial
for controlling the complexity of the task.

As indicated by these two simple examples, a systematic, incremental pro-
gramming process reduces the total programming task to a number of rela-
tively simple and in some cases even trivial subtasks that can addressed and
verified one at a time. Clearly, we need to teach novices about the program-
ming process, and we need to initially provide strong guidance about which
increments to make and in which order to make them. Without process guid-
ance, novices will struggle with many different aspects of a task at a time
and achieve little. The inevitable result is a chaotic, self-made programming
process and loads of frustration, which the novice is most likely to interpret
as either frustration and anger at the instructor for posing such hard assign-
ments or personal incompetence. Incompetence it is indeed ⎯but on the side
of the educator who miserably fails to properly educate novices in the skills
of programming.

7.2 Incremental development and OOP
In the previous section, we presented a conceptual framework for program
extension and characterized an incremental programming process independ-
ently of a particular paradigm, stepwise improvement. In the last sub-
section, we gave two simple examples of applications of the theory in the
context of object-oriented programming. In this section, we describe the na-
ture and role of specifications at various levels of abstraction in object-
oriented programming. In classical programming methodology, the loop
body and the loop invariant is developed hand in hand with the latter leading
the way [Gries 1981, p. 164]. In the context of object-oriented programming
we broaden the perspective and argue that implementation and specification
is developed hand in hand with the latter leading the way.

7.2.1 Programming as a modeling process

In [Madsen et al. 1993, p. 284], the object-oriented perspective on program-
ming is defined as follows: “A program execution is regarded as a physical
model simulating the behaviour of either a real or imaginary part of the
world.” The real or imaginary part of the world being modeled is called the
referent system, and the program execution constituting the physical model
is called the model system.

The programming process (initiated by a vision of a new system) involves
identification of relevant concepts and phenomena in the referent system and
representation of these concepts and phenomena in the model system. This
process consists of three subprocesses: abstraction in the referent system,
abstraction in the model system, and modeling (no particular ordering is im-
posed among the subprocesses).

Fowler distinguishes between three abstraction levels for interpretation of
class models: conceptual level, specification level, and code/implementation
level [Fowler et al. 2000]. Fowler’s levels of interpretation correspond to the
results of the three subprocesses mentioned above: a conceptual model (ex-

 111

pressed in terms of problem specific concepts), a specification model (ex-
pressed in terms of realised concepts, and an implementation model (ex-
pressed in terms of objects). Figure 7-12 illustrates the programming process
as a modeling process between a referent system and a model system.

Specification
model

Conceptual
model

Referent system Model system

Phenomena
and vision

Implementation
model

abstraction abstraction

modeling

Figure 7-12: Programming as a modeling process

Specifications play a key role in the incremental programming processes
described in the previous section. In the context of object-oriented pro-
gramming, we shall assume that the specification model is expressed as a
model with relevant sub-models (a static class model, a dynamic state
model, functional specifications of methods, etc.). When constructing speci-
fication models, all relevant notations and tools may be used, e.g. UML with
class diagrams, state charts, and the object constraint language, Petri nets,
predicate logic, and test suites.

As indicated in section 6.3.3, we adopt a non-standard, horizontal approach
to programming education in which novices are provided with worked ex-
amples and initially do very simple tasks and then gradually do more and
more complex tasks, including design-in-the-small by adding new classes
and methods to an already existing design. Our approach is in concordance
with Buck and Stucki. In [Buck et al. 2000], the authors argue that “tradi-
tional approaches to CS1 and CS2 are not in congruence with cognitive
learning theory” and provide arguments for a reversed order of topics based
on Bloom’s classification of educational objectives [Bloom et al. 1956]. The
title of Buck and Stucki’s paper is “Design early considered harmful: Gradu-
ated exposure to complexity and structure based on levels of cognitive de-
velopment”, and the message of the paper is that the ordering of topics that
best matches Bloom’s hierarchy of cognitive development is the reverse of
the order of activities in the classical software lifecycle model. The students
first do implementation of methods within an existing design; later they
move to design; and analysis and requirements are covered in later courses.

In our current course design, we more or less ignore two of the sub-
processes described in Figure 7-12 and restrict ourselves to the task of im-

 112

plementing and expanding specification models expressed as class diagrams,
informal functional specifications of methods, and test suites.30

7.2.2 Implementing specification models

When implementing specification models, we identify three independent
activities: (1) implementation of inter-class structures, i.e. relations between
classes and methods that maintain these relations; (2) implementation of in-
tra-class structures, i.e. the internal structure and representation of a class;
and (3) implementation of methods. Of course, (3) is logically part of (2),
but because different principles and techniques are involved, we prefer to
separate the two.

The principles and techniques that relate to the three activities are: (1) stan-
dard coding patterns for the implementation of relations between classes; (2)
class invariants and techniques for evaluating these; and (3) algorithm pat-
terns (e.g. sweep, search, divide-and-conquer) and loop invariant.

The loop invariant is a prime software engineering tool that allows under-
standing each independent part of the loop ⎯initialization, termination, con-
dition, progressing toward termination⎯ without having to look at the other
parts [Gries 2006]. Similarly, the class invariant is a prime software engi-
neering tool that allows us to separate consideration and evaluation of alter-
native representations from implementation of the methods of the class and
to implement each method without worrying about the others. And the same
story goes for class modeling, which is a prime software engineering tool
that allows us to separate specification of each class from specification of the
relationship between classes. The fundamental and recurring principle of
separation of concerns permeates the techniques of all three activities. Figure
7-13 summarize activities and associated programming techniques for im-
plementation of specification models.

Activity Techniques Characteristics
Implementation of inter-
class structure.

Standard coding patterns for
the implementation of rela-
tions between classes (ag-
gregation and associations,
both with varying multiplic-
ities).

Separation of the specifica-
tion of each class from
specification of relationships
between classes.
Standard implementations of
relation types (supports
schema creation and trans-
fer).

Implementation of intra-
class structure.

Class invariants and tech-
niques for evaluating these.

Separation of consideration
and evaluation of alternative
representations from imple-
mentation of the methods of
a class.
Separate implementation of
each method without worry-
ing about the others.

Implementation of meth-
ods.

Algorithmic patterns and
loop invariants.

Standard implementation of
algorithm patterns (supports
schema creation and trans-

30 As mentioned, the students do design-in-the-small, but the major emphasis is on
implementing designs provided by the teacher.

 113

fer).
Separation of initialization,
termination, condition, and
progression.

Figure 7-13: Activities and associated programming techniques for imple-
mentation of specification models

In chapter 9, we present the instructional design of an introductory pro-
gramming course where an incremental programming process and practise
of these activities and techniques constitutes the primary contents of the
course. Increasingly complex specification models define the course pro-
gression, not constructs of the programming language, as is the custom.
Teaching aspects of implementing inter-class structures are described in sec-
tion 9.2.3 and 9.2.4; the aspect of intra-class structure is covered in section
8.2 (as part of our novice’s process STREAM) and 9.2.5; and method im-
plementation is covered in section 8.2.6, 8.2.7 and 9.2.9.

7.3 Conclusion
This chapter has addressed two research questions

Q4.3: How does best-practice in modern software development relate
to programming methodology?

Q4.4: Can we provide a characterization of the programming process
that unifies programming methodology and best-practice of mo-
dern software development?

With specifications as the common denominator, we have presented a con-
ceptual framework for program extension that captures the essence of incre-
mental program development and unifies classical stepwise refinement with
best practices of software development. In our model, stepwise refinement is
a sub-process of incremental development.

Our framework enables us to define correctness as a relative notion and to
quantify the degree of correctness of a mechanism.

Two simple examples were used to demonstrate how to put the conceptual
framework into practice and to argue (once again) for the necessity of teach-
ing novices about the programming process and to provide guidance about
which increments to make and in which order to make them.

 114

8 A Programming Method for Nov-
ices

It is time to address the most important of our five research questions

Research question 5 (Q5): How can we educate novices in the skills
of programming? The question is refined to four more specific ques-
tions:
Q5.1: How can we scale down modern software development methods

to a programming process for novices?
Q5.2: How can we structure the relevant body of knowledge so that it

can be most readily grasped by the learner?
Q5.3: How can we organize efficient learning paths/courses that in-

crementally approximate best-practice in modern software de-
velopment at the level of novices?

Q5.4: How can we adopt results of cognitive science and educational
psychology to the instructional design31 of introductory pro-
gramming education?

In this chapter, we address Q5.1 and Q5.2. The two remaining questions are
addressed in chapter 9.

In section 8.1, we criticise traditional approaches to problem-solving meth-
ods and present an alternative approach for providing guidance to students
regarding the programming process. Section 8.2 provides a brief presenta-
tion of STREAM ⎯a scaled-down programming process for novices shaped
by the model for incremental program development of the previous chapter.
The presentation of the process is structured so that it can most readily be
grasped, remembered, and applied by the learner. In section 8.3, we illustrate
application of STREAM using the recurring Date example. Section 8.5 is the
conclusion of the chapter.

The work reported in section 8.1.3 was carried out with Bennedsen and is
described in detail in the paper in chapter 15. The work reported in section
8.2 was carried out with Kölling and is described in detail in the paper in
chapter 16.

8.1 Random walk or guided tour
In the perspective of chapter 7: incremental development through stepwise
improvement, programming is about finding one’s way through the lattice of
specifications 〈abort, req〉 spanned by the requirements of the program to be

31 Instructional design concerns detailed specification of teaching/instruction as op-
posed to curriculum design which concerns specifications of learning outcome.

 115

built. For each specification in the development trace, a number of refine-
ments are to be made in order to reach a consistent program according to the
current specification. And for each refinement, there are concerns such as
refactoring, test case development, optimization, etc. to deal with. For nov-
ices, refactoring and optimization may be ignored, and test cases can be pro-
vided; however, programming style is an additional concern that must be
addressed (indentation, naming, documentation, etc.); thus, a 3-dimensional
space of extensions, refinements, and styling must be navigated (see Figure
8-1). For a novice, this is a daunting task with immense sources of cognitive
load!

100%

100%

Consistency

Partialness

Stylishness

More stylish

Less stylish

styling

Figure 8-1: The 3D maze of partialness, consistency, and stylishness

8.1.1 Random walks

The traditional approach to programming education is to “invite” the stu-
dents for a random walk in the 3D maze. Students are shown a few finished
programs and told to solve programming problems on their own. “The more,
the better”, the saying is. However, as in the case of the experiment of sec-
tion 3.2, which demonstrated that no learning takes place if the cognitive
load of the problem to be solved is too high, we may not expect much learn-
ing to take place from that style of programming education. It is not surpris-
ing that many students give up and never learn to program.

Actually, it is even worse than indicated above. As mentioned in chapter 7,
monotone development traces are rare, and for novices, they are unlikely to
occur at all since novices are uncertain about what they are aiming for. In
conclusion, there are all sorts of traps and pitfalls in the maze, and it is not
surprising that many get lost.

Attempts have been made to provide guidance by describing how to solve
problems. In How to Solve It [Polya 1957], the author describes techniques
for mathematical problem solving based upon the following four-step plan:

1. Understand the problem.
2. Devise a plan.
3. Carry out the plan.

 116

4. Look back and check the result.

Of course, the four-step process is very reasonable, but not very construc-
tive.

Hyman and Anderson have discussed problem-solving in a wider context
[Hyman et al. 1965]. Naur has pointed to the work of Hyman and Anderson
on several occasions in 1970, 1972, and 1981 [Naur 1972, Naur 1992a, Naur
1992b]. Hyman and Anderson’s discussion is centered on eight rules for
problem solvers:

1. Run over the elements of the problem in rapid succession several
times, until a pattern emerges that encompasses all these elements si-
multaneously.

2. Suspend judgement. Don’t jump to conclusions.
3. Explore the environment. Vary the temporal and spatial arrangement

of the materials.
4. Produce a second solution after the first.
5. Critically evaluate your own ideas. Constructively evaluate those of

others.
6. When stuck, change your representational system. If a concrete repre-

sentation isn’t working, try an abstract one, and vice versa.
7. When stuck, take a break.
8. Talk about your problem with someone.

Again, these are reasonable rules, but not very constructive.

A third classic in problem solving is Rubinstein’s Patterns of Problem Solv-
ing [Rubinstein 1975]. Rubinstein recommends that the following tasks be
part of the problem solving process:

1. Write down the problem in its primitive form.
2. Transform it to simple language.
3. Translate it to mathematical statement, if possible.
4. Represent using diagrams, charts, and graphs.

In hindsight, the rules and recommendations of Polya, Hyman and Ander-
son, and Rubinstein may make sense, but they provide no help whatsoever
for a novice addressing a concrete programming problem.

Recently, Deek has proposed The Software Process: A Parallel Approach
through Problem Solving and Program Development. Deek writes, “The
development of this process was based on an extensive study of problem
solving methodologies” [Deek 1999]. Deek’s process, which is a blend of
Polya’s and Rubinstein’s problem solving methods, consists of six steps:

1. Formulate the problem.
2. Plan the solution.
3. Design the solution.
4. Translate the solution (into executable form).
5. Test the solution.
6. Deliver the solution.

Besides being merely a rephrasing of Polya’s method for mathematical prob-
lem solving, Deek’s process is nothing but a scaled-down version of the now

 117

abandoned waterfall methods of software engineering, which carry strong
reminiscences of program development through stepwise refinement.

Over the years, others have proposed programming methods based on
Polya’s methods for problem solving, e.g. [Perkins 1981, Proulx et al. 2006,
Raadt et al. 2004b, Tu et al. 1990].

In spite of good intentions, novices are provided little help from these high-
level recommendations of common sense behaviour.

In our endeavour of providing guidance, we need to be much more specific
about principles and techniques of (incremental) program development. We
know this from loads of research from the past 25 years. As mentioned in
our closing paragraph of section 4.2.1 (Psychological studies), study after
study, even multi-institutional and multinational, have thoroughly docu-
mented that students cannot program and that the major problems they ex-
perience are composition-based ⎯how to put the pieces together. We have a
long-standing problem of international scale, which we are aware of, and yet
we persist to teach programming primarily by explaining language con-
structs and show-casing finished programs ⎯even though it is procedural
knowledge and strategies for putting the pieces together that are needed!

8.1.2 Guided tours

Our approach to programming education, which draws upon the results of
cognitive load theory, offers an alternative to endless random walks. Instead,
we suggest guided tours. By providing guidance and scaffolding32 with re-
spect to all dimensions involved, we can ensure that students exercise the
important aspects of programming while keeping the cognitive load within
the bounds where learning outcome is optimized.

As mentioned in section 3.1.2, research on expert-novice differences in
problem solving and cognitive skill acquisition indicate that speed and accu-
racy of experts is not accomplished by major, qualitative changes in their
problem solving strategies [VanLehn 1989, p. 563]. The effects of their ex-
pertise are more subtle. For instance, whenever an expert and a novice are
deciding which chess move to make, both consider the same number of
moves and investigate each move for about the same amount of time. The
difference is that the expert considers only the good moves and usually
chooses the best one, whereas the novice considers mediocre moves as well,
and often does not choose the best move from those considered. Thus, exper-
tise lies not in having a more powerful overall strategy or approach but
rather in having better knowledge for making decisions at the points where
the overall strategy calls for a problem-specific choice. Similarly, experts
seem better at monitoring the progress of their problem solving and allocat-
ing their efforts appropriately. [Schoenfeld 1981] concludes that metacogni-
tive or managerial skills are of paramount importance in human problem
solving. The same sort of managerial monitoring is evident in numerous

32 Scaffolding is a term from cognitive apprenticeship describing support provided
by the master to apprentices in order to carry out some given task: “this can range
from doing almost the entire task for them to giving them occasional hints on what
to do next” [Collins et al. 1991, p. 7].

 118

studies including studies of programmers and software design [Jeffries et al.
1981].

Our primary means of providing guidance with respect to incremental devel-
opment is through the structure of the teaching material (textbook, exercises
and assignments, and videos) and an apprentice-based teaching approach.
Guidance with respect to refinement is provided through a carefully de-
signed novice’s process of object-oriented programming. The process, which
we call STREAM, is described in the next section.

The textbook we employ [Barnes et al. 2006] is problem-based and written
according to the pedagogical principle of apprentice-based programming
education (see Case studies and apprenticeship in section 4.2.3). In [Kölling
et al. 2004], the authors describe in detail the rationale, motivation, and goals
of the approach of the book. Following Barnes and Kölling’s approach, first
students observe the teacher demonstrating and extending an existing piece
of software using new techniques or constructs introduced for the purpose,
then students apply the new material to the project under guidance, and fi-
nally the students design their own tasks as extensions of the project at hand.
In this way, the order of student activities is exactly reversed compared to
classical, clean-slate assignments; there, students typically have to start with
design, followed by applying new material before they observe behaviour.

The exercises and assignments we employ are carefully written to guide the
student through a specific path of program development. Beacons of the de-
velopment trace are provided, and so is when to make turns in the maze, i.e.
when to extend, when to write specifications (Javadoc), when to write test
code, when to refine, when to refactor, and when to style the code.

Example: This is an example of a closed-lab exercise provided to the stu-
dents in the fourth week of the introductory programming course. For com-
parison, we provide a programming exercise that corresponds to the devel-
opment presented in section 7.1.6 (Date).

Consider the following class diagram:

Date

int day()
int month()
int year()
int daysInMonth()
String toString()
void setToNextDay()

Figure 8-2: Class model for Date

The requirements of the methods of class Date are:

day: = the day of the month
month: = the month of the year
year: = the month of the date
daysInMonth: = the number of days in the month
toString: = a presentation of the date in the format dd-mm-yyyy
setToNextDay: set the date to the next date acc. to the Gregorian calendar

 119

1. Build a walking skeleton, i.e. a class Date with stubs for each of the six
methods.

2. Write a program to test the behaviour of well-chosen Date objects.
3. Consider the following two alternative representations for class Date. R1:

three integer variables representing day, month, and year of the date. R2: one
integer variable representing the number of days since January 1, 1970. Make
a REM for these two representations and fill it out using the TEACH scale.33

4. Choose the representation that makes your job of implementing the class as
easy as possible.

The following part of the exercise assumes that the students have chosen
representation R1. The exercise has an alternative second part tha provides
guidance for the implementation of R2.

5. Declare field variables for the chosen representation and provide at least one
constructor for the class. Test your solution.

6. Implement methods day, month, year, daysInMonth, and toString. You may
assume that there are 30 days in every month. Test your solution.

7. Make an implementation of setToNextDay that works provided the date is not
the last date of the month (i.e. day ≤ 30). Test your solution.

8. Improve your implementation of setToNextDay so it works also in the special
case where the day is the last day of the month. Make sure you use method
daysInMonth whenever you need to refer to the number of days in the current
month. You may ignore the case where the date is the last day of the year
(December 30 according to the current assumptions). Test your solution.

9. Improve your solution of setToNextDay so it also works for the special case
of the last day of the year. Test your solution.

10. Improve your implementation of daysInMonth to return the correct number
of days of the current month. At this point, you may ignore the special case
of leap years. Test your solution.

11. Improve your implementation of daysInMonth to work correctly also in the
special case of leap years. Hint: Make a helper method leapYear that returns
a boolean indicating whether the current year is a leap year or not. Test your
solution.

The first five steps of the assignments correspond to the first five of six steps
in the STREAM method; the remaining steps of the assignment correspond
to applications of specific rules that are concrete incarnations of the so-
called Mañana Principle related to the sixth step of STREAM (our version
of stepwise refinement). End of example.

The amount of scaffolding and guidance in this example is carefully adjusted
to the average level of the students at the time of giving the exercise. In gen-
eral, a programming task can be used at one of many different times during a
course as long as the amount and nature of scaffolding and guidance is ad-
justed to the level of the (average) students.

The next example demonstrates how much we can fade our guidance over a
period of three weeks (from week four to week seven); the example is one of
the assignments from the final exam of the introductory course, which lasts
seven weeks. The exam is described in detail in section 9.2.8 and in the pa-
per in chapter 21.

33 REM and TEACH refer to well-defined concepts in the STREAM programming
process presented in section 8.2.

 120

Example: Make a Java program that implements the following class model
including a test program that demonstrates that your solution is correct ac-
cording to the specification provided below.

The program administers customers of a company and keeps track of the
amount that each customer has spent at the company.

String getName()

void add(Customer c)
void remove(Customer c)

Set<Customer> select(int lb)

Customer bestCustomer()
Customer worstCustomer()

void printCustomers()

Company

String name Customer

String getName()
int getAmount()
void buyFor(int x)
String toString()

String name
int amount

* customers

Figure 8-3: Class model for final exam assignment

Classes Customer and Company have the following requirements:

Person getName: = the name of the person
 getAmount: = the amount the person has bought for
 buyFor: increases the amount bought for by x;
 the method is called to simulate a bargain
 toString: = a string representation of the person

Company getName: = the name of the company
 add(c): add c to the set of customers
 remove(c): remove c from the set of customers
 select(lb): = the set of customers who have bought for
 an amount of at least lb
 bestCustomer: = a customer who have bought for most
 worstCustomer: = a customer who have bought for least
 printCustomers: print the customers one per line sorted
 alphabetically by last name

Hint: The interfaces Comparable and Comparator (and associated methods
in class Collections) may be exploited for implementation of the methods
bestCustomer, worstCustomer, and printCustomer. End of example.

The scaffolding techniques described in this section is used primarily in or-
der to provide guidance in the complex activity of program development.
However, scaffolding does more than that and Rosson and Carrol points out:
“We add to these pedagogical constructs the simple but powerful notion that
if the scaffolding mirrors the structure of a complex task, it not only makes
the task attainable, but also conveys a method for accomplishing similar
tasks in the future” [Rosson et al. 1996].

 121

8.1.3 Cognitive apprenticeship using videos

Providing a method of programming, detailed guidelines, and scaffolding are
important aspects of educating novices in the skills of programming. How-
ever, a description of intended programmer behaviour is only part of the
story; we also need to demonstrate how to apply programming methods,
techniques, and guidelines in practice. An apprentice-based approach to
teaching involves demonstrating the master’s programming process to the
apprentice.

The theory of cognitive apprenticeship holds that masters of a skill often fail
to take into account the implicit processes involved in carrying out complex
skills when they are teaching novices. To combat these tendencies, cognitive
apprenticeship is designed, among other things, to bring these tacit processes
into the open, where students can observe, enact, and practice them with
help from the teacher [Collins et al. 1989, Collins et al. 1991].

Live programming in class is one way of doing this, but the implicit assump-
tion is that everybody in the class is synchronized with respect to the level
and pace of the presentation, which of course they are not. Some students
will be more advanced and some will be less advanced. The more advanced
students will waste their time because they have already grasped the princi-
ples while other students quickly will fall behind and get lost because they
cannot follow the pace.

A more adaptable approach is to prepare videos that show program devel-
opment sessions where the master demonstrates application of the program-
ming methods, principles, and techniques that are emphasised in the course.
(A video is a narrated screen capture of a programming session.) Apart from
demonstrating major issues such as methods, principles, and techniques, a
video may also be used to reveal minor details of experts’ programming
process ⎯details that are so common to us that we fail to teach them explic-
itly to the students. The approach is more adaptable because the more ad-
vanced students may just view the video once (maybe winding through parts
of it or skipping it altogether) while the less advanced students may pause,
rewind, and review the video to fully understand the material.

Some of the activities that can be revealed through videos are incremental
development, model-driven development, test-driven development, refine-
ment, refactoring, compiler error handling, debugging, use of online docu-
mentation, and use of the IDE. The paper in chapter 15 provides a more
complete discussion of ways of revealing the programming process to nov-
ices.

8.2 STREAM
As mentioned in the previous section, guidance with respect to refinement is
provided through a carefully designed novice’s process of object-oriented
programming. The process, which we call STREAM, is described and illus-
trated in this section. STREAM is an acronym of the six activities constitut-
ing the process: stubs, tests, representation, evaluation, attributes, and meth-
ods.

 122

http://en.wikipedia.org/wiki/Theory
http://en.wikipedia.org/wiki/Cognitive
http://en.wikipedia.org/wiki/Apprentice

Exposing students to the process of programming is merely implied but not
explicitly addressed in texts on programming that appear to deal with ‘pro-
gram’ as a noun rather than as a verb. We present a set of principles and
techniques as well as an informal but systematic process of decomposing a
programming problem. A by-now-well-known example is used to demon-
strate the application of process and techniques. The process is a carefully
scaled-down version of a full and rich software engineering process particu-
larly suited for novices learning object-oriented programming. In using it,
we achieve two things: to help novice programmers learn faster and better
while at the same time laying the foundation for a more thorough treatment
of the aspects of software engineering.

Our techniques do not address the analysis phase or the finding of the classes
from the problem domain. This may be achieved by using the noun/verb
method or other simple methodologies. More likely, in very early student
exercises, the teacher or the textbook will provide the class structure

In the sub-sections 8.2.1-8.2.6, we describe, in a general way, the STREAM
method, which is a sequence of six simple steps that can be followed to im-
plement classes whose intended behaviour is essentially understood. These
sub-sections are kept brief and are intended as an initial overview. In sub-
section 8.2.7, we present the mañana principle, which is a general principle
that supports decomposition and refinement through separation of specifica-
tion and implementation.

8.2.1 Stubs

We assume that the classes and their observable (public) functionality is un-
derstood and given, for example in the form of a Java interface or carefully
written Javadoc comments. The first step toward implementation is to create
an implementation class that implements this interface (or, if the interface is
not formally given, provides methods with the intended signatures). The
method implementations at this stage are stubs (i.e. minimal method bodies),
and the class constitutes what Cockburn calls “a walking skeleton” [Cock-
burn 2002]. This is the practical interpretation of the bottom value of
mechanisms from the previous chapter (⊥). We repeat this for every class in
the project.

8.2.2 Tests

Once method stubs have been defined, test cases can be written for every
method. This is commonly done using JUnit [Object Mentor Inc. 2006].
Several educational tools support JUnit testing (e.g. BlueJ and Dr. Java [Al-
len et al. 2002, Kölling et al. 2003]), and in environments that support re-
cording of interactive testing, such as BlueJ [Kölling 2003a], the existence
of stubs enables the test interaction to be recorded.

Tests can be provided by the teacher, the students can be requested to write
tests themselves, or a combination of the two. The important thing is that a
test suite exists because it acts as specification.

 123

8.2.3 Representations

The next step aims at deciding on an implementation representation for the
objects to be defined. The representation is defined by the attributes of the
class. For every class, alternative representations must be considered. These
can be as many as a student can think of (or the teacher provides for the stu-
dent to think of), but must be at least two. We label each of our candidate
representations R1 to Rn.

8.2.4 Evaluation

Next, we create a Representation Evaluation Matrix (REM). A REM is a
table with one column for each candidate representation and one row for
each method in the class to be implemented (Table 8-1). We use this matrix
to compare each method that must be implemented for each possible repre-
sentation invariant. The comparison criteria may vary ⎯leading to different
tables⎯ but initially it is always “implementation effort”. Above the table is
a short description of each representation alternative.

 R1: A short description of the first representation alternative.
 R2: A short description of the second representation alternative.

IMPLEMENTATION EFFORT R1 R2

method1() Challenging Trivial

method2() Trivial Hard

method3() Easy Hard

Table 8-1: Implementation effort evaluation matrix

Table 8-1 shows an example of an Effort REM. In this table, we compare the
estimated effort it takes to implement each method using a particular repre-
sentation invariant. As values, we use a small ordered set of effort qualifiers:
Trivial, Easy, Average, Challenging, and Hard (the “TEACH scale”). The
qualifiers are subjective, but that is the whole point; the programmer must
evaluate implementation effort according to their level of competence.

Later in the course, different REMs may be used for other criteria that are
explicitly mentioned in the task specification. For example, if runtime per-
formance is an explicitly stated goal, a Performance REM expressed in terms
of big O may be used.

It is crucial not to judge representations on imaginary requirements. Espe-
cially, performance consideration should not play a role in early exercises,
and it should be made clear that performance is entirely irrelevant for
judgement of the Effort REM. We recommend focusing on Effort REMs in
early exercises.

Initially the instructor can supply the REM, but gradually the students should
be responsible for filling in the REM.

Once the Effort REM is complete, we choose the representation that is
judged to have the simplest overall implementation effort.

 124

8.2.5 Attributes

When we have settled on one particular representation, we can refine our
implementation class. We now define the fields needed to represent objects.
The field definitions may include their role (in the form of a comment) and
possible constraints on their values (also in comment form). At this stage, we
also provide appropriate initialisations for the fields, either in the form of
default values or by using client-supplied values. This includes at least par-
tial implementation of the class’s constructor(s).

8.2.6 Methods

This step is actually more than a single step: it has the form of a nested loop
and is derived directly from Schema 7-6.34 The definition is:

do not all methods are total →
 select method m where ¬ m.total ;
 m.extend ;
 do ¬ m.consistent → m.refine od ;
od

Schema 8-1: Incremental implementation of methods

The imperative m.extend represents creation or retrieval of suitable test
cases, and the predicate m.consistent represents the activity of running the
tests.

The order in which methods are chosen is essentially arbitrary. Our recom-
mendation for students who are not entirely confident is to implement the
methods in order of increasing implementation effort according to the Effort
REM. Of course, if some methods can be implemented using calls on others,
the others should be implemented first.

It is easy to see that this completes the implementation. If the programmer
successfully completes this step, the class is finished.

All the magic now lies in the “Implement method” step. This is still a large
task, and it needs further advice to break it down into smaller steps.

8.2.7 The mañana principle

Implementing a method is potentially a large and non-trivial task. We aim to
provide a process that breaks this task into smaller steps as well. This time,
we cannot give a single recipe, since details of the method may vary widely.
Instead, we give a set of rules that can be applied in certain cases.

Some methods, of course, consist of only a few lines of code and may be
easy to write. Our rules aim at breaking all methods down into smaller
chunks, until they approach the complexity of those easy-to-write methods.
This is essentially a small variation of stepwise refinement [Wirth 1971].

34 For consistency, we maintain terminology and notation from chapter 7.

 125

At the heart of this technique is the Mañana Principle, which says:

When – during implementation of a method – you wish you had a certain
support method, write your code as if you had it. Implement it later.35

Thus, the Mañana Principle encourages separation of concerns and the use of
many small methods. We discuss an example below.

To get beginners used to the Mañana Principle, there are some more specific
forms of this rule, each of which states a more concrete situation in which
this principle should be used. They are:

Special Case rule: If you write code to treat a special case in your algo-
rithm, treat the special case in a separate method.

Nested Loop rule: If you have a nested loop, move the inner loop into a
separate method.

Code Duplication rule: To prevent writing the same code segment
twice, move the segment into a separate method.

Hard Problem rule: If you need the answer to a problem that you cannot
immediately solve, make it a separate method.

Heavy Functionality rule: Prevent a sequence of statements or an ex-
pression from becoming long or complicated by moving some of it into
a separate method.

The helper methods created as a result of these rules are usually private,
unless they are created in different classes. We discuss this further below.

It is important to remind students that these separate methods do not need to
be implemented straight away. The calling method can be written as if the
method existed. Following this, a stub for the Mañana method should be cre-
ated. (If the programming environment had specific tool support for the
Mañana principle, this could be automated by the IDE.)

The specific rules are initially easier to apply, because they provide concrete
hints to times when they should be applied. They are, however, just in-
stances of the Mañana Principle, and, if applied regularly, develop a coding
habit that encourages the understanding and application of the principle in
general.

This principle ⎯and the derived rules⎯ may sound abstract or complicated
when presented in this theoretical form, but they are quite easy to understand
when presented in the context of an example. In the next section, we discuss
the development of the recurring class Date to illustrate these techniques in
practice.

35 The word mañana means tomorrow in Spanish. A more popular version of the
principle is: don’t do today what you can postpone until tomorrow. It is a very con-
crete form of separation of concerns.

 126

8.3 An example
We demonstrate the techniques discussed above in the context of a simple
programming problem: the implementation of the familiar class Date.

Here, we give the specification of the problem as a Java interface with Java-
doc. It could be presented more informally as well as more formally; the in-
troduction of interfaces is not a requirement for this process.

interface IDate {
 /**
 * Advance the date to the next day
 */
 void setToNextDay();

 /**
 * = a string representation of this date
 * in the format yyyy-mm-dd
 */
 String toString();
}

Figure 8-4: Specification of Date

8.3.1 Stubs

The first step is to create a class for the implementation that contains method
stubs. The resulting class is presented in Figure 8-5. When the specification
is provided in the form of a Java interface, this step is essentially mechanical
and could be automated by a development environment. For students in early
stages of learning, however, it might help to write this class skeleton by
hand. The important thing is: simple rules can be given to guide the creation
of this class.

/** An instance contains a date */
class Date {
 /**
 * Advance the date to the next day
 */
 public void setToNextDay() {
 }

 /**
 * = a string representation of this date
 * in the format yyyy-mm-dd
 */
 public String toString() {
 return null;
 }
}

Figure 8-5: Date class with method stubs

8.3.2 Tests

The next step is to ensure that appropriate test cases exist. Our techniques do
not necessarily prescribe a strict test-first approach, in which students create
tests for all methods themselves. A viable alternative for early programming
tasks is to use teacher-provided tests. The teacher may provide a test suite

 127

for the expected methods as part of the specification of the task. The impor-
tant step here is to ensure that tests exist, can be compiled, and can be exe-
cuted (but do not need to pass).

We do not present the specific tests, since the actual test development is not
the main focus.

8.3.3 Representations

The next step in our technique is to consider alternative representations (at
least two). An obvious representation for this problem is to use three vari-
ables: day, month and year; we denote this alternative by R1. An alternative
representation is the number of days from a certain start date; we denote this
alternative by R2.

8.3.4 Evaluation

R1 simplifies the implementation of toString, whereas the implementation of
setToNextDay will be more challenging, since it must deal with the special
case of the last day of a month. R2 leads to a simple implementation of set-
ToNextDay (a simple increment), whereas implementing toString will be
hard. The result of this analysis is the Effort REM for Date (Table 8-2).

 R1: Three variables day, month, and year.
 R2: One variable counting the number of days from an origin.

IMPLEMENTATION EFFORT R1 R2

setToNextDay() Challenging Trivial

toString() Trivial Hard

Table 8-2: Estimate of required effort to implement Date

We choose to use R1 for our class, since it seems to be the representation that
allows for the quickest implementation of Date.

8.3.5 Attributes

Choosing R1 as the basis for our implementation determines the instance
fields except for their specific type. An obvious first choice is three int vari-
ables. However, days, months, and years does not behave as integers, so it is
wise to define three helper classes Day, Month, and Year on which we, by
need as we go along, will define the proper behaviour. Arguments for this
kind of “extreme decomposition” are provided by Fowler in When to Make a
Type [Fowler 2003]. The three helper classes, which come into existence due
to refinement and decomposition, may be encapsulated as inner classes of
class Date, since they are not relevant to the surroundings. Their existence is
merely a result of our choice of representation for class Date.

The extreme decomposition into classes Day, Month, and Year enables inde-
pendent and incremental development and testing of each of the four com-
ponent classes, as well as each of the methods in the classes. For people who
at a later stage must read the code, the decomposition supports independent
and incremental comprehension of the individual parts. Extreme decomposi-

 128

tion is beneficial for software developers as well as for watchmakers (recall-
ing Simon’s parable about Hora and Tempus in section 2.1.1).

The definition of class Date after adding the fields is presented in Figure 8-6.
The method stubs are unchanged. Comments from previous code segments
are left out for brevity; only comments for new methods are included from
here on.

class Date {
 private Day day;
 private Month month;
 private Year year;

 /**
 * Constructor: a date instance with an arbitrary
 * (fixed) value.
 */
 public Date() {
 day= new Day(10);
 month= new Month(3;)
 year= new Year(2007);
 }

 public void setToNextDay() {}
 public String toString() { return null; }

 private class Day {
 private int d; // 1 ≤ d ≤ month.days()
 public Day(int d) { this.d= d; }
 }

 private class Month {
 private int m; // 1 ≤ m ≤ 12
 public Month(int m) { this.m= m; }
 public int days() {}
 }

 private class Year {
 private int y;
 public Year(int y) { this.y= y; }
 }
}

Figure 8-6: Adding instance fields and constructor to Date and its private
inner classes

8.3.6 Methods

The next step is to implement and test the methods. Some methods may be
easy to implement in one step; toString in our example falls into this cate-
gory. Other methods may require more work. In this case, partial solutions
may be used for initial versions. Figure 8-7 shows our class after implement-
ing function toString and a first, naïve version of setToNextDay. These re-
finements generate the need for a method in class Day and toString methods
on all three helper classes. Additions and modifications compared to the
former version of Figure 8-6 are marked in bold face.

 129

class Date {
 // ...

 public void setToNextDay() { day.inc(); }

 public String toString() {
 return year + “-” + month + “-” + day;
 }

 private class Day {
 private int d; // 1 ≤ d ≤ month.days()
 public Day(int d) { this.d= d; }
 public void inc() {
 d= d + 1;
 }
 public String toString() {
 if (d < 10) {
 return “ ” + d;
 } else {
 return “” + d;
 }
 }
 }

 private class Month {
 private int m; // 1 ≤ m ≤ 12
 public Month(int m) { this.m= m; }
 public int days() {}
 public String toString() {
 if (m < 10) {
 return “ ” + m;
 } else {
 return “” + m;
 }
 }
 }

 private class Year {
 private int y;
 public Year(int y) { this.y= y; }
 public String toString() { return “” + y; }
 }
}

Figure 8-7: Naive implementation of Date

This partial solution is indeed a very naïve implementation. Nevertheless, as
discussed in section 7.1.5, we might claim that method setToNextDay is 97%
correct since it works correctly in 353 out of 365 cases!

The version in Figure 8-7 would benefit from refactoring by providing a sin-
gle abstraction to handle string representations of integers of only one digit,
but we ignore this issue here.

Incrementing field d in method inc of class Day might violate the representa-
tion invariant of the class, 1 ≤ d ≤ month.days(); in this special case, the
above implementation of inc fails to work properly. We have to check for
this special case and handle it appropriately. For simplicity, we temporarily
assume 30 days in every month.

 130

In the special case where day after being incremented exceeds the number of
days in the month, day must be set to 1 and field month must be incre-
mented. Following our Special Case rule from section 2, we deal with this
special case by introducing a new private method, checkOverflow. Now, in-
crementing the variable month might also violate the representation invari-
ant; this special case is handled similarly by introducing a private method
checkOverflow in class Month, which is called after incrementing month.
Except for the assumption of 30 days in every month, the program is now
complete (total and consistent). Figure 8-8 shows the resulting code.

class Date {
 // ...

 private class Day {
 private int d; // 1 ≤ d ≤ month.days()
 public Day(int d) { this.d= d; }
 public void inc() {
 d= d + 1;
 checkOverflow();
 }
 private checkOverflow() {
 if (d > month.days()) {
 d= 1;
 month.inc();
 }
 }
 // ...
 }

 private class Month {
 private int m; // 1 ≤ m ≤ 12
 public Month(int m) { this.m= m;
 public int days() { return 30; }

}

 public void inc() {
 m= m + 1;
 checkOverflow();
 }
 private void checkOverflow() {
 if (m > 12) {
 m= 1;
 year.inc();
 }
 }
 // ...
 }

 class Year {
 // ...
 public void inc() { y= y + 1; }
 }
}

Figure 8-8: Partial implementation of Date

To complete our implementation according to the full requirements, we have
to replace the literal 30 with the correct number of days in every month. To
calculate the number of days in the current month, we declare a local array
variable in this method to hold the number of days per month (with 28 days
for February), and the method returns the number of days in the current
month by looking up the number in the array. This brings us almost to the
finish line: the implementation now works except for the case that the cur-
rent year is a leap year (“99.93% correctness”, section 7.1.5), see Figure 8-9.

 131

class Date {
 // ...
 private class Month {
 // ...
 public int days() {
 // 1 2 3 4 5 6 7 8 9 10 11 12
 int t= {0,31,28,31,30,31,30,31,31,30,31,30,31};
 return t[m];
 }
 }
 // ...
}

Figure 8-9: Improved implementation of Month.days

A leap year is a special case of Month.days; according to the special case
rule we introduce a new private method to deal with it. In this case, we in-
troduce a boolean method Year.isLeapYear that returns true if the current
year is a leap year. The implementation of this method is a straightforward
implementation of the leap year rule: a year is a leap year if the year is di-
visible by 4 but not by 100 or if it is divisible by 400.

The hardest part of this calculation is the check whether a number can be
divided by another, so, again following the Mañana Principle, we use a
method divides that gives us the result and then implement that method later.
The additional aspects of the complete solution is presented in .

class Date {
 // ...
 private class Month {
 // ...
 public int days() {
 // 1 2 3 4 5 6 7 8 9 10 11 12
 int t= {0,31,28,31,30,31,30,31,31,30,31,30,31};
 return t[m];
 }
 }

 class Year {
 // ...
 public boolean isLeapYear() {
 return (isMultipleOf(4) && !isMultipleOf(100))
 || isMultipleOf(400);
 }
 private boolean isMultipleOf(int x) {
 return y % n == 0;
 }
 }
}

Figure 8-10: Final solution for class Date

This completes our detailed development of classes Date, Day, Month, and
Year according to STREAM.

8.3.7 Discussion

The above development of a class implementing Date demonstrates the ap-
plication of the techniques set out in section 8.2. The most relevant observa-
tion is that every step is broken into small, manageable chunks.

 132

Some of the steps in our technique are fairly easy to learn (creating method
stubs, defining the instance fields after deciding on a representation); others
require much practice (creating tests, implementing methods).

The detailed discussion of the method implementation has demonstrated that
the harder parts of a programming task can be decomposed using a technique
that integrates extension and refinement as described in chapter 7.

8.4 Graspability of STREAM
A number of vital aspects contribute to make STREAM accessible and
graspable to novices: (1) the cognitive apprenticeship approach revealed
through worked examples provided as live programming in class or as vid-
eos; (2) careful guidance in exercises and assignments; (3) careful charac-
terization of the process and its elements in written course material; and (4)
practice by the students.

The cognitive apprenticeship approach is described in section 8.1.3, and our
phrasing of exercises and assignments as guide tours through incremental
development processes is exemplified in section 8.1.2. As for the characteri-
zation of the process, we have carefully chosen mnemonic names, e.g.
STREAM, TEACH, and the Mañana Principle as well as the specific rules.
These examples of chunking and categorizations help reduce the cognitive
load such that the programming method does not “get in the way” by occu-
pying too much valuable working memory. The programming method can
be grasped incrementally (e.g. by first remembering the steps and the
Mañana Principle but not quite remembering the specific rules), and it is our
experience that it supports students from the moment they become aware of
it. And once grasped, the method constitutes valuable knowledge schemas
and skill schemas, which improves learning and transfer (section 3.1.1). Or,
to put it differently: The build-in scaffolding of STREAM, which explicitly
mirrors the structure of the complex task of implementing a class through
extension and refinement of its methods, supports schema creation and trans-
fer and thereby conveys a method for accomplishing similar tasks in the fu-
ture [Rosson et al. 1996].

8.5 Conclusion
In section 8.1 we characterised the program development process as the
challenge of findings one’s way through an n-dimensional space of exten-
sion, refinement, refactoring, test-case development, optimization, styling,
etc.

Traditionally, we do almost nothing to guide novices through this space. In
section 8.1.1, the current state of affairs is characterized as invitations for
random walks, since the students are not provided concrete guidance about
program development.

We have presented our approach to programming education, which draws
upon the results of cognitive load theory and offers an alternative to endless
random walks. Instead, we suggest guided tours. By providing guidance and
scaffolding with respect to all dimensions involved, we can ensure that stu-

 133

dents exercise the important aspects of programming while keeping the cog-
nitive load within the bounds where learning outcome is optimized.

Our primary means of providing guidance with respect to incremental devel-
opment is through the structure of the teaching material (textbook, exercises
and assignments, and videos) and an apprentice-based teaching approach.

Guidance with respect to refinement is provided through a carefully de-
signed novice’s process of object-oriented programming: STREAM. The
process is a carefully down-scaled version of a full and rich software engi-
neering process particularly suited for novices learning object-oriented pro-
gramming. In using it, we achieve two things: help novice programmers
learn faster and better while at the same time laying the foundation for a
more thorough treatment of the aspects of software engineering.

Besides describing the process at an abstract level, we have described the
process and provided an example of its use.

Finally, we have discussed the graspability of STREAM, which is ensured
through four aspects: (1) the cognitive apprenticeship approach revealed
through worked examples provided as live programming in class or as vid-
eos; (2) careful guidance in exercises and assignments; (3) careful charac-
terization of the process and its elements in written course material; and (4)
practice by the students.

We conclude that we have provided elaborate and comprehensive answers to
the two research questions addressed in this chapter: Q5.1: How can we
down-scale modern software development methods to a programming proc-
ess for novices? and Q5.2: How can we structure the relevant body of knowl-
edge so that it can be most readily grasped by the learner?

 134

9 Instructional Design

In this chapter, we address the remaining parts of research question 5:
Q5.3: How can we organize efficient learning paths/courses that in-

crementally approximate best-practice in modern software de-
velopment at the level of novices?

Q5.4: How can we adopt results of cognitive science and educational
psychology to the instructional design of introductory program-
ming education?

Section 9.1 presents some fundamental principles of programming education
that guides us in organizing a course. In section 9.2, we discuss the overall
organization of an introductory programming course that incrementally ap-
proximates best-practice of modern software development. In doing so, we
apply results of cognitive science and educational psychology in general and
cognitive load theory in particular to ensure an instructional design of an
introductory programming course that balances the cognitive load in order to
optimize learning. In section 9.3, we report on our experience in applying
the approach. Section 9.4 reports on related work. Section 9.5 is the conclu-
sion of the chapter.

Parts of the work reported in this chapter were carried out with Christensen,
Bennedsen, Alphonce, and Decker and is described in the chapters 17-21 in
the second part of the dissertation. The incorporation of cognitive science
and educational psychology is my own work, as is the description of course
organization to incrementally approximate best-practice of modern software
development; none of this has yet been published.

9.1 Principles of programming education
An instructional design takes as its starting point ⎯or specification⎯ the
syllabus for the course to be designed. As in the case of program develop-
ment, it is wise to break down the goals of the course into a sequence of
simpler or weaker goals that ultimately leads to the requirements of the
course.

When making decisions about course design, we all apply some kind of axi-
oms or values, typically implicit and unspoken, which determine how we
organize a course. Instructional design is practiced along the full continuum
ranging from educators doing things in a certain way because “this is the
way we always have done it, and it works ⎯those who survive are good”, to
the other extreme where educators carefully design their courses according
to established pedagogical models, principles, and techniques.

To guide the instructional design of the introductory programming course at
DAIMI, we lean on nine principles that permeate the organization of activi-
ties at all levels of course design. The principles are:

1. Consume before produce

 135

2. Present worked, exemplary examples
3. Reinforce specifications
4. Reveal process and pragmatics
5. Provide hands-on opportunities
6. Define progression in terms of complexity of tasks
7. Reinforce patterns and conceptual frameworks
8. Ensure constructive alignment
9. Provide care and support

Many of the principles mutually support each other and integrate well with
the overall pattern- and apprentice-based approach to instruction. In the fol-
lowing, we discuss the nine principles and how they unfold in the context of
an introductory object-oriented programming course.

9.1.1 Consume before produce

In [Pattis 1990], the author introduces the call before write approach to
teaching introductory programming, arguing that it “allows students to write
more interesting programs early in the course and it familiarizes them with
the process of writing programs that call subprograms; so it is more natural
for them to continue writing well structured programs after they learn how to
write their own subprograms”. Pattis points out that the “call before write”
approach requires the linguistic ability to cleanly separate a subprogram’s
specification from its implementation.

In [Meyer 1993], the author introduces the notion of the inverted curriculum
as follows: “This proposal suggests a redesign of the teaching of program-
ming and other software topics in universities on the basis of object-oriented
principles. It argues that the new ‘inverted curriculum’ should give a central
place to libraries, and take students from the reuse consumer’s role to the
role of producer through a process of ‘progressive opening of black boxes’”.
Currently, Meyer and Pedroni are implementing the inverted curriculum at
ETH [Pedroni 2003, Pedroni et al. 2006].

In [Schmolitzky 2005], the author briefly mentions the notion of consuming
before producing by providing three specific examples. One example is:
“BlueJ allows beginning with an object “system” with just one class where
students just interactively use instances of this class (they consume the no-
tion of interacting with an object via its interface). Producing the possibility
of interacting with an object, on the other hand, requires more knowledge
about class internals and should thus be done after the principle of interac-
tion with objects is well understood”.

We rely heavily upon the principle of Consume-before-Produce. The princi-
ple is applicable to a wide number of topics, e.g. code, specifications, class
libraries, design patterns, and frameworks.

Code: We employ the principle with respect to the way students write code
at three levels of abstractions: method level, class level, and class model
level as follows: (1) Use methods (as indicated above, BlueJ allows interac-
tive method invocation on objects without writing any code). At this early
stage, students can perform experiments with objects in order to investigate
the behaviour and determine the actual specification of a method. We return
to this issue in section 9.2.3. (2) Modify methods by altering statements or

 136

expressions in existing methods. (3) Extend methods by writing additional
code in existing methods. (4) Create methods by adding new methods to an
existing class. This may also be characterised as extend class. (5) Create
class by adding new classes to an existing model. This may also be charac-
terised as extend model. (6) Create model by building a new model for a sys-
tem to be implemented.

Specifications: Specifications and assertions can be expressed in many
ways, e.g. as Javadoc, test cases, general assertions in code, loop invariants,
class invariants, and system invariants (constraints in the class model, for
instance a specific multiplicity on a relation between two classes). In all
cases, students are gradually exposed to reading and comprehending specifi-
cations prior to producing specifications themselves.

Class libraries: Not many years ago, the standard syllabus for introductory
programming courses encompassed implementation of standard algorithms
for searching and sorting as well as implementation of standard data struc-
tures such as stacks, queues, linked lists, trees, and binary search trees.

These days, standard algorithms and data structures are provided in class
libraries, ready to be used by programmers. By using class libraries that pro-
vide advanced functionality, students can do much more interesting things
more quickly. Also, experience as consumer presumably motivates learning
more about principles and theory behind advanced data structures and pack-
ages for distributed programming, etc.

Consequently, algorithms and data structures is one of the areas where we
can sacrifice material in order to find room for all the new things that make
up a modern introductory programming course.

Design patterns: Design patterns can easily be (partially) covered in the
introductory programming course if the Consume-before-Produce principle
is applied. We employ a progressive approach to design patterns that covers
six steps: (1) Use it. The students should gain an appreciation of the useful-
ness of a pattern before using an implementation of it. For example, when
learning the Strategy pattern, students should gain experience by using a
strategy by, say, sorting the elements of a List using a Comparator. (2) Con-
ceptualize it. Students should be engaged in a discussion of the general ar-
chitecture of a pattern. For example, when learning the Strategy pattern, stu-
dents must come to understand the concept of a strategy and the opportuni-
ties it provides for dynamically changing object behaviour. (3) Build it. The
next gain in understanding comes from implementing a pattern. When learn-
ing the Strategy pattern, students must create a class with an associated strat-
egy. (4) Analyze/study high quality code. A deeper understanding of any pat-
tern comes from studying a variety of high quality implementations of the
pattern. In the case of the Strategy pattern, it is perhaps at this point that the
students begin to truly grasp the beauty and flexibility of factoring strategies
out into separate associated classes. (5) Design and construct. Students must
at some point apply their knowledge of patterns to design and construct
software components with several interacting design patterns. (6) Evaluate.
A final step in the process of learning to use design patterns comes in being
able to evaluate and critique the use (or lack of use) of design patterns in
software.

 137

In the introductory programming course, it is feasible to reach step 3 above.
In the paper in chapter 20, a more thorough discussion of educational aspects
related to teaching design patterns.

Frameworks: Sometimes even using a piece of software can be a daunting
task. Frameworks are examples such complex pieces of software.

Frameworks constitute a part of our introductory course, but in order to ease
comprehension of a complex framework like Swing, we provide a stepping
stone in the form of a small and simple framework, which students consume
by making a few simple instantiations. Then we provide a general taxonomy
for frameworks, which is easily understood and grasped in the context of the
simple toy framework. With the concrete experiences and the taxonomy in
the bag, students are now mature to embark on using more complex frame-
works such as Swing.

In section 9.2.9 and chapter 18, we provide a more thorough discussion of
our approach to teaching frameworks in the introductory programming
course.

9.1.2 Worked, exemplary examples

Worked examples play a key role in our course. As mentioned in section
8.1.2, the textbook we apply is problem-based, and this approach is followed
up by exercises, assignments, and worked examples of program develop-
ment performed live in class or provided as videos (see section 8.1.3).

Examples are considered very important for learning in general. Novice pro-
grammers even think they learn programming best from examples [Lahtinen
et al. 2005]. However, computer science educators use many examples that
might do more harm than good (see for example [Holland et al. 1997, Hu
2005, Malan et al. 2004, Westfall 2001]). It is therefore mandatory that these
examples are not only correct but can also serve as a template for “good”
design and style in any reasonable aspect.

Exemplary can mean many things depending on purpose, perspective, and
point of view. Our concern is to address the topic from a didactical/peda-
gogical perspective.

All examples must follow all the definitions, and “rules” we have intro-
duced, i.e. we must say as we do and do as we say. This requires very careful
planning and development. According to our own experience, shortcuts or
examples constructed “on-the-fly” will almost certainly introduce unin-
tended problems.

Consequently, follow accepted principles, rules and guidelines. However,
make sure to keep the focus on OOP novices. Many principles, rules, and
guidelines are targeted toward professionals. They might not be applicable
or even meaningful for novices. Accepted principles, rules, and guidelines
encompass (1) general coding guidelines and style, like naming of identifi-
ers, indentation, categorization of methods, like accessors, mutators, etc.; (2)
common principles, like the ones summarized in [Martin 2003, Meyer
1997]; and (3) object-oriented design heuristics, like the ones described in
[Gibbon et al. 1996, Riel 1996].

 138

Finally, it pays off to get to know your students to be able to give them rele-
vant and challenging examples. In courses such as ours, where students
come from a large number of study programmes, it is vital to ensure that the
examples are meaningful to all. With help from faculty members of other
departments, we have developed subject specific assignments targeted at
students from all study programmes that officially include the introductory
programming course.

9.1.3 Reinforce specifications

As evident from chapter 7, specifications (in one form or another) play a key
role in incremental program development, and as Pattis points out (section
9.1.1): “the linguistic ability to cleanly separate a subprogram’s specification
from its implementation” is required in order to practice the “call before
write” approach. We therefore hold as principle that the notion of specifica-
tion is treated as a first-class citizen in the introductory programming course.

In a recent study [Lister et al. 2006], students’ program comprehension abili-
ties were analyzed according to the SOLO taxonomy (Structure of Observed
Learning Outcome) [Biggs 2003]. In a conclusion the authors write: “Teach-
ers also need to test their students in a way that is intended to elicit a rela-
tional response. In providing such a response, a student manifests an ability
to read several lines of code and integrate them into a coherent structure ⎯to
see the forest, not just the trees”. An example of a question to elicit a rela-
tional response from the students is the following:

In plain English, explain what the following segment of Java code does:

bool bValid= true;

for (int i= 0; i < iMax-1; i++) {
 if (iNumbers[i] > iNumbers[i+1]) {
 bValid= false;
 }
}

Figure 9-1: An “explain in plain English” question

Only 33% of the students manifested a relational response to the question,
and the authors write that this result “may illustrate why the weaker students
in many CS1 classes struggle to write code”.

Code comprehension, however, is a very difficult task if no guidance is pro-
vided. Consider, as a challenge, the following segment of Java code (assum-
ing that function min returns the minimum value of its two parameters):

int[] b= { ... }; // an arbitrary sequence of integers
int N= b.length, n= 0, s= 0, r= 0;

n= 0; s= 0; r= 0;
while (n != b.length) {
 r= min(r+b[n], 0);
 s= min(s, r);
 n= n + 1;
}

Figure 9-2: Challenge program

 139

The program in Figure 9-1 is easily comprehensible for an expert. Our con-
jecture is that this is not because experts generally are exceptionally good at
code comprehension; it is only because we have seen (the pattern in) this
code so many times that we have a conceptual schema that makes it trivial to
comprehend the program. Few people have a conceptual schema to aid com-
prehension of the program in Figure 9-2, and we assume that most readers,
although being expert programmers, will have a hard time comprehending
this ⎯on the surface⎯ simple program segment.

We suggest an alternative interpretation of the result found by Lister et al.
Since code comprehension indeed is a difficult task, it should not be left to
chance. We must explicitly aid code comprehension by providing specifica-
tions that can act as beacons in the effort of comprehending code segments.
If we add a specification and a loop invariant, it becomes trivial to compre-
hend and appreciate the behaviour and structure of the challenge program
⎯provided of course that the reader is familiar with specifications and loop
invariants (see Figure 9-3).

int[] b= { ... }; // an arbitrary sequence of integers
int N= b.length n= 0, s= 0, r= 0;

// req: [true, s = min segment sum of b[0..N[]

n= 0; s= 0; r= 0;
// inv: s = minimal segment sum of b[0..n[∧ 0 ≤ n ≤ N ∧
// r = minimal segment sum for a segment ending in n-1
while (n != N) {
 r= min(r+b[n], 0);
 s= min(s, r);
 n= n + 1;
}

Figure 9-3: Challenge program with annotations to ease comprehension

This is just one example of the key role that specifications have in program-
ming. We have just started utilizing the potential of the conceptual frame-
work provided in chapter 7, but we consider it to have great potential for the
way we educate novices in the skills of programming. We return to this issue
in chapter 10.

9.1.4 Reveal process and pragmatics

Our emphasis on the programming process and the cognitive apprentice ap-
proach permeates this whole dissertation; we shall neither repeat previous
statements nor expand further on the subject but just once again point out the
importance of “taking into account the implicit processes involved in carry-
ing out complex skills when teaching novices” (see section 8.1.2 and 8.1.3).

9.1.5 Hands-on

In [Decker et al. 1993], the authors writes: “It seems incredible that it has
taken us 20 years to recognize that that programming is best taught as a
‘contact sport’. Students, we now know, learn best through directed hands-
on interaction with the computer and by reading meaningful working pro-
grams that provide a context for language learning”.

 140

We aim at organizing most if not all study activities such that hands-on ex-
perimentation is a required part of the activity. The book we use suggests
hands-on activities while reading the text; almost all exercises and assign-
ments contain a practical element of programming; there are weekly manda-
tory programming assignments; and recently we changed the format of in-
struction such that all TA hours (four a week) are in a computing lab that, if
the need arise, momentarily can be turned into an ordinary class room We
used to have only one lab hour per week and three hours of theoretical in-
struction, but student performance as well as feedback from evaluations
demonstrate that hands-on activities (organized as pair-programming) are
much more effective.

9.1.6 Progression in terms of complexity of tasks

Typically, progression in introductory programming courses is dictated by a
bottom-up treatment of the language constructs of the programming lan-
guage being used, and this is the way most textbooks are structured. We hold
as a general principle that the progression in the course is defined in terms of
the complexity of the worked examples presented to the students and the
corresponding exercises and assignments.

In [Schmolitzky 2005], the author sketches eleven complexity levels of ob-
ject systems used in software engineering education. The levels range from
single class programs to programs with several packages of classes.

As described in section 7.2, we employ a model-driven approach to pro-
gramming, which provides a nice framework for characterizing the complex-
ity of a programming task. The progression is as follows: (1) Single class.
We start out with programs consisting of just one class. (2) Simple recursive
relations. We then introduce relations between classes which, in the case of
only one class, reduces to recursive relations, such as descendant and ances-
tor, of 0..1 arity. (3) General recursive relations. Next, we generalise to rela-
tions of 0..n arity, which nicely motivates the need for generic collections
and loops. (4) Two classes. Next (or simultaneously), we introduce examples
of two classes while exploiting the now well-known relations between
classes. (5) Interfaces. We then introduce interfaces and subtype polymor-
phism, laying the ground for exploiting generic algorithms in the collection
framework by implementing interfaces such as Comparable and Compara-
tor. (6) Inheritance. Next we introduce the inheritance relation and the no-
tion of abstract classes. We now have all model elements at our disposal, and
we can use these to provide arbitrary complex class models.

As suggested by the theory of cognitive science and educational psychology,
we provide several examples of each generic class model (say two classes
related by an association of 0..n arity), we vary the specific form of the prob-
lem type, we gradually increase the functional complexity of the examples,
we alternate examples and practice problems, and we gradually decrease the
amount of guidance provided. All these initiatives have the primary purpose
of optimizing learning. See section 3.3 (the variability effect) and section 3.4
(worked examples and cognitive skill acquisition).

 141

9.1.7 Reinforce patterns and conceptual frameworks

The fundamental motivation for a pattern-based approach to teaching pro-
gramming is that patterns capture chunks of programming knowledge. Ac-
cording to cognitive science and educational psychology, explicit teaching of
patterns reinforces schema acquisition as long as the total cognitive load is
“controlled”; see section 3.1, 3.3, and 4.2.3 (Patterns for schema creation).

We reinforce patterns at different levels of abstraction including elementary
patterns, algorithm patterns, and design patterns, but equally important, we
provide a conceptual framework for object-orientation that qualifies model-
ing and programming and increases transfer [Knudsen et al. 1988, Madsen et
al. 1993, ch. 18]. Furthermore, we stress coding patterns for standard rela-
tions between classes.

9.1.8 Constructive alignment

Constructive alignment was developed by Biggs and is well documented in
[Biggs 2003]. In constructive alignment, according to Biggs, we first state
the learning outcomes we intend our students to achieve. The outcome
statements contain a learning activity, a verb, that students need to perform
to properly achieve the outcome. That verb (e.g. ‘explain’, ‘apply’, ‘reflect’)
then needs to be activated by the teaching and learning activities we give
students: lecturing to them usually doesn't do that. The assessment tasks
should also require students to enact that same verb. How well they solve
those problems is the authentic assessment, not sitting exams about what we
have taught. That verb is what achieves alignment: it is in our intended out-
comes, in the teaching and learning activities, and in the assessment tasks.
Traditionally, educational systems are not aligned. The curriculum is usually
a list of topics telling teachers what to ‘cover’, the default teaching method is
the lecture, in which students are told about the topic —they do not have to
enact their understanding. Memorising material to report back in an exam
likewise rarely requires students to put their understanding to work. The
SOLO taxonomy helps to map levels of understanding that can be built into
the intended learning outcomes. The DVD Teaching Teaching & Under-
standing Understanding provides an excellent introduction to the theory of
constructive alignment [Brabrand 2006].

Four years ago, we altered the syllabus of the introductory programming
course rephrasing the intended learning outcome in terms of the SOLO tax-
onomy; we altered the examination form, the contents, and the instructional
design aiming at an aligned course. It has been a positive experience. Our
efforts are documented in detail in chapter 21. We briefly return to the topic
in section 9.2.8.

9.1.9 Care and support

The last principle to be mentioned is caring. Showing attention to the stu-
dents and demonstrating that you, as educator, care about their progression
and learning outcome of your teaching have a tremendous effect on motiva-
tion.

Support can be provided in many ways: by being available at classes and
taking the time to talk to students, answer their questions, and pose questions

 142

to them and by providing opportunities for help and guidance, e.g. 1-1 ses-
sions, group sessions, TA support at lab sessions, and alert responses to post-
ings on discussions boards.

The main issue is to convey seriousness and true interest in the learning out-
come of the students.

9.2 A model-driven approach to OOP
In this section we discuss the overall organization of our introductory pro-
gramming course. The course is characterised as model-driven because the
course progression is defined in terms of increasingly complex specification
models, not constructs of the programming language as is the custom. Of
course we teach about the programming language and relevant parts of the
class library, but these things are treated by need rather than being the pri-
mary driver of the progression of the course (for details, see Table 9-1).

In designing the course, we have applied results of cognitive science and
educational psychology in general and cognitive load theory in particular to
ensure an instructional design that balances the cognitive load in order to
optimize learning.

The course lasts seven weeks (one quarter) with four lecture hours and four
lab hours with a TA per week. There are weekly mandatory assignments ex-
cept for the first week of the course. The final exam is in week eight or nine.
The course supposedly takes up one third of the students’ time of the quarter.

Figure 9-4 provides an overview of the course; in the following sections we
expand on each of the six phases of the course. The first section is a presen-
tation of the course goal. The following six sections correspond to the six
phases described in Figure 9-4. Section 9.2.8 is about the final exam. An
extended version of the course lasts a full semester; aspects of this course are
briefly discussed in section 9.2.9. Section 9.2.10 is a conclusion.

Week Phase Goal/Content Instructional
design

1.5 Getting started
(method-use)

Overview of fundamental concepts. Learning
the basics of the IDE.

Role-play,
worked ex-
amples, fill in
the blanks

1.5 Learning the
basics
(method ex-
tend and
method create)

Class (access modifiers), object
State (type, variable, value, integer)
Behaviour (instantiation, constructor, method
declaration (signature (formal parameter,
return type)), method body (assignment, in-
voking a method, actual parameter, returning
a value)))
Control structures (sequence, iteration)

Worked ex-
amples, fill in
the blanks
(larger and
larger chunks
of blanks)

1 Conceptual
framework and
coding recipes
(class-extend)

Control structure (selection, more iteration)
Data structure (Collections)
Class relationship (aggregation, association)
Schemas for implementing structure (class
relations)

Worked ex-
amples, fad-
ing guidance

1 Programming
method

The mañana principle
Schemas for implementing functionality (how

Worked ex-
amples, fad-

 143

(STREAM)
(class-extend
and class-
create)

and in which order) ing guidance

1.5 Subject spe-
cific assign-
ments
(class create)

Train on harder and more challenging tasks
(problems)
Motivation: tasks/problems are picked from
the domain of the students’ major subject
(bio-informatics, business, chemistry, com-
puter science, economy, geology, math, mul-
timedia, nano science, etc.)

Guided prob-
lem solving

0.5+ Practice
(class-create)

Achieve routine in solving standard tasks
(UML2Java)

Drill, drill,
drill

Table 9-1: Overview of instructional design of the introductory program-
ming course

9.2.1 Goal

Discussing an implementation makes little sense without knowing the speci-
fication. Thus, before addressing how we have organized the introductory
programming course, we present the course goals as described in the official
syllabus:

Purpose: The purpose of the course is for students to learn the foundation
for systematic construction of simple programs and, through this, to obtain
knowledge about the role of conceptual modeling in object-oriented pro-
gramming. The goal is that students become familiar with a modern pro-
gramming language, fundamental programming language concepts, and se-
lected class libraries.

Competencies: After the course, students should be able to use fundamental
elements in a modern programming language, read specification models,
implement simple specification models in a programming language, and use
selected class libraries.

9.2.2 Getting started

On of the great challenges of the introductory course is how to get started.
This is particularly challenging for object-oriented programming due to the
many interrelated basic concepts, which cannot easily be taught and learned
in isolation. Writing even the smallest meaningful class requires approxi-
mately 15 basic concepts: object, class, instantiation, constructor, method
declaration, formal parameter, return type, variable, type of variable, value,
integer, assignment, method invocation, actual parameter, returning a
value.36 Furthermore, the basic object-oriented concepts (class and object)
represent a higher level of abstraction than in traditional procedural pro-
gramming (int, char, etc.). Together, this results in a higher threshold for the
learner in order to grasp the basic concepts.

Pattis has characterized the challenge of getting started as the big bang prob-
lem where a large number of diverse topics have to be covered ⎯often su-

36 Personal communication with Moti Ben-Ari.

 144

perficially⎯ in order to build up enough infrastructure to present full pro-
grams that do something.37

We address the challenge from two flanks: conceptual overview and intui-
tion and practical programming experience. We aim at providing conceptual
overview and intuition and intuitive understanding of the key concepts by
describing an everyday scenario, which we exercise as a role-play and im-
plement in Java. We enable practical programming experience from the
very first day by providing a simple abstraction, which is easily graspable
and where both simple and advanced programs can be expressed easily. The
abstraction is a class modeling a Turtle. It takes as its starting point the fa-
miliar turtle graphics developed by Seymour Papert and others at MIT in
1967 [10,1]. We use it to give an intuitive introduction to concepts such as
object, class, instantiation, method invocation, behaviour, object identifica-
tion, state, behaviour, control flow, and actual parameter. It is surprising how
many key concepts can be revealed from a simple and intuitive example
such as a turtle class.

The students start as consumers, but the limited capabilities of class Turtle
for new methods to produce more impressing behaviour than provided by
the interface of class Turtle. So, the students almost suddenly become pro-
ducers, and this enables emphasis of more fundamental concepts such as
constructor, method declaration, formal parameter, variable, type of variable,
value, integer, assignment, and parameterization.

Of course, the students do not fully grasp the concepts, but they understand
them sufficiently well that we can commence a more detailed explanation of
the basic concepts. Class Turtle is an excellent weapon to fight the big bang
problem.

We provide plenty of worked examples, and the students either fill in the
blanks or undertake more challenging tasks depending on their degree of
programming experience. Some settle for simple drawings like basic geo-
metric shapes, some draw multiple story houses and other complex objects
(nested loops and procedural abstraction), and some draw colourful loga-
rithmic spirals and fractals. In this way, class Turtle is a “one size fits all”
solution.

Somewhat to our surprise, it turned out that package Turtle could play many
more roles within the introductory programming course than initially antici-
pated: It has become a recurring vehicle for introducing such diverse topics
as object models, recursion, polymorphism, class hierarchies, and frame-
works. Indeed, turtles popped up here, there, and everywhere when we first
started exploiting their potential.

A detailed presentation of our use of the Turtle class in the introductory pro-
gramming course is provided in chapter 17.

37 Personal communication with Richard Pattis.

 145

9.2.3 Learning the basics

After the initial exercises where basic concepts are explored and somehow
grasped (corresponding to a constructive early phase in the terminology of
cognitive skill acquisition, section 3.4), we proceed with activities that aim
at a more complete understanding of the fundamental concepts.

In the beginning of this phase, when the students are not yet fluent in Java
programming, they experiment with objects provided by us. In order to in-
stall awareness about the notion of requirements and partial specifications,
we provide objects where the actual behaviour corresponds to a specification
that is weaker than the anticipated requirements. For example, we provide a
partial implementation of class Date. The students invoke methods on Date
objects and realize that “sometimes it works as expected, sometimes it does
not”. We ask them to alternate between making experiments and refining
their hypothesis about the actual specification of the method they invoke.
Exercises like this one generate excitement; the students become curious and
eagerly want to open the class to see of the code that behaves in this
“strange” way.

The game we are playing can be characterised as finding a specification in
the lattice spanned by abort and the expected requirements of the methods
(Figure 9-4). No requirements need to be explicitly expressed, since we rely
on everyday objects (e.g. Date) with well-known behaviour. The students
generate their expectation of the requirements instantly. Through exercises
like this one, the students can experiment with programs and build images of
the programs behaviour and structure without writing a single line of code.

s0 = abort

s

r

The actual behaviour that has to
be determined through a series
of hypotheses and experiments

The expected (ideal) behaviour r :

s :

Figure 9-4: Use of hypotheses and experiments to determine behaviour

Of course, writing code is important, but it is a separate concern. In this
phase, the programming tasks are described by class models of initially one
class only (first with no relations and then with associations of 0..1 and 0..*
arity) and then two classes (again with various relations between them). Spe-
cific examples are Clock, Die, Heater, Person (with ancestors), ClockDis-
play and NumberDisplay (a ClockDisplay with two NumberDisplay objects),
DieCup and Die (a DiceCup with two Die objects), etc. The generic models
the students learn to implement in this phase are sketched in Figure 9-5.

 146

A A

0..1
2A B

Figure 9-5: Generic class models in the learning-the-basics phase

For each kind of generic class model, we reinforce its standard implementa-
tion in Java.

We introduce the generic models inductively, i.e. we introduce a couple of
worked examples which the students finalize before generalising to the ge-
neric models.

9.2.4 Conceptual framework and coding recipes

In this phase of the course (week three) we introduce a subset of the concep-
tual framework for object-orientation developed by Knudsen et al. [Knudsen
et al. 1988, Madsen et al. 1993]. According to Madsen et al., the object-
oriented perspective on programming is defined as follows: “A program
execution is regarded as a physical model simulating the behaviour of either
a real or an imaginary part of the world”. From the object-oriented perspec-
tive, concepts are modeled as classes and phenomena as objects. A basic
understanding of phenomena, concepts, and abstraction forms the basis of
the conceptual framework that provides well-defined characterizations of
classification, aggregation (decomposition), and generalisation (specialisa-
tion) as ways of forming concepts from phenomena or other concepts. Ob-
ject-oriented programming languages support these abstractions mechanisms
in different but similar ways; thus, the conceptual framework provides
knowledge and understanding that carries across different object-oriented
programming languages.

The conceptual framework provides guidance for a disciplined use of com-
ponents in modeling languages (e.g. UML) and abstraction mechanisms in
object-oriented languages. We supplement this guidance with coding recipes
for the fundamental types of relations between concepts (classes): generali-
sation/specialisation, aggregation/decomposition, and association.38 In popu-
lar terms, generalisation is known as is-a, aggregation as has-a, and associa-
tion as x-a for any verb x different from is and has.

In this phase, the programming tasks are described by class models built by
components from a DiceCup with an arbitrary number of Die objects, a
Notebook with many Note objects (each with many Keyword objects associ-
ated), a Playlist with associated Track objects (each with associated Picture
objects), Account with (various types of) Transaction objects, etc. The ge-
neric models the students learn to implement in this phase are sketched in
Figure 9-6.

38 The conceptual framework, the way we use it to discipline our use of language
constructs, and coding recipes for the implementation of structures bare strong re-
semblance to the early days of structured programming with disciplined use of lan-
guage constructs to provide single entry and exit points for selections and loops, and
with recipes for translation of abstract control structures into the implementation
language.

 147

Again, we reinforce the standard Java implementation of the generic class
models. Coding recipes for the various kinds of relations provide general
solution patterns for implementing inter-class structure as described in sec-
tion 7.2.2 (see Figure 7-13).

0..*

** A
B

A

C D C D

<<interface>> <<abstract>>
B

*A B * A B A

Figure 9-6: Generic class models in the conceptual frameworks and coding
recipes phase and beyond

There are many learning-theoretic arguments for our model-driven approach
to programming. We provide three:

Because of their generic nature, the abstract models directly support schema
creation and transfer: “Well-designed learning environments for novices
provide metacognitive managerial guidance to focus the students’ attention
and schema substitutes by optimizing the limited capacity of working mem-
ory in ways that free working memory for learning. Good instruction will
segment and sequence the content in ways that reduce the amount of new
information novices must process at one time and, as much as possible, rein-
force domain patterns to support schema acquisition and improve learning.”
(Section 3.1).

Variation of form (e.g. cover story) can help novices realize that there is a
many-to-one relationship between form and problem type: when students see
a variety of cover stories used for identical or similar structures (of class
models), they are more likely to notice that surface features are insufficient
to distinguish among problem types and that problem categorization accord-
ing to structural similarities (patterns) is imperative to enable reuse of solu-
tion schemas [Quilici et al. 1996]. See also section 3.4.

The modular nature of class models and the fact that the relations between
classes may exist at any level of abstraction models means that they are par-
ticularly well suited for reducing cognitive load and thus improving learning:
“In five studies, we provided evidence that indeed these modular examples
are superior to molar examples with regard to problem-solving performance
for isomorphic and novel problems, different measures of learning time, and
cognitive load. The positive effects of modular examples were found regard-
less of the number of problem categories taught, the learning task an-
nounced, and the amount of instructional explanations given. Furthermore,
modular examples proved to be superior for learners with low as well as
with high prior knowledge. Therefore, the advantages of modular examples

 148

for teaching problem-solving skills seem to be very stable over a variety of
instructional conditions” [Gerjets et al. 2004].

We realize that few experts actually build specification models, but still they
provide an excellent overview and generic approach to (introductory) object-
oriented programming. If pedagogical development tools (e.g. BlueJ and
DrJava) supported integration of specification models and code, we conjec-
ture that the effect would be even better. However, we still have that coming.

9.2.5 Programming method

After the conceptual framework and coding recipe phase, we introduce our
systematic method of program development, STREAM. We have already
described many teaching aspects related to this (section 8.1.2 (guidance),
8.1.3 (cognitive apprenticeship using videos), and 8.4 (graspability of
STREAM), so we have only little to add here.

It is very difficult for novices to think of representation alternatives; they
have trouble enough implementing what we prescribe. However, by provid-
ing representation alternatives, we can ignite discussions of implementation
effort and have the students make a REM (representation evaluation matrix).
Such discussions are excellent candidates for group work, and they are valu-
able because they make the students think and talk about representation al-
ternatives and their consequences for method implementations before they
start writing any code.

This important aspect of STREAM supports what we described as imple-
mentation of intra-class structure section 7.2.2 (see Figure 7-13). Further
aspects of STREAM are described in the paper in chapter 16.

9.2.6 Subject specific assignments

More than 60% of our students are non-CS majors; they come from a broad
variety of study programmes, e.g. bio-technology, business, chemistry and
technology, computer science, economy, geology, mathematics, multimedia,
and nano science. In the penultimate week of the course, the students work
on a more complex programming task solving a problem relevant to their
major. As mentioned in section 9.1.2, we have developed subject specific
assignments targeted at students from all study programmes that officially
include the introductory programming course. Examples of such assign-
ments are: comparison of DNA strings, stock analysis, simulation of water
flow, calendar, spell checker, image processing, and a calculator for group
theory on integers.

We provide partial solutions and guiding material, and the students imple-
ment the missing parts of the programs. The better students invent exten-
sions while the weaker students just do the basic stuff. The primary purpose
is that the students experience a non-trivial program that does something
meaningful and useful for them.

 149

9.2.7 Practice

The last week of the course is reserved for repetition, and the students start
practising for the final exam by solving lots of small program assignments
(typically involving three classes).

For the final exam, the students must solve a simple programming assign-
ment within 30 minutes. The time pressure makes the students practice and
practice hard. They practice throughout the course because they know what
is expected of them, but in the final phase the practice even harder to make
sure that they have sufficiently experience to solve the assignment within the
given time frame.

According to cognitive theories related to the power law of practice [Newell
1990, Newell et al. 1981], chunking of knowledge in long-term memory is
the reason for improved performance when solving programming tasks.
[Anderson 1993] claimed that the speedup is due to two mechanisms:
Knowledge in long-term memory is converted from a slow format (declara-
tive format or knowledge schemas) into a fast format (procedural format or
skill schemas), and the speed of individual pieces of procedural knowledge
also increases with practice (see section 3.4.1 on The power law of practice
and section 3.4.2 on Transfer).

9.2.8 Final examination

In a recent posting to the SIGCSE mailing list, Lee wrote: “The students pre-
fer to spend their time on passive tasks such as reading the textbook/notes
and watching/listening to recorded lectures, as well as attempting theory ex-
ercises such as multiple-choice questions from past exam papers (Perhaps
thinking that this will somehow help them ‘scrape through’ and make it over
the pass mark in the course!) Many of these students report being able to
follow and comprehend sample code given to them perfectly well, but when
it comes to writing code of their own... Well, that is a whole another story!”
[Lee 2007].

Lee continues: “One (somewhat cynical) way of dealing with this problem is
to develop the assessment scheme in such a way that students simply cannot
pass the course without writing copious amounts of original code from
scratch”.

The idea of adjusting the assessment scheme is no at all cynical, on the con-
trary! At least it is not cynical if the goal of the course is that students should
be able to write small (fragments of) programs on their own. According to
the theory of constructive alignment, that is precisely what we should do.

As mentioned in section 9.1.8, we have altered the introductory program-
ming course according to the theory of constructive alignment. An important
goal of our introductory programming course is that the students learn a sys-
tematic approach to the development of computer programs. Having the
programming process as a learning objective naturally raises the question
how to include this in the assessment. Traditional assessment forms (e.g. oral
or written examinations, multiple choice questions) are unsuitable to test the
programming process.

 150

We have developed a practical lab examination that to a certain extent as-
sesses the students’ programming process as well as the developed pro-
grams. The lab examination has as characteristics that it (1) provides a valid
and accurate evaluation of the student’s programming capabilities, (2) evalu-
ates the process as well as the product, (3) encourages the students to prac-
tice programming throughout the course, and (4) can be used to assess ap-
proximately 150 students per day. A detailed description of the practical lab
examination is documented in chapter 21.

9.2.9 Patterns and frameworks

This section describes the second part of the extended version of the intro-
ductory course (the semester version). The extra seven weeks allow us to
address more advanced topics of object-oriented programming (inheritance,
design patterns, and frameworks) as well as general topics such as recursion
algorithm patterns, e.g. sweep, search, merge, divide-and-conquer, and back-
tracking. An example of our treatment of design patterns was presented in
section 9.1.1.

Frameworks are class libraries, but with the additional characteristics of in-
version of control (also known as the Hollywood principle: don’t call us,
we’ll call you) and hot spots (also known as hooks or variability points).

Good object-oriented frameworks are unique examples of the strength of the
object-oriented paradigm. Looking behind the scenes of good frameworks
shows how careful modeling of domain concepts, use of polymorphism, and
the use of design patterns makes a piece of software highly flexible and
demonstrates the power of low coupling and high cohesion. It is simply a
brilliant case study to learn from and, as such, the ultimate killer example of
the use of design patterns.

But before opening the box and studying the beauty of the design of a frame-
work, it is wise first to take the role of consumer. Frameworks are typically
large and complex to use; it is so because use of a framework requires un-
derstanding of the part of the architecture that is exposed to application pro-
grammers.

The Java GUI framework (AWT or Swing) is an example of such a compli-
cated framework. Despite the complexity of the framework, many introduc-
tory programming courses have adopted GUI programming as part of the
syllabus. It is a dangerous business; the complexity of the framework, which
stems from the huge set of classes and interfaces, pervasive subtype poly-
morphism, anonymous subclasses, event handling, etc., means that the cog-
nitive load is high; thus, little working memory is left for learning.

Frameworks constitute a part of our introductory course, but in order to ease
comprehension of a complex framework like Swing, we provide a stepping
stone in the form of a small and simple framework that the students consume
by making a few simple instantiations. Then we provide a general taxonomy
for frameworks that is easily understood and grasped in the context of the
simple toy framework. With the concrete experiences and the taxonomy in
the bag, students are now mature to embark on more complex frameworks
such as Swing.

 151

In chapter 18, we provide a more thorough discussion of our approach to
teaching frameworks in the introductory programming course.

9.2.10 Conclusion

We have described in detail the layout of the introductory programming
course (the first quarter), and we have sketched the contents of a special ex-
tended semester version of the course. Constructive alignment, starting with
a clear specification for the course, is the overall critical aspect of the design.

We characterise the course as model-driven because the progression is de-
fined in terms of increasingly complex specification models. Programming
skills for systematic, incremental program development from specifications
expressed as annotated class models is the primary focus of the course.

We have argued how the course is designed according to results of cognitive
science and educational psychology in general and cognitive load theory and
skill acquisition in particular; the principal techniques applied are: worked
examples, scaffolding, faded guidance, cognitive apprenticeship, and em-
phasis of patterns to aid schema creation and improve learning.

Constructive alignment provides the argument for the examination form. The
tight time frame for the final examination puts pressure on the students; this
makes them practice which ⎯according to the power law of practice⎯ en-
hances learning.

9.3 Evaluation of process competence
In section 8.1.2, we demonstrated how careful and detailed phrasing of an
assignment can guide the students through an incremental programming
process characterised by a (more or less) monotone development trace.

We have used similar phrasing for the final exam in order to ease evaluation
of the students (the more control we have of their process, the easier it is to
evaluate progress). This raises the question of how well we really can evalu-
ate the students programming process: If we provide detailed guidance, how
then can the students demonstrate their personal competence on this issue?

In order to evaluate the learning effect specifically with respect to process
competence, we set up an experiment just prior to the previous final exami-
nation. We designed a programming task where no guidance at all was pro-
vided; the assignment consisted of a class model and functional specifica-
tions of the methods of the classes. The assignment is the second example of
section 8.1.2 (without the final hint regarding Comparable and Comparator).

All students were invited to take part in a practice exam, and 38 students
accepted the invitation (the students who accepted the invitation were repre-
sentative of the whole population with respect to major).

Our goal was to evaluate the students programming process now that no
guidance was provided. A group of TAs examined the students and took
notes of their behaviour; the student/TA ratio was 3/1. The TA’s were in-
structed to make notes of the students’ programming process. In particular,

 152

they should make a note whenever a student violated the ‘standard process’
that had been taught in the course (demonstrated through live programming
and several videos of worked examples).

The conclusion of the experiment was that all students followed the process
they had been taught even though no guidance was provided. They devel-
oped one part of the program at a time nicely separating the different con-
cerns of the task. There was some variation as to how frequent the students
swapped between writing test code and writing production code and as to
whether they wrote the test code before or after the production code.
STREAM suggests writing test code before the production code, but almost
all the students wrote the production code first.

Interestingly, hardly any of the students took the easy way out by imple-
menting Comparable in order to get away with trivial implementations of
three of the requested methods.

Immediately after the practice exam, we conducted informal interviews with
groups of students. When asked about their testing behaviour (less frequent
and after the fact), they responded that they did not feel the need for the test
in order to implement the requested methods; they wrote the test because
they had to, and not because the needed it to understand the task. It is hard to
blame them on that because their behaviour mirrors expert behaviour (see
section 6.3.2).

We refrain from drawing too strong conclusions from this experiment, but
the result suggests that students do learn the process we teach ⎯at least
when they are exposed to familiar tasks. But, again, this is just as it is with
experts as described in section 6.3.2. Winslow puts it this way: “Experts,
when given a task in a familiar area, work forward from the givens and de-
velop subgoals in a hierarchical manner, but given an unfamiliar problem,
fall back on general (opportunistic) problem solving” [Winslow 1996, p. 18].

For the past four years (since we started with the current syllabus and exam),
the pass rate has been 87%, 87%, 88%, and 93% (300+ students per year).
This result is achieved without (serious) pain: Extensive course evaluations
show that students spend less time on the course than is expected of them. In
the first few weeks, they do not believe they are ever going to make it, but
by steady practice, they come after it, and they do make it. And that is the
way it should be

9.4 Related work
One of our foci, pattern-based instruction, is the essence of the work by Mul-
ler who also makes use of cognitive load theory for instructional design.
Muller’s primary focus is on algorithmic problem solving (though in the
context of object-oriented programming), and the pattern focus is on algo-
rithmic patterns only [Muller 2005b, Muller et al. 2004].

In [Muller et al. 2005a], the authors indicate a perspective on incremental
development that resembles ours: “The design of the course is especially
aimed at enhancing algorithmic problem-solving activities in the context of
OOD/P instruction. One such activity is based on the metaphor of Evolving

 153

Types ⎯classes that evolve over time and obtain new characteristics and
new behaviour”. And further: “Through the evolving-types guideline, stu-
dents are involved in a gradually increased level of problem solving tasks
while learning new programming constructs and data types”. However, it is
unclear whether the evolving-types metaphor indicates evolving classes
(provided by the instructor) to support problem solving or problem solving
aimed at producing evolving types.

9.5 Conclusions
In this chapter, we have addressed the remaining parts of research question
5:

Q5.3: How can we organize efficient learning paths/courses that in-
crementally approximate best-practice in modern software de-
velopment at the level of novices?

Q5.4: How can we adopt results of cognitive science and educational
psychology to the instructional design of introductory program-
ming education?

In section 9.1, we presented a set of nine principles of programming educa-
tion that permeate the organization of activities at all levels of course design.
Many of the principles mutually support each other and integrate well with
the overall pattern- and apprentice-based approach to instruction.

Section 9.2 is a description of a model-driven introductory object-oriented
programming course designed according to the principles of section 9.1 and
in the spirit of the Scandinavian school of object-orientation. According to
the Scandinavian school, conceptual modeling is the defining characteristic
of object-orientation, and it provides a unifying perspective and a pedagogi-
cal approach focusing upon the modeling aspects of object-orientation. The
section presents an introductory object-oriented programming course based
upon modeling; the progression in the course is defined by increasing com-
plexity of class models rather than being dictated by a bottom-up ordering of
language constructs which is the prevailing approach. We have argued how
the course is designed to absorb results of cognitive load theory, cognitive
skill acquisition, and constructive alignment.

We have discussed an experiment regarding students programming process
competencies; while we refrain from drawing hard conclusions from the ex-
periment we can state that the experiment does not contradict our positive
impression of the students’ absorption of the programming process we en-
force.

As in the previous chapter, we conclude that we have provided elaborate and
comprehensive answers to the two research questions which we have ad-
dressed in this chapter: Q5.3: How can we organize efficient learning
paths/courses that incrementally approximate best-practice in modern soft-
ware development at the level of novices? and Q5.4: How can we adopt re-
sults of cognitive science and educational psychology to the instructional
design of introductory programming education?

 154

10 Future Work

An important aspect ⎯perhaps the most important aspect⎯ of scientific
work is the new questions it makes possible to conceive and express. We
describe potential future work derived from this PhD study. The so-far-
envisaged future work falls into four categories: books, evaluation, tools,
and programming methodology. For each of the categories, we provide a
short discussion of potential future research and development activities.

10.1 Books
It is an obvious task to produce a textbook (or some other media) on pro-
gramming with emphasis on teaching the skills of programming as described
in this dissertation. A less obvious effort, but perhaps more beneficial, is to
write a book on programming education for an audience of educators, cur-
riculum designers, and authors of programming textbooks. Both opportuni-
ties may be pursued in the near future.

10.2 Evaluation of instructional design
We have presented a framework for incremental program development; ac-
cording to this, we have developed a programming method for novices and
an instructional design for an introductory programming course. The instruc-
tional design is not a logical consequence of the framework; of course, other
instructional designs adhering to incremental program development are con-
ceivable.

Our experience with the instructional design is excellent (as mentioned in
section 2.2.1, the failure rate is approximately 10% and students are gener-
ally very capable at programming considering the size of the course. How-
ever, we have not conducted any formal evaluation of the instructional de-
sign. It would be relevant to do so, e.g. by running controlled experiments
and by applying the design at other institutions thus providing the opportu-
nity for multi-institutional and multinational studies of the effect of (ele-
ments of) the instructional design. So far, we have indications from col-
leagues at universities in Israel, U.K. and U.S.A. expressing interest in test-
ing (elements of) our instructional design.

10.3 Tools
In this section, we briefly indicate potential research and development activi-
ties regarding tool support for educating novices in the skills of program-
ming. We discuss a notional machine workbench, tool support for
STREAM, tool support for incremental program development, and the de-
sign of an educational programming language.

 155

10.3.1 A notional machine workbench

According to [du Boulay 1989a], the difficulties of novices learning pro-
gramming can be separated into five partially overlapping areas: orientation
(finding out what programming is for), the notional machine (understanding
the general properties of the machine that one is learning to control), nota-
tion (problems associated with the various formal languages that have to be
learned, both mastering syntax and semantics), structure (the difficulties of
acquiring standard patterns or schemas that can be used to achieve small-
scale goals such as computing the sum using a loop or implementing a 0..*
association between two classes), and pragmatics (the skill of how to spec-
ify, develop, test, and debug programs using whatever tools are available).

The notional machine is a (more or less abstract) description of the seman-
tics of the programming language; a runtime model of programs. In [du Bou-
lay et al. 1989b, p. 431], the authors point out that “one of the difficulties of
teaching a novice how to program is to describe, at the right level of detail,
the machine he is learning to control”. They advocate teaching the novice
about the "notional machine", that is, the conceptual computer whose prop-
erties are implied by the constructs in the programming language employed.

In [Gries et al. 2002], the authors present a memory model for use in teach-
ing Java. It includes a notion of class and a way of drawing objects to which
students can relate. It includes the frames on the call stack and the steps in
executing method calls, including recursive calls. The model starts out sim-
ple and is extended as new concepts are introduced, ending up with nested
and inner classes.

To some extent, BlueJ’s object bench and interaction pane as well as the de-
bugger of BlueJ and the possibility of inspecting objects support experimen-
tation with the notional machine. However, it is only in a limited fashion
possible to “play” with the notional machine.

To support learning about the notional machine, we envisage a tool like a
workbench where one can put a Java program and play with it. Execution of
a Java program is linear in the sense that it generates a trace, which is a se-
quence of (transitions and) states. We would like to be able to control the
execution of a program while the object model is appropriately visualized
(say, as an object diagram), but in a much more advanced fashion than in an
ordinary debugger where one can stop execution at a break point and then
stepping forward from there. We want to be able to go back in time!

We want to be able to
− stop the program in a state, say Sn
− wind/rewind to any state Si, 0 ≤ i ≤ n
− modify the current state (any state in the sequence)
− continue execution from a (new) state

The possibility of modifying a state can be described as a displacement from
state Sk to state Sk’ (see Figure 10-1).

 156

S0 S1 ... Sk Sk + 1 ... Sn

Sk’

Figure 10-1: Modification of a state

We think of displacement is an irreversible action, i.e. it should not be possi-
ble to rewind back in time “through” a displacement. Thus, we consider a
new state generated by a displacement to be the initial state of a new execu-
tion trace yet to be generated. In other words: Sk’ is a point of no return
(imagine shaded wind/rewind buttons). In the new state Sk’, the only possible
action is to resume program execution or to perform yet another displace-
ment.

Conceptually, program execution is different from winding (although, of
course, winding could be implemented as execution).

Displacement should be unconstrained, i.e. it should be possible to alter the
state of any variable (primitive variables as well as object references).

A workbench like this would be a great and easy-to-use tool for students for
finding answers to all sorts of ‘what if’ questions. We do not think of the
tool as a debugger ⎯a tool for finding errors⎯ although it would be supe-
rior to any debugger we know in the sense that it is possible to go back in
time. That would indeed be a very efficient way of finding program errors.

For forward and backward navigation in the current execution trace, we en-
visage a search tool where it is possible to specify the state(s) one is search-
ing for explicitly, i.e. via a predicate describing the state (e.g. “x ≥ y” or
“s.contains(x)”) or implicitly, i.e. via a description of the transition leaving
or entering the state (e.g. “assignment to x” or “call of getSalary()”). Clearly,
a search criterion may be satisfied by more than one state in the execution
trace; in that case it should be possible to step through these states with suit-
able navigation controls (e.g. previous and next buttons) as in an ordinary
text searching tool. A search tool like this might have a positive effect on the
students’ ability to think in terms of states as a supplement to the prevailing
habit of operational reasoning.

10.3.2 Tool support for STREAM

We know that tool or language support of a concept enhances its learning. It
is therefore relevant to investigate the possibility of supporting STREAM in
an educational IDE such as BlueJ.

Automatic generation of a class with stub methods from a specification (an
interface or a UML class description) is a trivial example.

Support for specification models expressed as class diagrams with automatic
synchronization of model and code is another example. The challenge, of
course, is to keep the tool simple while providing support for things that en-
hance learning.

 157

Support for the mañana principle by semi-automatic generation of a stub
method (or class) when decomposition is applied is yet another example, and
so is support for creating a representation evaluation matrix (REM) for an
interface.

10.3.3 Tool support for incremental program development

In the previous section we briefly discussed support for STREAM in its cur-
rent form. As pointed out several times, STREAM provides guidance with
respect to refinement but not yet with respect to extension ⎯improvement of
the specification. However, it is relevant to investigate the possibility of pro-
viding tool support for an incremental development process.

As in the case of program execution, it would be tremendously useful for
developers as well as educators and students to have an educational IDE that
supports winding and rewinding through the development trace of a pro-
gram.

In [Dahl et al. 1972], Dijkstra writes: “If a program has to exist in two dif-
ferent versions, I would rather not regard (the text of) the one program as a
modification of (the text of) the other [...] my point is that if we have our
grip on the program text primarily as on a linear sequence of symbols, the
task to establish and to describe what has to be modified tends to become
prohibitively difficult as the text get longer and longer.“ Modern develop-
ment environments provide support for various kinds of transformations on
program texts such as refactoring, but, fundamentally, programs are still
conceived of and manipulated by people as text. A simple tool that smoothly
allows traversal through different versions of a program would be a major
leap forward from current practice.

As described in section 8.1.3, we provide videos to illustrate details of the
programming process. Videos are very useful to provide detailed informa-
tion of the programming process at a 1:1 scale. However, it would be useful
to have an IDE in which it is possible to wind/rewind through well-defined
states of the development trace (e.g. states where the program is consistent).

In order to convey information about the development process of a program,
it would be useful to be able to provide programs for the students where they
can browse through the development trace of the master’s solution. Like-
wise, it would be extremely useful for a teacher to be able to browse through
the development trace of a student’s solution in order to test and provide
feedback to the student regarding their programming process. It is custom
only to evaluate and provide feedback with respect to the product; however,
evaluation and feedback with respect to the process is equally important if
we truly want to make development of programming skills an equal goal of
programming education.

10.3.4 An educational programming language

Current mainstream object-oriented programming languages are far from
ideal as educational languages. C++ was a disaster; compared to C++, Java
is a beauty. Despite the fact that an increasing number of institutions are
moving to adopt Java in their introductory curriculum, those institutions do
not by any means report universal satisfaction with Java as a teaching lan-

 158

guage. The problems that arise in using Java at the introductory level were
analyzed in more detail by Roberts [Roberts 2004a], which concluded that
the observed difficulties in teaching Java are representative of a more gen-
eral challenge facing computing science education. As its essence, the chal-
lenge arises from two self-reinforcing characteristics of modern program-
ming languages that have a profoundly negative effect on pedagogy:

• Complexity. The number of details that students must master, par-
ticularly in the application programmer interfaces (APIs) supplied
along with the language itself, has grown much faster than the corre-
sponding number of high-level concepts.

• Instability. The languages, APIs, and tools on which introductory
computing science education depends are changing more rapidly than
they have in the past.

To address the problems involved in using Java at the introductory level, the
ACM Education Board initiated the ACM Java Task Force in the fall of
2003 with the following general charter: “To review the Java language,
APIs, and tools from the perspective of introductory computing education
and to develop a stable collection of pedagogical resources that will make it
easier to teach Java to first-year computing students without having those
students overwhelmed by its complexity” [Roberts 2004b]. The result of the
ACM Java Task Force is now available [Roberts et al. 2006].

The efforts of the ACM Java Task Force have improved the usability of Java
considerably. However, Java is still a complex language with an obscure
syntax and a prohibitively complicated language specification of 649 pages
that adds unnecessary complexity to the task learning programming [Gosling
et al. 2005].

In the terms of cognitive load theory, mainstream programming languages,
including Java, contribute a tremendous amount of extraneous cognitive load
to the learning process. It would be interesting to design a new educational
programming language in which the primary design criterion is to minimize
extraneous cognitive load when (1) learning the language and its notional
machine, and (2) when using it for incremental program development. In
other words: to make it teachable, as Wirth expressed it in his keynote at
ITiCSE 2002 [Wirth 2002].

10.4 Programming methodology
The conceptual framework presented in chapter 7 enables new interpreta-
tions or improved understanding of well-known concepts such as stepwise
refinement and correctness; from the perspective of incremental develop-
ment, correctness can be conceived of as a quantitative property of a pro-
gram.

10.4.1 Extension of STREAM

STREAM is a by-product of the conceptual framework of chapter 7. As em-
phasized in chapter 8, STREAM provides guidance with respect to refine-
ment. Currently, guidance with respect to extension, the other main dimen-

 159

sion of our incremental programming process, is provided through phrasing
of exercises and assignments.

It is obvious to extend STREAM itself to address the principle of incre-
mental program development. This work is in progress.

10.4.2 Theoretical foundation of conceptual framework

Currently, our description of incremental program development is based on a
well-defined and consistent but yet informal foundation. It would be interest-
ing and potentially rewarding to develop a formal foundation for incremental
program development.

10.4.3 Extension of conceptual framework

The conceptual framework for incremental programming may be extended
to characterize more aspects of programming processes. In particular, we are
interested in quantifying properties of programs and activities related to pro-
gramming.

When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure
it, when you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind; it may be the beginning of know-
ledge, but you have scarcely in your thoughts advanced to the state of
Science, whatever the matter may be.

— William Thomson, 1st Baron Kelvin, 1883

Traditionally, correctness is considered a qualitative property of programs.
In section 7.1.5, we showed how to quantify the notion of correctness. It
would be interesting to provide quantifications of other (so far conceived as
purely) qualitative properties of programs.

Some solutions to a programming problem are more beautiful, elegant, and
simple than others. We recognize a beautiful, elegant, and simple solution
when we see one, and we may be able to vaguely characterize why we con-
sider it to be so.

The principle of Ockham’s razor is often used when characterizing beautiful,
elegant, and simple things. The principle states that the explanation of any
phenomenon should make as few assumptions as possible, eliminating, or
“shaving off”, those that make no difference in the observable predictions of
the explanatory hypothesis or theory. The principle is often expressed in
Latin as the “lex parsimoniae” (law of succinctness or parsimony): “entia
non sunt multiplicanda praeter necessitatem”, which translates to: “entities
should not be multiplied beyond necessity”. This is often paraphrased as
“All things being equal, the simplest solution tends to be the best one.”

In the context of programming education, simplicity and understandability of
example programs is essential; it is so partly for the purpose of reducing ex-
traneous cognitive load but most importantly to serve as a model, an exem-
plary example ⎯something to aspire for.

Quantification of simplicity and understandability, or at least partial quanti-
fication, is a challenge that would be extremely interesting to pursue. It is

 160

http://en.wikipedia.org/wiki/Phenomenon
http://en.wikipedia.org/wiki/Hypothesis
http://en.wikipedia.org/wiki/Theory

without doubt a hard challenge, but without pursuing it, we will never ap-
proach it. One way to approach understandability might be the following:

For any consistent mechanism, there are two key aspects: its specification,
which describes what the mechanism does, and its implementation, which
describes how it does it. In the following discussion, we ignore the require-
ments specification of a mechanism. We are interested in the understandabil-
ity of a consistent version of a mechanism captured by its current specifica-
tion and implementation.

One needs to understand the specification, and only the specification, to be
able to use a mechanism. One needs to understand the implementation in
order to grasp, explain, modify, or build a mechanism.

The dependency between the two is one way: understanding an implementa-
tion implies or requires understanding of the specification, but not vice
versa.

Most of the time, we need to understand only the specification of mecha-
nisms, and that is the primary purpose of the distinction between the two
concepts. The secondary purpose is that if we need to understand the imple-
mentation (because we have to grasp, explain, modify, or build it), we can
separate understanding of specification from understanding of implementa-
tion in two independent mental activities. Furthermore, we may ⎯for a spe-
cific purpose, whatever that might be⎯ be able to get away with only partial
understanding of the implementation of a mechanism.

According to these observations, it makes perfectly good sense to measure
understanding of specification and implementation independently of each
other. Actually, it would be problematic if we cannot separate measurement
of the two.

Consider the functions ushallow and udeep denoting the cost of shallow and deep
understanding of a mechanism. In terms of a third function, u, which de-
notes an unspecified cost of understanding of a specification or implementa-
tion, we may express ushallow and udeep as follows (m is a mechanism, m.s its
specification, and m.i its implementation):

 ushallow(m) = u(m.s)
 udeep(m) = u(m.s) + u(m.i)

The plus in the definition of udeep expresses the separation of concern be-
tween understanding the specification of a mechanism and understanding its
implementation.

Function u denotes an unspecified cost of understanding, to be refined later;
for implementations it can be shallow, deep, or anything in between.

If the implementation of a mechanism m.i is decomposed into part mecha-
nisms (also called components), the cost of understanding these will show up
in the expression of u(m.i). Let us consider the special case where m.i is de-
composed into two components m1 and m2. In this situation, we request that
u(m.i) takes the form:

 u(m.i) = eglue + u(m1) + u(m2)

 161

where eglue represents the cost of understanding the “glue” of m.i, i.e. the part
of m.i that glues together the use of m1 and m2 to implement m.

Each part mechanism m1 and m2 can in turn be understood at the shallow
level or the deep level yielding four possible levels of understanding of m:

(1) u(m.i) = e + ushallow(m1) + ushallow(m2)
(2) u(m.i) = e + ushallow(m1) + udeep(m2)
(3) u(m.i) = e + udeep(m1) + ushallow(m2)
(4) u(m.i) = e + udeep(m1) + udeep(m2)

In general, any “horizontal” cut through the nodes of the decomposition tree
of a mechanism represents a level of understanding. The cut need not be
“straight”, i.e. the components or part-mechanisms need not all be broken
down to the same level of understanding.

Figure 10-2 describes the level of understanding of a mechanism; the dashed
line represents the fringe of understanding of the mechanism, i.e. a set of
specifications of components constituting the implementation of the mecha-
nism at a certain level of decomposition. Above the line, the understanding
is deep because all implementation/glue is understood; at or below the line,
understanding is shallow because only the specifications of the mechanisms
constituting the fringe are understood.

fringe

Figure 10-2: The level of understanding of a mechanism

The discussion above indicates how we might be able to exploit the concep-
tual framework of chapter 7 to approach the challenge of quantifying a no-
tion of understandability of programs ⎯a notion yet to be defined. Initial
investigations along this line of thought have been carried out and are docu-
mented in chapter 22, where we discuss the development of a measurement
framework for quality of example programs.

* * *

This concludes our discussion of potential future work enabled by this dis-
sertation.

 162

11 Conclusion

In this dissertation, we have addressed the grand challenge of programming
education. The contributions of the dissertation encompass answers to five
research questions related to three theses:

Thesis 1 (T1): Revealing the programming process to novices eases
and promotes the learning of programming.

Thesis 2 (T2): Teaching skills as a supplement to knowledge promotes
the learning of programming.

Thesis 3 (T3): Anybody can learn to program.

The contributions of this dissertation encompass answers to five research
questions derived from the three theses:

Research question 1: What is the foundation in learning theory for
programming education that supports T1-T3?

The first research question was addressed in chapter 3, where we provided
an overview of elements of learning theory from cognitive science and edu-
cational psychology particularly relevant to our work. Based on a model of
the human cognitive architecture, we provided a survey of cognitive load
theory and cognitive skill acquisition that highlights the major achievements
of the areas particularly relevant to introductory programming education.

Research question 2: Does programming education research support
T1-T3?

The second research question was addressed in chapter 4, where we pre-
sented a comprehensive overview of the overwhelming amount of program-
ming education research by describing key conferences and publications
relevant to the community and by capturing the essence of the research in
programming education structured according to ten major research areas.
The most striking indirect support for T1 and T2 in the huge body of research
in programming education was the research on student understanding. The
conclusion is clear and unambiguous: students struggle to learn program-
ming, they are not very successful, and the major problem they experience is
not syntax but how to put the pieces together. Teaching skills and exposing
the programming process is all about teaching how to put the pieces to-
gether. There is no support of T3 in the literature, on the contrary! The gen-
eral theme of much research, and the specific results of some, is that (teach-
ing) programming is hard and that students learn much less than we expect
from them.

Research question 3: Are there indicators of success for learning and
performance in introductory programming?

 163

The third research question was addressed in chapter 5, where we presented
an overview of related work in the area of programming aptitude as well as
three local studies. Our own studies have neither revealed new predictors of
success nor been able to confirm the findings of others (except for a weak
impact from math grade in high school). Our results may be regarded as
negative, but we don’t consider it that way. In light of T3 the results are quite
encouraging, and we speculate that our special flavour of an introductory
programming course ⎯a model-based approach to object-oriented pro-
gramming with heavy emphasis on the programming process⎯ has some-
thing to do with this. However, further research is required to conclude any-
thing along these lines.

Research question 4: How does best-practice in modern software de-
velopment relate to the research area of programming methodology?

The fourth research question was addressed in chapter 6 and 7. The short
version of our findings is that best practice in modern software development
and research in programming methodology relates very little to introductory
programming education. Best practice is characterized by incremental pro-
gram development whereas programming methodology research, as repre-
sented by the refinement calculus, adhere to the classical perspective of strict
top-down refinement from abstract to concrete programs.

In chapter 6, we presented a perspective on the role of programming meth-
odology in programming education and provided a brief overview of best-
practice of modern software development. While programming methodology
had some impact on education in the 1970s and 1980s, it vanished from the
agenda when object-oriented programming emerged in the early 1990s.

Our study of the programming process of experts ⎯which are confirmed by
other studies⎯ revealed that experts primarily progress according to a hori-
zontal solve-a-simpler-problem-first-strategy similar to stepwise improve-
ment. In the process, programmers apply opportunistic problem-solving, and
the programming process is best characterised as an explorative activity of
discovery and invention. Vertical approaches (strict top-down or bottom-up
programming) are applied only in simple and trivial situations ⎯the kind of
situations that by definition never occur to novices.

In chapter 7, we exposed the fundamental difference between stepwise re-
finement and modern techniques of incremental program development and
developed a conceptual framework for incremental program development
that unifies the two. With specifications as the common denominator, we
presented a conceptual framework for program extension that captures the
essence of incremental program development and unifies classical stepwise
refinement with best practices of software development such as refactoring
and test-driven development. Our framework enables us to define correct-
ness as a relative notion and to quantify the degree of correctness of a pro-
gram.

A couple of simple examples were used to demonstrate how to put the con-
ceptual framework into practice and to argue (once again) for the necessity
of teaching novices about the programming process and to provide guidance
about which increments to make and in which order to make them.

 164

Research question 5: How can we educate novices in the skills of
programming?

The fifth research question was addressed in chapter 8 and 9. In chapter 8,
we presented our approach to programming education, which draws upon
the results of cognitive load theory and offers an alternative to endless ran-
dom walks. By providing guidance and scaffolding with respect to all di-
mensions involved in program development, we ensure that students exer-
cise the important aspects of programming while keeping the cognitive load
within the bounds where learning outcome is optimized. We described our
primary means of providing guidance with respect to incremental develop-
ment: through the structure of the teaching material (textbook, exercises and
assignments, and videos) and by applying an apprentice-based approach to
teaching.

Guidance with respect to refinement is provided through a carefully de-
signed novice’s process of object-oriented programming: STREAM, which
we presented in chapter 8. The process, derived from the conceptual frame-
work of chapter 7, represents a carefully scaled-down version of a full and
rich software engineering process that is particularly suited for novices
learning object-oriented programming.

In chapter 9, we described the rationale for the instructional design of an
introductory programming course that incrementally approximates best-
practice of modern software development; the instructional design was de-
rived from the results of chapter 7 and 8. Based on a set of fundamental
principles of programming education, we applied results of cognitive load
theory, cognitive skill acquisition, and constructive alignment in particular to
ensure an instructional design of an introductory programming course aimed
at optimizing learning.

In chapter 10, we described a long list of potential future work derived from
the PhD study.

* * *

We have not formally proved our research theses but we have made our case
that revealing the programming process to novices and teaching skills as a
supplement to knowledge promotes the learning of programming, and it is
our experience that anybody ⎯provided that they are motivated and that the
body of knowledge is suitably structured⎯ can learn the basic knowledge
and skills of programming.

The grand challenge of programming education is not trivial, but there are
strong indications that we are aiming in the right direction. Focus on the
process of program development and the associated strategies, principles,
patterns, and techniques is the missing link that we must provide in order to
accomplish our mission of educating novices in the skills of programming.

 165

Bibliography

[Abelson et al. 1995] Abelson, H., Bruce, K., Dam, A.v., Harvey, B., Tucker, A. and Wegner,

P., "The first-course conundrum", Commun ACM, vol. 38, 6, pp. 116-117, 1995.
[ACM 2001] ACM, "Computing curricula 2001", JERIC, vol. 1, 3es, pp. 1, 2001.
[ACM 2005] ACM. "ACM Curricular Recommendations",

http://www.acm.org/education/curricula.html, last updated: 2005, accessed: 2007.
[Adelson 1981] Adelson, B., "Problem solving and the development of abstract categories in

programming languages", Memory & Cognition, vol. 9, 4, pp. 422-433, 1981.
[Adey et al. 1994] Adey, P. and Shayer, M., Really raising standards. cognitive intervention

and academic achievement, London, Routledge, 1994.
[AgileAlliance 2007] AgileAlliance. "Agile Alliance", http://www.agilealliance.org/, last

updated: 2007, accessed: 2007.
[Ala-Mutka 2005] Ala-Mutka, K.M., "A Survey of Automated Assessment Approaches for

Programming Assignments", Computer Science Education, vol. 15, 2, pp. 83-102, 2005.
[Allen et al. 2002] Allen, E., Cartwright, R. and Stoler, B., "DrJava: a lightweight pedagogic

environment for Java", SIGCSE '02: Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, Cincinnati, Kentucky, pp. 137-141, 2002.

[Allsopp 2007] Allsopp, D.H. "Metacognitive Strategies",
http://coe.jmu.edu/mathvidsr/metacognitive.htm, last updated: 2007, accessed: 2007.

[Alphonce et al. 2002] Alphonce, C. and Ventura, P., "Object orientation in CS1-CS2 by
design", ITiCSE '02: Proceedings of the 7th annual conference on Innovation and technol-
ogy in computer science education, Aarhus, Denmark, pp. 70-74, 2002.

[Alphonce et al. 2005] Alphonce, C. and Martin, B., "Green: a pedagogically customizable
round-tripping UML class diagram Eclipse plug-in", eclipse '05: Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange, San Diego, California, pp. 115-119,
2005.

[Alphonce 2006] Alphonce, C. ""Killer Examples" for Design Patterns and Objects First
Workshop", http://www.cse.buffalo.edu/~alphonce/KillerExamples/, last updated: 2006,
accessed: 2006.

[Alphonce et al. 2007] Alphonce, C., Caspersen, M.E. and Decker, A., "Killer "Killer Exam-
ples" for Design Patterns", SIGCSE '07: Proceedings of the 38th technical symposium on
Computer science education, Covington, Kentucky, USA, 2007.

[Anderson et al. 1989] Anderson, J.R., Conrad, F.G. and Corbett, A.T., "Skill acquisition and
the LISP tutor", Cognitive Science, vol. 13, 4, pp. 467-505, 1989.

[Anderson 1993] Anderson, J.R., Rules of the Mind, Hillsdale, NJ, Erlbaum, 1993.
[Anderson et al. 1994] Anderson, J.R. and Fincham, J.M., "Acquisition of procedural skills

from examples", Journal of Experimental Psychology: Learning, Memory, and Cognition,
vol. 20, 6, pp. 1322-1340, 1994.

[Anderson et al. 2004] Anderson, R., Anderson, R., Simon, B., Wolfman, S.A., VanDeGrift,
T. and Yasuhara, K., "Experiences with a tablet PC based lecture presentation system in
computer science courses", SIGCSE '04: Proceedings of the 35th SIGCSE technical sympo-
sium on Computer science education, Norfolk, Virginia, USA, pp. 56-60, 2004.

[Anjaneyulu 1994] Anjaneyulu, K.S.R., "Bug analysis of Pascal programs", SIGPLAN Not.,
vol. 29, 4, pp. 15-22, 1994.

[Arthur 2006] Arthur, C. "How can I tell if I'll be any good as a programmer?", The Guard-
ian, 2006.

[Astrachan 1991] Astrachan, O., "Pictures as invariants", SIGCSE '91: Proceedings of the
twenty-second SIGCSE technical symposium on Computer science education, San Antonio,
Texas, United States, pp. 112-118, 1991.

[Astrachan et al. 1995] Astrachan, O. and Reed, D., "AAA and CS 1: the applied apprentice-
ship approach to CS 1", SIGCSE '95: Proceedings of the twenty-sixth SIGCSE technical
symposium on Computer science education, Nashville, Tennessee, United States, pp. 1-5,
1995.

 167

[Astrachan et al. 1997] Astrachan, O., Smith, R. and Wilkes, J., "Application-based modules
using apprentice learning for CS 2", SIGCSE '97: Proceedings of the twenty-eighth SIGCSE
technical symposium on Computer science education, San Jose, California, United States,
pp. 233-237, 1997.

[Astrachan et al. 1998] Astrachan, O., Mitchener, G., Berry, G. and Cox, L., "Design pat-
terns: an essential component of CS curricula", SIGCSE '98: Proceedings of the twenty-
ninth SIGCSE technical symposium on Computer science education, Atlanta, Georgia,
United States, pp. 153-160, 1998.

[Atchison et al. 1968] Atchison, W.F., Conte, S.D., Hamblen, J.W., Hull, T.E., Keenan, T.A.,
Kehl, W.B., McCluskey, E.J., Navarro, S.O., Rheinboldt, W.C., Schweppe, E.J., Viavant,
W. and Jr., D.M.Y., "Curriculum 68: Recommendations for academic programs in computer
science: a report of the ACM curriculum committee on computer science", Commun ACM,
vol. 11, 3, pp. 151-197, 1968.

[Atkinson et al. 2000] Atkinson, R.K., Derry, S.J., Renkl, A. and Wortham, D., "Learning
from Examples: Instructional Principles from the Worked Examples Research", Review of
Educational Research, vol. 70, 2, pp. 181-214, 2000.

[Austin 1987] Austin, H.S., "Predictors of Pascal programming achievement for community
college students", SIGCSE Bull, vol. 19, 1, pp. 161-164, 1987.

[Austing et al. 1979] Austing, R.H., Barnes, B.H., Bonnette, D.T., Engel, G.L. and Stokes,
G., "Curriculum '78: recommendations for the undergraduate program in computer science
— a report of the ACM curriculum committee on computer science", Commun ACM, vol.
22, 3, pp. 147-166, 1979.

[Back 1978] Back, R., "On the correctness of refinement steps in program development",
Department of Computer Science, University of Helsinki, Helsinki, Finland, 1978.

[Bagert 1988] Bagert, D.J., "Should computer science examinations contain \“programming\”
problems?", SIGCSE '88: Proceedings of the nineteenth SIGCSE technical symposium on
Computer science education, Atlanta, Georgia, United States, pp. 288-292, 1988.

[Barker et al. 1983] Barker, R.J. and Unger, E.A., "A predictor for success in an introductory
programming class based upon abstract reasoning development", SIGCSE '83: Proceedings
of the fourteenth SIGCSE technical symposium on Computer science education, Orlando,
Florida, United States, pp. 154-158, 1983.

[Barnes et al. 2006] Barnes, D.J. and Kölling, M., Objects First with Java: A Practical Intro-
duction Using BlueJ, New York, Prentice Hall, pp. 520. 2006.

[Basili et al. 1974] Basili, V.R. and Turner, A.J., "Experiences with a simple structured pro-
gramming language", SIGCSE '74: Proceedings of the fourth SIGCSE technical symposium
on Computer science education, pp. 144-147, 1974.

[Beaubouef et al. 2005] Beaubouef, T. and Mason, J., "Why the high attrition rate for com-
puter science students: some thoughts and observations", SIGCSE Bull, vol. 37, 2, pp. 103-
106, 2005.

[Beck 1999] Beck, K., Extreme Programming Explained: Embrace Change, Addison-Wesley
Professional, 1999.

[Beck 2003] Beck, K., Test-Driven Development: By Example, Addison-Wesley, pp. 240.
2003.

[Becker 2006] Becker, K., "How much choice is too much?", ITiCSE-WGR '06: Working
group reports on ITiCSE on Innovation and technology in computer science education, Bo-
logna, Italy, pp. 78-82, 2006.

[Ben-Ari 2001] Ben-Ari, M., "Constructivism in Computer Science Education", Journal of
Computers in Mathematics and Science Teaching, vol. 20, 1, pp. 45-73, 2001.

[Ben-Ari 2004] Ben-Ari, M., "Situated Learning in Computer Science Education", Computer
Science Education, vol. 14, 2, pp. 85-100, 2004.

[Ben-Ari et al. 2004a] Ben-Ari, M., Berglund, A., Booth, S. and Holmboe, C., "What do we
mean by theoretically sound research in computer science education?", ITiCSE '04: Pro-
ceedings of the 9th annual SIGCSE conference on Innovation and technology in computer
science education, Leeds, United Kingdom, pp. 230-231, 2004.

[Ben-Ari et al. 2004b] Ben-Ari, M. and Sajaniemi, J., "Roles of variables as seen by CS edu-
cators", SIGCSE Bull, vol. 36, 3, pp. 52-56, 2004.

[Ben-Ari 2006a] Ben-Ari, M. "VN - Visualization of Nondeterminism",
http://stwww.weizmann.ac.il/G-CS/BENARI/vn/index.html, last updated: 2006, accessed:
2007.

[Ben-Ari 2006b] Ben-Ari, M. "Tools for Teaching Concurrency with Spin",
http://stwww.weizmann.ac.il/G-CS/BENARI/jspin/index.html, last updated: 2006, ac-
cessed: 2007.

 168

[Ben-Ari 2006c] Ben-Ari, M., "McKinley's Amazon", ITiCSE-WGR '06: Working group
reports on ITiCSE on Innovation and technology in computer science education, Bologna,
Italy, pp. 75-77, 2006.

[Bennedsen et al. 2003] Bennedsen, J. and Caspersen, M., "Rationale for the Design of a
Web-based Programming Course for Adults", Procedings for the International Conference
on Open and Online Learning (ICOOL 2003), University of Mauritius, Mauritius, 2003.

[Bennedsen et al. 2004] Bennedsen, J. and Caspersen, M.E., "Programming in context: a
model-first approach to CS1", SIGCSE '04: Proceedings of the 35th SIGCSE technical
symposium on Computer science education, Norfolk, Virginia, USA, pp. 477-481, 2004.

[Bennedsen et al. 2005a] Bennedsen, J. and Caspersen, M.E., "Revealing the programming
process", SIGCSE '05: Proceedings of the 36th SIGCSE technical symposium on Computer
science education, St. Louis, Missouri, USA, pp. 186-190, 2005.

[Bennedsen et al. 2005b] Bennedsen, J. and Caspersen, M.E., "An investigation of potential
success factors for an introductory model-driven programming course", ICER '05: Proceed-
ings of the 2005 international workshop on Computing education research, Seattle, WA,
USA, pp. 155-163, 2005.

[Bennedsen et al. 2006a] Bennedsen, J. and Caspersen, M.E., "Abstraction ability as an indi-
cator of success for learning object-oriented programming?", SIGCSE Bulletin, vol. 38, 2,
pp. 39-43, 2006.

[Bennedsen et al. 2006b] Bennedsen, J. and Caspersen, M., "Assessing Process and Product
— A Practical Lab Exam for an Introductory Programming Course", Procedings of the 36th
Annual Frontiers in Education Conference, San Diego, California, pp. M4E-16-M4E-21,
2006.

[Bennedsen et al. 2006c] Bennedsen, J., Caspersen, M.E. and Kölling, M. "SPoP — The
Scandinavian Pedagogy of Programming Network", http://www.spop.dk/, last updated:
2006c, accessed: 2006.

[Bennedsen 2006e] Bennedsen, J., "The dissemination of pedagogical patterns", Computer
Science Education, vol. 16, 2, pp. 119-136, 2006.

[Bennedsen et al. 2006f] Bennedsen, J. and Eriksen, O., "Categorizing Pedagogical patterns
by teaching activities and Pedagogical values", Computer Science Education, vol. 16, 2, pp.
157-172, 2006.

[Bennedsen et al 2007a] Bennedsen, J., Caspersen, M.E. and Kölling, M., (Eds.) Reflections
on the Teaching of Programming. Springer-Verlag, 2007.

[Bennedsen et al. 2007b] Bennedsen, J. and Caspersen, M.E., "Exposing the Programming
Process". In Reflections on the Teaching of Programming, Springer-Verlag, 2007.

[Bennedsen et al. 2007c] Bennedsen, J. and Caspersen, M.E., "Model-Driven Programming".
In Reflections on the Teaching of Programming, Springer-Verlag, 2007.

[Bennedsen et al. 2007d] Bennedsen, J. and Caspersen, M.E., "Failure Rates in Introductory
Programming", SIGCSE Bull, vol. 39, 2, 2007.

[Bennedsen et al. 2007f] Bennedsen, J. and Schulte, C., "What does "Objects-First" Mean?
An International Study of Teachers Perception of Objects-First", Submitted to 12th Annual
Conference on Innovation and Technology in Computer Science Education, Dundee, Scot-
land, 2007.

[Bergin et al. 1996] Bergin, J., Brodie, K., Patiño-Martínez, M., McNally, M., Naps, T.,
Rodger, S., Wilson, J., Goldweber, M., Khuri, S. and Jiménez-Peris, R., "An overview of
visualization: its use and design (report of the working group in visualization)", ITiCSE '96:
Proceedings of the 1st conference on Integrating technology into computer science educa-
tion, Barcelona, Spain, pp. 192-200, 1996.

[Bergin et al. 2004] Bergin, J., Caristi, J., Dubinsky, Y., Hazzan, O. and Williams, L.,
"Teaching software development methods: the case of extreme programming", SIGCSE '04:
Proceedings of the 35th SIGCSE technical symposium on Computer science education,
Norfolk, Virginia, USA, pp. 448-449, 2004.

[Bergin et al. 2005] Bergin, J., Stehlik, M., Robert, J. and Pattis, R., Karel J Robot: A Gentle
Introduction to theh Art of Object-Oriented Programming in Java, Dream Songs Press, pp.
238. 2005.

[Bergin 2006a] Bergin, J. "Elementary Patterns", http://csis.pace.edu/~bergin/#elempat, last
updated: 2006, accessed: 2007.

[Bergin 2006b] Bergin, J. "Pedagogical Patterns", http://csis.pace.edu/~bergin/#pedpat, last
updated: 2006, accessed: 2007.

[Bergin 2007] Bergin, J., Beyond Karel J Robot: A Gentle Introduction to the Art of Object-
Oriented Programming in Java Volume 2, Dream Songs Press, 2007.

[Bergin et al. 2005a] Bergin, S. and Reilly, R., "Programming: factors that influence suc-
cess", SIGCSE Bull, vol. 37, 1, pp. 411-415, 2005.

 169

[Bergin et al. 2005b] Bergin, S., Reilly, R. and Traynor, D., "Examining the role of self-
regulated learning on introductory programming performance", ICER '05: Proceedings of
the 2005 international workshop on Computing education research, Seattle, WA, USA, pp.
81-86, 2005.

[Bergin et al. 2006] Bergin, S. and Reilly, R., "Predicting introductory programming per-
formance: A multi-institutional multivariate study", Computer Science Education, vol. 16,
4, pp. 303-323, 2006.

[Berman et al. 1994] Berman, A.M., Decker, R., Nguyen, D.X., Reid, R.J. and Wallingford,
E., "Using C++ in CS1/CS2", SIGCSE '94: Proceedings of the twenty-fifth SIGCSE sympo-
sium on Computer science education, Phoenix, Arizona, United States, pp. 383-384, 1994.

[Berman 1996] Berman, A.M., "On beyond OOP", SIGPLAN Not., vol. 31, 4, pp. 1-3, 1996.
[Biggs 2003] Biggs, J.B., Teaching for Quality Learning at University, Open University

Press, pp. 309. 2003.
[Blank et al. 2003] Blank, D., Meeden, L. and Kumar, D., "Python robotics: an environment

for exploring robotics beyond LEGOs", SIGCSE '03: Proceedings of the 34th SIGCSE
technical symposium on Computer science education, Reno, Navada, USA, pp. 317-321,
2003.

[Bloom et al. 1956] Bloom, B.S., Krathwohl, D.R. and Masia, B.B., Taxonomy of educational
objectives. the classification of educational goals. handbook I: Cognitive domain, New
York, Longmans, Green, 1956.

[Bloom 2007] Bloom, B. "Benjamin Bloom", http://en.wikipedia.org/wiki/Benjamin_Bloom,
last updated: 2007, accessed: 2007.

[Booth 1997] Booth, S., "On Phenomenography, Learning, and Teaching", Higher Education
Research & Development, vol. 16, 2, pp. 135-158, 1997.

[Börstler et al. 2003] Börstler, J. and Sharp, H., "Learning and Teaching Object Technol-
ogy", Computer Science Education, vol. 13, 4, pp. 243-247, 2003.

[Börstler et al. 2007] Börstler, J., Caspersen, M.E. and Nordström, M., "Beauty and the Beast
—Toward a Measurement Framework for Quality of Example Programs", ITiCSE '07: Pro-
ceedings of the 12th international conference on Innovation and technology in computer
science education, Dundee, Scotland, 2007.

[Bovair et al. 1990] Bovair, S., Kieras, D.E. and Polson, P.G., "The Acquisition and Per-
formance of Text-Editing Skill: A Cognitive Complexity Analysis", Hum. -Comput. Inter-
act., vol. 5, 1, pp. 1, 1990.

[Brabrand 2006] Brabrand, C. "Teaching Teaching & Understanding Understanding", Vol.
DVD, 2006.

[Brilliant et al. 1996] Brilliant, S.S. and Wiseman, T.R., "The first programming paradigm
and language dilemma", SIGCSE '96: Proceedings of the twenty-seventh SIGCSE technical
symposium on Computer science education, Philadelphia, Pennsylvania, United States, pp.
338-342, 1996.

[Brown 2001] Brown, R.W., "Multi-choice versus descriptive examinations", Reno, NV,
USA, pp. T3A-13-T3A-18, 2001.

[Brown 2006] Brown, B., "'The next line': Understanding programmers' work", TeamEthno,
vol. 2, http://www.teamethno-online.org.uk/Issue2/, 2006.

[Bruce et al. 2001] Bruce, K.B., Danyluk, A.P. and Murtagh, T.P., "Event-driven program-
ming is simple enough for CS1", ITiCSE '01: Proceedings of the 6th annual conference on
Innovation and technology in computer science education, Canterbury, United Kingdom,
pp. 1-4, 2001.

[Bruce et al. 2004] Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M.
and Stoodley, I., "Ways of Experiencing the Act of Learnig to Program: A Phenomeno-
graphic Study of Introductory Programming Students at University", Journal of Information
Technology Education, vol. 3, pp. 143-160, 2004.

[Bruce et al. 2005] Bruce, K., Danyluk, A. and Murtagh, T., Java: An Eventful Approach,
Prentice-Hall, pp. 720. 2005.

[Bruner 1960] Bruner, J.S., The Process of Education, Cambridge, Mass., Harvard Univer-
sity Press, pp. 97. 1960.

[Bruner 2006] Bruner, J. "Jerome Bruner", http://en.wikipedia.org/wiki/Jerome_Bruner, last
updated: 2006, accessed: 2007.

[Brünken et al. 2003] Brünken, R., Plass, J.L. and Leutner, D., "Direct Measurement of
Cognitive Load in Multimedia Learning", Educational Psychologist, vol. 38, 1; 1, pp. 53-
61, 2003.

[Brünken et al. 2004] Brünken, R., Plass, J.L. and Leutner, D., "Assessment of Cognitive
Load in Multimedia Learning with Dual-Task Methodology: Auditory Load and Modality
Effects", Instructional Science, vol. 32, 1-2, pp. 115-132, 2004.

 170

[Brusilovsky et al. 2005a] Brusilovsky, P. and Sosnovsky, S., "Individualized exercises for
self-assessment of programming knowledge: An evaluation of QuizPACK", J. Educ. Re-
sour. Comput., vol. 5, 3, pp. 6, 2005.

[Brusilovsky et al. 2005b] Brusilovsky, P. and Higgins, C., "Preface to the special issue on
automated assessment of programming assignments", J. Educ. Resour. Comput., vol. 5, 3,
pp. 1, 2005.

[Buck et al. 2000] Buck, D. and Stucki, D.J., "Design early considered harmful: graduated
exposure to complexity and structure based on levels of cognitive development", SIGCSE
'00: Proceedings of the thirty-first SIGCSE technical symposium on Computer science edu-
cation, Austin, Texas, United States, pp. 75-79, 2000.

[Byrne et al. 2001] Byrne, P. and Lyons, G., "The effect of student attributes on success in
programming", ITiCSE '01: Proceedings of the 6th annual conference on Innovation and
technology in computer science education, Canterbury, United Kingdom, pp. 49-52, 2001.

[Cafolla 1988] Cafolla, R., "Piagetian Formal Operations and Other Cognitive Correlates of
Achievement in Computer Programming.", J. Educ. Technol. Syst., vol. 16, 1, pp. 45-55,
1988.

[Carroll 1994] Carroll, W.M., "Using worked examples as an instructional support in the
algebra classroom", J. Educ. Psychol., vol. 86, 3, pp. 360-367, 1994.

[Caspersen et al. 2000] Caspersen, M.E. and Christensen, H.B., "Here, there and everywhere
— on the recurring use of turtle graphics in CS1", ACSE '00: Proceedings of the Austral-
asian conference on Computing education, Melbourne, Australia, pp. 34-40, 2000.

[Caspersen et al. 2006a] Caspersen, M.E. and Kölling, M., "A novice's process of object-
oriented programming", OOPSLA '06: Companion to the 21st ACM SIGPLAN conference
on Object-oriented programming languages, systems, and applications, Portland, Oregon,
USA, pp. 892-900, 2006.

[Caspersen et al. 2007a] Caspersen, M.E., Bennedsen, J. and Larsen, K.D., "Mental Models
and Programming Aptitude", ITiCSE '07: The 12th annual conference on Innovation and
Technology in Computer Science Education, Dundee, Scotland, 2007.

[Caspersen et al. 2007b] Caspersen, M.E. and Christensen, H.B., "CS1: Getting Started". In
Reflections on the Teaching of Programming, Springer-Verlag, 2007.

[Catrambone 1998] Catrambone, R., "The subgoal learning model: Creating better examples
so that students can solve novel problems", J. Exp. Psychol. : Gen., vol. 127, 4, pp. 355-
376, 1998.

[Chalk 2000] Chalk, P., "Webworlds—Web-Based Modeling Environments for Learning
Software Engineering", Computer Science Education, vol. 10, 1, pp. 039-056, 2000.

[Chandler et al. 1991] Chandler, P. and Sweller, J., "Cognitive Load Theory and the Format
of Instruction", Cognition and Instruction, vol. 8, 4, pp. 293-332, 1991.

[Chandler et al. 1992] Chandler, P. and Sweller, J., "The split attention effect as a factor in
the design of instruction", British Journal of Educational Psychology, vol. 62, pp. 233-246,
1992.

[Chase et al. 1973] Chase, W.G. and Simon, H.A., "Perception in chess", Cognitive Psychol-
ogy, vol. 4, 1, pp. 55-81, 1973.

[Chase et al. 1981] Chase, W.G. and Ericsson, K.A., "Skilled Memory". In Cognitive Skills
and Their Acquisition, Hillsdale, NJ, Erlbaum, pp. 141-190, 1981.

[Chi et al. 1989] Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P. and Glaser, R., "Self-
explanations: How students study and use examples in learning to solve problems", Cogni-
tive Science, vol. 13, 2, pp. 145-182, 1989.

[Christensen et al. 2002] Christensen, H.B. and Caspersen, M.E., "Frameworks in CS1: a
different way of introducing event-driven programming", ITiCSE '02: Proceedings of the
7th annual conference on Innovation and technology in computer science education, Aar-
hus, Denmark, pp. 75-79, 2002.

[Christensen 2004] Christensen, H.B., "Frameworks: putting design patterns into perspec-
tive", ITiCSE '04: Proceedings of the 9th annual SIGCSE conference on Innovation and
technology in computer science education, Leeds, United Kingdom, pp. 142-145, 2004.

[Christensen et al. 2007] Christensen, H.B. and Caspersen, M.E., "Frameworks and their
Role in Teaching". In Reflections on the Teaching of Programming, Springer-Verlag, 2007.

[Clancy et al. 1999] Clancy, M.J. and Linn, M.C., "Patterns and pedagogy", SIGCSE '99: The
proceedings of the thirtieth SIGCSE technical symposium on Computer science education,
New Orleans, Louisiana, United States, pp. 37-42, 1999.

[Clancy et al. 2001] Clancy, M., Stasko, J., Guzdial, M., Fincher, S. and Dale, N., "Models
and Areas for CS Education Research", Computer Science Education, vol. 11, 4, pp. 323-
341, 2001.

 171

[Clancy 2004] Clancy, M.J., "Misconceptions and Attitudes that Interfere with Learning to
Program". In Computer Science Education Research, Taylor & Francis, pp. 85-100, 2004.

[Clark et al. 2006] Clark, R., Nguyen, F. and Sweller, J., Efficiency in Learning: Evidence-
Based Guidelines to Manage Cognitive Load, John Wiley & Sons, pp. 390. 2006.

[Cockburn 2002] Cockburn, A., Agile software development, Boston, Addison-Wesley,
2002.

[Collins et al. 1989] Collins, A., Brown, J.S. and Newman, S.E., "Cognitive apprenticeship:
Teaching the craft of reading, writing and mathematics". In Knowing, learning and instruc-
tion: Essays in honour of Robert Glaser, Hillsdale, NJ, Erlbaum, 1989.

[Collins et al. 1991] Collins, A.M., Brown, J.S. and Holum, A., "Cognitive apprenticeship:
Making thinking visible", American Educator, vol. 15, 3, pp. 6-11, 38-46, 1991.

[Comer et al. 1989] Comer, D.E., Gries, D., Mulder, M.C., Tucker, A., Turner, A.J. and
Young, P.R., "Computing as a discipline", Commun ACM, vol. 32, 1, pp. 9-23, 1989.

[Cooper et al. 1987] Cooper, G. and Sweller, J., "Effects of schema acquisition and rule
automation on mathematical problem-solving transfer", J. Educ. Psychol., vol. 79, 4, pp.
347-362, 1987.

[Cooper et al. 2003] Cooper, S., Dann, W. and Pausch, R., "Teaching objects-first in intro-
ductory computer science", SIGCSE '03: Proceedings of the 34th SIGCSE technical sympo-
sium on Computer science education, Reno, Navada, USA, pp. 191-195, 2003.

[Culwin 1997] Culwin, F., "Java in the C.S. curriculum (seminar)", SIGCSE '97: Proceedings
of the twenty-eighth SIGCSE technical symposium on Computer science education, San
Jose, California, United States, pp. 392, 1997.

[Cuny et al. 2002] Cuny, J. and Aspray, W., "Recruitment and retention of women graduate
students in computer science and engineering: results of a workshop organized by the com-
puting research association", SIGCSE Bull, vol. 34, 2, pp. 168-174, 2002.

[CUSE 1997] CUSE, Science Teaching Reconsidered: A Handbook, National Academy
Press, pp. 88. 1997.

[Dahl et al. 1966] Dahl, O. and Nygaard, K., "SIMULA: an ALGOL-based simulation lan-
guage", Commun ACM, vol. 9, 9, pp. 671-678, 1966.

[Dahl et al. 1972] Dahl, O.-., Dijkstra, E.W. and Hoare, C.A.R., Structured Programming,
London, Academic Press, pp. 220. 1972.

[Dahlbom et al. 1997] Dahlbom, B. and Mathiassen, L., "The future of our profession",
Commun ACM, vol. 40, 6, pp. 80-89, 1997.

[Dale 2002] Dale, N., "Increasing interest in CS ed research", SIGCSE Bull, vol. 34, 4, pp. 16-
17, 2002.

[Dale 2004] Dale, N. "Course Content Survey Results (publisher's list group)",
http://www.cs.utexas.edu/users/ndale/ContentResults2.html, last updated: 2004, accessed:
2006.

[Dale 2005] Dale, N., "Content and emphasis in CS1", SIGCSE Bull, vol. 37, 4, pp. 69-73,
2005.

[Dale 2006] Dale, N.B., "Most difficult topics in CS1: results of an online survey of educa-
tors", SIGCSE Bull, vol. 38, 2, pp. 49-53, 2006.

[Daly et al. 2004] Daly, C. and Waldron, J., "Assessing the assessment of programming abil-
ity", SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on Computer sci-
ence education, Norfolk, Virginia, USA, pp. 210-213, 2004.

[Daly et al. 2005] Daly, C. and Horgan, J., "Patterns of plagiarism", SIGCSE '05: Proceed-
ings of the 36th SIGCSE technical symposium on Computer science education, St. Louis,
Missouri, USA, pp. 383-387, 2005.

[Daniels et al. 1999] Daniels, M., Berglund, A. and Petre, M., "Reflections on International
Projects in Undergraduate CS Education", Computer Science Education, vol. 9, 3, pp. 256-
267, 1999.

[Danielson et al. 1975] Danielson, R.L. and Nievergelt, J., "An automatic tutor for introduc-
tory programming students", SIGCSE '75: Proceedings of the fifth SIGCSE technical sym-
posium on Computer science education, pp. 47-50, 1975.

[Davey et al. 2002] Davey, B.A. and Priestley, H.A., Introduction to Lattices and Order,
Cambridge University Press, pp. 298. 2002.

[Dean et al 2004] Dean, C.N. and Boute, R.T., (Eds.) Teaching Formal Methods. , vol. 3294,
Springer-Verlag, 2004. pp. 249.

[Decker et al. 1992] Decker, R. and Hirshfield, S., "A case for, and an instance of, objects in
CS1", OOPSLA '92: Addendum to the proceedings on Object-oriented programming sys-
tems, languages, and applications (Addendum), Vancouver, British Columbia, Canada, pp.
309-312, 1992.

 172

[Decker et al. 1993] Decker, R. and Hirshfield, S., "Top-down teaching: object-oriented pro-
gramming in CS 1", SIGCSE '93: Proceedings of the twenty-fourth SIGCSE technical sym-
posium on Computer science education, Indianapolis, Indiana, United States, pp. 270-273,
1993.

[Decker et al. 1994] Decker, R. and Hirshfield, S., "The top 10 reasons why object-oriented
programming can't be taught in CS 1", SIGCSE Bull, vol. 26, 1, pp. 51-55, 1994.

[Deek 1999] Deek, F.P., "The Software Process: A Parallel Approach through Problem Solv-
ing and Program Development", Computer Science Education, vol. 9, 1, pp. 43-70, 1999.

[Dehnadi et al. 2006a] Dehnadi, S. and Bornat, R. "The camel has two humps", 2006.
[Dehnadi 2006b] Dehnadi, S., "Testing programming aptitude", Procedings of the 18th An-

nual Workshop of the Psychology of Programming Interest Group, Brighton, UK, pp. 22-
37, 2006.

[Denning 1975] Denning, P.J., "Two misconceptions about structured programming", ACM
75: Proceedings of the 1975 annual conference, pp. 214-215, 1975.

[Denning et al 1997] Denning, P.J. and Metcalfe, R.M., (Eds.) Beyond Calculation: The Next
Fifty Years of Computing. Springer-Verlag, 1997. pp. 313.

[Denning 2001] Denning, P.J., "The profession of IT: crossing the chasm", Commun ACM,
vol. 44, 4, pp. 21-25, 2001.

[Denning 2002] Denning, P.J., "Flatlined", Commun ACM, vol. 45, 6, pp. 15-19, 2002.
[Denning 2003] Denning, P.J., "Great principles of computing", Commun ACM, vol. 46, 11,

pp. 15-20, 2003.
[Denning et al. 2004] Denning, P., Johnson, C., Utting, I., Cassel, L. and Clark, M. "Position

Papers for Conference on Grand Challenges in Computing Education",
http://www.cis.strath.ac.uk/external/educ_grand_challenges/programme.html, last updated:
2004, accessed: 2006.

[Denning 2004a] Denning, P. "Programming as Practice, Grand Challenges in Education",
2004.

[Denning 2004b] Denning, P.J., "The field of programmers myth", Commun ACM, vol. 47, 7,
pp. 15-20, 2004.

[Denning et al. 2005] Denning, P.J. and McGettrick, A., "Recentering computer science",
Commun ACM, vol. 48, 11, pp. 15-19, 2005.

[Denning et al. 2006] Denning, T., Griswold, W.G., Simon, B. and Wilkerson, M., "Multi-
modal communication in the classroom: what does it mean for us?", SIGCSE '06: Proceed-
ings of the 37th SIGCSE technical symposium on Computer science education, Houston,
Texas, USA, pp. 219-223, 2006.

[Dick et al. 2002] Dick, M., Sheard, J., Bareiss, C., Carter, J., Joyce, D., Harding, T. and
Laxer, C., "Addressing student cheating: definitions and solutions", ITiCSE-WGR '02:
Working group reports from ITiCSE on Innovation and technology in computer science
education, Aarhus, Denmark, pp. 172-184, 2002.

[Dijkstra 1969] Dijkstra, E.W., "Notes on structured programming", Tech. Rep. EWD 249,
1969.

[Dijkstra 1975] Dijkstra, E.W., "Guarded commands, nondeterminacy and formal derivation
of programs", Commun ACM, vol. 18, 8, pp. 453-457, 1975.

[Dijkstra 1976] Dijkstra, E.W., A Discipline of Programming, Englewood Cliffs, New Jer-
sey, Prentice-Hall, pp. 217. 1976.

[Dijkstra 1989] Dijkstra, E.W., "On the Cruelty of Really Teaching Computing Science",
Communications of the ACM, vol. 32, 12, pp. 1398-1404, 1989.

[Dijkstra et al. 1989] Dijkstra, E.W., Parnas, D.L., Scherlis, W., van Emden, M.H., Cohen,
J., Hamming, R., Karp, R.M. and Winograd, T., "A debate on teaching computing science",
Commun ACM, vol. 32, 12, pp. 1397-1414, 1989.

[Douce et al. 2005] Douce, C., Livingstone, D. and Orwell, J., "Automatic test-based assess-
ment of programming: A review", J. Educ. Resour. Comput., vol. 5, 3, pp. 4, 2005.

[Dromey 1982] Dromey, R.G., How to Solve it by Computer, Prentice-Hall International
Series in Computer Science, pp. 442. 1982.

[du Boulay 1989a] du Boulay, B., "Some difficulties of learning to program.". In Studying
the novice programmer, Hillsdale, NJ, Lawrence Erlbaum, pp. 57-73, 1989.

[du Boulay et al. 1989b] du Boulay, B., O’Shea, T. and Monk, J., "The black box in-side the
glass box: presenting computing concepts to novices.". In Studying the novice programmer,
Hillsdale, NJ, Lawrence Erlbaum, 1989.

[Dupras et al. 1984] Dupras, M., LeMay, F. and Mili, A., "Some thoughts on teaching first
year programming", SIGSCE '84: Proceedings of the fifteenth SIGCSE technical symposium
on Computer science education, pp. 148-153, 1984.

 173

[East et al. 1996] East, J.P., Thomas, S.R., Wallingford, E., Beck, W. and Drake, J., "Pattern-
based Programming Instruction", Washinghton DC, 1996.

[Ebel et al. 2006] Ebel, G. and Ben-Ari, M., "Affective effects of program visualization",
ICER '06: Proceedings of the 2006 international workshop on Computing education re-
search, Canterbury, United Kingdom, pp. 1-5, 2006.

[Eckerdal et al. 2005a] Eckerdal, A. and Thuné, M., "Novice Java programmers' conceptions
of "object" and "class", and variation theory", ITiCSE '05: Proceedings of the 10th annual
SIGCSE conference on Innovation and technology in computer science education, Caparica,
Portugal, pp. 89-93, 2005.

[Eckerdal et al. 2005b] Eckerdal, A., Thuné, M. and Berglund, A., "What does it take to
learn 'programming thinking'?", ICER '05: Proceedings of the 2005 international workshop
on Computing education research, Seattle, WA, USA, pp. 135-142, 2005.

[Eckerdal et al. 2006] Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe, M. and Zander,
C., "Can graduating students design software systems?", SIGCSE '06: Proceedings of the
37th SIGCSE technical symposium on Computer science education, Houston, Texas, USA,
pp. 403-407, 2006.

[Eckstein 2001] Eckstein, J., "Pedagogical patterns: Capturing best practice in teaching ob-
ject technology", Software Focus, vol. 2, 1, pp. 9-12, 2001.

[Edwards et al. 2000] Edwards, H.M., Thompson, B.J., Halstead-Nussloch, R., Arnow, D.
and Oliver, D., "Report on the CSEET '99 Workshop: “Establishing a Distance Education
Program”", Computer Science Education, vol. 10, 1, pp. 057-074, 2000.

[Edwards 2003a] Edwards, S.H., "Rethinking computer science education from a test-first
perspective", OOPSLA '03: Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, Anaheim, CA, USA,
pp. 148-155, 2003.

[Edwards 2003b] Edwards, S.H., "Improving student performance by evaluating how well
students test their own programs", J. Educ. Resour. Comput., vol. 3, 3, pp. 1, 2003.

[Edwards 2004] Edwards, S.H., "Using software testing to move students from trial-and-
error to reflection-in-action", SIGCSE '04: Proceedings of the 35th SIGCSE technical sym-
posium on Computer science education, Norfolk, Virginia, USA, pp. 26-30, 2004.

[Evans et al. 1989] Evans, G.E. and Simkin, M.G., "What best predicts computer profi-
ciency?", Communication of the ACM, vol. 32, 11, pp. 1322-1327, 1989.

[Fagin et al. 2003] Fagin, B. and Merkle, L., "Measuring the effectiveness of robots in teach-
ing computer science", SIGCSE '03: Proceedings of the 34th SIGCSE technical symposium
on Computer science education, Reno, Navada, USA, pp. 307-311, 2003.

[Fincher et al. 2002] Fincher, S. and Utting, I., "Pedagogical patterns: their place in the
genre", SIGCSE Bull, vol. 34, 3, pp. 199-202, 2002.

[Fincher et al. 2004] Fincher, S. and Petre, M., Computer science education research, Lon-
don, Routledge Falmer, 2004.

[Fincher 2006] Fincher, S. "Special issue on CSE Pedagogic patterns", Computer Science
Education, Vol. 16, pp. 75-75, 2006.

[Findler et al. 2002] Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S.,
Steckler, P. and Felleisen, M., "DrScheme: a programming environment for Scheme", J.
Funct. Program., vol. 12, 2, pp. 159-182, 2002.

[Fowler 1999] Fowler, M., Refactoring: Improving the Design of Existing Code, Addison-
Wesley, pp. 464. 1999.

[Fowler et al. 2000] Fowler, M. and Scott, K., UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Addison-Wesley, pp. 185. 2000.

[Fowler 2003] Fowler, M., "When to Make a Type", IEEE Software, vol. 20, 1, pp. 12-13,
2003.

[Fox 1997] Fox, J., Applied regression analysis, linear models, and related models, Sage
Publications, pp. 597. 1997.

[Frandsen et al. 2006] Frandsen, G.S. and Schwartzbach, M.I., "A singular choice for multi-
ple choice", ITiCSE-WGR '06: Working group reports on ITiCSE on Innovation and tech-
nology in computer science education, Bologna, Italy, pp. 34-38, 2006.

[Gamma 1995] Gamma, E., Design patterns. elements of reusable object-oriented software,
Reading, Mass., Addison-Wesley, 1995.

[Gantenbein 1989] Gantenbein, R.E., "Programming as process: a “novel” approach to teach-
ing programming", SIGCSE '89: Proceedings of the twentieth SIGCSE technical symposium
on Computer science education, Louisville, Kentucky, United States, pp. 22-26, 1989.

[Gardner 1983] Gardner, H., Frames of the Mind: The Theory of the Multiple Intelligence,
BasicBooks, pp. 432. 1983.

 174

[GCC 2004] GCC. "Grand Challenges for Computing Education and Research",
http://www.cs.ncl.ac.uk/research/events/conferences/2004/GCC04/index.htm, last updated:
2004, accessed: 2006.

[Gelfand et al. 1998] Gelfand, N., Goodrich, M.T. and Tamassia, R., "Teaching data struc-
ture design patterns", SIGCSE '98: Proceedings of the twenty-ninth SIGCSE technical sym-
posium on Computer science education, Atlanta, Georgia, United States, pp. 331-335, 1998.

[Gerjets et al. 2004] Gerjets, P., Scheiter, K. and Catrambone, R., "Designing Instructional
Examples to Reduce Intrinsic Cognitive Load: Molar versus Modular Presentation of Solu-
tion Procedures", Instructional Science, vol. 32, 1-2, pp. 33-58, 2004.

[Gersting 2000] Gersting, J.L., "Computer Science Distance Education Experience in Ha-
waii", Computer Science Education, vol. 10, 1, pp. 095-106, 2000.

[Gibbon et al. 1996] Gibbon, C.A. and Higgins, C.A., "Towards a Learner-Centred Approach
to Teaching Object-Oriented Design", APSEC '96: Proceedings of the Third Asia-Pacific
Software Engineering Conference, pp. 110, 1996.

[Gibbs 2000] Gibbs, D.C., "The effect of a constructivist learning environment for field-
dependent/independent students on achievement in introductory computer programming",
SIGCSE Bull, vol. 32, 1, pp. 207-211, 2000.

[Gick et al. 1983] Gick, M.L. and Holyoak, K.J., "Schema induction and analogical transfer",
Cognitive Psychology, vol. 15, 1, pp. 1-38, 1983.

[Gilmore 1990] Gilmore, D., "Methodological issues in the study ofprogramming". In Psy-
chology of Programming, Academic Press, pp. 83-98, 1990.

[Goldberg et al. 1983] Goldberg, A. and Robson, D., Smalltalk-80: The Language and Its
Implementation, Boston, MA, Addison-Wesley, 1983.

[Goold et al. 2000] Goold, A. and Rimmer, R., "Factors affecting performance in first-year
computing", SIGCSE Bull, vol. 32, 2, pp. 39-43, 2000.

[Gosling et al. 2005] Gosling, J., Joy, B., Steele, G. and Bracha, G., The Java Language
Specification, Addison-Wesley, pp. 649. 2005.

[Gries 1974] Gries, D., "What should we teach in an introductory programming course?",
SIGCSE '74: Proceedings of the fourth SIGCSE technical symposium on Computer science
education, pp. 81-89, 1974.

[Gries 1978] Gries, D., (Eds.) Programming Methodology. New York, Springer-Verlag,
1978. pp. 437.

[Gries 1981] Gries, D., The Science of Programming, New York, Springer-Verlag, pp. 366.
1981.

[Gries 2002] Gries, D., "Where is programming methodology these days?", SIGCSE Bull,
vol. 34, 4, pp. 5-7, 2002.

[Gries et al. 2002] Gries, P. and Gries, D., "Frames and folders: a teachable memory model
for Java", J. Comput. Small Coll., vol. 17, 6, pp. 182-196, 2002.

[Gries 2006] Gries, D., "What Have We Not Learned about Teaching Programming?", IEEE
Computer, vol. 39, 10, pp. 81-82, 2006.

[Gross et al. 2005] Gross, P. and Powers, K., "Evaluating assessments of novice program-
ming environments", ICER '05: Proceedings of the 2005 international workshop on Com-
puting education research, Seattle, WA, USA, pp. 99-110, 2005.

[Guzdial 2004] Guzdial, M., "Programming Environments for Novices". In Computer science
education research, London, Routledge Falmer, pp. 127-154, 2004.

[Guzdial 2006] Guzdial, M. "Failure rates", 2006.
[Haaster et al. 2004] Haaster, K.V. and Hagan, D., "Teaching and Learning with BlueJ: an

Evaluation of a Pedagogical Tool", Information Science + Information Technology Educa-
tion Joint Conference, Rockhampton, Queensland, Australia, pp. 455-470, 2004.

[Hadjerrouit 1999] Hadjerrouit, S., "A constructivist approach to object-oriented design and
programming", ITiCSE '99: Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE con-
ference on Innovation and technology in computer science education, Cracow, Poland, pp.
171-174, 1999.

[Hadjerrouit 2005] Hadjerrouit, S., "Constructivism as guiding philosophy for software en-
gineering education", SIGCSE Bull, vol. 37, 4, pp. 45-49, 2005.

[Hagan et al. 2000] Hagan, D. and Markham, S., "Does it help to have some programming
experience before beginning a computing degree program?", ITiCSE '00: Proceedings of
the 5th annual SIGCSE/SIGCUE ITiCSEconference on Innovation and technology in com-
puter science education, Helsinki, Finland, pp. 25-28, 2000.

[Hansen et al. 2002] Hansen, K.M. and Ratzer, A.V., "Tool support for collaborative teach-
ing and learning of object-oriented modeling", ITiCSE '02: Proceedings of the 7th annual

 175

conference on Innovation and technology in computer science education, Aarhus, Denmark,
pp. 146-150, 2002.

[Hansen et al. 2004] Hansen, S. and Fossum, T., "Events not equal to GUIs", SIGCSE '04:
Proceedings of the 35th SIGCSE technical symposium on Computer science education,
Norfolk, Virginia, USA, pp. 378-381, 2004.

[Harlan et al. 2001] Harlan, R.M., Levine, D.B. and McClarigan, S., "The Khepera robot and
the kRobot class: a platform for introducing robotics in the undergraduate curriculum",
SIGCSE '01: Proceedings of the thirty-second SIGCSE technical symposium on Computer
Science Education, Charlotte, North Carolina, United States, pp. 105-109, 2001.

[Hazzan et al. 2006] Hazzan, O., Dubinsky, Y., Eidelman, L., Sakhnini, V. and Teif, M.,
"Qualitative research in computer science education", SIGCSE '06: Proceedings of the 37th
SIGCSE technical symposium on Computer science education, Houston, Texas, USA, pp.
408-412, 2006.

[Heathcote et al. 2000] Heathcote, A., Brown, S. and Mewhort, D.J., "The power law re-
pealed: the case for an exponential law of practice", Psychonomic Bulletin & Review, vol. 7,
2, pp. 185-207, 2000.

[Hegna et al. 2006] Hegna, H. and Groven, A., "A study of objects-first with BlueJ in a non-
computer science context". In Comprehensive Object-Oriented Learning: The Learnes's
Perspective, Informing Science Press, pp. 79-110, 2006.

[Henriksen et al. 2004] Henriksen, P. and Kölling, M., "greenfoot: combining object visuali-
sation with interaction", OOPSLA '04: Companion to the 19th annual ACM SIGPLAN con-
ference on Object-oriented programming systems, languages, and applications, Vancouver,
BC, CANADA, pp. 73-82, 2004.

[Hesketh et al. 1989] Hesketh, B., Andrews, S. and Chandler, P., "Opinion--Training for
Transferable Skills: The Role of Examples and Schema", Education and Training Technol-
ogy International, vol. 26, 2, pp. 105-156, 1989.

[Holden et al. 2003] Holden, E. and Weeden, E., "The impact of prior experience in an in-
formation technology programming course sequence", CITC4 '03: Proceedings of the 4th
conference on Information technology curriculum, Lafayette, Indiana, USA, pp. 41-46,
2003.

[Holland et al. 1997] Holland, S., Griffiths, R. and Woodman, M., "Avoiding object miscon-
ceptions", SIGCSE Bull, vol. 29, 1, pp. 131-134, 1997.

[Holt 1994] Holt, R.C., "Introducing undergraduates to object orientation using the Turing
language", SIGCSE '94: Proceedings of the twenty-fifth SIGCSE symposium on Computer
science education, Phoenix, Arizona, United States, pp. 324-328, 1994.

[Hostetler 1983] Hostetler, T.R., "Predicting student success in an introductory programming
course", SIGCSE Bull, vol. 15, 3, pp. 40-43, 1983.

[Hu 2005] Hu, C., "Dataless objects considered harmful", Commun ACM, vol. 48, 2, pp. 99-
101, 2005.

[Hundhausen et al. 2002] Hundhausen, C.D., Douglas, S.A. and Stasko, J.T., "A Meta-Study
of Algorithm Visualization Effectiveness", Journal of Visual Languages & Computing, vol.
13, 3, pp. 259-290, 2002.

[Hundhausen et al. 2006] Hundhausen, C.D., Brown, J.L., Farley, S. and Skarpas, D., "A
methodology for analyzing the temporal evolution of novice programs based on semantic
components", ICER '06: Proceedings of the 2006 international workshop on Computing
education research, Canterbury, United Kingdom, pp. 59-71, 2006.

[Hyman et al. 1965] Hyman, R. and Anderson, B., "Solving Problems", International Sci-
ence and Technology, pp. 36-41, 1965.

[Ibbett et al. 2006] Ibbett, R.N., Carballo, J.C.D.y. and Dolman, D.A.W., "Computer archi-
tecture simulation models", ITICSE '06: Proceedings of the 11th annual SIGCSE confer-
ence on Innovation and technology in computer science education, Bologna, Italy, pp. 353-
353, 2006.

[IFIP 2006] IFIP. "IFIP WG 2.3: Programming Methodology",
http://www.ifip.org/bulletin/bulltcs/memtc02.htm, last updated: 2006, accessed: 2007.

[Imberman et al. 2005] Imberman, S.P. and Klibaner, R., "A robotics lab for CS1", J. Com-
put. Small Coll., vol. 21, 2, pp. 131-137, 2005.

[Ingalls 1978] Ingalls, D.H.H., "The Smalltalk-76 programming system design and imple-
mentation", POPL '78: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, Tucson, Arizona, pp. 9-16, 1978.

[Inhelder et al. 1958] Inhelder, B. and Piaget, J., The growth of logical thinking from child-
hood to adolescence. an essay on the construction of formal operational structures, , vol. 7.
print., New York, Basic Books, 1958.

 176

[Jadud 2006] Jadud, M.C., "Methods and tools for exploring novice compilation behaviour",
ICER '06: Proceedings of the 2006 international workshop on Computing education re-
search, Canterbury, United Kingdom, pp. 73-84, 2006.

[Cross et al. 2006] James H. Cross, I. and T. Dean Hendrix, "jGRASP: a lightweight IDE
with dynamic object viewers for CS1 and CS2", ITICSE '06: Proceedings of the 11th an-
nual SIGCSE conference on Innovation and technology in computer science education, Bo-
logna, Italy, pp. 356-356, 2006.

[Janzen et al. 2006] Janzen, D.S. and Saiedian, H., "Test-driven learning: intrinsic integration
of testing into the CS/SE curriculum", SIGCSE '06: Proceedings of the 37th SIGCSE tech-
nical symposium on Computer science education, Houston, Texas, USA, pp. 254-258, 2006.

[Jargon 2003] Jargon. "The Jargon File", http://catb.org/jargon/, last updated: 2003, ac-
cessed: 2006.

[Jeffries et al. 1981] Jeffries, R., Turner, A.A., Polson, P.G. and Atwood, M.E., "The Proc-
esses Involved in Designing Software". In Cognitive Skills and Their Acquisition, Hillsdale,
NJ, Erlbaum, pp. 255-284, 1981.

[Jones 2004] Jones, C.G., "Test-driven development goes to school", J. Comput. Small Coll.,
vol. 20, 1, pp. 220-231, 2004.

[Kalyuga et al. 2003] Kalyuga, S., Ayres, P., Chandler, P. and Sweller, J., "The Expertise
Reversal Effect", Educational Psychologist, vol. 38, 1; 1, pp. 23-31, 2003.

[Karavirta et al. 2006] Karavirta, V., Korhonen, A. and Malmi, L., "On the use of resubmis-
sions in automatic assessment systems", Computer Science Education, vol. 16, 3, pp. 229-
240, 2006.

[Kirschner 2002] Kirschner, P.A., "Cognitive load theory: implications of cognitive load
theory on the design of learning", Learning and Instruction, vol. 12, 1, pp. 1-10, 2002.

[Knudsen et al. 1988] Knudsen, J.L. and Madsen, O.L., "Teaching Object-Oriented Pro-
gramming is more than teaching Object-Oriented Programming Languages", ECOOP '88
European Conference on Object-Oriented Programming, Oslo, Norway, pp. 21-40, 1988.

[Knuth 1974] Knuth, D.E., "Structured Programming with go to Statements", ACM Comput.
Surv., vol. 6, 4, pp. 261-301, 1974.

[Koile et al. 2006] Koile, K. and Singer, D., "Improving learning in CS1 via tablet-PC-based
in-class assessment", ICER '06: Proceedings of the 2006 international workshop on Com-
puting education research, Canterbury, United Kingdom, pp. 119-126, 2006.

[Kolb et al. 1975] Kolb, D.A. and Fry, R., "Toward an applied theory of experiential learn-
ing". In Theories of Group Processes, John Wiley & Sons, 1975.

[Koli 2006] Koli. "Koli Calling", http://cs.joensuu.fi/kolistelut/, last updated: 2006, accessed:
2006.

[Kölling et al. 1995] Kölling, M., Koch, B. and Rosenberg, J., "Requirements for a first year
object-oriented teaching language", SIGCSE '95: Proceedings of the twenty-sixth SIGCSE
technical symposium on Computer science education, Nashville, Tennessee, United States,
pp. 173-177, 1995.

[Kölling et al. 1996a] Kölling, M. and Rosenberg, J., "Blue—a language for teaching object-
oriented programming", SIGCSE '96: Proceedings of the twenty-seventh SIGCSE technical
symposium on Computer science education, Philadelphia, Pennsylvania, United States, pp.
190-194, 1996.

[Kölling et al. 1996b] Kölling, M. and Rosenberg, J., "An object-oriented program develop-
ment environment for the first programming course", SIGCSE '96: Proceedings of the
twenty-seventh SIGCSE technical symposium on Computer science education, Philadelphia,
Pennsylvania, United States, pp. 83-87, 1996.

[Kölling 2003a] Kölling, M. "Unit Testing in BlueJ", http://www.bluej.org/tutorial/testing-
tutorial.pdf, last updated: 2003, accessed: 2007.

[Kölling 2003b] Kölling, M., "The Curse of Hello World", Workshop on Learning and
Teaching Object-orientation – Scandinavian Perspectives, Oslo, 2003.

[Kölling et al. 2003] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J., "The BlueJ sys-
tem and its pedagogy", Journal of Computer Science Education, vol. 13, 4, pp. 249-268,
2003.

[Kölling et al. 2004] Kölling, M. and Barnes, D.J., "Enhancing apprentice-based learning of
Java", SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, Norfolk, Virginia, USA, pp. 286-290, 2004.

[Kölling et al. 2005] Kölling, M. and Henriksen, P., "Game programming in introductory
courses with direct state manipulation", ITiCSE '05: Proceedings of the 10th annual SIG-
CSE conference on Innovation and technology in computer science education, Caparica,
Portugal, pp. 59-63, 2005.

 177

[Konvalina et al. 1983] Konvalina, J., Wileman, S.A. and Stephens, L.J., "Math proficiency:
a key to success for computer science students", Commun ACM, vol. 26, 5, pp. 377-382,
1983.

[Korhonen et al. 2002] Korhonen, A., Malmi, L., Myllyselkä, P. and Scheinin, P., "Does it
make a difference if students exercise on the web or in the classroom?", ITiCSE '02: Pro-
ceedings of the 7th annual conference on Innovation and technology in computer science
education, Aarhus, Denmark, pp. 121-124, 2002.

[Kristensen et al. 2007] Kristensen, B.B., Madsen, O.L. and Møller-Petersen, B., "The
When, Why and Why Not of the BETA Programming Language", San Diego, California,
2007.

[Kumar 2005a] Kumar, A.N., "Results from the evaluation of the effectiveness of an online
tutor on expression evaluation", SIGCSE '05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, St. Louis, Missouri, USA, pp. 216-220, 2005.

[Kumar 2005b] Kumar, A.N., "Generation of problems, answers, grade, and feedback—case
study of a fully automated tutor", JERIC, vol. 5, 3, pp. 1-25, 2005.

[Kumar 2007] Kumar, A.N. "Problets", http://www.problets.org/, last updated: 2007, ac-
cessed: 2007.

[Kurtz 1980] Kurtz, B.L., "Investigating the relationship between the development of abstract
reasoning and performance in an introductory programming class", SIGCSE '80: Proceed-
ings of the eleventh SIGCSE technical symposium on Computer science education, Kansas
City, Missouri, United States, pp. 110-117, 1980.

[Lahtinen et al. 2005] Lahtinen, E., Ala-Mutka, K. and Järvinen, H., "A study of the difficul-
ties of novice programmers", ITiCSE '05: Proceedings of the 10th annual SIGCSE confer-
ence on Innovation and technology in computer science education, Caparica, Portugal, pp.
14-18, 2005.

[Lancaster et al. 2004] Lancaster, T. and Culwin, F., "A Comparison of Source Code Plagia-
rism Detection Engines", Computer Science Education, vol. 14, 2, pp. 101-117, 2004.

[Last et al. 2002] Last, M.Z., Daniels, M., Hause, M.L. and Woodroffe, M.R., "Learning
from students: continuous improvement in international collaboration", ITiCSE '02: Pro-
ceedings of the 7th annual conference on Innovation and technology in computer science
education, Aarhus, Denmark, pp. 136-140, 2002.

[Lave et al. 1991] Lave, J. and Wenger, E., Situated learning. Legitimate peripheral partici-
pation, Cambridge, UK, Cambridge University Press, 1991.

[Lawhead et al. 2002] Lawhead, P.B., Duncan, M.E., Bland, C.G., Goldweber, M., Schep,
M., Barnes, D.J. and Hollingsworth, R.G., "A road map for teaching introductory program-
ming using LEGO mindstorms robots", ITiCSE-WGR '02: Working group reports from
ITiCSE on Innovation and technology in computer science education, Aarhus, Denmark,
pp. 191-201, 2002.

[Lee 2007] Lee, M. "CS1: Weaker students avoid coding like the plague!",
http://listserv.acm.org/scripts/wa.exe?A2=ind0701d&L=sigcse-
members&F=&S=&P=1423, last updated: 2007, accessed: 2007.

[Leeper et al. 1982] Leeper, R.R. and Silver, J.L., "Predicting success in a first programming
course", SIGCSE '82: Proceedings of the thirteenth SIGCSE technical symposium on Com-
puter science education, Indianapolis, Indiana, United States, pp. 147-150, 1982.

[LeFevre et al. 1986] LeFevre, J. and Dixon, P., "Do Written Instructions Need Examples?",
Cognition & Instruction, vol. 3, 1; 1, pp. 1, 1986.

[Lindholm 2005] Lindholm, M., "Development of object-understanding among students in
the humanities", ITiCSE '05: Proceedings of the 10th annual SIGCSE conference on Inno-
vation and technology in computer science education, Caparica, Portugal, pp. 382-382,
2005.

[Lindholm 2007] Lindholm, M., "Conceptions of Object-Oriented Terms: A study in pro-
gress", Salford, 2007.

[Linn et al. 1985] Linn, M.C. and Dalbey, J., "Cognitive consequences of Programming In-
struction: Instruction, Access, and Ability", Educational Psychologist, vol. 20, 4; 4, pp. 191,
1985.

[Linn et al. 1992] Linn, M.C. and Clancy, M.J., "The case for case studies of programming
problems", Commun ACM, vol. 35, 3, pp. 121-132, 1992.

[Lister 2003] Lister, R., "A research manifesto, and the relevance of phenomenography",
SIGCSE Bull, vol. 35, 2, pp. 15-16, 2003.

[Lister et al. 2003] Lister, R. and Leaney, J., "Introductory programming, criterion-
referencing, and bloom", SIGCSE '03: Proceedings of the 34th SIGCSE technical sympo-
sium on Computer science education, Reno, Navada, USA, pp. 143-147, 2003.

 178

[Lister et al. 2004] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm,
M., McCartney, R., Moström, J.E., Sanders, K., Seppälä, O., Simon, B. and Thomas, L., "A
multi-national study of reading and tracing skills in novice programmers", ITiCSE-WGR
'04: Working group reports from ITiCSE on Innovation and technology in computer science
education, Leeds, United Kingdom, pp. 119-150, 2004.

[Lister 2005a] Lister, R., "Grand challenges", SIGCSE Bull, vol. 37, 2, pp. 14-15, 2005.
[Lister et al. 2006] Lister, R., Simon, B., Thompson, E., Whalley, J.L. and Prasad, C., "Not

seeing the forest for the trees: novice programmers and the SOLO taxonomy", ITICSE '06:
Proceedings of the 11th annual SIGCSE conference on Innovation and technology in com-
puter science education, Bologna, Italy, pp. 118-122, 2006.

[Logan 1988] Logan, G.D., "Toward an instance theory of automatization", Psychol. Rev.,
vol. 95, 4, pp. 492-527, 1988.

[Luker 1994] Luker, P.A., "There's more to OOP than syntax!", SIGCSE '94: Proceedings of
the twenty-fifth SIGCSE symposium on Computer science education, Phoenix, Arizona,
United States, pp. 56-60, 1994.

[Madsen et al. 1993] Madsen, O.L., Møller-Pedersen, B. and Nygaard, K., Object-Oriented
Programming in the BETA Programming Language, Addison-Wesley, pp. 337. 1993.

[Madsen et al. 1994] Madsen, K.H. and Trigg, R., "Introducing object-oriented technology in
the humanities". In Object-Oriented Software Development Environments: The Mjølner Ap-
proach, Hertfordshire, Great Britain, Prentice-Hall, pp. 597-599, 1994.

[Malan et al. 2004] Malan, K. and Halland, K., "Examples that can do harm in learning pro-
gramming", OOPSLA '04: Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, Vancouver, BC,
CANADA, pp. 83-87, 2004.

[Malmi et al. 2005] Malmi, L., Karavirta, V., Korhonen, A. and Nikander, J., "Experiences
on automatically assessed algorithm simulation exercises with different resubmission poli-
cies", J. Educ. Resour. Comput., vol. 5, 3, pp. 7, 2005.

[Malmi et al. 2007] Malmi, L. and Korhonen, A., "Activating Learning and Examination
Methods in a Data Structures and Algorithms Course". In Reflections on the Teaching of
Programming, Springer-Verlag, 2007.

[Margolis et al. 2002] Margolis, J. and Fisher, A., Unlocking the Clubhouse: Women in
Computing, Cambridge Massachusetts, MIT Press, pp. 172. 2002.

[Martin 2003] Martin, R.C., Agile Software Development: Principles, Patterns, and Prac-
tices, Upper Saddle River, NJ, Prentice-Hall, pp. 529. 2003.

[Marton et al. 1997] Marton, F. and Booth, S., Learning and Awareness, Mahwah, NJ, Law-
rence Erlbaum Associates, pp. 2224. 1997.

[Mayer 1981] Mayer, R.E., "The Psychology of How Novices Learn Computer Program-
ming", ACM Comput. Surv., vol. 13, 1, pp. 121-141, 1981.

[Mayer et al. 1986] Mayer, R.E., Dyck, J.L. and Vilberg, W., "Learning to program and
learning to think: what's the connection?", Commun ACM, vol. 29, 7, pp. 605-610, 1986.

[Mayer et al. 2002] Mayer, R.E. and Moreno, R., "Aids to computer-based multimedia learn-
ing", Learning and Instruction, vol. 12, 1, pp. 107-119, 2002.

[Mayer et al. 2003] Mayer, R.E. and Moreno, R., "Nine Ways to Reduce Cognitive Load in
Multimedia Learning", Educational Psychologist, vol. 38, 1; 1, pp. 43-52, 2003.

[McCracken et al. 2001] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D.,
Kolikant, Y.B., Laxer, C., Thomas, L., Utting, I. and Wilusz, T., "A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students", SIGCSE
Bull, vol. 33, 4, pp. 125-180, 2001.

[McGettrick et al. 2005] McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G. and
Mander, K., "Grand Challenges in Computing: Education--A Summary", The Computer
Journal, vol. 48, 1, pp. 42-48, 2005.

[McKeithen et al. 1981] McKeithen, K.B., Reitman, J.S., Rueter, H.H. and Hirtle, S.C.,
"Knowledge organization and skill differences in computer programmers", Cognitive Psy-
chology, vol. 13, 3, pp. 307-325, 1981.

[Mead et al. 2006] Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C.S. and Tho-
mas, L., "A cognitive approach to identifying measurable milestones for programming skill
acquisition", ITiCSE-WGR '06: Working group reports on ITiCSE on Innovation and tech-
nology in computer science education, Bologna, Italy, pp. 182-194, 2006.

[Means 1988] Means, H.W., "A content analysis of ten introduction to programming text-
books", SIGCSE '88: Proceedings of the nineteenth SIGCSE technical symposium on Com-
puter science education, Atlanta, Georgia, United States, pp. 283-287, 1988.

[Meyer 1987] Meyer, B., "Eiffel: programming for reusability and extendibility", SIGPLAN
Not., vol. 22, 2, pp. 85-94, 1987.

 179

[Meyer 1989] Meyer, B., "From Structured Programming to Object-Oriented Design: The
Road to Eiffel", Structured Programming, vol. 10, 1, pp. 19-39, 1989.

[Meyer 1992] Meyer, B., "Applying 'design by contract'", Computer, vol. 25, 10, pp. 40-51,
1992.

[Meyer 1993] Meyer, B. "Toward an object-oriented curriculum", 1993.
[Meyer 1997] Meyer, B., Object-oriented software construction. 2nd ed, , vol. 2. udgave,

Upper Saddle River, New Jersey, Prentice Hall, 1997.
[Miller 1956] Miller, G.A., "The magical number seven, plus or minus two: some limits on

our capacity for processing information", Psychol. Rev., vol. 63, 2, pp. 81-97, 1956.
[Mills 1971] Mills, H.D., "Top-Down Programming in Large Systems". In Debugging Tech-

niques in Large Systems, Englewood Cliffs, NJ, Prentice-Hall, pp. 41-55, 1971.
[Mitchell et al. 2002] Mitchell, R. and McKim, J., Design by Contract by Example, Adison-

Wesley, pp. 238. 2002.
[Moreno et al. 1999] Moreno, R. and Mayer, R.E., "Cognitive principles of multimedia

learning: The role of modality and contiguity", J. Educ. Psychol., vol. 91, 2, pp. 358-368,
1999.

[Moreno 2004] Moreno, R., "Decreasing Cognitive Load for Novice Students: Effects of
Explanatory versus Corrective Feedback in Discovery-Based Multimedia", Instructional
Science, vol. 32, 1-2, pp. 99-113, 2004.

[Morgan et al 1992] Morgan, C. and Vickers, T., (Eds.) On the Refinement Calculus. Lon-
don, Springer-Verlag, 1992. pp. 159.

[Morgan 1994] Morgan, C., Programming from Specifications, Prentice-Hall, pp. 332. 1994.
[Morris 1987] Morris, J.M., "A theoretical basis for stepwise refinement and the program-

ming calculus", Science of Computer Programming, vol. 9, 3, pp. 287-306, 1987.
[Mosley 2002] Mosley, P.H., "The Cognitive Complexities Confronting Developers Using

Object Technology", PhDPace University2002.
[Mousavi et al. 1995] Mousavi, S.Y., Low, R. and Sweller, J., "Reducing cognitive load by

mixing auditory and visual presentation modes", J. Educ. Psychol., vol. 87, 2, pp. 319-334,
1995.

[Muller et al. 2004] Muller, O., Haberman, B. and Averbuch, H., "(An almost) pedagogical
pattern for pattern-based problem-solving instruction", ITiCSE '04: Proceedings of the 9th
annual SIGCSE conference on Innovation and technology in computer science education,
Leeds, United Kingdom, pp. 102-106, 2004.

[Muller et al. 2005a] Muller, O. and Haberman, B., "Guidelines for a multiple-goal CS intro-
ductory course: algorithmic problem-solving woven into OOP", ITiCSE '05: Proceedings of
the 10th annual SIGCSE conference on Innovation and technology in computer science
education, Caparica, Portugal, pp. 356-356, 2005.

[Muller 2005b] Muller, O., "Pattern oriented instruction and the enhancement of analogical
reasoning", ICER '05: Proceedings of the 2005 international workshop on Computing edu-
cation research, Seattle, WA, USA, pp. 57-67, 2005.

[Naps et al. 1997] Naps, T., Bergin, J., Jiménez-Peris, R., McNally, M.F., Patiño-Martínez,
M., Proulx, V.K. and Tarhio, J., "Using the WWW as the delivery mechanism for interac-
tive, visualization-based instructional modules (report of the ITiCSE '97 working group on
visualization)", ITiCSE-WGR '97: The supplemental proceedings of the conference on Inte-
grating technology into computer science education: working group reports and supple-
mental proceedings, Uppsala, Sweden, pp. 13-26, 1997.

[Naps et al. 2002] Naps, T.L., Rössling, G., Almstrum, V., Dann, W., Fleischer, R., Hund-
hausen, C., Korhonen, A., Malmi, L., McNally, M., Rodger, S. and Velázquez-Iturbide, J.Á,
"Exploring the role of visualization and engagement in computer science education",
ITiCSE-WGR '02: Working group reports from ITiCSE on Innovation and technology in
computer science education, Aarhus, Denmark, pp. 131-152, 2002.

[Naps et al. 2003] Naps, T., Cooper, S., Koldehofe, B., Leska, C., Rössling, G., Dann, W.,
Korhonen, A., Malmi, L., Rantakokko, J., Ross, R.J., Anderson, J., Fleischer, R., Kuittinen,
M. and McNally, M., "Evaluating the educational impact of visualization", ITiCSE-WGR
'03: Working group reports from ITiCSE on Innovation and technology in computer science
education, Thessaloniki, Greece, pp. 124-136, 2003.

[Naps 2006] Naps, T. "JHAVÉ", http://jhave.org/, last updated: 2006, accessed: 2007.
[Naur 1972] Naur, P., "An experiment on program development", BIT Numerical Mathemat-

ics, vol. 12, 3, pp. 347-365, 1972.
[Naur 1992a] Naur, P., "Prospects for the Programming Methodologies (1981)". In Comput-

ing: A Human Activity, ACM Press, pp. 387-393, 1992.

 180

[Naur 1992b] Naur, P., "Project Activity in Computer Science Education (1970)". In Com-
puting: A Human Activity, ACM Press, pp. 228-239, 1992.

[Naur 1966] Naur, P., "Proof of algorithms by general snapshots", BIT Numerical Mathemat-
ics, vol. 6, 4, pp. 310-316, 1966.

[Netbeans 2006] Netbeans. "The NetBeans IDE 5.0 BlueJ Edition",
http://edu.netbeans.org/bluej/, last updated: 2006, accessed: 2007.

[Newell et al. 1972] Newell, A. and Simon, H., Human Problem Solving, Englewood Cliffs,
NJ, Prentice-Hall, 1972.

[Newell et al. 1981] Newell, A. and Rosenbloom, P., "Mechanisms of Skill Acquisition and
the Law of Practice". In Cognitive Skills and Their Acquisition, Hillsdale, NJ, Erlbaum, pp.
1-56, 1981.

[Newell et al. 1989] Newell, A., Rosenbloom, P.S. and Laird, J.E., "Symbolic Architectures
for Cognition". In Foundations of Cognitive Science, MIT Press, pp. 93-131, 1989.

[Newell 1990] Newell, A., Unified Theories of Cognition, Cambridge, MA, Harvard Univer-
sity Press, 1990.

[Newsted 1975] Newsted, P.R., "Grade and ability predictions in an introductory program-
ming course", SIGCSE Bull, vol. 7, 2, pp. 87-91, 1975.

[Nguyen et al. 1999] Nguyen, D. and Wong, S.B., "Patterns for decoupling data structures
and algorithms", SIGCSE '99: The proceedings of the thirtieth SIGCSE technical sympo-
sium on Computer science education, New Orleans, Louisiana, United States, pp. 87-91,
1999.

[Nguyen et al. 2001] Nguyen, D.Z. and Wong, S.B., "OOP in introductory CS: Better stu-
dents through abstraction", Procedings of the Fifth Workshop on and Tools for Assimilating
Object-Oriented Concepts, OOPSLA '01, Tampa, Florida, 2001.

[Norman 1981] Norman, D.A., "Categorization of action slips", Psychol. Rev., vol. 88, 1, pp.
1-15, 1981.

[Norman et al. 1996] Norman, D.A. and Spohrer, J.C., "Learner-centered education", Com-
mun ACM, vol. 39, 4, pp. 24-27, 1996.

[Nourie 2002] Nourie, D., "Teaching java technology with BlueJ", Sun Developer Network,
http://java.sun.com/features/2002/07/bluej.html, 2002.

[Nowaczyk 1983] Nowaczyk, R.H., "Cognitive Skills Needed in Computer Programming",
Atlanta, GA, USA, pp. 1-14, 1983.

[Object Mentor Inc. 2006] Object Mentor Inc. "JUnit.org", www.junit.org, last updated:
2006, accessed: 2007.

[Or-Bach et al. 2004] Or-Bach, R. and Lavy, I., "Cognitive activities of abstraction in object
orientation: an empirical study", SIGCSE Bull, vol. 36, 2, pp. 82-86, 2004.

[Paas 1992] Paas, F.G., "Training strategies for attaining transfer of problem-solving skill in
statistics: A cognitive-load approach", J. Educ. Psychol., vol. 84, 4, pp. 429-434, 1992.

[Paas et al. 1994] Paas, F.G.W.C. and Van Merriënboer, J.J.G., "Variability of worked ex-
amples and transfer of geometrical problem-solving skills: A cognitive-load approach", J.
Educ. Psychol., vol. 86, 1, pp. 122-133, 1994.

[Paas et al. 2003] Paas, F., Renkl, A. and Sweller, J., "Cognitive Load Theory and Instruc-
tional Design: Recent Developments", Educational Psychologist, vol. 38, 1; 1, pp. 1-4,
2003.

[Paas et al. 2004] Paas, F., Renkl, A. and Sweller, J., "Cognitive Load Theory: Instructional
Implications of the Interaction between Information Structures and Cognitive Architec-
ture", Instructional Science, vol. 32, 1-2, pp. 1-8, 2004.

[Papert 1993] Papert, S., Mindstorms: children, computers, and powerful ideas, New York,
Basic Books, pp. 230. 1993.

[Papert 2007] Papert, S. "Seymour Papert", http://en.wikipedia.org/wiki/Seymour_Papert,
last updated: 2007, accessed: 2007.

[Patterson et al. 2003] Patterson, A., Kölling, M. and Rosenberg, J., "Introducing unit testing
with BlueJ", ITiCSE '03: Proceedings of the 8th annual conference on Innovation and tech-
nology in computer science education, Thessaloniki, Greece, pp. 11-15, 2003.

[Pattis 1990] Pattis, R.E., "A philosophy and example of CS-1 programming projects", SIG-
CSE '90: Proceedings of the twenty-first SIGCSE technical symposium on Computer sci-
ence education, Washington, D.C., United States, pp. 34-39, 1990.

[Pattis 1993] Pattis, R.E., "The “procedures early” approach in CS 1: a heresy", SIGCSE '93:
Proceedings of the twenty-fourth SIGCSE technical symposium on Computer science edu-
cation, Indianapolis, Indiana, United States, pp. 122-126, 1993.

[Pecinovský et al. 2006] Pecinovský, R., Pavlícková, J. and Pavlícek, L., "Let's modify the
objects-first approach into design-patterns-first", ITICSE '06: Proceedings of the 11th an-

 181

nual SIGCSE conference on Innovation and technology in computer science education, Bo-
logna, Italy, pp. 188-192, 2006.

[Pedroni 2003] Pedroni, M., "Teaching Introductory Programming with the Inverted Curricu-
lum Approach", DiplomaETH Zürichpp. 1-86, 2003.

[Pedroni et al. 2006] Pedroni, M. and Meyer, B., "The inverted curriculum in practice", SIG-
CSE '06: Proceedings of the 37th SIGCSE technical symposium on Computer science edu-
cation, Houston, Texas, USA, pp. 481-485, 2006.

[Penney 1989] Penney, C.G., "Modality effects and the structure of short term verbal mem-
ory", Memory & Cognition, vol. 17, pp. 398-422, 1989.

[Perkins 1981] Perkins, D.N., The Mind's Best Work, Harvard University Press, pp. 324.
1981.

[Petre et al. 2005] Petre, M. and Green, T., "Editorial", Computer Science Education, vol. 15,
1, pp. 3-5, 2005.

[Phillips 1995] Phillips, D.C., "The Good, the Bad, and the Ugly: The Many Faces of Con-
structivism", Educational Researcher, vol. 24, 7, pp. 5-12, 1995.

[Piaget 2007] Piaget, J. "Jean Piaget", http://en.wikipedia.org/wiki/Jean_Piaget, last updated:
2007, accessed: 2007.

[Pirolli et al. 1985] Pirolli, P. and Anderson, J.R., "The role of learning from examples in the
acquisition of recursive programming skills", Canadian Journal of Psychology, vol. 39, pp.
240-272, 1985.

[Pirolli 1991] Pirolli, P., "Effects of Examples and Their Explanations in a Lesson n Recur-
sion: A Production System Analysis", Cognition & Instruction, vol. 8, 3, pp. 207, 1991.

[Pirolli et al. 1994] Pirolli, P. and Recker, M., "Learning Strategies and Transfer in the Do-
main of Programming", Cognition and Instruction, vol. 12, 3, pp. 235-275, 1994.

[Pollock et al. 2002] Pollock, E., Chandler, P. and Sweller, J., "Assimilating complex infor-
mation", Learning and Instruction, vol. 12, 1, pp. 61-86, 2002.

[Polya 1957] Polya, G., How to Solve It, New Jersey, Princeton University Press, pp. 253.
1957.

[Posner 1993] Posner, M.I., (Eds.) Foundations in Cognitive Science. MIT Press, 1993. pp.
888.

[PPIG 2005] PPIG. "Psychology of Programming Interest Group", http://www.ppig.org/, last
updated: 2005, accessed: 2006.

[Preiss 1999] Preiss, B.R., "Design patterns for the data structures and algorithms course",
SIGCSE '99: The proceedings of the thirtieth SIGCSE technical symposium on Computer
science education, New Orleans, Louisiana, United States, pp. 95-99, 1999.

[Proulx et al. 2002] Proulx, V.K., Raab, J. and Rasala, R., "Objects from the beginning - with
GUIs", ITiCSE '02: Proceedings of the 7th annual conference on Innovation and technol-
ogy in computer science education, Aarhus, Denmark, pp. 65-69, 2002.

[Proulx et al. 2006] Proulx, V.K. and Gray, K.E., "Design of class hierarchies: an introduc-
tion to OO program design", SIGCSE '06: Proceedings of the 37th SIGCSE technical sym-
posium on Computer science education, Houston, Texas, USA, pp. 288-292, 2006.

[PVW 2000] PVW. "Program Visualization Workshop",
http://www.cs.joensuu.fi/pages/pvw/workshop.htm, last updated: 2000, accessed: 2007.

[PVW 2002] PVW. "Second Program Visualization Workshop",
http://stwww.weizmann.ac.il/G-CS/BENARI/pvw/pvw.html, last updated: 2002, accessed:
2007.

[PVW 2004] PVW. "Third Program Visualization Workshop",
http://www.dcs.warwick.ac.uk/pvw04/, last updated: 2004, accessed: 2007.

[PVW 2006] PVW. "Fourth Program Visualization Workshop",
http://www.algoanim.net/pvw2006/, last updated: 2006, accessed: 2007.

[Quilici et al. 1996] Quilici, J.L. and Mayer, R.E., "Role of examples in how students learn to
categorize statistics word problems", J. Educ. Psychol., vol. 88, 1, pp. 144-161, 1996.

[Raadt et al. 2004a] Raadt, M.d., Watson, R. and Toleman, M., "Introductory programming:
what's happening today and will there be any students to teach tomorrow?", ACE '04: Pro-
ceedings of the sixth conference on Australasian computing education, Dunedin, New Zea-
land, pp. 277-282, 2004.

[Raadt et al. 2004b] Raadt, M.d., Toleman, M. and Watson, R., "Training strategic problem
solvers", SIGCSE Bull, vol. 36, 2, pp. 48-51, 2004.

[Ragonis et al. 2005a] Ragonis, N. and Ben-Ari, M., "On understanding the statics and dy-
namics of object-oriented programs", SIGCSE '05: Proceedings of the 36th SIGCSE techni-
cal symposium on Computer science education, St. Louis, Missouri, USA, pp. 226-230,
2005.

 182

[Ragonis et al. 2005b] Ragonis, N. and Ben-Ari, M., "A long-term investigation of the com-
prehension of OOP concepts by novices", Computer Science Education, vol. 15, 3, pp. 203-
221, 2005.

[Ramalingam et al. 2004] Ramalingam, V., LaBelle, D. and Wiedenbeck, S., "Self-efficacy
and mental models in learning to program", ITiCSE '04: Proceedings of the 9th annual
SIGCSE conference on Innovation and technology in computer science education, Leeds,
United Kingdom, pp. 171-175, 2004.

[Rasala et al. 2001] Rasala, R., Raab, J. and Proulx, V.K., "Java power tools: model software
for teaching object-oriented design", SIGCSE '01: Proceedings of the thirty-second SIGCSE
technical symposium on Computer Science Education, Charlotte, North Carolina, United
States, pp. 297-301, 2001.

[Rauchas et al. 2006] Rauchas, S., Rosman, B., Konidaris, G. and Sanders, I., "Language
performance at high school and success in first year computer science", SIGCSE '06: Pro-
ceedings of the 37th SIGCSE technical symposium on Computer science education, Hous-
ton, Texas, USA, pp. 398-402, 2006.

[Reed 1998] Reed, D., "Incorporating problem-solving patterns in CS1", SIGCSE '98: Pro-
ceedings of the twenty-ninth SIGCSE technical symposium on Computer science education,
Atlanta, Georgia, United States, pp. 6-9, 1998.

[Reek 1995] Reek, M.M., "A top-down approach to teaching programming", SIGCSE '95:
Proceedings of the twenty-sixth SIGCSE technical symposium on Computer science educa-
tion, Nashville, Tennessee, United States, pp. 6-9, 1995.

[Renkl et al. 2003] Renkl, A. and Atkinson, R.K., "Structuring the Transition From Example
Study to Problem Solving in Cognitive Skill Acquisition: A Cognitive Load Perspective",
Educational Psychologist, vol. 38, 1; 1, pp. 15-22, 2003.

[Rich et al. 2004] Rich, L., Perry, H. and Guzdial, M., "A CS1 course designed to address
interests of women", SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on
Computer science education, Norfolk, Virginia, USA, pp. 190-194, 2004.

[Riel 1996] Riel, A.J., Object-Oriented Design Heuristics, Boston, MA, USA, Addison-
Wesley Longman Publishing Co., Inc, 1996.

[Riley 1981] Riley, D.D., "Teaching problem solving in an introductory computer science
class", SIGCSE '81: Proceedings of the twelfth SIGCSE technical symposium on Computer
science education, St. Louis, Missouri, United States, pp. 244-251, 1981.

[Rist 1989] Rist, R.S., "Schema creation in programming", Cognitive Science, vol. 13, 3, pp.
389-414, 1989.

[Roberts 2004a] Roberts, E., "The dream of a common language: the search for simplicity
and stability in computer science education", SIGCSE '04: Proceedings of the 35th SIGCSE
technical symposium on Computer science education, Norfolk, Virginia, USA, pp. 115-119,
2004.

[Roberts 2004b] Roberts, E., "Resources to support the use of Java in introductory computer
science", SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, Norfolk, Virginia, USA, pp. 233-234, 2004.

[Roberts 2006] Roberts, T.S., "The use of multiple choice tests for formative and summative
assessment", ACE '06: Proceedings of the 8th Austalian conference on Computing educa-
tion, Hobart, Australia, pp. 175-180, 2006.

[Roberts et al. 2006] Roberts, E., Bruce, K., Cutler, R., Cross, J., Grissom, S., Klee, K.,
Rodger, S., Trees, F., Utting, I. and Yellin, F. "The ACM Java Task Force Version 1.0",
http://jtf.acm.org/, last updated: 2006, accessed: 2007.

[Robillard 2005] Robillard, P.N., "Opportunistic Problem Solving in Software Engineering",
IEEE Softw., vol. 22, 6, pp. 60-67, 2005.

[Robins et al. 2003] Robins, A., Rountree, J. and Rountree, N., "Learning and Teaching Pro-
gramming: A Review and Discussion", Journal of Computer Science Education, vol. 13, 2,
pp. 137-172, 2003.

[Rodger et al. 2006a] Rodger, S.H., Bressler, B., Finley, T. and Reading, S., "Turning auto-
mata theory into a hands-on course", SIGCSE '06: Proceedings of the 37th SIGCSE techni-
cal symposium on Computer science education, Houston, Texas, USA, pp. 379-383, 2006.

[Rodger 2006b] Rodger, S., "Learning automata and formal languages interactively with
JFLAP", ITICSE '06: Proceedings of the 11th annual SIGCSE conference on Innovation
and technology in computer science education, Bologna, Italy, pp. 360-360, 2006.

[Rosenberg et al. 1997] Rosenberg, J. and Kölling, M., "Testing object-oriented programs:
making it simple", SIGCSE '97: Proceedings of the twenty-eighth SIGCSE technical sympo-
sium on Computer science education, San Jose, California, United States, pp. 77-81, 1997.

[Rössling et al. 2006] Rössling, G., Naps, T., Hall, M.S., Karavirta, V., Kerren, A., Leska, C.,
Moreno, A., Oechsle, R., Rodger, S.H., Urquiza-Fuentes, J. and Velázquez-Iturbide, J.Á,

 183

"Merging interactive visualizations with hypertextbooks and course management", ITiCSE-
WGR '06: Working group reports on ITiCSE on Innovation and technology in computer sci-
ence education, Bologna, Italy, pp. 166-181, 2006.

[Rosson et al. 1996] Rosson, M.B. and Carroll, J.M., "Scaffolded examples for learning ob-
ject-oriented design", Commun ACM, vol. 39, 4, pp. 46-47, 1996.

[Roumani 2006] Roumani, H., "Practice what you preach: full separation of concerns in
CS1/CS2", SIGCSE '06: Proceedings of the 37th SIGCSE technical symposium on Com-
puter science education, Houston, Texas, USA, pp. 491-494, 2006.

[Rountree et al. 2002] Rountree, N., Rountree, J. and Robins, A., "Predictors of success and
failure in a CS1 course", SIGCSE Bull, vol. 34, 4, pp. 121-124, 2002.

[Rubinstein 1975] Rubinstein, M., Patterns of Problem Solving, Englewood Cliffs, NJ, Pren-
tice-Hall, pp. 544. 1975.

[Saiedian 2001] Saiedian, H., "Practical Software Engineering Education", Computer Science
Education, vol. 11, 1, pp. 3-5, 2001.

[Sajaniemi et al. 2003] Sajaniemi, J. and Kuittinen, M., "Program animation based on the
roles of variables", SoftVis '03: Proceedings of the 2003 ACM symposium on Software visu-
alization, San Diego, California, pp. 7-ff, 2003.

[Sajaniemi 2006] Sajaniemi, J. "The Roles of Variables Home Page",
http://cs.joensuu.fi/~saja/var_roles/, last updated: 2006, accessed: 2007.

[Schmidt 1980] Schmidt, E.M. "Lecture notes for CS1 (in Danish)", 1980.
[Schmolitzky 2005] Schmolitzky, A., "Towards Complexity Levels of Object Systems Used

in Software Engineering Education", Glasgow, UK, 2005.
[Schnotz et al. 2005] Schnotz, W. and Rasch, T., "Enabling, Facilitating, and Inhibiting Ef-

fects of Animations in Multimedia Learning: Why Reduction of Cognitive Load Can Have
Negative Results on Learning", Educational Technology Research & Development, vol. 53,
3; 3, pp. 47-58, 2005.

[Schoenfeld 1981] Schoenfeld, A.H., "Episodes and executive decisions in mathematical
problem solving", 1981.

[Scholtz et al. 1992] Scholtz, J. and Wiedenbeck, S., "The role of planning in learning a new
programming language", International Journal of Man-Machine Studies, vol. 37, 2, pp.
191-214, 1992.

[Shackelford et al. 1993] Shackelford, R.L. and Badre, A.N., "Why can't smart students
solve simple programming problems?", International Journal of Man-Machine Studies, vol.
38, 6, pp. 985-997, 1993.

[Shayer et al. 1981] Shayer, M. and Adey, P., Towards a science of science teaching. cogni-
tive development and curriculum demand, Oxford, Heinemann Educational, 1981.

[Sheil 1981] Sheil, B.A., "The Psychological Study of Programming", ACM Comput. Surv.,
vol. 13, 1, pp. 101-120, 1981.

[Shneiderman 1976] Shneiderman, B., "Exploratory experiments in programmer behavior",
International Journal of Parallel Programming, vol. 5, 2, pp. 123-143, 1976.

[Sicilia 2006] Sicilia, M., "Strategies for teaching object-oriented concepts with Java", Jour-
nal of Computer Science Education, vol. 16, 1, pp. 1-18, 2006.

[SIGCSE 2006] SIGCSE. "Special Interest Group in Computer Science Education",
http://www.sigcse.org/, last updated: 2006, accessed: 2006.

[Simon 1973] Simon, H.A., "The Organization of Complex Systems". In Hierarchy Theory:
The Challenge of Complex Systems, New York, George Braziller, pp. 1-27, 1973.

[Simons et al. 1991] Simons, B., Frailey, D.J., Turner, A.J., Zweben, S.H. and Denning, P.J.,
"An ACM response: the scope and directions of Computer Science", Commun ACM, vol.
34, 10, pp. 121-131, 1991.

[Singley et al. 1989] Singley, M. and Anderson, J.R., The Transfer of Cognitive Skill, Har-
vard University Press, 1989.

[Skublics et al. 1991] Skublics, S. and White, P., "Teaching Smalltalk as a first programming
language", SIGCSE '91: Proceedings of the twenty-second SIGCSE technical symposium on
Computer science education, San Antonio, Texas, United States, pp. 231-234, 1991.

[Smith et al. 1993] Smith, J.P.,III, diSessa, A.A. and Roschelle, J., "Misconceptions Recon-
ceived: A Constructivist Analysis of Knowledge in Transition", The Journal of the Learn-
ing Sciences, vol. 3, 2, pp. 115-163, 1993.

[SoftVis 2006] SoftVis. "ACM Symposium on Software Visualization",
http://www.softvis.org, last updated: 2006, accessed: 2007.

[Soloway et al. 1983] Soloway, E., Bonar, J. and Ehrlich, K., "Cognitive strategies and loop-
ing constructs: an empirical study", Commun ACM, vol. 26, 11, pp. 853-860, 1983.

 184

[Soloway 1986] Soloway, E., "Learning to program = learning to construct mechanisms and
explanations", Commun ACM, vol. 29, 9, pp. 850-858, 1986.

[Spohrer et al. 1986] Spohrer, J.C. and Soloway, E., "Novice mistakes: are the folk wisdoms
correct?", Commun ACM, vol. 29, 7, pp. 624-632, 1986.

[Soloway et al. 1989] Soloway, E. and Spohrer, J.C., Studying the novice programmer, Hills-
dale, N.J., Lawrence Erlbaum, 1989.

[Sprague et al. 2002] Sprague, P. and Schahczenski, C., "Abstraction the key to CS1", J.
Comput. Small Coll., vol. 17, 3, pp. 211-218, 2002.

[Stamouli et al. 2006] Stamouli, I. and Huggard, M., "Object oriented programming and
program correctness: the students' perspective", ICER '06: Proceedings of the 2006 interna-
tional workshop on Computing education research, Canterbury, United Kingdom, pp. 109-
118, 2006.

[Standage 1998] Standage, T., The Victorian Internet, New York, Berkeley Publishing
Group, pp. 227. 1998.

[Stasko et al. 2004] Stasko, J.T. and Hundhausen, C.D., "Algorithm Visualization". In Com-
puter Science Education Research, Taylor & Francis, 2004.

[Stein 1998] Stein, L.A., "What We Swept Under the Rug: Radically Rethinking CS1", Com-
puter Science Education, vol. 8, 2, pp. 118-129, 1998.

[Stein 2003] Stein, L.A. "Interactive Programming in Java", http://www.cs101.org/ipij/, last
updated: 2003, accessed: 2007.

[Stein 2002] Stein, M.V., "Mathematical preparation as a basis for success in CS-II", J. Com-
put. Small Coll., vol. 17, 4, pp. 28-38, 2002.

[Stiggins 2005] Stiggins, R.J., Student-Involved Assessment for Learning, Upper Saddle
River, NJ, Prentice-Hall, pp. 400. 2005.

[Stroustrup 1985] Stroustrup, B., "A C++ tutorial", ACM '85: Proceedings of the 1985 ACM
annual conference on The range of computing : mid-80's perspective, Denver, Colorado,
United States, pp. 56-64, 1985.

[Stroustrup 2000] Stroustrup, B., The C++ Programming Language, Addison-Wesley, pp.
1040. 2000.

[Sweller et al. 1982] Sweller, J., Mawer, R.F. and Howe, W., "Consequences of History-
Cued and Means-End Strategies in Problem Solving", Am. J. Psychol., vol. 95, 3, pp. 455-
483, 1982.

[Sweller et al. 1983] Sweller, J., Mawer, R.F. and Ward, M.R., "Development of expertise in
mathematical problem solving", J. Exp. Psychol. : Gen., vol. 112, 4, pp. 639-661, 1983.

[Sweller et al. 1985] Sweller, J. and Cooper, G.A., "The Use of Worked Examples as a Sub-
stitute for Problem Solving in Learning Algebra", Cognition and Instruction, vol. 2, 1, pp.
59-89, 1985.

[Sweller 1988] Sweller, J., "Cognitive load during problem solving: Effects on learning",
Cognitive Science, vol. 12, 2, pp. 257-285, 1988.

[Sweller et al. 1990] Sweller, J., Chandler, P., Tierney, P. and Cooper, M., "Cognitive load as
a factor in the structuring of technical material", J. Exp. Psychol. : Gen., vol. 119, 2, pp.
176-192, 1990.

[Sweller 1994a] Sweller, J., "Cognitive load theory, learning difficulty, and instructional
design", Learning and Instruction, vol. 4, 4, pp. 295-312, 1994.

[Sweller et al. 1994b] Sweller, J. and Chandler, P., "Why Some Material Is Difficult to
Learn", Cognition and Instruction, vol. 12, 3, pp. 185-233, 1994.

[Tarmizi et al. 1988] Tarmizi, R.A. and Sweller, J., "Guidance during mathematical problem
solving", J. Educ. Psychol., vol. 80, 4, pp. 424-436, 1988.

[Taylor 1977] Taylor, R.P., "Teaching programming to beginners", SIGCSE '77: Proceedings
of the seventh SIGCSE technical symposium on Computer science education, Atlanta,
Georgia, United States, pp. 88-92, 1977.

[Teif et al. 2006] Teif, M. and Hazzan, O., "Partonomy and taxonomy in object-oriented
thinking: junior high school students' perceptions of object-oriented basic concepts",
ITiCSE-WGR '06: Working group reports on ITiCSE on Innovation and technology in com-
puter science education, Bologna, Italy, pp. 55-60, 2006.

[Temte 1991] Temte, M.C., "Let's begin introducing the object-oriented paradigm", SIGCSE
'91: Proceedings of the twenty-second SIGCSE technical symposium on Computer science
education, San Antonio, Texas, United States, pp. 73-77, 1991.

[Thompson 2006] Thompson, E. "Researching learning to program",
http://www.massey.ac.nz/~elthomps/, last updated: 2006, accessed: 2007.

 185

[Trafton et al. 1993] Trafton, J.G. and Reiser, B.J., "The contributions of studying examples
and solving problems to skill acquisition", Proceedings of the Fifteenth Annual Conference
of the Cognitive Science Society, pp. 1017-1022, 1993.

[Traynor et al. 2006] Traynor, D., Bergin, S. and Gibson, J.P., "Automated assessment in
CS1", ACE '06: Proceedings of the 8th Austalian conference on Computing education,
Hobart, Australia, pp. 223-228, 2006.

[Tu et al. 1990] Tu, J. and Johnson, J.R., "Can computer programming improve problem-
solving ability?", SIGCSE Bull, vol. 22, 2, pp. 30-33, 1990.

[Tucker 1996] Tucker, A.B., "Strategic directions in computer science education", ACM
Comput. Surv., vol. 28, 4, pp. 836-845, 1996.

[Turner 1991] Turner, A.J., "Computing Curricula 1991", Commun ACM, vol. 34, 6, pp. 68-
84, 1991.

[Tyler 1949] Tyler, R.W., Basic Principles of Curriculum and Instruction, Chicago, The
University of Chicago Press, pp. 134. 1949.

[Ulloa 1980] Ulloa, M., "Teaching and learning computer programming: a survey of student
problems, teaching methods, and automated instructional tools", SIGCSE Bull, vol. 12, 2,
pp. 48-64, 1980.

[UML 2007] UML. "Unified Modeling Language",
http://en.wikipedia.org/wiki/Unified_Modeling_Language, last updated: 2007, accessed:
2007.

[van Merriënboer et al. 2003] van Merriënboer, J.J.G., Kirschner, P.A. and Kester, L., "Tak-
ing the Load Off a Learner's Mind: Instructional Design for Complex Learning", Educa-
tional Psychologist, vol. 38, 1; 1, pp. 5-13, 2003.

[van Merriënboer et al. 2005] van Merriënboer, J.J.G. and Ayres, P., "Research on Cogni-
tive Load Theory and Its Design Implications for E-Learning", Educational Technology Re-
search & Development, vol. 53, 3, pp. 5-13, 2005.

[VanLehn 1989] VanLehn, K., "Problem Solving and Cognitive Skill Acquisition". In Foun-
dations of Cognitive Science, MIT Press, pp. 527-579, 1989.

[VanLehn 1996] VanLehn, K., "Cognitive Skill Acquisition", Annual Review of Psychology,
vol. 47, pp. 513-539, 1996.

[Ventura 2003] Ventura, P.R., "On the origins of programmers: Identifying predictors of
success for an objects first CS1", Ph.D. thesisThe State University of New York at Buffalo,
Buffalo, New York U.S.A.2003.

[Ventura et al. 2004] Ventura, P.R. and Ramamurthy, B., "Wanted: CS1 students. no experi-
ence required", Proceedings of the 35th SIGCSE technical symposium on Computer science
education, Norfolk, Virginia, USA, pp. 240-244, 2004.

[Ventura 2005] Ventura, P.R., "Identifying predictors of success for an objects-first CS1.",
Computer Science Education, vol. 15, 3, pp. 223-243, 2005.

[Wallingford 1996] Wallingford, E., "Toward a first course based on object-oriented pat-
terns", SIGCSE '96: Proceedings of the twenty-seventh SIGCSE technical symposium on
Computer science education, Philadelphia, Pennsylvania, United States, pp. 27-31, 1996.

[Wallingford 2000] Wallingford, E., "Using patterns in the CS curriculum", CCSC '00: Pro-
ceedings of the fifth annual CCSC northeastern conference on The journal of computing in
small colleges, Ramapo College of New Jersey, Mahwah, New Jersey, United States, pp.
235-237, 2000.

[Ward et al. 1990] Ward, M. and Sweller, J., "Structuring Effective Worked Examples",
Cognition and Instruction, vol. 7, 1, pp. 1-39, 1990.

[Wegner et al. 1996] Wegner, P. and Doyle, J., "Editorial: Strategic directions in computing
research", ACM Comput. Surv., vol. 28, 4, pp. 565-574, 1996.

[Weiner 1978] Weiner, L.H., "The roots of structured programming", Papers of the SIG-
CSE/CSA technical symposium on Computer science education, Detroit, Michigan, pp. 243-
254, 1978.

[Werth 1986] Werth, L.H., "Predicting student performance in a beginning computer science
class", SIGCSE Bull, vol. 18, 1, pp. 138-143, 1986.

[Westfall 2001] Westfall, R., "Technical opinion: Hello, world considered harmful", Commun
ACM, vol. 44, 10, pp. 129-130, 2001.

[Wiedenbeck et al. 1993] Wiedenbeck, S., Fix, V. and Scholtz, J., "Characteristics of the
mental representations of novice and expert programmers: an empirical study", Int. J. Man-
Mach. Stud., vol. 39, 5, pp. 793-812, 1993.

[Wiedenbeck 2005] Wiedenbeck, S., "Factors affecting the success of non-majors in learning
to program", ICER '05: Proceedings of the 2005 international workshop on Computing
education research, Seattle, WA, USA, pp. 13-24, 2005.

 186

[Wikipedia 2007a] Wikipedia. "Hawthorne effect",
http://en.wikipedia.org/wiki/Hawthorne_effect, last updated: 2007, accessed: 2007.

[Wikipedia 2007b] Wikipedia. "Experience curve effects",
http://en.wikipedia.org/wiki/Experience_curve_effects, last updated: 2007, accessed: 2007.

[Wikipedia 2007c] Wikipedia. "Advanced Placement Program",
http://en.wikipedia.org/wiki/Advanced_Placement_Program, last updated: 2007, accessed:
2007.

[Wilkerson et al. 2005] Wilkerson, M., Griswold, W.G. and Simon, B., "Ubiquitous pre-
senter: increasing student access and control in a digital lecturing environment", SIGCSE
'05: Proceedings of the 36th SIGCSE technical symposium on Computer science education,
St. Louis, Missouri, USA, pp. 116-120, 2005.

[Williams et al. 2001] Williams, L.A. and Kessler, R.R., "Experiments with Industry's “Pair-
Programming” Model in the Computer Science Classroom", Computer Science Education,
vol. 11, 1, pp. 7-20, 2001.

[Williams et al. 2002] Williams, L. and Tomayko, J., "Agile Software Development", Com-
puter Science Education, vol. 12, 3, pp. 167, 2002.

[Willshire 1995] Willshire, M.J., "Old dogs, new tricks", SIGCSE '95: Proceedings of the
twenty-sixth SIGCSE technical symposium on Computer science education, Nashville, Ten-
nessee, United States, pp. 178-181, 1995.

[Wilson et al. 2001] Wilson, B.C. and Shrock, S., "Contributing to success in an introductory
computer science course: a study of twelve factors", SIGCSE '01: Proceedings of the thirty-
second SIGCSE technical symposium on Computer Science Education, Charlotte, North
Carolina, United States, pp. 184-188, 2001.

[Wilson 2002] Wilson, B.C., "A Study of Factors Promoting Success in Computer Science
Including Gender Differences", Computer Science Education, vol. 12, 1/2, pp. 141, 2002.

[Winslow 1996] Winslow, L.E., "Programming pedagogy — a psychological overview",
SIGCSE Bull, vol. 28, 3, pp. 17-22, 1996.

[Wirth 1971] Wirth, N., "Program development by stepwise refinement", Commun ACM, vol.
14, 4, pp. 221-227, 1971.

[Wirth 1974] Wirth, N., "On the Composition of Well-Structured Programs", ACM Comput.
Surv., vol. 6, 4, pp. 247-259, 1974.

[Wirth 2002] Wirth, N., "Computing science education: the road not taken", ITiCSE '02:
Proceedings of the 7th annual conference on Innovation and technology in computer sci-
ence education, Aarhus, Denmark, pp. 1-3, 2002.

[Wittgenstein 1953] Wittgenstein, L., Philosophical Investigations, Basil Blackwell, 1953.
[Wolz et al. 1994] Wolz, U. and Conjura, E., "Integrating mathematics and programming into

a three tiered model for computer science education", SIGCSE '94: Proceedings of the
twenty-fifth SIGCSE symposium on Computer science education, Phoenix, Arizona, United
States, pp. 223-227, 1994.

[Woodford et al. 2005] Woodford, K. and Bancroft, P., "Multiple choice questions not con-
sidered harmful", ACE '05: Proceedings of the 7th Australasian conference on Computing
education, Newcastle, New South Wales, Australia, pp. 109-116, 2005.

[Zhu et al. 1987] Zhu, X. and Simon, H.A., "Learning Mathematics From Examples and by
Doing", Cognition & Instruction, vol. 4, 3, pp. 137, 1987.

 187

 188

II Papers

 189

12 Potential Success Factors

The paper An Investigation of Potential Success Factors for an Introductory
Model-Driven Programming Course presented in this chapter has been pub-
lished as a conference paper [Bennedsen et al. 2005b].

[Bennedsen et al. 2005b] Bennedsen, J. and Caspersen, M.E., “An investiga-
tion of potential success factors for an introductory model-driven program-
ming course”, ICER '05: Proceedings of the 2005 International workshop on
Computing Education Research, Seattle, WA, USA, pp. 155-163, 2005.

 191

 192

An Investigation of Potential Success Factors
for an Introductory Model-Driven Programming Course

Jens Bennedsen
IT University West
Fuglesangs Allé 20
DK-8210 Aarhus V

Denmark
jbb@it-vest.dk

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34, DK-8200 Aarhus N

Denmark
mec@daimi.au.dk

ABSTRACT
In order to improve the course design of a CS1 model-driven pro-
gramming course we study potential indicators of success for such a
course. We explain our specific interpretation of objects-first.

Of eight potential indicators of success, we have found only two to
be significant at a 95% confidence interval: math grade from high
school and course work. The two significant indicators explain
24.2% of the variation of the exam grade. The result concerning
math grade contradicts earlier findings.

We discuss four aspects of our research: the explanation power of
the potential success indicators, the impact of our findings on teach-
ing, limits of what to conclude from the available data, and the vari-
ety of the notion “objects-first”.

Because of the variety of interpretations of “objects-first”, the pre-
sent research is necessary as a supplement to earlier research in or-
der to make generalizable results on the success factors for objects-
first programming.

Categories and Subject Descriptors
K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information systems
education.

General Terms: Experimentation, Human Factors.

Keywords: Objects-first, CS1, object-oriented programming,
model-driven programming, predictors of success, course design.

1. INTRODUCTION
A substantial amount of research has been conducted in order to
identify variables that are predictors of success of students aiming
for a university degree. Investigated variables encompass gender
[23], the educational level of parents [26], ACT/SAT scores [5, 12,
23], and emotional factors [25]. Research has been conducted in the
general context of education, within computer science, and in the

more topic specific area of introductory programming [4, 6, 13, 17,
19]. Even in the area of introductory object-oriented programming
there has been research trying to establish general factors to predict
success or failure of particular students. Especially the work of Phil
Venture [27] focuses on a systematic evaluation of hypothesis re-
lated to the factors for success of an introductory programming
course using an objects-first approach [14]. The results are docu-
mented in [27, 28].
Ventura analysed different factors and their influence on the out-
come of participation in an object-first CS1 course. The predictors
included prior programming experience, mathematical ability, aca-
demic and psychological variables, gender, and measures of student
effort [27 p. xxi]. Ventura’s conclusion is that there are big differ-
ences between the previous findings in imperative-first program-
ming courses and his object-first programming course. In the studies
of imperative-first courses the student’s mathematical abilities was
found to be a predictor of success [17]. Ventura [27], however,
found that this is not the case in his object-first CS1 course. In the
imperative-first course, prior programming experience was also a
predictor for success; Ventura found this was not the case in his ob-
jects-first course. As a curiosity he found that previous knowledge
of Java was a negative predictor of success: the students with previ-
ous knowledge performed worse than students without [27 p. 73].

As always there are some preconditions to the research. One impor-
tant precondition is the characteristics of the course that founded the
basis for the research. Ventura used a CS1 course with a graphics
early approach. In [28] he describes the graphics early approach as
follows: The course focuses primarily on the teaching of problem
solving using object-oriented design techniques with the following
features [28 p. 241]:

Design-centered. Through the introduction of a simplified version
of UML class diagrams, students are taught to think about problem
solutions independently of the code. Design once, code anywhere
has become the motto for the class. Design patterns are introduced
both in lecture and integrated into the programming assignments.
These serve as examples of good design as well as vehicles to en-
courage students to think at a higher level of abstraction.

Graphical. Classroom examples use graphics to motivate and
ground OO concepts such as encapsulation, inheritance, and poly-
morphism. The programming assignments are also graphical allow-
ing the students to build programs that are like those they are used to
using.

Objects-first. Students are taught from the very beginning to think
in terms of objects and the fundamentals of object-oriented pro-
gramming, encapsulation, inheritance, and polymorphism. These

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
ICER’05, October 1–2, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-59593-043-4/05/0010...$5.00.

155

193

concepts are introduced before traditional language constructs for
selection and iteration.

Furthermore, Ventura writes: “Empirical testing was conducted on
the graphical design-centric objects-first CS1 to identify the predic-
tors of success” [28 p. 127]. Venturas findings are only valid for
students participating in an introductory programming course simi-
lar to his. In the current research, we look for potential success fac-
tors for an introductory programming using a different approach
than Ventura’s; our approach is best characterized as a model-based
approach to programming [1].

2. A MODEL-DRIVEN PROGRAMMING
COURSE
This section describes goal, form, and content of the model-driven
programming course as well as the lab test that constitutes the final
examination and upon which the grading is based.

2.1 General Information
This course constitutes the first half of CS1 at University of Aarhus.
The course runs for seven weeks, one to two weeks after the course
there is a lab test with a binary pass/fail grading.

The grading is based solely upon the behaviour in and result of a lab
test; suitable performance during the course is a prerequisite for the
final exam but does not count as part of the grading.

There are approximately 235 students from a variety of study pro-
grammes, e.g. computer science, mathematics, geology, nano sci-
ence, economy, multimedia, etc. 40% are majors in computer sci-
ence, and they are the only group of students that continue with the
second half of CS1. The rest of the students proceed to other pro-
gramming courses related to their fields (e.g. multimedia program-
ming, scientific computing, etc.).

The students are grouped in teams of 18-20 students; in the fall of
2004 there where 13 teams. Each team has its own Teaching Assis-
tant (TA).

2.2 Goals
The purpose of the course is that the student learns the foundation
for systematic construction of simple programs and through this ob-
tains knowledge about the role of conceptual modelling in object-
oriented programming.

Furthermore, it is the goal that the student becomes familiar with a
modern programming language, fundamental programming lan-
guage concepts, and selected class libraries.

After the course the student will be able to explain and use funda-
mental elements in a modern programming language, use conceptual
modelling in relation to preparing simple object-oriented programs,
implement simple OO-models in a modern programming language,
and use selected class libraries.

2.3 Form
The course runs for seven weeks; every week there are four lecture
hours1, one lab hour with a TA, and three class hours also with a
TA. Besides scheduled hours, the students are supposed to work ap-
proximately seven hours per week in study groups or on their own.

1 For scheduled actvities (lectures, labs, classes, etc.) an hour

means only 45 minutes.

Every week (except for the first), there is a mandatory assignment
that must be handed in to the TA. The TA examines the assignments
and gives personal as well as collective feedback to the students. If
an assignment is too weak, the student gets a chance to improve it.
Approval of five out of six weekly assignments is a prerequisite for
the final exam but does not count as part of the grading.

The four lecture hours per week are used for presentation and dis-
cussion of general concepts and specific details in the course mate-
rial, but also for live programming. Live programming is program-
ming in front of the students in the lecture theatre using computer
and projector. The purpose of live programming is to reveal the pro-
gramming process to the students (see [2]).

The one lab hour per week is unstructured in the sense that the stu-
dents (typically in pairs) work on what they find useful, the purpose
of the lab is that the students can get help from a TA while working
on the exercises of the week.

The three class hours per week are used for discussion of the weekly
assignment, for discussion of other exercises that the students has
been working on, as well as for discussion of topics from the text-
book.

For the coming versions of the course, we are planning to adopt
closed labs as a more structured form of the lab activities; also we
are planning to reschedule such that two (or three) hours per week
are spent on closed labs and two (or one) in the classroom.

2.4 Contents
The course content is fundamental programming language concepts,
object-orientation, and techniques for systematic construction of
simple programs.

• Fundamental programming language concepts. Variable, value,
type, expression, object, class, encapsulation, control structure,
method/procedure, recursion, type hierarchies.

• Object-orientation. Modelling; class structures (specialization,
aggregation and association); use of selected class libraries (in
particular collection libraries), interfaces and abstract classes.

• Systematic development of small programs. Modularization,
stepwise refinement/incremental development, test.

The above is a logical listing of the course contents; it is not the or-
der in which the content is covered. The content is covered using a
spiral approach [3]; for further details on the structure and contents
of the course, see [1, 7, 8].

2.5 The Exam
The exam is organized such that 20 students are tested concurrently.
The test takes place in a lab; besides the 20 students, five TAs, the
lecturer and an external examiner are present in the lab.

We schedule one hour per group of 20 students, but only 30 minutes
are used for the lab test. The rest of the time is used for administra-
tive activities and as a buffer.

156

194

Figure 1: Sample Lab Test Exercise

Each group of students get a different assignment. In principle the
assignments are identical (they are all instances of the same generic
assignment), but the students does not know nor realize this. The
similarity of the assignments is important for fairness as well as
comparability of the students’ results. A sample assignment is pre-
sented in figure 1.

At the beginning of the exam, the students get a sheet of paper with
the assignment consisting of nine small progressive programming
tasks, and then they start programming. To ease inspection, we tell
the students to tile all editor windows on the screen during the test.

When the first three tasks are finished, the students must demon-
strate what they have achieved for one of the TAs. The lecturer and
the external examiner evaluate the process as well as the product of
each student, i.e. the students behaviour as well as the quality of the
programs they produce counts in the final grading.

The sample lab test exercise in figure 1 is about tracks and playlists;
the other exercises are about luggage and flights, employees and de-
partments, side effects and medicine, etc. Although the concepts
modelled by the classes vary, the assignments have similar structure.
Because of this similarity, it is very easy for the lecturer and the ex-
ternal examiner without too much effort to evaluate the achieve-
ments of each student.

2.6 Apprenticeship Inspired Pedagogy
The course utilizes an apprenticeship-based pedagogy where stu-
dents are exposed to how an expert programmer works. This is im-
plemented by the lecturer behaving as a professional programmer
(the master). For more information see [11].

The master reflects and thinks aloud of the particular action, maing
them visible and as a source of identification [19]. As such, the ap-
prentice (student) learns from observing the master (teacher) per-
forming the actions embedded in the profession (e.g. coding, testing,
etc).

3. RESEARCH METHOD
This paragraph discusses the methodology utilized in identifying the
predictors of success for the model based CS 1 course described in
the previous section. Section 3.1 outlines the research questions to
be studied. Section 3.2 provides details on the subjects involved in
the study. Section 3.3 describes the data and how it was provided,
while Section 3.4 presents the manner in which data were collected
and calculated.

3.1 Research Questions
In our current research, we look for potential success indicators that
are statistically significant in predicting students’ success when un-
dertaking a model-driven introductory programming course. The
factors are motivated by previous research in the field [13, 17, 27,
30].

1. What is the relationship of mathematical ability to model-based
CS1?

2. What is the relationship of gender to model-based CS1?

3. What is the relationship of major/intended major to model-based
CS1?

4. What is the relationship of course work to model-based CS1?

5. What is the relationship of years at the university to model-
based CS1?

6. What is the relationship of the team to model-based CS1?

Due to technical problems, we did not collect data on the students
feeling about the course, motivation for the course etc. Due to a
technical problem, we were not able to use information about the
students’ previous programming experience.

3.2 Subjects
The subjects studied in this paper were students enrolled at the
course Introduction to Programming at the University of Aarhus,
Denmark, during the fall of 2004. Only data from students taking
the course for the first time were used; to exclude the possibility of

Lab Test Exercise (30 minute test)

1. Create a class, Track, that represents a piece of music; the Track
class is specified in the following UML diagram.

Track

String artist
String songName
int min
int sec

String toString()

The four field variables must be initialized in a constructor (through
four parameters of suitable types). The method toString must return
a string representation for a piece of music, e.g.

 ”Yesterday: The Beatles (2:05)”

2. Create a test method named exam in class Driver. The method must
be static, have return type void, and have no parameters.

3. Create two Track objects in the exam method using object refer-
ences t1 and t2; print the two Track objects using the toString
method.

4. Create a new class, Playlist, representing a collection of Tracks; the
Playlist class and its relation to the Track class is specified in the
following UML diagram:

Playlist

String playlistName

void addTrack(Track t)
void removeTrack(Track t)
Track findShortestTrack()

Track

String artist
String songName
int min
int sec

String toString()

*

5. Implement the method addTrack (and removeTrack) so that it adds

(removes) the object t to (from) the Playlist object.

6. Create a Playlist object in the exam method in the Driver class; as-
sociate the two existing Track objects with the Playlist object.

7. Implement the method findShortestTrack. The method must return a
shortest (measured in playing time) Track object from a Playlist ob-
ject. You can assume a non-empty Playlist object. In other words:
You need not worry about the playlist being empty.

8. Use the methods findShortestTrack (from class Playlist) and
toString (from class Track) to print the shorter of the two Track ob-
jects that was created and associated with the Playlist object in the
exam method.

9. Let the Track class implement the Comparable interface. The natu-
ral order of Track objects is defined as alphabetical order of artist
(secondary of songName).

157

195

an extended practice effect, we decided to exclude from our investi-
gations the students who followed the course for the second or third
time.

3.3 Data
Several different data sources were used in this study. Information
comes from the administrative system at the university (gender, en-
rollment date, major), the course web-site (team number), the teach-
ing assistants (the score of the different lab-assignments), the final
exam and the authors (the score in the exam) and a questionnaire
(the math score for their high school exam).

Mathematical ability. The students score from their high school
exam is used as an indicator of the students’ mathematical abilities.
The high schools in Denmark offer different levels of mathematical
exams (A, B, and C where C is the lowest level). The students are
required to have a high school math exam at the A level in order to
take the introductory programming course. However, three students
did not have the required A level but a B level. In our analysis, we
observe that these three persons are outliers very far from the normal
distribution, so they are excluded from the analysis. The students
themselves in a questionnaire gave the score after the exam. A few
students did not answer the questionnaire; they are also excluded
from the analysis.

Course work. During the course, the students are required to com-
plete five out of six weekly exercises in order to participate in the fi-
nal exam. The teaching assistants evaluate the exercises and the
score for each exercise is encoded as one of the numbers 1, 2, or 4.
The interpretation of the encoding is:

Value Meaning

1 Perfect, no significant errors

2 OK, small errors

4 Not accepted/Not handed in
Table 1: The scores for the weekly exercises

In case a student got a “4”, he had the possibility of resubmitting the
exercise once.

We have used the sum of these scores as a description of the stu-
dents work during the course. We have excluded from our analysis
the students who were not allowed to take the final exam.

Final exam score. The final exam is a practical test as described in
section 2. The official result of the exam is a binary grading (pass or
fail). In order for this research to be able to analyse the results at a
finer grain, one author has post-marked all the students’ solutions.
The result of the more fine-grained marking is a grade in the interval
[00...13] (see [10]). In order to pass an exam, a student needs a
grade of 6 or more.

The official description of the grades is [10]:

13: Is given for the exceptionally independent and excellent per-
formance.

11: Is given for the independent and excellent performance.

10: Is given for the excellent but not particularly independent per-
formance.

9: Is given for the good performance, a little above average.

8: Is given for the average performance.

7: Is given for the mediocre performance, slightly below average.

6: Is given for the just acceptable performance.

5: Is given for the hesitant and not satisfactory performance.

03: Is given for the very hesitant, very insufficient and unsatisfactory
performance.

00: Is given for the completely unacceptable performance.

The results of the post-marking is equivalent to the official results of
the exam in the sense that all the students who passed the exam got a
grade of six or more and the students who failed the exam got a
grade of five or less. In order to ensure that the marking was fair, the
co-author marked ten randomly selected answers. The results were
identical.

In all the statistical tests, the result of the marking is used as the in-
dicator of success—higher grade means more success.

3.4 Statistical Analysis
In order to test the hypotheses a covariance analysis is used. The
analysis shows which (if any) of the independent variables that are
correlated with the exam result.

The goal is furthermore to find how much impact (if any) the vari-
ables have on the result of the examination. One way to obtain this
is to use a multiple regression analysis based on an as simple as pos-
sible model using the variables in question and the relevant interac-
tion variables (i.e. combination of the variables).

In order to test the multiple regression model normally six prerequi-
sites need to be fulfilled:

1. Linearity

2. Normal distribution

3. Homoscedasticity – the conditional distribution of Y has con-
stant standard deviation throughout the range of values of the
explanatory variables.

4. No collinearity – two or more variables have a strong linear rela-
tionship (i.e. explains the same).

5. No problematic outliers – an observation falls far from the rest
of the data and the mean is highly influenced.

6. No autocorrelation - some observations are dependent.

Being population data, the requirements are not as important as if
they were test samples. The team and the intended major have a cor-
relation. This is to be expected since the teams are made up mostly
of students with the same intended major. Team is therefore ex-
cluded from the analysis. The data fail on the test for normal distri-
bution, but the test for 3, 4, and 5 is fine. Test 6 is only relevant for
time series data. It is therefore possible to use multiple regression
analysis in order both to check the hypotheses and furthermore to
evaluate the impact the selected factors have on the actual exam re-
sult.

We start by running the complete multiple regression model with all
variables including all the interaction variables. We find that the
model explains 36.1% of the variation in the dependent variable at a
95% confidence interval. In order to meet the criteria of parsimony
we compare the complete model with all interaction variables with a
simple model i.e. a model without interaction variables. We find that
we lose 34.4% explanation power since the simple model only ex-
plains 23.6% of the variation in the dependent variable. Because of
the severe loss of explanation power in the simple model, we cannot
ignore the model with all interaction variables. We want all vari-
ables in the model to be significant; this leads us to eliminate one by
one all insignificant variables at a 95% confidence interval accord-

158

196

ing to the hierarchical principle; we end up with a reduced model
that explains 24.2% of the variance.

In the following, a 95% confidence interval is used to test the hy-
potheses (i.e. the probability of the hypotheses being true is 95%).

The analysis of the data is performed in SPSS version 13.0. The fol-
lowing variables are used:

Name Description
GRADE The result of the programming exam. Integer

value from 00 – 13.

MATH The score from the high school math exam.
Integer value from 00 – 13.

COURSEWORK The results of the assignments during the
course. Integer value from 0-8. The variable is
translated in the following way:

Sum of the results of the
weekly assignments

Value

6 8

7 7

8 6

9 5

10 4

11 3

12 2

13 1

14 0

For an explanation of the results of the weekly
assignments, see Table 1. If the sum of the as-
signments is 6, the student has handed in six
perfect answers. If the value is 14 the student
has handed in five acceptable assignments and
one not acceptable/not handed in.

STUDYAGE The number of years the student has been en-
rolled at the university. Integer value from 0 –
20. Students enrolled in 1984 or earlier were
coded as 20.

COMPSCIENCE The student intends to major in computer sci-
ence (1=intended major in computer science,
0 otherwise).

GEOLOGY The student intends to major in geology
(1=intended major in geology, 0 otherwise).

MATHEMATICS The student intends to major in math
(1=intended major in math, 0 otherwise).

NANOSCIENCE The student intends to major in nanoscience
(1=intended major in nonoscience, 0 other-
wise).

SEX 1= female, 0=male.

Table 2: Description of the variables

4. RESULTS
In this section the result of the multiple regressions is given.

4.1 Non significant variables
The variables NANOSCIENCE, MATHEMATIS, GEOLOGY,
COMPSICENCE, SEX and STUDYAGE were not significant with
respect to explaining the exam result using a 95% confidence inter-
val. This was also the case with the interaction variables.

4.2 Multiple regression formula
The result of the regression analysis is presented in Table 3. The de-
rived regression formula is:

GRADE = 1.118 +

 0.589*MATH +

 0.341*COURSEWORK

Unstandardised
coefficients

Variable

B Std. Error

Significance

COURSEWORK 0.341 0.097 0.000

MATH 0.589 0.107 0.001

Table 3: Coefficients of the regression analysis

The multiple regression formula (The reduced model with just two
variables) explains 24.2 % of the variation of the exam grades. As
described above the model with all the interaction variables explains
36.1% of the variation. The loss of explanation power in the reduced
formula is 32.69%.

In order to find the importance of the different variables we have
calculated the squared partial correlation coefficients (r2). These de-
scribe the impact of one of the variables when the other variables are
held fixed; in other words the amount of the variation of the exam
grade that one of the variables is responsible for.

 r r2

COURSEWORK 0.264 0.069696 = 7 %

MATH 0.393 0.154449 = 15,4 %

Table 4: Partial correlation coefficients

In order to get a model that explains more of the variation of the
exam grades we have tested the complete model using a 90% confi-
dence interval for the individual variables. The reason is that it is
population data. This gives the following formula:
GRADE = -13.58 + 2.575*COURSEWORK +

1.856*MATH + 3.564*COMPSCIENCE +
6.668*GEOLOGY –
0.673*MATH*GEOLOGY+
0.064*MATH*STUDYAGE-
0.192*COURSEWORK*MATH –
0.515*COURSEWORK*COMPSCIENCE -
0.111*COURSEWORK*STUDYAGE.

This formula accounts for 29.9% of the variation of the exam grade.
In order to be compatible with the references, we will only discuss
the model with a 95% confidence interval for the individual vari-
ables.

4.3 The hypotheses
In the following, we will discuss the research questions.

159

197

4.3.1 Mathematical ability
In the multiple regression formula, we can see that the math score
from high school has a positive impact on the exam grade. We there-
fore accept the hypothesis that there is a positive correlation be-
tween the final exam score and the grade from the math exam in
high school (95% confidence interval).

The squared partial correlation coefficient in the multiple regression
was 15.4% saying that math grade alone accounts for over 15% of
the variance of the final grade. This is almost the same that Leeper
& Silver [17] found in their analysis; they found that math ac-
counted for 14.3% of the variation.

4.3.2 Gender
The variables SEX was not significant, neither at the 95% confi-
dence interval nor at the 90% confidence interval. We can therefore
not accept the hypothesis that gender has an impact on the exam
score. This corresponds with the findings of Ventura [28] “The tests
fail to reveal any gender bias for course success.” (p. 98), and the
findings of [22].

4.3.3 Major/intended major
Neither of the variables indicating the intended major of the students
were significant at the 95% confidence interval. This implies that we
must reject the hypothesis of a positive impact of majoring in com-
puter science. In the less accurate model, where the variables only
were significant at the 90% confidence interval, the variables
COMPSCIENCE and GEOLOGY were significant. At this level we
can accept the hypothesis of a positive impact of majoring in com-
puter science (it accounts for 3,6% of the variance), but since the
variable GEOLOGY is significant but the variables
NANOSCIENCE and MATHEMATICS are not, we can not say
anything about the students not majoring in computer science. The
finding corresponds with the findings in [27].

4.3.4 Course work
From the multiple regression formula, we can see that the variable
COURSEWORK is significant at the 95% confidence interval and it
has a positive impact on the exam grade. We can therefore accept
the hypothesis that students who work harder get better grades.

The squared partial correlation coefficient in the linear regression
was 7.0% indicating that course work alone accounts for 7% of the
variance of the final grade; only half the impact of the math grade
from high school.

4.3.5 Study age
The variable STUDYAGE was not significant at the 95 % confi-
dence interval. We must therefore reject the hypothesis that there is
a correlation between how many years the students have spend at the
university and the result of the introductory programming course.
Using a 90 % confidence interval, the variable is not significant in
itself but in combination with the math grade, it has a positive im-
pact; with course work, it has a negative impact. These two combi-
nations of variables accounts for 2% of the variation each, but this is
only at the 90% level.

4.3.6 Team
There is an a priori correlation between team and intended major
because of the way students are allocated to teams, so the variable

team was excluded from the model. Since intended major is not sig-
nificant, the same is true for team.

5. Discussion
In this section, we discuss four aspects of our investigation: the ex-
planation power of the variables, the impact of our findings on
teaching, limits of what to conclude from the available data, and the
variety of the notion “objects-first”.

5.1 Explanation power of variables
The regression formula presented in section 4.2 accounts for 24.2%
of the variation of the exam grade. One way to interpret this is that
there is 75.8% not accounted for by these variables, so we cannot
predict the actual grade from the two variables. This is the same
conclusion that Leeper & Silver [17] reached; they used the regres-
sion formula on the students in next year’s course and found they
were only correct for 39 out of 106 students. On the other hand, we
have only used two variables and using these, we can explain 24.2%
of the variation of the exam grade – quite a large portion with only
two variables. The variables considered here definitely have a large
impact on the result of the exam.

5.2 Impact on teaching
The two variables we have found to be significant are math grade
from high school and course work. The math grade counts for 2/3 of
the explanation power of the two variables but unfortunately the
students cannot improve it. Course work counts for 1/3 of the expla-
nation power of the two variables, but opposite to the math grade,
course work is improvable in the course and therefore interesting
when designing the pedagogy of the course.

The significance of the course work variable indicates, not surpris-
ingly, that students who follow the pace of the course performs bet-
ter at the final exam. We discuss this aspect further in section 6 on
future work.

5.3 Limits of conclusions
Prediction of success is difficult. Ventura [27] reached the conclu-
sion that math score was not a success factor, we have found it to
be!

This difference, of course, is a result of the origin of the data. Ven-
tura’s [27] and our data come from two different implementations of
an objects-first CS1 programming course; we can only draw conclu-
sions for each particular implementation, we cannot draw conclu-
sions about success factors for objects-first programming courses in
general. In order to answer the more general question of success fac-
tors of an object-first CS1 course we need data from various differ-
ent implementations of this teaching strategy.

5.4 Objects-first
Objects-first is not a well-defined term. It seems that every CS1
teacher has his or her own interpretation of the term (e.g. 9, 15, 16,
24]. In [14] the description of objects-first is: “an objects-first ap-
proach that emphasizes early use of objects and object-oriented de-
sign” (p. 28). What does early mean, and what is meant by object-
oriented design?

In [18] the author discuss nine myths about object-orientation and
its pedagogy; one is that the phrase “objects first” is well.defined.
The author writes: “No matter what your definition of objects first

160

198

is, it is likely to be different from that of the person next to you.” (p.
247), and “The phrases ‘objects first’ and ‘objects early’ are bandied
about in a variety of contexts. When discussing a CSI course they
are often used to convey the general idea that objects are discussed
early in the course and established as a fundamental concept. Be-
yond that, however, these phrases seem to take on a variety of mean-
ings, with important implications.” (p. 246).

Because of the variety of interpretations of “objects-first”, it is im-
possible to make conclusions about this approach in general.

6. FUTURE WORK
In the current research, we have investigated the relationship be-
tween the student’s achievements in the final exam of the introduc-
tory programming course and mathematical prerequisites, gender,
study program, student team, maturity, and the student’s achieve-
ments in the mandatory weekly exercises during the course.

Identifying success factors is relevant, and has been done in many
fields with many different hypotheses of success factors for educa-
tion in specific fields and for education in general. Wang & Hertel
[29] abstracted over more than 11.000 statistical findings in order to
identify the most influential factors for learning. They found that
“the students metacognitive processes that is, a student’s capacity to
plan, monitor, and, if necessary, re-plan learning strategies—had the
most powerful effect on his or her learning.” (p.75). Even though
their research was based on students in primary and lower secondary
schools, other research have found factors related to student aptitude
or classroom management to be important as well in a university set-
ting. For references, see [21].

The explanation power of the variables we have studied is rather
small. However, more important is the fact that the most influential
of the variables from our study, math grade from high school, is out-
side our control—we cannot do anything to improve it by changing
the course design, and the students cannot do anything about it by
changing their attitude in the CS1 course. We would like to identify
success factors within our control, i.e. success factors that we can
promote by changing aspects of our course design.

From our experience, we conjecture that other factors also are likely
to be indicators of success than the ones investigated in the research
reported in this paper. Numerous other factors might be success in-
dicators in an introductory model-driven programming course, e.g.
motivation, effort, power of abstraction, prior programming experi-
ence, social course context, emotional and social health, family
background, ethnic background, financial situation, and computer
literacy. In order to improve the learning situation, we would like to
pursue those factors we believe to be dominant in predicting success
and which we can do something about by changing our course de-
sign, and this rules out family background, ethnic background, fi-
nancial situation and computing literacy.

Motivation. How motivated is the student? Presumably, a CS major
is more motivated than a math major or chemistry major; and of
course some CS students are more motivated than others.

Effort. How hard does the student work with the subject during the
quarter/semester? Programming is a contact-sport, and the hard-
working students are likely to perform vastly better than the less
hard-working students are. In this research, we have used a simpli-
fied description of the effort the students puts in the course namely
the result of the mandatory assignments.

Power of abstraction. We believe that the student’s power of ab-
straction —the students ability to cope with abstract concepts and
their detailed realization in a modern programming language which
is a task spanning several orders of magnitude— plays a dominant
role as indicator of success in any introductor programming course,
also a model-driven course as ours.

Prior programming experience. All other things being equal, we
expect prior programming experience to be an indicator of success.
However, one often sees that students with prior programming ex-
perience rely too much on their prior experience and eventually find
themselves (lost) far behind the students that approach their study
with a more humble and hard-working attitude. This indicator has
been shown in several studies [13, 30] to be an indicator of success,
even though Ventura [28] could not confirm this.

Social course context. We believe the social context of the learning
environment, i.e. the lecturer, the TA, and the fellow students, to be
an indicator of success; however, it is probably a more moderate
success indicator than the other four mentioned above.

Emotional and social health. [21] found that “both emotional and
social health factors related to student performance and retention”
(p24). In their study they have used a wide range of tests to deter-
mine college students emotional and social health. It would be inter-
esting to see if these factors have the same impact on students par-
ticipating in a model-based programming course.

It is not a trivial task to measure the parameters mentioned above;
consequently, a major part of the indicated future work will be to
identify trustworthy techniques of establishing quantitative measures
of these parameters.

In section 5.3 we concluded: “In order to answer the more general
question of success factors of the object-first CS1 course we need
data from various different implementations of this teaching strat-
egy.” Therefore, we would like to extend the investigation to other
institutions (other teachers, other interpretations of objects-first,
etc.).

7. CONCLUSIONS
We have studied eight potential indicators of success for a model-
driven CS1 course at university level: math grade from high school,
course work, study age, major in CS, major in math, major in geol-
ogy, major in nano science, and gender.

We have explained our specific interpretation of objects-first by pre-
senting a detailed description of the course design including goal,
form, content, exam, and pedagogy.

We have presented our research method including research ques-
tion, data, statistical method (multiple regression analysis).

Of the eight potential indicators of success, we have found only two
to be significant at a 95% confidence interval: math grade from high
school and course work. The two significant indicators explain
24.2% of the variation of the exam grade. Math is the more domi-
nant of the two, it accounts for 2/3 of the variation. The result con-
cerning math grade contradicts the findings of Ventura [27].

We have discussed four aspects of our research:

1. The explanation power of the variables: the variables considered
here definitely have a large impact on the result of the exam.

2. The impact of our findings on teaching: the significance of the
course work variable indicates, not surprisingly, that students

161

199

who follow the pace of the course performs better at the final
exam.

3. Limits of what to conclude from the available data: data from
various different implementations of this teaching strategy is
needed in order to answer the more general question of success
factors of an object-first CS1 course.

4. The variety of the notion “objects-first”: because of the variety
of interpretations of “objects-first”, it is impossible to make con-
clusions about this approach in general.

Further work need to be done in order to make generalizable results
on the success factors for objects-first programming; we suggest six
potential indicators of success that we believe to be dominant in
predicting success and which we can do something about by chang-
ing our course design.

8. ACKNOWLEDGEMENT
We would like to thank Louise Heltborg for her help in the statisti-
cal analysis and Lisbeth Petersen for her help in collecting the data.
We would like to thank all the participants in the course for taking
part in our investigations.

9. REFERENCES
[1] Bennedsen, J. & Caspersen, M.E.(2004). Programming in

Context – A Model-First Approach to CS1, Proceedings of
the thirty-fifth SIGCSE Technical Symposium on Computer
Science Education, Norfolk, Virginia, 2004, pp. 477-481.

[2] Bennedsen J. & Caspersen, M.E (2005). Revealing the Pro-
gramming Process. Proceedings of the thirty-sixth SIGCSE
Technical Symposium on Computer Science Education, St.
Louis, Missouri, 2005. pp.186-190.

[3] Bergin, J. 14 Pedagogical Patterns. Available on-line at
“http://csis.pace.edu/~bergin/PedPat1.3.html”. Last accessed
May 13 2005.

[4] Bergin, S & Reilly, R (2005) Programming: factors that in-
fluence success. SIGCSE '05: Proceedings of the 36th SIG-
CSE technical symposium on Computer science education
,St. Louis, Missouri, USA. pp. 411--415.

[5] Brooks, J. H., & DuBois, D. L. (1995). Individual and envi-
ronmental predictors of adjustment during the first year of
college. Journal of College Student Development, 36, pp.
347-360.

[6] Byrne, P., & Lyons, G. (2001). The effect of student attrib-
utes on success in programming. Proceedings of the 6th an-
nual conference on Innovation and technology in computer
science education, 49-52.

[7] Caspersen, M.E. & Christensen, H.B. (2000). Here, There
and Everywhere – On the Recurring Use of Turtle Graphics
in CS1. Proceedings of the Fourth Australasian Computing
Education Conference, ACE 2000 Melbourne, Australia,
2000, pp. 34-40.

[8] Caspersen, M.E. & Christensen, H.B.(2002) Frameworks in
CS1 -- a Different Way of Introducing Event-driven
Programming. In: Proceedings of the seventh Annual
Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2002, Aarhus, Denmark.

[9] Cooper, S., Dann, W.& Pausch, R. (2003) Teaching Objects-
first In Introductory Computer Science SIGCSE’03 February
19-23, 2003, Reno, Nevada, USA. pp. 85 – 89.

[10] Exam score (2005). http://www.retsinfo.dk/_GETDOCM_/
ACCN/B19950051305-REGL (English translation can be
found in the bottom) Last accessed April 30 2005.

[11] Fjuk, A., Berge, O., Bennedsen, J. & Caspersen, M. (2004).
Learning Object-Orientation through ICT-mediated Appren-
ticeship. Procedings of the 4th IEEE International Confer-
ence on Advanced Learning Technologies, Joensuu, Finland.

[12] Foster, T. R. (1998). A comparative study of the study skills,
self-concept, academic achievement and adjustment to col-
lege of freshman intercollegiate athletes and nonathletes.
Dissertation Abstracts International Section A: Humanities
and Social Sciences, 58(12-A), pp. 4565.

[13] Hagan, D., & Markham, S. (2000). Does it help to have some
programming experience before beginning a computing de-
gree program? ACM SIGCSE Bulletin , 5th annual SIG-
CSE/SIGCUE conference on Innovation and technology in
computer science education, 32(3). pp. 25-28.

[14] The Joint Task Force on Computing Curricula (IEEE
Computer Society and Association for Computing
Machinery). Computing Curricula 2001 (final report),
December 2001. Available on-line at
“http://www.computer.org/education/cc2001/final”. Last
accessed May 13, 2005.

[15] Jones, R., Boyle, T. & Pickard, P. (2003) Objectworld: Help-
ing Novice Programmers to Succed through a Graphical Ob-
jects-first Approach. Proceedings of 4th Annual LTSN-ICS
Conference, NUI Galway, pp. 111 – 114.

[16] Kölling, M. & Rosenberg, M. (2001) Guidelines for teaching
object orientation with Java, ITiCSE '01: Proceedings of the
6th annual conference on Innovation and technology in com-
puter science education, pp. 33 – 36.

[17] Leeper, R. R., & Silver, J. L. (1982). Predicting success in a
first programming course. Technical Symposium on Com-
puter Science Education, Proceedings of the thirteenth SIG-
CSE technical symposium on Computer science education,
Indianapolis, Indiana, United States. pp: 147 – 150.

[18] Lewis, J. (2000) Myths about object-orientation and its
pedagogy, Proceedings of the thirty-first SIGCSE technical
symposium on Computer science education, pp. 245-249.

[19] Nielsen, K., Kvale, S. (1997). Current issues of apprentice-
ship”. Nordisk Pedagogik, Vol 17, pp. 130-139.

[20] Nowaczyk, R. H. (1983). Cognitive skills needed in com-
puter programming. Paper presented at the Annual Meeting
of the Southeastern Psychological Association, Atlanta,
Georgia.

[21] Pritchard, M. E. & Wilson G S. (2003). Using Emotional and
Social Factors to Predict Student Success, Journal of College
Student Development, Vol 44(1).

[22] Rountree, N. Rountree, J. and Robins, A (2002).Predictors of
success and failure in a CS1 course. SIGCSE Bulletin, vol
34(4) pp. 121—124.

[23] Sanders, R. T., Jr. (1998). Intellectual and psychosocial pre-
dictors of success in the college transition: A multiethnic

162

200

study of freshman students on a predominantly White cam-
pus. Dissertation Abstracts International Section B: The Sci-
ences and Engineering, 58(10-B), pp. 5655.

[24] Schmolitzky, A. (2004) Objects first, interfaces next" or in-
terfaces before inheritance, Educators symposium, OOPSLA
'04: Companion to the 19th annual ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages,
and applications pp. 64 – 67.

[25] Szulecka, T. K., Springett, N. R., & de Pauw, K. W. (1987).
General health, psychiatric vulnerability and withdrawal
from university in first-year undergraduates. British Journal
of Guidance & Counseling Special Issue: Counseling and
health, 15, pp. 82-91.

[26] Ting, S. R., & Robinson, T. L. (1998). First-year academic
success: A prediction combining cognitive and psychosocial
variables for Caucasian and African American students.
Journal of College Student Development, 39, pp. 599-610.

[27] Ventura, P. R.. (2003). On the Origins of Programmers:
Identifying Predictors of Success for an Objects First CS1”,
PhD. dissertation, The State University of New York at Buf-
falo, 2003.

[28] Ventura, P. R. & Ramamurthy, B. (2004). Wanted: CS1 Stu-
dents. No Experience Required. ACM SIGCSE Bulletin ,
Proceedings of the 35th SIGCSE technical symposium on
Computer science education, Volume 36(1) pp. 240 – 244.

[29] Wang, M. C. & Haertel, G. D. (1993). What helps students
learn? Educational Leadership; Dec93/Jan94, Vol. 51 Issue
4, pp. 74-79.

[30] Wilson, B. C., & Shrock, S. (2001). Contributing to success
in an introductory computer science course: A study of
twelve factors. ACM SIGCSE Bulletin , Proceedings of the
thirty second SIGCSE technical symposium on Computer
Science Education, 33(1), pp. 184-188

163

201

202

13 Abstraction Ability as an Indicator
of Success?

The paper Abstraction Ability as an Indicator of Success for Learning Ob-
ject-Oriented Programming? presented in this chapter has been published as
a journal paper [Bennedsen et al. 2006a].

[Bennedsen et al. 2006a] Bennedsen, J. and Caspersen, M.E., “Abstraction
Ability as an Indicator of Success for Learning Object-Oriented Program-
ming?”, SIGCSE Bulletin, vol. 38, 2, pp. 39-43, 2006.

203

204

Reviewed Papers

inroads – The SIGCSE Bulletin 39 Volume 38, Number 2, 2006 June

Abstraction Ability as an Indicator of Success for
Learning Object-Oriented Programming?

Jens Bennedsen
IT University West
Fuglesangs Allé 20
DK-8210 Aarhus V

Denmark
jbb@it-vest.dk

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34

DK-8200 Aarhus N
Denmark

mec@daimi.au.dk

Abstract
Computer science educators generally agree that abstract thinking is a crucial component for learning
computer science in general and programming in particular. We report on a study to confirm the hypothesis
that general abstraction ability has a positive impact on programming ability. Abstraction ability is
operationalized as stages of cognitive development (for which validated tests exist). Programming ability is
operationalized as grade in the final assessment of a model-based objects-first CS1. The validity of the
operationalizations is discussed. Surprisingly, our study shows that there is no correlation between stage of
cognitive development (abstraction ability) and final grade in CS1 (programming ability). Possible explana-
tions are identified.

Keywords: CS1, success factors, abstraction, model-based programming, objects-first.

1. Introduction
A substantial amount of research has been conducted in
order to identify variables that are predictors of success of
students aiming for a university degree. Investigated
variables encompass among other things gender [4, 17, 24],
the educational level of parents [20] and ACT/SAT scores
[4, 14]. The variables represent scientific factors (e.g. math
score) or unbiased factors (e.g. gender). However, these
variables only account for a fraction of the variation of
student performance.

Research on success factors has been conducted both
in the general context of education, within computer scien-
ce, and in the more specific area of introductory program-
ming [4, 6, 9, 14]. Also in the area of introductory object-
oriented programming there has been research trying to
establish general factors to predict success or failure of
particular students. Especially the work of Ventura [21]
focus on a systematic evaluation of hypothesis related to
success factors of an introductory programming course
using an objects-first and graphics early approach [22,
p.241]. The results are also documented in [23].

We are specifically interested in abstraction ability as
an indicator of success for learning programming. Most
computer science teachers find abstract thinking to be a
core competence in programming, but to our knowledge no
research has been conducted to verify whether abstraction

ability is actually a predictor of success of an introductory
programming course using an objects-first strategy [3].

2. Abstraction Ability and Programming
Many computer science educators argue that abstraction is
a core competence [2, 13, 15, 16, 19].
Nguyen & Wong [15] claim that it is difficult for many stu-
dents to learn abstract thinking; at the same time they claim
abstract thinking to be a crucial component for learning
computer science in general and programming in particular.
The authors describe an objects-first-with-design-patterns
approach to CS1 with a strong focus on abstract thinking
and development of the students’ abstractive skills.

In [16] the authors argue that abstraction is a funda-
mental concept in programming in general and in object-
oriented programming in particular. The authors describe a
three-level ordering of abstraction cognitive activities that
the students employ in their solution to a given problem: 1)
defining a concrete class, 2) defining an abstract class with
attributes only, 3) defining an abstract class also including
methods, and 4) defining an abstract class also including
abstract methods). An analysis of the students’ responses
to a test reveals that only 13% apply the highest level of
abstraction cognitive activities (level 4) while 65% solve
the problem at the lowest level of abstraction cognitive
processes. The authors conclude that the major cited

205

Reviewed Papers

inroads – The SIGCSE Bulletin 40 Volume 38, Number 2, 2006 June

advantages of object-orientation are precisely the same
issues that make object-orientation difficult for students.

2.1 Hypothesis
Clearly, abstraction and abstract thinking are fundamental
concepts in computer science and key components of learn-
ing programming. For programming education (and CS
education in general) it is therefore mandatory to explicitly
aim at the development of the students’ abstractive skills.
But furthermore we anticipate general abstractive skills —
abstraction ability— to be an indicator of success for
learning programming. Our hypothesis is therefore:

General abstraction ability has a positive impact on
programming ability.

2.2 Abstraction Ability as Stages of Cognitive
Development
To operationalize the first part of our hypothesis we need to
define what we mean by abstraction ability and how it can
be measured. Or-Bach & Lavy [16] define abstraction
ability in terms of object-oriented programming. However,
abstraction ability is a much more general skill often
defined as part of the cognitive development stage of a
person [11]. Our approximation of abstraction ability is
based on Adey & Shayer’s theory of cognitive develop-
ment [1, 18]; this theory is a refinement of Inhelder &
Piaget’s stage theory [11]. Adey & Shayer define eight
stages of cognitive development of pupils [1, p. 30] as
shown in Table 1.

Table 1: Cognitive development stages

1 Pre-operational
2A Early concrete
2A/2B Mid concrete
2B Late concrete
2B* Concrete generalization
3A Early formal
3A/3B Mature formal
3B Formal generalization

Adey & Shayer based their stages of cognitive deve-

lopment on a very large research project, CASE, aimed at
finding the cognitive development stages of pupils in
secondary school [1, p.78 ff]. The research showed a diffe-
rent result than the direct connection between age and
development stage originally proposed by Piaget. One of
the most important results was that only ~30% of the pupils
follow the development expected by Piaget.

Based on [11], Adey and Shayer describe what they
call “reasoning patterns of formal operations” and group
the eight patterns in three groups: Handling of variables,
relationships between variables and formal methods. See
[1, pp.17-25] for a more exhaustive description. A person
can of course be at a higher development stage in one of
these reasoning patterns, but “one would not find an
individual competently fluent with one or two of the rea-

soning patterns who would not, with very little experience,
become fluent with them all” [1, p.17].

Shayer and Adey have used the eight stages for pupils
in the age range of 5 to 16; we intend to use it on students
in the age range of 18 to 22. Shayer and Adey found that at
the age of 16, 30% of the pupils were at stage 3A and only
approximately 10% at stage 3B. Furthermore they found
that the curve describing the progression of stages was very
flat at that age [1, p.40].

We use Adey & Shayer’s stage model of cognitive
development to characterize the students’ abstraction
ability. To measure abstraction ability defined in this way,
we use a reasoning ability test developed by Piaget and
refined by Adey & Shayer for testing at the higher end of
the stage model.

2.3 Programming Ability as Final Grade in CS1
To operationalize the second part of our hypothesis we
need to define what we mean by programming ability and
how it can be measured. In this research we use the results
from the final exam of the introductory programming
course as an indicator of the students’ programming ability.
For a more thorough description of the course, see [3].

2.4 A Word on the Operationalization
The hypothesis that general abstraction ability has positive
impact on programming ability is operationalized in two
steps; abstraction ability is operationalized as cognitive
development and programming ability is operationalized as
final grade in CS1 as illustrated in Figure 1. Both of these
operationalizations are questionable. We discuss this
aspect in the section on future work.

Figure 1: Operationalization of hypothesis

3. Research
This section describes the research questions, the data and
the statistical analysis used in this work.

3.1 The research questions
Our hypothesis is that there is a positive correlation
between the stage of a student’s cognitive development
(measured as reasoning ability) and the students program-
ming ability (measured as final grade in CS1).

Research question Hypothesis

Does
cognitive

development
 correlate with
grade in CS1

Abstraction
ability

correlates with
programming

ability

206

Reviewed Papers

inroads – The SIGCSE Bulletin 41 Volume 38, Number 2, 2006 June

Many reports that math is an indicator of success in
programming [4, 9, 14]. Our interpretation of this fact is
that it is not specific mathematical competencies (e.g. cal-
culus and algebra) that the students need, but rather the
more general notion of abstraction ability required to do
math that is needed.

To verify our interpretation, we propose a
supplementary research question on the correlation
between abstraction ability and mathematical competence.
Our two research questions are therefore:
1. Is there a positive correlation between the stage of

cognitive development and the students’ results in
model-based introductory programming?

2. Is math an indicator of the cognitive development
stage?

3.2 The Test
Shayer & Adey have developed several tests to determine
the students’ cognitive stages. These test focus on several
of the reasoning patterns, but because “the students with
very little experience, become fluent with them all” we find
it sufficient to use only one test. We use the so called
“pendulum test”; a test that has been used for a long time to
test young persons’ understanding of the laws of the
physical world [7]. Shayer and Adey argues that the pen-
dulum test is particular focused on testing the cognitive
development stages from 2B to 3B [1, p.30], the span of
cognitive stages we find relevant for our target group.

The students volunteered to participate in the test. It
was given to them in a lecture hall, and they were all in-
formed that the outcome of the test would not be exposed
to the lecturer before the exam.

3.3 The Students
The students in this research all study at the Faculty of
Science at University of Aarhus in Denmark. They all
follow an introductory programming course as a mandatory
part of their study programme. The course constitutes the
first half of a traditional CS1 course. The course runs for
seven weeks. Every week there are four lecture hours, two
lab hours and two class hours with a teaching assistant
(TA). Besides scheduled hours, the students are supposed
to work approximately seven hours per week in study
groups or on their own. A week after the course there is a
practical exam with a binary pass/fail grading. For a more
detailed description of the final exam see [5].
 In the fall of 2005 there were 263 students from a variety
of study programmes, e.g. computer science, mathematics,
mathematical economy, multimedia, geology, nano science,
etc. Approximately 40 % of the students are enrolled for a
major in computer science and they are the only group to
continue with the second half of CS1. The rest of the
students proceed to other programming courses related to
their fields (e.g. multimedia programming, scientific com-
puting) if they proceed with programming at all.

 The goal is that the student learns the foundation for
systematic construction of simple programs and through
this obtains knowledge about the role of conceptual model-
ing in object-oriented programming. Furthermore, it is the
goal that the student becomes familiar with a modern
programming language, fundamental programming langua-
ge concepts, and selected class libraries. For further details
on the structure and contents of the course see [3].

3.4 Data
Information about the score of final exam comes from the
administrative system of the university.

Programming score. The final exam is a practical pro-
gramming test. The official result of the exam is a binary
grading (pass or fail). To allow for a more fine-grained
analysis of the results, the students’ solutions were post-
marked on an A-F scale. To validate the result of the post-
marking, the post-marking was compared to the official
result of the exam in the sense that all the students who
passed the exam got a grade of E or more. Also, the result
of the post-marking was checked by a control marking of
twenty randomly selected answers. The marking and the
control marking agreed.

Math score. The students’ math score from high school
was used as an indicator of the students’ mathematical
abilities. The students themselves gave their math score in
a questionnaire. A few students did not answer the
questionnaire; these students were excluded from the
analysis.

3.5 Statistical analysis
We have used a Pearson correlation coefficient test to find
if there is a significant correlation between the result of the
exam and the cognitive development stage and math score.
Of the 263 students who took the final exam, 145 participa-
ted in the pendulum test. They are representative of the
overall student group with respect to mathematical skills,
gender and intended major.

4. Results
In this section we describe the analysis providing the
answers to the two research questions.

4.1 No Correlation Between Cognitive Development
and Programming Ability
As described above we have calculated Pearson correlation
between cognitive development and programming ability
(Table 2). The coefficient, R, is 0.276 which indicates a
very weak correlation (a value of at least 0.3 indicates
correlation). The significance, P, is less than 0.001.

This is a rather unexpected result, since most computer
science educators seem to agree that abstraction ability –
and thereby cognitive development – is a core competence
in programming. Our research cannot demonstrate a

207

Reviewed Papers

inroads – The SIGCSE Bulletin 42 Volume 38, Number 2, 2006 June

correlation between the stage of cognitive development and
the students’ results in a model-based introductory pro-
gramming course.

Table 2: Correlation between cognitive
development and programming ability
Pearson correlation test
R 0.276409
R2 0.076402
P 0.000764
Observations 145

Cafolla [10] reports that the stage of cognitive
development accounts for 34 % of variation of the exam
score. Cafolla’s study is based upon students learning pro-
gramming in BASIC. It seems unlikely that BASIC pro-
gramming should require a higher degree of cognitive
development than object-oriented programming; we need
to investigate this more thoroughly.

4.2 No Correlation between Math and Cognitive
Development
We have also calculated Pearson correlation between the
score of the programming exam and the math score from
high school. The exam in high school is a nation vide test
in two parts: a written and an oral test. The written test is
administered by the Ministry of Education. We have used
the average of the two exam scores as the math score. Of
the 143 students participating in the pendulum test, 128
provided their math score.

As can bee seen from table 3, there is hardly any
correlation between the students’ mathematical ability and
their cognitive stage. Again this comes as a surprise as the
expected result was a strong correlation between math and
formal cognitive development. The result contradicts
earlier findings, summarized in [12, p.260].

Table 3: Correlation between stage of cognitive development and
mathematical ability

Pearson correlation test
R 0.186781261
R2 0.034887239
P 0.034766
Observations 128

The correlation that others have found between math

and success in programming is not contradicted by our data
(R= 0.302191, p=0.000555). From our experiment we
must conclude that math is not just another way of
expressing the cognitive development stage and that the
correlation between math and success in programming
must be related to other aspects of math.

5. Conclusion and Future Work
The result of this study is most surprising. From the outset
we were certain that students at a higher stage of cognitive
development would get higher scores in the final exam of
the introductory programming course. It is not so!

There can be several explanations to this. In this pro-
gramming course coding is prioritized over design. The
cognitive requirements are therefore relatively low, and
apparently there are other factors that influence the stu-
dents’ success. We will look into this in future work.

Another potential explanation is the concrete
instrument used to assess the cognitive stage: the pendulum
test. The pendulum test measures the student’s ability to
control independent variables in a reasoning task. It could
be that this particular competence is not prominent in the
course.

Finally, of course, it is questionable to which extend
the result of the final exam is a reasonable measure of a
student’s ability to learn programming.

Acknowledgement
It is a pleasure to acknowledge Jens Holbech for his help regarding measurement of cognitive stage (abstraction ability).
Also, we would like to thank all the students who volunteered for this study.

References
[1] Adey, P and Shayer, M. Really raising standards: cognitive intervention and academic achievement, Routledge, London, England,

1994.
[2] Alphonce, C. and Ventura, P. Object Orientation in CS1-CS2 by Design, Proceedings of the 7th Annual Conference on innovation and

Technology in Computer Science Education, Aarhus, Denmark, 2002, 70-74.
[3] Bennedsen, J. & Caspersen, M.E. Programming in Context – A Model-First Approach to CS1, Proceedings of the thirty-fifth SIGCSE

Technical Symposium on Computer Science Education, Norfolk, USA, 2004, 477-481.
[4] Bennedsen, J & Caspersen, M. E. An Investigation of Potential Success Factors for an Introductory Model-Driven Programming

Course, Proceedings of ICER 2005 The First International Computing Education Research Workshop, 2005, Seattle, USA, 155-163.
[5] Bennedsen, J. & Caspersen, M.E. Assessing Process and Product – A Practical Lab Exam for an Introductory Programming Course,

Submitted for 36th Annual Frontiers in Education Conference, San Diego, USA, 2006.
[6] Bergin, S & Reilly, R. Programming: Factors that Influence Success, Proceedings of the 36th SIGCSE Technical Symposium on

Computer Science Education, St. Louis, USA, 2005, 411-415.
[7] Bond, T. B. Piaget and the Pendulum, Science and Education, 13, 2004, 389-399.

208

Reviewed Papers

inroads – The SIGCSE Bulletin 43 Volume 38, Number 2, 2006 June

[8] Boyer, S. P., & Sedlacek, W. E. Non-Cognitive Predictors of Academic Success for International Students: A Longitudinal Study,
Journal of College Student Development, 29, 1988, 218-223.

[9] Byrne, P., & Lyons, G. The Effect of Student Attributes on Success in Programming, Proceedings of the 6th Annual Conference on
Innovation and Technology in Computer Science Education, 2001, 49-52.

[10] Cafolla, R. Piagetian Formal Operations and other Cognitive Correlates of Achivement in Computer Programming, Journal of
Educational Technology Systems, 16(1), 1987-88, 45-55.

[11] Inhelder, B. & Piaget, J. (1955) De la logique de l'enfant à la logique de l'adolescent: Essai sur la construction des structures
opératoires formelles. Paris: Presses Universitaires de France. Translated by Anne Parsons and Stanley Milgram as The growth of
logical thinking from childhood to adolescence: An essay on the construction of formal operational structures, New York: Basic
Books, 1958.

[12] Iqbal, H.M. and Shayer, M. Accelerating the Development of Formal Thinking in Pakistan Secondary School Students: Achievement
Effects and Professional Development Issues, Journal of Research in Science Teaching, 37 (3), 2000, 259-274.

[13] Kurtz, B. L. Investigating the Relationship Between the Development of Abstract Reasoning and Performance in an Introductory
Programming Class, Proceedings of the 11th SIGCSE Technical Symposium on Computer Science Education, Kansas City, USA,
1980, 110-117.

[14] Leeper, R. R., & Silver, J. L. Predicting Success in a First Programming Course, Proceedings of the 13th SIGCSE Technical
Symposium on Computer Science Education, Indianapolis, USA, 1982, 147 – 150.

[15] Nguyen, D. & Wong, S. OOP in Introductory CS: Better Students Through Abstraction, Proceedings of the fifth Workshop on
Pedagogies and Tools for Assimilating Object-Oriented Concepts, OOPSLA 2001.

[16] Or-Bach, R. and Lavy, I. Cognitive Activities of Abstraction in Object Orientation: An Empirical Study. SIGCSE Bulletin, 36 (2),
2004, 82-86.

[17] Rountree, N. Rountree, J. and Robins, A. Predictors of Success and Failure in a CS1 Course. SIGCSE Bulletin, vol. 34 (4), 2002, 121-
124.

[18] Shayer, M. and Adey, P. Towards a Science of Science Teaching, Heinemann Educational Publishers, Oxford, England, 1981.
[19] Sprague, P., & Schahczenski, C. Abstraction the Key to CS1. J.Comput.Small Coll., 17 (3), 2002, 211-218.
[20] Ting, S. R., & Robinson, T. L. First-Year Academic Success: A Prediction Combining Cognitive and Psychosocial Variables for

Caucasian and African American Students, Journal of College Student Development, 39, 1998, 599-610.
[21] Ventura, P. R. On the Origins of Programmers: Identifying Predictors of Success for an Objects First CS1, PhD. Dissertation, The

State University of New York at Buffalo, 2003.
[22] Ventura, P. R. & Ramamurthy, B. Wanted: CS1 Students. No Experience Required, Proceedings of the 35th SIGCSE Technical

Symposium on Computer Science Education, Norfolk, USA, 2004, 240-244.
[23] Ventura, P.R. Identifying Predictors of Success for an Objects-First CS1, Journal of Computer Science Education, 15 (3), 2005, 223-

243.
[24] Wilson, B.C. A Study of Factors Promoting Success in Computer Science Including Gender Differences, Journal of Computer Science

Education, 12 (1-2), 2002, 141-164.

Check out the new website of

<www.csab.org>

209

210

14 Mental Models and Programming
Aptitude

The paper Mental Models and Programming Aptitude presented in this chap-
ter has been submitted for ITiCSE 2007 [Caspersen et al. 2007a].

[Caspersen et al. 2007a] Caspersen, M.E., Bennedsen, J. and Larsen, K.D.,
“Mental models and programming aptitude”, submitted for ITiCSE '07: The
12th annual conference on Innovation and Technology in Computer Science
Education, Dundee, Scotland, 2007.

211

212

Mental Models and Programming Aptitude
Michael E. Caspersen

Department of Computer Science
University of Aarhus

Aabogade 34
DK-8200 Aarhus N, Denmark

mec@daimi.au.dk

Jens Bennedsen
IT-University West

Aarhus
Fuglsangs Allé 20

DK-8210 Aarhus V, Denmark

jbb@it-vest.dk

Kasper Dalgaard Larsen
Department of Computer Science

University of Aarhus
Aabogade 34

DK-8200 Aarhus N, Denmark

larsen@daimi.au.dk

ABSTRACT
Predicting the success of students participating in introductory
programming courses has been an active research area for more
than 25 years. Until recently, no variables or tests have had any
significant predictive power. However, Dehnadi and Bornat claim
to have found a simple test for programming aptitude to cleanly
separate programming sheep from non-programming goats. We
briefly present their theory and test instrument.

We have repeated their test in our local context in order to verify
and perhaps generalise their findings, but we could not show that
the test predicts students’ success in our introductory program-
ming course.

Based on this failure of the test instrument, we discuss various
explanations for our differing results and suggest a research
method from which it may be possible to generalise local results
in this area. Furthermore, we discuss and criticize Dehnadi and
Bornat’s programming aptitude test and devise alternative test
instruments.

Categories and Subject Descriptors
K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information sys-
tems education.

General Terms
Experimentation, Human Factors.

Keywords
Objects-first, CS1, introductory programming, object-oriented
programming, predictors of success.

1. INTRODUCTION
In a teaser email circulated in late 2005, shortly before the PPIG
workshop in January 2006, Richard Bornat wrote: “We have a
scientific breakthrough that we’d like to announce at your little
PPIG. The breakthrough is that Saeed has a test which picks out,
with 100% accuracy, those people who have a chance of learning
to program and rejects, with 100% accuracy, those who have no

chance. Don’t believe it? Neither did I, at first, but it’s true. And
I’m not telling you, before the little PPIG, just how it’s done. But
of course I will tell you all there.”

We learned about the test in conjunction with the PPIG workshop
in January 2006. Having searched for predictors of success for
introductory programming courses, we were certainly intrigued
by the promotion material, and we decided to try to verify
Dehnadi and Bornat’s findings.

This paper describes what we found. As has already been noted in
the abstract, we have not been able to verify Dehnadi and Bor-
nat’s findings.

In the next section, we provide a brief overview of some of the
research which aims at finding predictors of success for computer
science studies at universities. In section 3, we describe the pro-
gramming aptitude test developed at Middlesex University by
Dehnadi and Bornat and their preliminary results. In sections 4
and 5, we present our research method and our findings, which we
discuss in section 6. Section 7 provides a succinct conclusion.

2. RELATED WORK
There has been a substantial amount of research conducted to
identify general variables that are predictors of the success of stu-
dents aiming for a degree in computer science. Investigated vari-
ables encompass gender [21, 22], ACT/SAT scores [9], students’
mathematical abilities [6, 19, 22], performance in prior courses
[12], emotional factors [11], abstraction ability [3], and students’
own beliefs [24]. Research has also been conducted in the more
specific area of introductory programming [2, 5, 8, 10, 17, 18,
20].
Evans and Simkin [15] sum up the arguments given in many stud-
ies for performing this kind of study:

1. Discriminating among enrolment applicants
2. Advising students on majors
3. Identifying productive programmers
4. Identifying employees who might best profit from addi-

tional training
5. Improving computer classes for non-CIS majors
6. Determining the importance of oft-cited predictors of

computer competency such as gender or math ability
7. Exploring the relationship between programming abili-

ties and other cognitive reasoning processes

Dehnadi and Bornat [1, 13, 14] claim they have found a way to
identify students who will not succeed in learning programming.
Based on a test of 60 students, they claim “[w]e have found a test
for programming aptitude, of which we give details. Remarkably,
we can predict success or failure even before students have had

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ITiCSE 2007, June 25–27, 2007, Dundee, Scotland.
Copyright 2007 ACM X-XXXXX-XX-X/XX/X.

213

any contact with any programming language, and with total accu-
racy.” [14].
Our rationale for conducting this study is primarily to verify the
claims made by Dehnadi and Bornat and to build up knowledge
about factors that influence students’ learning of programming.

3. TEST FOR PROGRAMMING APTI-
TUDE
In this section, we describe the programming aptitude test devel-
oped at Middlesex University by Dehnadi and Bornat and their
preliminary results as reported in [14].
Dehnadi and Bornat classified students according to their consis-
tency in answering a set of similar questions. The overall hy-
pothesis is that consistent students and consistent students only
will be able to learn to program.
To determine consistency, Dehnadi and Bornat used a question-
naire with 12 small Java programs. Each program consists of two
variable declarations and one, two, or three assignment state-
ments; Figure 1 shows a sample.

5. Read the follow-
ing statements and
tick the box next to
the correct answer in
the next column.

int a = 10;

int b = 20;

b = a;

a = b;

The new values of a and b are:
 a = 30 b = 50

 a = 10 b = 10

 a = 20 b = 20

 a = 10 b = 0

 a = 0 b = 20

 a = 30 b = 0

 a = 40 b = 30

 a = 0 b = 30

 a = 20 b = 10

 a = 30 b = 30

 a = 10 b = 20

Any other values for a and b:
 a = b =

 a = b =

 a = b =

Figure 1: A sample question from Dehnadi and Bornat’s ques-
tionnaire

Dehnadi and Bornat have identified 11 different mental models
which are captured by options in the questionnaire (along with the
last option: other). The questionnaire contains 12 questions simi-
lar to the one in Figure 1, giving rise to a 12-tuple describing the
mental models applied by a student (e.g. (m7, m3, ..., m7)) where
mi represents a mental model. The 12-tuple is used to assign each
student to one of three categories:

• The consistent group. The students who use the same mental
model for most of the questions (irregardless of which model).

• The inconsistent group. The students who use varying mental
models for the questions.

• The blank group. The students who refuse to answer the ques-
tions.

In [13], the authors write: “The consistent/inconsistent/blank as-
signment which is the basis of our preliminary result was rather
subjective”. In [13], the authors develop a more objective instru-
ment for categorisation of the students⎯an instrument which we
shall use in our investigation.
Dehnadi and Bornat found that 44% of their students belong to
the consistent group, and 39% belong to the inconsistent group;
8% left the questionnaire blank (the remaining 9% are missing).
In [14], the authors conclude that the test, although not perfect, is
the first test to be able to claim any degree of success:

“[Our analysis] shows that the first administration of
Dehnadi’s test reliably separated the consistent group, who
almost all scored 50 or above, from the rest, who almost all
scored below 50, with only 4 out of 27 false positives in the
consistent group and 9 out of 34 false negatives in the rest
[...]. Clearly, Dehnadi’s test is not a perfect divider of pro-
gramming sheep from non-programming goats. Nevertheless,
if it [was] used as an admissions barrier, and only those who
scored consistently were admitted, the pass/fail statistics
would be transformed. In the total population 32 out of 61
(52%) failed; in the first-test consistent group only 6 out of 27
(22%). We believe that we can claim that we have a predictive
test which can be taken prior to the course to determine, with
a very high degree of accuracy, which students will be suc-
cessful. This is, so far as we are aware, the first test to be able
to claim any degree of predictive success.”

It is indeed very interesting if Dehnadi and Bornat have found a
predictive test as they describe.

4. RESEARCH METHOD
In this section, we discuss the methodology used in our study.

4.1 Hypothesis
In this study, we examined the predictive power of a student’s
mental model for his or her success in learning introductory pro-
gramming; the hypothesis is that there is a positive correlation
between a student’s mental model and the student’s ability to
learn programming. The specific research question we investi-
gated is the following:

Is there a correlation between the students’ consistency in the
mental model applied in questionnaire and their performance
in the final exam of a seven-week introductory, model-based,
object-oriented programming course?

4.2 The Course
The programming course spans the first half of CS1 at the Uni-
versity of Aarhus. The course runs for seven weeks; two weeks
after the course ends, there is a lab examination with binary
pass/fail grading. The grading is based solely upon the final ex-
amination; acceptable performance during the course is a prereq-
uisite for the final exam but does not count as part of the grading.

Aims: The purpose of the course is for students learn the founda-
tion for systematic construction of simple programs and, through
this, obtain knowledge about the role of conceptual modeling in
object-oriented programming. The goal is that students become
familiar with a modern programming language, fundamental pro-
gramming language concepts, and selected class libraries.

214

Competencies: After the course, students should be able to ex-
plain and use fundamental elements in a modern programming
language, use conceptual modelling in relation to preparing sim-
ple object-oriented programs, implement simple object-oriented
models in a programming language, and use selected class librar-
ies.

Form: The course runs for seven weeks; every week, there are
four lecture hours and four lab hours with a TA. In addition to the
scheduled hours, students are supposed to work approximately
seven hours per week in study groups or on their own. There is a
weekly mandatory assignment.

Exam: The examination resembles an ordinary lab session. The
students are tested in groups of up to 25 at a time. The effective
examination time is 30 minutes (occasionally, for various reasons,
we allowed a bit more time); a full hour is scheduled for each
group to allow for preparing and finalizing (upload, etc.). Each
group receives a different assignment consisting of 10 small pro-
gressive programming tasks. In principle, the assignments are
identical (they are all instances of the same generic assignment).
There are two checkpoints in the assignment: one after task three
and one after task eight. The students are instructed to call upon
an examiner to demonstrate their solutions when they reach either
of the checkpoints. For each student, we noted the elapsed time at
both checkpoints as well as when (if) they finished the assignment
(first interval, second interval, and final time), thus providing a
rough measure of the student’s efficiency and competence.
A more detailed description of the course can be found in [7]; an
evaluation of the examination can be found in [4].

4.3 Subjects
There are approximately 300 students from a variety of study pro-
grammes, e.g. computer science, mathematics, geology, nano sci-
ence, economy, multimedia, etc. Forty percent of the students are
majors in computer science; they are the only group of students
that continues with the second half of CS1. The rest of the stu-
dents proceed to other programming courses related to their fields
(e.g. multimedia programming, scientific computing, etc.).
The population for this study was 142 students; of the 150 stu-
dents who volunteered to participate at the beginning of the
course, 142 attended the final exam.
The students answered the questionnaire in the first week before
the assignment statement was taught.

4.4 Classification of Mental Model and Exam
Result
To determine the consistency of the mental model for each of the
students, we used the categorization instrument proposed by Deh-
nadi [13]. From the 12-tuple that describes the mental models ap-
plied by a student in the questionnaire, we divided the students
into five categories Ci, 0 ≤ i < 5, of decreasing consistency, C0 be-
ing the most consistent category and C4 the least consistent cate-
gory. A student is in consistency category C0 if at least eight men-
tal models in the student’s 12-tuple are identical. For the coarse-
grained consistent/inconsistent categorization, students in C0 are
considered consistent while students in any of the other categories
are considered inconsistent. For further details, see [13].
The binary pass/fail grading of the exam was too coarse-grained
to allow for statistical analysis. Therefore, we subdivided the stu-

dents into four groups, Gi, 0 ≤ i < 4. G0 represents the students
that failed the exam; G1 represents the students who barely passed
the exam (i.e. reached the second checkpoint in the very last min-
ute), G2 represents the students who produced an average per-
formance (i.e. reached the second checkpoint in due time but did
not finish the assignment), and G3 represents the students who
finished the assignment within the time limit with a program that
fulfils the complete specification.

5. FINDINGS
In this section, we present the findings from the questionnaire.

5.1 Results
The distribution between consistent and inconsistent broken down
to the exam result and prior programming experience is shown in
Table 1.

 Consistent Inconsistent
Total 124 18
Pass at the final exam 120 16
Fail at the final exam 4 2
Prior programming experience 85 2
No prior programming experience 39 16

Table 1: Number of consistent and inconsistent students
We might consider breaking the data down to other variables, e.g.
gender, major, and seniority (study age); however, from previous
research, we know that these do not influence students’ perform-
ance in this course [6]).

5.2 Programming Aptitude
In order to validate Dehnadi and Bornat’s findings, we have used
a Pearson correlation coefficient test [23] to find if, for students
with no prior programming experience, there is a significant cor-
relation between the consistency level and the grading level (ac-
cording to the C- and G-categories described in section 4.4).

The P-value is −0.072. Thus, we concluded that there is no corre-
lation between consistency of the mental model and performance
in our introductory programming course, i.e. we cannot verify
Dehnadi and Bornat’s findings. Traditionally, a P-value of at least
0.3 (numerically) is required for correlation. (The negative P-
value is expected since C0 corresponds to the highest level of con-
sistency and C4 to the lowest level of consistency.)
To take a closer look at this contradictory result, we have tested
for correlation for a more fine-grained partitioning than the five
competence-levels and four grading levels applied above.
We made a more fine-grained partitioning of the mental models
by refining the Ci categories: Ci represents the students’ whose
maximum number of answers of the same mental model equals i,
thus providing 13 different categories of mental models. Simi-
larly, we have refined the Gi categories to reflect the students’
performance according to the second interval (the time elapsed
when reaching the second checkpoint), i.e. Gi is the students for
whom the second interval is i minutes.
The distribution of the data certainly does not indicate a correla-
tion (see Figure 2). A Pearson correlation test confirms this im-
pression with the same result as before (P=−0.075).
Our result is a clear and unequivocal rejection of the research
question: there is absolutely no correlation between students’ con-
sistency of the mental model applied in the questionnaire and

215

their performance in the final exam of a seven-week introductory,
model-based, object-oriented programming course.

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Ci : maximum number of answers of the same mental model

G
i: t

he
 ti

m
e

el
ap

se
d

w
he

n
re

ac
hi

ng
 th

e
se

co
nd

ch

ec
kp

oi
nt

:

Figure 2: Second interval versus maximum number of identical

mental models in 12-tuple
If the hypothesis of positive correlation between a student’s men-
tal model and ability to learn programming is to be confirmed, it
requires an interpretation of the mental model which is different
than the one reflected in Dehnadi’s questionnaire or another inter-
pretation of ability to learn programming different than the one
reflected by the exam of the introductory programming course.

6. DISCUSSION
Our unequivocal result gives rise to a number of questions. One
question is whether Dehnadi and Bornat’s interpretation of their
results is viable. Another question is the validity of the test in-
strument and speculations about other and better test instruments.
But before we address these questions, let us look at possible ex-
planations of our differing results.

6.1 Explaining the Differing Results
The large number of non-fixed variables in Dehnadi and Bornat’s
investigation and ours allow many explanations. First of all, the
investigations have been carried out in different course contexts.
We do not know much about the nature of the course at Middle-
sex University, but it is undoubtly different than ours and may be
so in many respects: course material (e.g. textbook, programming
language, development environment), course structure (e.g. num-
ber of lectures and lab hours), course work (e.g. mandatory as-
signments, project work), availability of resources (e.g. support
material, support for collaboration, student/instructor ratio), and
the degree of alignment (concordance between syllabus, course
content and the exam). Also, the exam may be different; again,
we do not know anything about the nature of the courses at Mid-
dlesex University. The instructor is different and may be so in
many respects (e.g. teaching experience, familiarity with the sub-
ject, personal attitude), and, finally, the students may be different
in many ways (e.g. age, study seniority, major).

With all this variation, how can we ever generalise findings from
the context where the findings are identified? The best way is by
inductive reasoning which can be fuelled by similar findings
across a multitude of institutions [16].

6.2 Questioning the Validity of the Test In-
strument
Dehnadi and Bornat’s interpretation of the students’ behaviour in
the first test goes as follows: “What distinguish the three groups
in the first test is their different attitudes to meaninglessness. The
consistent group showed a pre-acceptance of this fact: they are
capable of seeing mathematical calculation problems in terms of
rules, and can follow those rules wheresoever they may lead. The
inconsistent group, on the other hand, looks for meaning where it
is not. The blank group knows that it is looking at meaningless-
ness, and refuses to deal with it.”
Contrary to Dehnadi and Bornat, we interviewed our subjects. We
conducted individual interviews with the 14 students who were
inconsistent but did pass the final exam. They all remembered the
test very well. Interestingly, they all started out with some mental
model, some set of rules that gave meaning to the “meaningless”
notation in the questionnaire. The problem for the 14 students was
that the model they started out with failed at some point before
the end of the test. Not knowing about the purpose of the test, and
not considering it important, none of the students cared to back-
track to find a viable model. They simply altered their model and
went on from there. Our harsh conclusion is that it seems as if the
only thing the test instrument is testing is the students’ guessing
capabilities; can they guess a viable model up front or can they
not? This is hardly an interesting classification of students.

6.3 Alternative Test Instruments
In the light of the conclusion of the previous section, we must re-
ject the test instrument proposed by Dehnadi and Bornat. How-
ever, the idea of testing a correlation between the inclination to
give meaning to meaninglessness and performance in an introduc-
tory programming course, as suggested by Dehnadi and Bornat’s
comment in their interpretation of their observations, hints at an
alternative test instrument.
If the hypothesis is that the inclination to give meaning to mean-
inglessness is a predictor of success in an introductory program-
ming course, we should devise a test instrument for that. Such a
test instrument can easily be constructed by describing a meaning-
less set of rules and then asking the students to apply these rules
to a number of situations. Different test instruments could be con-
structed: some that invite for interpretation and resulting false ap-
plications of the rule set, and some that (by being more neutral)
does not. Developing different test instruments along these lines
enables tests of the test instruments which in itself is a reasonable
task to undertake.

7. CONCLUSION
We tested the hypothesis of a correlation between a student’s
mental model (according to Dehnadi’s definition in [14]) and how
well the student performs in an introductory programming course
at university. Our result is an unequivocal rejection of the hy-
pothesis.

The result is a surprise⎯at least in light of [14] in which the au-
thors conclude that the test, although not perfect, is the first test to
claim any degree of success.

216

We have enumerated many explanations for our differing results;
in particular, we question the test instrument from [13] used to
categorise students according to the mental model, and we suggest
a research method from which it may be possible to generalize
local results in this area.
A qualitative analysis in the form of interviews with selected sub-
jects has revealed that the test instrument does not seem to meas-
ure what it is supposed to; based on insights from the interviews
we have devised alternative test instruments.
Our result is encouraging since we do not adhere to the sheep-
goat presumption about programming aptitude. To the extent that
we shall ever be able to identify concrete factors that predict suc-
cess, we will use these to improve students’ background to in-
crease their chances for success in learning to program. That is
our motivation for doing research in this area.

Dehnadi and Bornat’s idea of predicting success from mental
model is interesting and maybe viable but at least requires an im-
proved test instrument.

8. ACKNOWLEDGMENTS
We thank all the students from the course Introduction to Pro-
gramming at the University of Aarhus in the fall of 2006 who
took the time to participate and make this research possible.

9. REFERENCES
[1] C. Arthur. How can I tell if I'll be any good as a program-

mer? In The Guardian, Thursday July 27, 2006.
[2] J. Bennedsen. Teaching Java programming to media students

with a liberal arts background. In Proceedings for the 7th
Java & the Internet in the Computing Curriculum Confer-
ence (JICC 7) Monday 27th January 2003, 2003.

[3] J. Bennedsen & M. Caspersen. Abstraction ability as an indi-
cator of success for learning object-oriented programming?
SIGCSE Bulletin, 38(2):39-43, 2006.

[4] J. Bennedsen and M. Caspersen. Assessing Process and
Product - A Practical Lab Exam for an Introductory Pro-
gramming Course. In Proceedings of the 36th Annual Fron-
tiers in Education Conference, M4E-16-M4E-21, San Diego,
California October 28-31, 2006.

[5] J. Bennedsen and M. Caspersen. An Upcoming Study of Po-
tential Success Factors for an Introductory Model-Driven
Programming Course. In Proceedings for the Fifth Koli Call-
ing Conference on Computer Science Education pages 166-
169, Koli, Finland 18-20 November 2005.

[6] J. Bennedsen and M. E. Caspersen. An investigation of po-
tential success factors for an introductory model-driven pro-
gramming course. In ICER '05: Proceedings of the 2005 In-
ternational Workshop on Computing Education Research,
155-163, Seattle, WA, USA, 2005.

[7] J. Bennedsen and M. E. Caspersen. Programming in context:
a model-first approach to CS1. In SIGCSE '04: Proceedings
of the 35th Technical Symposium on Computer Science Edu-
cation, 477-481, Norfolk, Virginia, USA, 2004.

[8] S. Bergin and R. Reilly. Programming: factors that influence
success. In SIGCSE '05: Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education, 411-
415, St. Louis, Missouri, USA, 2005.

[9] D. F. Butcher & W. A. Muth. Predicting performance in an
introductory computer science course. Communications of
the ACM, 28(3):263-268, 1985.

[10] P. Byrne and G. Lyons. The effect of student attributes on
success in programming. In ITiCSE '01: Proceedings of the
6th Annual Conference on Innovation and Technology in
Computer Science Education, 49-52, Canterbury, United
Kingdom, 2001.

[11] C. G. Cegielski & D. J. Hall. What makes a good program-
mer? Communications of the ACM, 49(10):73-75, 2006.

[12] A. T. Chamillard. Using student performance predictions in a
computer science curriculum. In ITICSE '06: Proceedings of
the 11th Annual Conference on Innovation and Technology
in Computer Science Education, 260-264, Bologna, Italy,
2006.

[13] S. Dehnadi. Testing programming Aptitude. In Proceedings
of the 18th Annual Workshop of the Psychology of Pro-
gramming Interest Group, 22-37, Brighton, UK, 2006.

[14] S. Dehnadi and R. Bornat. The camel has two humps. 2006.
www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

[15] G. E. Evans & M. G. Simkin. What best predicts computer
proficiency? Communication of the ACM, 32(11):1322-1327,
1989.

[16] S. Fincher and M. Petre. Computer Science Education Re-
search. Routledge Falmer, London, 2004.

[17] D. Hagan and S. Markham. Does it help to have some pro-
gramming experience before beginning a computing degree
program? In ITiCSE '00: Proceedings of the 5th Annual Con-
ference on Innovation and Technology in Computer Science
Education, 25-28, Helsinki, Finland, 2000.

[18] R. R. Leeper and J. L. Silver. Predicting success in a first
programming course. In SIGCSE '82: Proceedings of the
Thirteenth Technical Symposium on Computer Science Edu-
cation, 147-150, Indianapolis, Indiana, United States, 1982.

[19] L. P. McCoy & J. K. Burton. The relationship of computer
programming and mathematics in secondary students. Com-
put. Sch. 4(3-4):159-166, 1988.

[20] N. Pillay & V. R. Jugoo. An investigation into student char-
acteristics affecting novice programming performance. SIG-
CSE Bulletin, 37(4):107-110, 2005.

[21] N. Rountree, J. Rountree, A. Robins and R. Hannah. Inter-
acting factors that predict success and failure in a CS1
course. In ITiCSE-WGR '04: Working Group Reports from
Innovation and Technology in Computer Science Education,
101-104, Leeds, United Kingdom, 2004.

[22] P. Ventura. Identifying predictors of success for an objects-
first CS1. Computer Science Education, 15(3):223-243,
2005.

[23] L. Wallnau and F. Gravetter. Essentials of Statistics for the
Behavioral Sciences. Thomson Learning, New York, 2005.

[24] B. C. Wilson and S. Shrock. Contributing to success in an
introductory computer science course: a study of twelve fac-
tors. In SIGCSE '01: Proceedings of the thirty-second tech-
nical symposium on Computer Science Education, 184-188,
Charlotte, North Carolina, United States, 2001.

217

218

15 Exposing the Programming Process

The paper Exposing the Programming Process presented in this chapter has
been published as a conference paper [Bennedsen et al. 2005a] and as a
chapter [Bennedsen et al. 2007b] of the forthcoming book [Bennedsen et al.
2007a].

The book chapter is a revised version of the conference paper. The content
of this chapter is equal to the book chapter [Bennedsen et al. 2007a].

[Bennedsen et al. 2005a] Bennedsen, J. and Caspersen, M.E., “Revealing the
programming process”, SIGCSE '05: Proceedings of the 36th SIGCSE Tech-
nical Symposium on Computer Science Education, St. Louis, Missouri,
USA, pp. 186-190, 2005.

[Bennedsen et al 2007a] Bennedsen, J., Caspersen, M.E. and Kölling, M.,
(Eds.) Reflections on the Teaching of Programming. Springer-Verlag, 2007.

[Bennedsen et al. 2007b] Bennedsen, J. and Caspersen, M.E., “Exposing the
Programming Process”. In Reflections on the Teaching of Programming,
Springer-Verlag, 2007.

219

220

Exposing the Programming Process1

Jens Bennedsen1 and Michael E. Caspersen2

1 IT University West, Denmark
jbb@it-vest.dk

2 Department of Computer Science, University of Aarhus, Denmark
mec@daimi.au.dk

Abstract. One of the most important goals of an introductory programming
course is that the students learn a systematic approach to the development of
computer programs. Revealing the programming process is an important part of
this; however, textbooks do not address the issue – probably because the
textbook medium is static and therefore ill suited to expose the process of
programming. We have found that process recordings in the form of captured
narrated programming sessions are a simple, cheap, and efficient way of provi-
ding the revelation. We identify seven different elements of the programming
process for which process recordings are a valuable communication media in
order to enhance the learning process. Student feedback indicates both high
learning outcome and superior learning potential compared to traditional
classroom teaching.

1 Introduction

We believe that one of the most important goals of an introductory programming
course is that the students learn a systematic approach to the development of
computer programs.. Revealing the programming process is an important part of this,
and we have found that process recordings in the form of screen captured narrated
programming sessions is a simple, cheap, and efficient way to provide the revelation.
We hereby expand the applied apprenticeship approach as advocated in (Astrachan &
Reed, 1995; Linn & Clancy, 1992).

Revealing the programming process to beginning students is important, but
traditional static teaching materials such as textbooks, lecture notes, blackboards,
slide presentations, etc. are insufficient for that purpose. They are useful for the pre-
sentation of a product – a finished program– but not for the presentation of the
dynamic process used to create that product. Besides being insufficient for the
presentation of a development process, the use of traditional materials has another

1 This chapter is based on Bennedsen, J. and Caspersen, M. E. 2005. Revealing the

programming process. In Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education (St. Louis, Missouri, USA, February 23 - 27, 2005). p. 186-
190

221

drawback: typically, they are used for the presentation of an ideal solution that is the
result of a non-linear development process. Like others (Soloway, 1986; J. Spohrer &
Soloway, 1986; J. C. Spohrer & Soloway, 1986), we consider this to be problematic;
the presentation of the product independently of the development process will
inevitably leave the students with the false impression that there is a linear and direct
“royal road” from problem to solution. This is very far from the truth, but the
problem for novices is when they see their teacher present clean and simple solutions,
they think they themselves should be able in a straightforward fashion to develop
solutions in a similar way. When they realize they cannot, they blame themselves and
feel incompetent. Consequently, they will lose self-confidence and in the worst case
their motivation for learning to program.

Several tools for visualizing programs exists (e.g. Jeliot (Levy, Ben-Ari, &
Uronen, 2003), Alice (Cooper, Dann, & Pausch, 2000)). These tools focus on
visualizing the execution of programs and not the development of such programs.

Besides teaching the students about tools and techniques for the development of
programs (e.g. a programming language, an integrated development environment
(IDE), programming techniques), we must also teach them about the development
process (i.e. the task of using these tools and techniques to develop, in a systematic,
incremental and typically non-linear way,). An important part of this is to expound
and demonstrate that

– many small steps are better than few large ones
– the result of every little step should be tested
– prior decisions may need to be undone and code refactored
– making errors is common also for experienced programmers
– compiler errors can be misleading/erroneous
– online documentation for class libraries provide valuable information, and
– there is a systematic, however non-linear, way of developing a solution

for the problem at hand.
We cannot rely on the students to learn all of this by themselves, but using an

apprenticeship approach we can show them how to do it; for this purpose we use
process recordings.

The chapter is structured as follows: Section 2 is a brief introduction to the notion
of process recordings. In section 3 we discuss the need for exposition of the
programming process (e.g. through process recordings) and why textbooks are ill
suited for this purpose. Section 4 is a more detailed description of process recordings
and we identify seven different categories. In section 5 we discuss the use of process
recordings in a course context. Section 6 is a brief discussion of related work. The
conclusions are drawn in section 7.

2 Process Recordings – a Brief Introduction

Written material in general and textbooks in particular are not a suitable medium
through which to convey processes. We have used process recordings, captured and
narrated programming sessions, to do that. The creation of a process recording is

222

easy, fast, and cheap, and does not require special equipment besides a standard
computer.

The term process recording refers to a screen capture of an expert programmer
(e.g. the teacher) solving a concrete programming problem, thinking aloud as he
moves along. A process recording can be produced using a standard computer; there
is no need for a special studio or other expensive equipment. The software for
capturing is free, and depending on how advanced post production one needs, that
software is either free or very cheap. We have used Windows Media Encoder and
Windows Media File Editor, both freeware programs.

We have found that 15-20 minutes is an appropriate duration of a process
recording; for some problems the duration can be longer. For convenience, we offer
an index (a topic → time mapping) to help retrieve sections of special interest. The
index of each recording is stored in a database allowing the students to search for
specific material at a later stage. Figure 1 shows a snapshot of a playback of a process
recording.

Fig. 1. Playback of process recording

2.1 The Production Process

Most process recordings can be produced without too much preparation. It is our
experience that a detailed manuscript is superfluous; too detailed a manuscript tend to
make the process recording less authentic and in the worst case plain boring. In one
of our distance education introductory programming courses, we have created
approximately 60 process recordings. It is our experience that we use one hour to
prepare a 30-minute recording and another 20 minutes for post-production.

Figure 1: Playback of a process recording

223

The technical setup is rather simple. The lecturer sits in front of his computer with
a microphone. He starts by introducing the problem and after that talks aloud about
the problems he encounter and the possible solutions to these problems. Hereby he
makes his programming process explicit – what are the problems, what are the
solutions, what are the alternatives …

To increase the motivation for the students we have used some of their solutions as
a starting point. One needs to be careful not to belittle the solution, but to show how
different techniques can improve an already working solution in order to make it
more readable, shorter, more reusable or whatever the focus is.

To increase usability we make it possible for students to navigate in the process
recording. The addition of the topic → time mapping has added a new usage of the
material: the students can search the material afterwards and use it as yet another part
of their learning material repository. In this way, the value of the lectures has
expanded from something that is only useful if you are present, to a material that can
be used repeatedly over time.

3 Teaching the Process of Programming

The concern for teaching process and problem solving is not new; David Gries
(1974)wrote:

Let me make an analogy to make my point clear. Suppose you attend a course in

cabinet making. The instructor briefly shows you a saw, a plane, a hammer, and a few
other tools, letting you use each one for a few minutes. He next shows you a
beautifully-finished cabinet. Finally, he tells you to design and build your own
cabinet and bring him the finished product in a few weeks. You would think he was
crazy!

Clearly, cabinet making cannot be taught simply by teaching the tools of the trade

and demonstrating finished products; neither can programming! Nevertheless, this
seems to be what was being attempted thirty years ago when Gries wrote the above
analogy, and largely it seems to be the case today.

du Boulay (1989) identifies Pragmatics – the skills of planning, developing,
testing, debugging and so on – as an important domain to master. The latter is
concerned with skills related to the programming process; however, only few of these
are addressed in traditional textbooks on introductory programming.

Caspersen and Kölling(2006) describes in detail how a programming process for
novices could be described. The focus on five steps:

1. Create the class (with method stubs)
2. Create tests
3. Alternative representations
4. Instance fields

224

5. Method implementation
6. Method implementation rules (p. 893-894)

Their focus is on how newcomers can come from a specification (in the form of a
UML class) to an implementation fulfilling the specification. In Bennedsen and
Caspersen (Model-driven programming, chapter 9 this book) a description of a
process for novices for a complete class diagram is discussed.

3.1 Textbooks Neglect the Issue

At a recent workshop (Kölling, 2003) a survey of 39 major selling textbooks on intro-
ductory programming was presented. The overall conclusion of the survey was that
all books are structured according to the language constructs of the programming
language, not by the programming techniques that we (should) teach our students.
This is consistent with the findings in (Robins, Rountree, & Rountree, 2003): Typical
introductory programming textbooks devote most of their content to presenting
knowledge about a particular language (p. 141). The prevailing textbook approach
will help the students to understand the programming language and the structure of
programs, but it does not show the student how to program – it does not reveal the
programming process.

We know what is needed, so why has the topic not found its way into textbooks on
introductory programming? The best answer is that the static textbook medium is un-
suitable for this kind of dynamic descriptions.

3.2 New Technology Allows for Changes

Earlier it has been difficult to present actual programming to students. When
programs, in the form of finished solutions, were presented to students it was in the
form of writings on the blackboard or copies of finished programs (or program
fragments) on transparencies for projection.

Programming on a blackboard has the advantage that it is possible to create
programs in dialog with the students at a pace the students can follow; also, the
teacher and the students can interact during the development of the program. The
obvious drawback is that only small programs can be presented, and neither are we
able to run and modify the programs nor to demonstrate professional use of the
development tool(s) and programming techniques.

Finished programs on transparencies provide a way of presenting larger and
more complex programs to the students, programs that we would never consider
writing on a blackboard. This approach has the drawback that teachers tend to
progress too fast and exclude the students from taking part in the development.
The emergence of new technology has made it possible in a simple and
straightforward manner to present live programming to students. Live programming
can be presented in two different ways: live programming using computer and
projector, and process recordings showing an expert at work.

225

Live programming in the lecture theatre using computer and projector is like a
combination of using blackboard and slides, but with the important additional ability
to run and test the program and to use the programming tools (IDE, online docu-
mentation, diagramming tools). This is much closer to the actual programming
process than the first two approaches. However, there are still drawbacks: time in the
class room is limited and this restricts the complexity of the examples that are
presented; also, the presentation vanishes as it takes place; nothing is saved
afterwards.

Process recordings showing the programming process of an expert are similar to
live programming but without its limitations. In process recordings you can take the
time needed to present as complex an example as you wish, and the presentation can
be reviewed over and over as many times as a student needs to.

The first three approaches have in common that they are synchronous, one shot
events. There is no possibility for the student to go back and review (a step in) the
development process if there were something he did not understand. This opportunity
is exactly what is added by using process recordings.

4 A Categorization of Process Elements

In this section we present a more detailed description of the process elements we
expose through process recordings, and we identify seven different categories that we
have found useful in CS1.

A typical programming process encompasses the following process elements:

• Use of an IDE
• Incremental development
• Testing
• Refactoring
• Error handling
• Use of online documentation
• Model-based programming

All are unsuitable for textual descriptions, but important for the student to master.
For each process element, we will discuss how to address it in an introductory
programming course and how process recordings can be used to reveal its core
aspects.

Use of an IDE: We use a simple IDE (Kölling, 1999) . However, a short recording
demonstrating the use of special facilities in the IDE makes it still easier for the
students to start using it.

Incremental development: Students often try to create a complete solution to a
problem before testing it. This is not the behaviour we want the students to exhibit;
instead we want them to create the solution in an incremental way taking very small
steps alternating between implementing and testing. Following this advice makes it
much easier to find and correct errors and it simplifies the whole activity. This topic

226

is very difficult to communicate in a book. With a process recording, it is simple and
straightforward to demonstrate how to behave.

Testing: We promote two simple techniques for testing: interactive testing through
the IDE (BlueJ) or the creation of a special class with test methods. The process
aspect of the former technique is covered under “Use of the IDE” above (see also
(Rosenberg & Kölling, 1997)). A textbook is useful for describing principles and
techniques for testing but how to integrate testing in the development process is best
demonstrated showing a live programming/testing process.

Refactoring: When the students read a textbook they easily get the impression that
programmers never make mistakes, that programmers always create perfect, working
solutions in take one, and that programmers therefore never have to correct and
improve their programs. In (Fowler & Beck, 1999) it is stated that an experienced
programmer should expect to use approximately 50% of his time refactoring his code.
If this is the case for an experienced programmer, a novice programmer should expect
to use significantly more time refactoring/correcting; clearly, students cannot expect
to create perfect solutions in take one. But the students get the impression that they
ought to be capable of this.

We have found it difficult to motivate the need for refactoring to students. The
goal of refactoring is to create better programs in the sense of exhibiting lower
coupling and higher cohesion. The students do not know when it is advantageous to
refactor a program; they consider the job done when the program can compile and
run. But showing them the refactoring techniques “live” gives them a much better
understanding of the techniques and an appreciation of the necessity for refactoring.
In order to optimise motivation we often start out with a student’s program, showing
how refactoring can make that program more readable, and how lower coupling and
higher cohesion can be obtained through successive applications of simple standard
techniques.

Error handling: In order to make the students feel more comfortable it is
important to show them that every programmer makes errors and that error handling
is a part of the process. It is important to show the students how errors are handled. In
particular it is important to demonstrate to the students that the output from the
compiler does not always indicate the real error and that there are different types of
errors. The process recordings help by being explicit and by dealing systematically
with each kind of error.

Online documentation: Modern programming languages are accompanied by
large class libraries which the students need to use. The documentation for Java is
available online, and the students have to be acquainted with the documentation and
how to use it in order to write programs. When the students write code, we force them
to write javadoc too. In order to teach how to write and generate the documentation,
we show how to do this as an integrated part of the development process using live
programming/process recordings.

Model-based programming: We teach a model-driven, objects-first approach as
described in Bennedsen and Caspersen, chapter 9. In order to do so the students need
to use more than the traditional programming tools; they need to use a tool for
describing the class models. The students also need to understand the interaction

227

between the IDE and the modelling tool as well as the relation between model and
code. To reinforce the importance of modelling as an integrated part of program
development it is vital to show the students the tools.

5 Process Recordings in a Course Context

In this section we will describe how the process recording materials are used in an
introductory object-oriented programming course.

5.1 Categories of Process Recordings

We have created five different types of process recordings: introduction to
assignments, solutions to the assignments, documentation of synchronous activities
(lectures and online meetings), alternative teaching materials, and tool support.

Introduction to assignments: Many students struggle with getting started with an
assignment: what is the problem, how shall I start, what exactly is it that I have to do?
Many such questions can efficiently be addressed in a process recording where also
fragments/structure of a solution can be presented.

Solutions to assignments: Presentation of a solution to a programming
assignment; besides presenting the solution, we also present aspects of the
development process.

Documentation of synchronous activities: By capturing live programming as it
takes place, the students get the opportunity to review (parts of) the process at a later
stage.

Alternative teaching materials: For the core topics in the text, we create small
programming problems to illustrate the use and applicability of the topic. This
provides diversity in the course material supporting different styles of learning.

Tool support: We have created different kinds of process recordings for tool
support. Like (Alford, 2003) we have found that, instead of creating written
descriptions and manuals for these tasks, it is much easier for us as well as the
students if we create a process recording showing how to do things: just tell what you
are doing on the screen while capturing it.

5.2 Student Feedback

Recently we taught two introductory programming courses based on distance
education with respectively 35 and 20 students (a detailed description of the design of
this course can be found in (Bennedsen & Caspersen, 2003)). For these courses, we
made extensive use of process recordings. All of these materials are stored on a web-
server and the students can access them whenever they want and from where they
want.

228

We have evaluated the use of process recordings in our introductory programming
course. The evaluation was done quantitatively using a questionnaire as well as
qualitatively by interviewing a number of students about their attitude towards the
material. From the questionnaire we can see that more than 2/3 of the students have
seen more than 50% of the process recordings.

The distribution of hits for the different types of process recordings is as follows:
introduction to assignments 28%, solutions to assignments 19%, documentation of
synchronous activities 9% alternative teaching materials 21%, and tool support 23%.
The interesting thing is that the possibility of reviewing the synchronous activities has
by far the smallest hit rate; this indicates that web casting of lectures, which is a
widespread use of process recordings (Berkeley, 2007; MIT, 2006), is seen by the
students as the least useful of the five categories.

The students have self-evaluated the learning outcome of the process recordings;
the result of the evaluation is: No 21%, Small 0%, Ordinary: 21%, High: 14%, Very
high: 44%. 58% has indicated a high or very high learning outcome which is very
encouraging. In post-course interviews, the students generally confirmed this.

6 Related and Future Work

Streaming video has become more and more popular and common (Ma, Lee, Du, &
McCahill, 1996; Smith, Ruocco, & Jansen, 1999). Compression techniques have been
standardized and improved; bandwidth is increasing (also in private homes) making it
realistic to use videos in an educational setting.

Web casts of lectures is used by many universities including prominent ones like
Berkeley and MIT (Berkeley, 2007; MIT, 2006). While such videos may be valuable
to students who are not able to attend the lecture or would like to have (parts of) it
repeated, they do not significantly add new value to the teaching material.

The use of process recordings in teaching is not new (Smith et al., 1999). Process
recordings are used extensively in (D. Gries, Gries, & Hall, 2002), but the use is
somewhat different from ours: all process recordings are very short and focused on
explaining a single aspect of the programming language or programming; the process
recordings are “perfect”, they do not show that it is common to make errors (and how
to correct them); and the process recordings do not show the integrated use of the
different tools like IDE, online documentation, etc. The process recordings in (D.
Gries et al., 2002) can be characterized as alternative teaching materials according to
our categorization in the previous section.

Others use a much richer form of multimedia than plain video. One example is the
learning objects discussed in (Boyle, 2003). The same differences as described above
apply, and on top of that the production cost for creating these learning objects is
extremely high.

Much more needs to be done in this area. The overall long-term objective of
programming education is that students learn strategies, principles, and techniques to
support the process of inventing suitable solution structures for a given programming
problem. One possible approach to advance our knowledge is to identify, analyze,

229

and categorize existing methodological and systematic approaches to the practice of
programming and programming education — including classical programming
methodology of the Dijkstra-Gries school, design by contract, elementary patterns,
the existing but scarce literature on the practice of programming, and a study of the
practice of masters. Furthermore, it is necessary to identify, categorize, and
operationalize strategies, principles, and techniques for object-oriented programming
and indicate how these can be made available to novices as well as more experienced
programmers through education. Finally, the insight from this work should form the
basis of a formulation of requirements for programming environments and languages
for programming education.

7 Conclusions

The idea of revealing the programming process is not new:

Anyone with a reasonable intelligence and some grasp of basic logical and

mathematical concepts can learn to program; what is required is a way to demystify
the programming process and help students to understand it, analyse their work, and
most importantly gain the confidence in themselves that will allow them to learn the
skills they need to become proficient.

This quotation is fifteen years old (Gantenbein, 1989); nevertheless, the issue still

has not found its way into programming textbooks.
Revealing the programming process is an important part of an introductory

programming course that is not covered by traditional teaching materials such as
textbooks, lecture notes, blackboards, slide presentations, etc. This is just as good
since these materials are insufficient and ill suited for the purpose.

We suggest that process recordings in the form of screen captured narrated pro-
gramming sessions is a simple, cheap, and efficient way of providing a revelation of
the programming process. Furthermore, we have identified seven elements included
in the programming process. For each of these we have discussed how to address it in
an introductory programming course and how process recordings can be used to
reveal its core aspects.

From our evaluation of the approach we know that the students use and appreciate
the process recordings; some students even find the material superior to traditional
face-to-face teaching. The creation of video-mediated materials has proven to be easy
and cheap as opposed to other approaches to create learning objects.

The advance of new technology in the form of digital media has made it possible
to easily create learning material to reveal process elements that in the past only has
been addressed implicitly. The students welcome the new material which has great
impact on the students’ understanding of the programming process and their
performance in practical programming. With new technology, in this case computers
and video capturing tools, it becomes possible to store information that represent
dynamic behaviour, something which is virtually impossible to describe and represent

230

using traditional tools and materials such as blackboards and books. We are looking
forward to further pursue this new opportunity.

References

References

Alford, K. L. (2003). Video faqs - instruction-on-demand. Procedings of the 33rd Frontiers in

Education Conference. Boulder Colorado. S2e-20-s2e-20.

Astrachan, O., & Reed, D. (1995). AAA and CS 1: The applied apprenticeship approach to CS

1. SIGCSE '95: Proceedings of the Twenty-Sixth SIGCSE Technical Symposium on

Computer Science Education, Nashville, Tennessee, United States. 1-5. from

http://doi.acm.org/10.1145/199688.199694

Bennedsen, J., & Caspersen, M. (2003). Rationale for the design of a web-based programming

course for adults. Procedings for the International Conference on Open and Online

Learning (ICOOL 2003), University of Mauritius, Mauritius.

Berkeley. (2007). UC berkeley webcasts. Retrieved February 17, 2007, from

http://webcast.berkeley.edu/courses/

Boyle, T. (2003). Design principles for authoring dynamic, reusable learning objects.

Australian Journal of Educational Technology, 19(1), 46-58.

231

Caspersen, M. E., & Kölling, M. (2006). A novice's process of object-oriented programming.

OOPSLA '06: Companion to the 21st ACM SIGPLAN Conference on Object-Oriented

Programming Languages, Systems, and Applications, Portland, Oregon, USA. 892-900.

from http://doi.acm.org/10.1145/1176617.1176741

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D tool for introductory programming

concepts. J.Comput.Small Coll., 15(5), 107-116.

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway, & J. C. Spohrer

(Eds.), Studying the novice programmer (pp. 57-73). Hillsdale, NJ: Lawrence Erlbaum.

Fowler, M., & Beck, K. (1999). Refactoring: Improving the design of existing code. Reading,

Massachusetts, USA: Addison-Wesley Professional.

Gantenbein, R. E. (1989). Programming as process: A "novel" approach to teaching

programming. SIGCSE '89: Proceedings of the Twentieth SIGCSE Technical Symposium

on Computer Science Education, Louisville, Kentucky, United States. 22-26.

Gries, D., Gries, P., & Hall, P. (2002). ProgramLive: Master JAVA programming in a

dynamic, self-paced learning environmentWiley.

Gries, D. (1974). What should we teach in an introductory programming course? SIGCSE '74:

Proceedings of the Fourth SIGCSE Technical Symposium on Computer Science

Education, 81-89.

Kölling, M. (2003). The curse of hello world. Oslo, Norway: Invited lecture at Workshop on

Learning andTeaching Object-orientation – Scandinavian Perspectives.

232

Kölling, M. (1999). Teaching object orientation with the blue environment. Journal of Object-

Oriented Programming, 12(2), 14-23.

Levy, R. B. B., Ben-Ari, M., & Uronen, P. A. (2003). The jeliot 2000 program animation

system. Computers & Education, 40(1), 1-15.

Linn, M. C., & Clancy, M. J. (1992). The case for case studies of programming problems.

Communications of the ACM, 35(3), 121-132.

Ma, W. H., Lee, Y. J., Du, D. H. C., & McCahill, M. P. (1996). Video-based hypermedia for

education-on-demand. Proceedings of the Fourth ACM International Conference on

Multimedia, Boston, Massachusetts, United States. 449-450.

MIT. (2006). Structure and interpretation of computer programs, video lectures. Retrieved

February 17, 2007, from http://www.swiss.ai.mit.edu/classes/6.001/abelson-sussman-

lectures/

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A

review and discussion. Journal of Computer Science Education, 13(2), 137-172.

Rosenberg, J., & Kölling, M. (1997). Testing object-oriented programs: Making it simple.

SIGCSE '97: Proceedings of the Twenty-Eighth SIGCSE Technical Symposium on

Computer Science Education, San Jose, California, United States. 77-81. from

http://doi.acm.org/10.1145/268084.268115

Smith, T., Ruocco, A., & Jansen, B. (1999). Digital video in education. SIGCSE '99: The

Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer Science

233

Education, New Orleans, Louisiana, United States. 122-126. from

http://doi.acm.org/10.1145/299649.299715

Soloway, E. (1986). Learning to program = learning to construct mechanisms and

explanations. Communications of the ACM, 29(9), 850-858.

Spohrer, J., & Soloway, E. (1986). Analyzing the high-frequency bugs in novice programs. In

E. Soloway, & S. Iyengar (Eds.), Empirical studies of programmers (pp. 230-251).

Washington, DC, USA: Ablex Publishing Corporation.

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?

Communications of the ACM, 29(7), 624-632.

234

16 A Novice’s Process of Object-
Oriented Programming

The paper A Novice’s Process of Object-Oriented Programming presented in
this chapter has been published as a conference paper [Caspersen et al.
2006a].

[Caspersen et al. 2006a] Caspersen, M.E. and Kölling, M., “A novice's proc-
ess of object-oriented programming”, OOPSLA '06: Companion to the 21st
ACM SIGPLAN conference on Object-Oriented Programming Languages,
Systems, and Applications, Portland, Oregon, USA, pp. 892-900, 2006.

235

236

A Novice's Process of Object-Oriented Programming

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34, DK-8200 Aarhus N

Denmark
mec@daimi.au.dk

Michael Kölling
Computing Laboratory

University of Kent
Canterbury, Kent CT2 7NF

United Kingdom
mik@kent.ac.uk

Abstract
Exposing students to the process of programming is merely im-
plied but not explicitly addressed in texts on programming which
appear to deal with ‘program’ as a noun rather than as a verb.

We present a set of principles and techniques as well as an infor-
mal but systematic process of decomposing a programming prob-
lem. Two examples are used to demonstrate the application of
process and techniques.

The process is a carefully down-scaled version of a full and rich
software engineering process particularly suited for novices learn-
ing object-oriented programming. In using it, we hope to achieve
two things: to help novice programmers learn faster and better
while at the same time laying the foundation for a more thorough
treatment of the aspects of software engineering.

Categories and Subject Descriptors D1.5 [Programming Tech-
niques]: Object-oriented programming.
D2.3 [Software Engineering]: Coding Tools and Techniques –
Object-oriented programming, Structured programming, Top-
down programming.

D2.4 [Software Engineering]: Software/Program Verification –
Class invariants, Programming by contract.

General Terms Algorithms, Design, Documentation, Languages.

Keywords CS1, Systematic Programming, Programming Proc-
ess, Design by Contract, Representation Invariant, Objects-First,
Stepwise Refinement, Top-Down Design, Incremental Develop-
ment, Testing, Refactoring, Programming Education, UML,
Pedagogy.

1. Introduction
I remember when I first learned to program. I had a
couple of workbooks covering the fundamentals of pro-
gramming. I went through them pretty quickly. When I
had done that, I wanted to tackle a more challenging
problem than the little exercises in the book. I decided I
would write a Star Trek game…
My process for writing the programs to solve the work-
book exercises had been to stare at the problem for a

few minutes, type in the code to solve it, then deal with
whatever problem arose. So I sat confidently down to
write my game. Nothing came! I needed to do something
beyond coding. But I didn’t know what else to do.

Kent Beck [3]

Most texts used to teach beginners to program focus on presenting
language constructs, programming language concepts, and com-
puter programs (complete or partial). They are concerned mostly
with ‘program’ as a noun rather than as a verb. The process of
program development is often merely implied rather than explic-
itly addressed. A typical structure is the presentation of a problem
followed by a presentation of a program to solve that problem and
a discussion of the program’s elements.

From the viewpoint of a student, the program was developed in a
single step, starting from a problem specification and resulting in
a working solution. Sometimes, a semi-formal requirements speci-
fication is included as an interim step, but this does not funda-
mentally alter our main point: the process of software develop-
ment is essentially invisible. The fact that we all start by develop-
ing sub-optimal and partial implementations on our way to a solu-
tion, which we later refine and improve, often seems to be the
best kept secret of the computing profession.

The exercises in texts often compound the problem; they fre-
quently require small, easy-to-understand steps that are quite dif-
ferent in character from the development of a complete software
solution. The problems resulting from this approach are poten-
tially two-fold:

• Students may be able to understand every separate construct
but do not have the skills to put the constructs together in an
organised way. This is succinctly illustrated in Kent Beck’s
quote above. Or, if they do succeed:

• Students, who labour through various incorrect attempts at
solving a problem, slowly improving their solution, running
into regular bugs along the way before developing a solu-
tion that mostly works, often think they are poor program-
mers for experiencing so much trouble along the way.

To solve these problems we need to do two things:

• Teach students about the process of software development,
to enable them to follow organised steps to move toward a
solution to a problem, and

• Treat software development explicitly as a process that is
carried out in stages and small steps, rather than the writing
of a single, monolithic solution.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

892

237

If we do not explicitly teach the programming process, we end up
with two groups of students: those who cannot cope with the chal-
lenge of development and those who discover their own process.

Developing software is, by its very nature, always a process,
whether we are formally aware of it or not.

Some of the first group, those students we lose, might have been
saved had we given them better techniques to address this prob-
lem.

Students in the second group can also greatly benefit from a sys-
tematic process, since the techniques they discover and apply in
an ad-hoc manner often (and unsurprisingly) lead to inadequate
and badly designed solutions. The most applied development
technique among students is probably the “first solution that
comes to mind” technique. Many of our students are so happy to
find any solution at all that it does not occur to them to investigate
alternatives. Thus, a systematic process should not only help those
students who have fundamental problems arriving at any solution
at all but should improve the quality of solutions of all students.

The problem has been first identified a long time ago [9, 13, 22].
The terms stepwise refinement and top-down design were intro-
duced in the 1970s, and the general principles appeared in some
texts at the time, but few current texts do justice to the topic. Re-
cently, some work in this area has been published. For example,
Bennedsen & Caspersen argue for the necessity of teaching a sys-
tematic programming process and demonstrate ways to apply pro-
gramming strategies and techniques [5]. A further discussion of
related work is provided in section 5.

In this paper, we identify and describe systematic programming
techniques particularly suited for novices learning object-oriented
programming. More specifically, we present part of an informal,
but systematic, process of decomposing a programming problem.
The process is designed to be applied by beginners. This paper
does not completely describe the whole process, but the largest
part of it. Some additional work remains to be done.

The aim of this process is to be applied in an introductory learn-
ing and teaching situation. Thus, some of the design goals are that
the process has very little bureaucratic overhead, is easy to under-
stand, and is simple to follow.

Our hope is that the result is not only to enable more students to
develop programs but also to achieve an improvement in code
quality (such as readability, correctness, testing, and extendabil-
ity) of student solutions.

Section 2 presents the techniques in an abstract form, followed by
two examples in sections 3 and 4 that illustrate and discuss the
techniques. Section 5 discusses related and future work and sec-
tion 6 presents our conclusions.

2. A SYSTEMATIC PROCESS FOR NOVICES
In this section, we describe, in a general way, some simple steps
that can be followed to implement classes whose intended behav-
iour is essentially understood.
This section is kept brief and is intended as an initial overview –
we will discuss the techniques in more detail using an example in
the following section.
Our techniques do not address the analysis phase or the finding of
the classes from the problem domain. This may be achieved by

using the noun/verb method or other simple methodologies. More
likely, in very early student exercises, the teacher or the textbook
will provide the class structure.

2.1 Step 1: Create the class (with method stubs)
We assume that the classes and their observable (public) func-
tionality is understood and given, for example in the form of a
Java interface or carefully written javadoc comments.
The first step towards implementation is to create an implementa-
tion class that implements this interface (or, if the interface is not
formally given, provides methods with the intended signatures).
The method implementations at this stage are stubs (i.e. minimal
method bodies).
For methods that do not return values, the method body is empty.
For methods with return values, the method body consists of a
single return statement. The value returned is a default value (zero
for numbers, null for object types, etc.).
Repeat this for every class in the project.

2.2 Step 2: Create tests
Once method stubs have been defined, test cases can be written
for every method. This is commonly done using JUnit [16]. Sev-
eral educational tools support JUnit testing (e.g. BlueJ and Dr.
Java [18, 11]), and in environments that support recording of in-
teractive testing, such as BlueJ [17], the existence of stubs enables
the test interaction to be recorded.
Initially, most tests will fail. Details about how these tests should
be developed are beyond the scope of this paper and have been
discussed elsewhere [4, 15].

2.3 Step 3: Alternative representations
The next step aims at deciding on an implementation representa-
tion for the objects to be defined. The representation is defined by
the instance fields of the class.
For every class, alternative representations must be considered.
These can be as many as a student can think of, but must be at
least two.
We label each of our candidate representations R1 to Rn.
Next, we create a Representation Evaluation Matrix (REM). A
REM is a table with one column for each candidate representa-
tion, and one row for each method in our class to be implemented
(Table 1). Above the table is a short description of each alterna-
tive.
R1: a short description of the first representation alternative here

R2: a short description of the first representation alternative here

IMPL. EFFORT R1 R2

method1() Challenging Trivial

method2() Trivial Hard

method3() Easy Hard

Table 1: Implementation effort estimation matrix
We use this matrix to compare each method that must be imple-
mented for each possible object representation. The comparison
criteria may vary – leading to different tables – but is initially al-
ways “implementation effort”.

893

238

Table 1 shows an example of an Effort REM. In this table, we
compare the estimated effort it takes to implement each method
using a particular object representation. As values, we use a small
ordered set of effort qualifiers. They are Trivial, Easy, Average,
Challenging, and Hard (the “TEACH scale”).
In later exercises, different REMs may be used for other criteria
that are explicitly mentioned in the task specification. For exam-
ple, if runtime performance is an explicitly stated goal, a Per-
formance REM may be used.
It is crucial not to judge representations on imaginary require-
ments. Especially, performance consideration should not play a
role in early exercises, and it should be made clear that perform-
ance is entirely irrelevant for judgement of the Effort REM. We
recommend focusing on Effort REMs in early exercises.
Initially the instructor can supply the REM, but gradually the stu-
dents should be responsible for filling in the REM.
Once the Effort REM is complete, we choose the representation
that is judged to have the simplest overall implementation.

2.4 Step 4: Instance fields
When we have settled on one particular representation, we can re-
fine our implementation class.
We now define the fields needed to represent the object. (The
field definitions need not be complete; further fields may be
added later to support method implementations. However, many
important fields are derived from the implementation representa-
tion.) The field definitions may include their role (in the form of a
comment) and possible constraints on their values (also in com-
ment form).
At this stage, we also provide appropriate initialisations for the
fields, either in the form of default values or by using client-
supplied values. This includes at least partial implementation of
the class’s constructor.

2.5 Step 5: Method implementation
Step 5 is actually more than a single step: it has the form of a
nested loop. The definition is:

while there is an unfinished method:
 Pick an unfinished method;
 Implement the method

The “Implement the method” step itself contains a loop:

while not done:
 improve the method;
 test

The order in which a student chooses the methods is essentially
arbitrary. Our recommendation for students who are not entirely
confident is to choose the method that, according to the Effort
REM, is easiest to implement first.
It is easy to see that this completes the implementation. If a stu-
dent successfully completes this step, the class is finished.
All the magic now lies in the “Implement method” step. This is
still a large task, and needs further advice to break it down into
smaller steps.

2.6 Method implementation rules
Implementing a method is potentially a large and non-trivial task.
We aim to provide a process that breaks this task into smaller
steps as well. This time, we cannot give a single recipe, since de-
tails of the method may vary widely. Instead, we give a set of
rules that can be applied in certain cases.
Some methods, of course, consist of only a few lines of code and
may be easy to write. Our rules aim at breaking all methods down
into smaller chunks, until they approach the complexity of those
easy-to-write methods. This is essentially a small variation of
stepwise refinement [22].
At the heart of this technique is the Mañana Principle. The
Mañana Principle says

When – during implementation of a method – you wish you
had a certain support method, write your code as if you had it.
Implement it later.

Thus, the Mañana Principle encourages separation of concerns
and the use of many small methods. We discuss an example be-
low.
To get beginners used to the Mañana Principle, there are some
more specific forms of this rule, each of which state a more con-
crete situation in which this principle should be used. They are:

Special Case rule: If you write code to treat a special case
in your algorithm, treat the special case in a separate
method.
Nested Loop rule: If you have a nested loop, move the inner
loop into a separate method.
Code Duplication rule: If you write the same code segment
twice, move the segment into a separate method.
Hard Problem rule: If you need the answer to a problem
that you cannot immediately solve, make it a separate
method.
Heavy Functionality rule: If a sequence of statements or an
expression becomes long or complicated, move some of it
into a separate method.

The special methods created as part of these rules are usually pri-
vate methods, unless they are created in different classes – we dis-
cuss this further below.
It is important to remind students that these separate methods do
not need to be implemented straight away. The calling method
can be written as if the method existed. Following this, a stub for
the Mañana method should be created. (If the programming envi-
ronment had specific tool support for the Mañana principle, this
could be automated by the IDE.)
The specific rules are initially easier to apply, because they pro-
vide concrete hints to times when they should be applied. They
are, however, just instances of the Mañana Principle, and, if ap-
plied regularly, develop a coding habit that encourages the under-
standing and application of the principle in general.
This principle – and the specific rules – may sound abstract or
complicated when presented in this theoretical form, but they are
quite easy to understand when presented in the context of an ex-
ample. In the next section, we discuss the development of a class
defining objects for dates (time, month and year) to illustrate
these techniques in practice.

894

239

3. A FIRST EXAMPLE: DATE
We demonstrate the techniques discussed above in the context of
a simple programming problem: the implementation of a class
representing a date.

3.1 Specification of Date
Here, we give the specification of the problem as a Java interface.
It could easily be presented more informally; the introduction of
interfaces is not a requirement for this process.
interface Date {
 /**
 * Advance the date to the next day
 */
 void setToNextDate();

 /**
 * Return a string representation of this date
 * in the format yyyy-mm-dd
 */
 String toString();
}

Figure 1: Specification of Date

3.2 Creating method stubs
The first step is to create a class for the implementation that con-
tains method stubs. The resulting class is presented in Figure 2.
(Note that we do not formally implement the interface given
above to demonstrate that the use of Java interfaces is not a re-
quirement.)
If the specification was provided in the form of a Java interface,
this process is essentially mechanical and could be automated by
a development environment. For students in early stages of learn-
ing, however, it might help to write this class skeleton by hand.
The important thing is: simple rules can be given to guide the
creation of this class.
/** An instance contains a date */
class Date1 {

 /**
 * Advance the date to the next day
 */
 public void setToNextDate() {
 }

 /**
 * Return a string representation of this date
 * in the format yyyy-mm-dd
 */
 public String toString() {
 return null;
 }
}

Figure 2: Date class with method stubs

3.3 Test cases
The next step is to ensure that appropriate test cases exist.
Our techniques do not necessarily prescribe a strict test-first ap-
proach, in which students create tests for all methods themselves.
A viable alternative for early programming tasks is to use teacher-
provided tests. The teacher may provide a test suite for the ex-
pected methods as part of the specification of the task.
The important step here is to ensure that tests exist, can be com-
piled, and can be executed (but do not need to pass).
In this paper, we do not present the specific tests, since the actual
test development is not the main focus of this paper. The example
(including the test), however, is available from a web site. The
URL is given at the end of this paper.

3.4 Alternative representations for Date
The next step in our technique is to consider alternative represen-
tations (at least two).

An obvious representation for this problem is to use three integer
variables day, month and year; we will denote this alternative R1.
An alternative representation is to count the number of days from
a certain start date, say 0001-01-01; we denote this alternative R2.

R1 simplifies the implementation of toString whereas the imple-
mentation of setToNextDate will be more challenging, since it
must deal with the special case of the last day of a month.

R2 leads to a simple implementation of setToNextDate (a simple
increment), whereas implementing toString will be hard.

The result of this analysis is the Effort REM for Date (Table 2).

R1: Use three integers for date: day: int; month: int; year: int

R2: Use one integer: number of days since 1 Jan 0001

IMPL. EFFORT R1 R2

setToNextDate() Challenging Trivial

toString() Trivial Hard

Table 2: Estimate of required effort to implement Date

We choose to use R1 for our class, since it seems to be the repre-
sentation that allows for the quickest implementation of Date.

3.5 Instance fields of Date
Choosing R1 as the basis for our implementation determines the
instance fields. The definition of class Date1 after adding the
fields is presented in Figure 3. The method stubs are unchanged.
Comments from previous code segments are left out for brevity;
only comments for new methods are included from here on.
class Date1 {

 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 /**
 * Create a date instance with an arbitrary
 * (fixed) value.
 */
 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 }

 public String toString() {
 return null;
 }
}

Figure 3: Adding instance fields to Date

3.6 Implementing the methods
The next step is to implement and test the methods. Some meth-
ods may be easy to implement in one step; toString in our exam-
ple falls into this category. Other methods may require more
work. In this case, partial solutions may be used for initial ver-
sions. Figure 4 shows our class after implementing function
toString and a first, naïve version of setToNextDate.

895

240

class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 }
 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 4: Naïve implementation of Date
This partial solution is indeed a very naïve implementation. Nev-
ertheless, we might claim that the setToNextDate method is 97%
correct since it works correctly in 353 out of 365 cases! In some
sense, we are very close to a full solution, and if the class is part
of a larger system, it can now be used (as a test stub) by other
parts of the system.
Incrementing the field day might violate the representation invari-
ant, and in this special case the above implementation of setTo-
NextDate fails to work properly. We have to check for this special
case and handle it appropriately. For simplicity, we temporarily
assume 30 days in every month.
In the special case where day after being incremented exceeds the
number of days in the month, we must set day to 1 and increment
field month. Following our Special Case rule from section 2, we
deal with this special case by introducing a new private method,
checkDayOverflow. Figure 5 shows the resulting code.
class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 checkDayOverflow();
}

/**
 * Check for special case where day > daysInMonth;
 * in that case, set day to 1 and add 1 to the month
 */

 private void checkDayOverflow() {
 if (day > 30) {
 day = 1;
 month = month + 1;
 }
 }

 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 5: Partial implementation of Date
Now, incrementing the variable month might also violate the rep-
resentation invariant; this special case is handled similarly by in-
troducing a new private method checkMonthOverflow, which is
called after incrementing month. Except for the assumption of 30
days in every month, the method is now finished.
To finish our implementation, we have to replace the literal 30
with the correct number of days in every month. Here, the Maña-

na Principle comes in again, this time in the form of the Hard
Problem rule: If we need some information that we do not have,
we pretend we have a method that gives us the answer. Thus, we
just assume a method daysInMonth that does exactly what we
need. We do not worry about the implementation of this method
now; it is postponed until later.
The new version of the checkDayOverflow method is shown in
Figure 6.
private void checkDayOverflow() {
 if (day > daysInMonth()) {
 day = 1;
 month = month + 1;
 checkMonthOverflow();
 }
}

Figure 6: Final version of checkDayOverflow()
This method will not compile until we provide a method stub for
daysInMonth. The stub, in this case, should not return a zero, but
should return 30 – the approximation we have used previously.
The most important thing at this stage is that we have explicitly
separated two independent problems: the correct use of this
method and the implementation of the method. Separating these
problems makes each half easier to solve.
Since our checkDayOverflow method is now complete, we might
now proceed to implement checkMonthOverflow. In the general
case, implementing one method may generate several other meth-
ods via the Mañana Principle, which can then be gradually im-
plemented.
For our example, implementing the daysInMonth method is the
last thing that is missing. To calculate the number of days in the
current month, we declare a local array variable in this method to
hold the number of days per month (with 28 days for February),
and the method returns the number of days in the current month
by looking up the number in the array. This brings us almost to
the finishing line: the implementation now works, except for the
special case where the current year is a leap year (“99.93% cor-
rectness”).
As previously, we treat a special case by introducing a new pri-
vate method to deal with it. In this case, we introduce a boolean
method isLeapYear that returns true if the current year is a leap
year. The implementation of this method is a straightforward im-
plementation of the leap year rule: a year is a leap year if the year
is divisible by 4 but not by 100 or if it is divisible by 400.
The hardest part of this calculation is the check whether a number
can be divided by another so, again, following the Mañana Prin-
ciple, we use a method divides that gives us the result, and then
we implement that method later.
The complete implementation of our Date class including these
methods is shown in Figure 7.
class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 checkDayOverflow();
 }

896

241

 private void checkDayOverflow() {
 if (day > daysInMonth()) {
 day= 1;
 month= month + 1;
 checkMonthOverflow();
 }
 }

 /**
 * Check for special case where month > 12;
 * in that case, set month to 1 and add 1 to the year
 */
 private checkMonthOverflow() {
 if (month > 12) {
 month= 1;
 year= year + 1;
 }
 }

 /**
 * Return the number of days in the current month
 */
 private int daysInMonth() {
 // month: 1 2 3 ... 12
 int[] daysInMonth = {31,28,31,...,31};

 int result = daysInMonth[month-1];
 // special case: February in a leap year
 if (month == 2 && isLeapYear()) {
 result= result + 1;
 }
 return result;
 }

 /**
 * Return true iff the current year is a leap year
 */
 private boolean isLeapYear() {
 return (divides(4, year) && !(divides(100, year))
 || divides(400, year);
 }

 /**
 * Return true iff a divides b
 */
 private boolean divides(int a, int b) {
 return b % a == 0;
 }

 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 7: Complete implementation of Date

3.7 Discussion of Date implementation
The above development of a class implementing Date demon-
strates the application of the techniques set out in section 2. The
most relevant observation is that every step is broken into small,
manageable chunks.

Some of the steps in our technique are fairly easy to learn (creat-
ing method stubs, defining the instance fields after deciding on a
representation); others require much practice (creating tests, im-
plementing methods).

The detailed discussion of the method implementation has shown
that – at least in this case – the harder tasks can also be broken
down into small parts. This technique can be applied to any im-
plementation of a method.

4. A SECOND EXAMPLE: CALENDAR
Our second example is one that consists of two classes: a class
Appointment to record personal appointments, and a class Calen-
dar class to hold the appointments. We discuss this example to il-
lustrate some additional points (while mostly skipping those parts
that we have already covered above).

4.1 Specification of Calendar
Again, we give the specifications of Calendar and Appointment in
the form of Java interfaces (Figure 8). Alternatively, they may be
provided as a UML diagram or informally as a list of required
methods.

To abstract from the details of actual time and date information,
start time and duration of appointments are represented as integer
values. For example, we may have an appointment that starts at 6
and has duration 5 and another that starts at 9 and has duration 1.
/** A calendar that can hold appointments */
interface Calendar {

 /** Add appointment a to this calendar */
 void add (Appointment a);

 /** Remove appointment a from this calendar */
 void remove(Appointment a);

 /** Return the first free slot of
 duration d at or after time s */
 Appointment getFirstAvailable(int s, int d);
}

/** An appointment */
interface Appointment {
 int getStartTime();
 int getDuration();
 String getDescription();

 /** collidesWith is true iff this and a overlap */
 boolean collidesWith(Appointment a);
}

Figure 8: Specification of Calendar and Appointment

4.2 Creating method stubs and test cases
For this example, we skip the discussion of method stub creation
and test case definitions, since the process is essentially the same
as in the first example. Instead, we jump straight ahead to the dis-
cussion of representation alternatives.

4.3 Alternative representations for Calendar
As always, before embarking on implementing a specification, al-
ternative representations must be considered. This must be done
for each class. In this discussion, we consider only the implemen-
tation of class Calendar and ignore class Appointment.

One representation of a calendar is an unordered set of appoint-
ments; we will denote this representation R1. An alternative repre-
sentation is a sorted set of appointments; we will denote this rep-
resentation R2.

For both R1 and R2, implementation of add and remove is trivial (a
delegation to the similar Set method).

R1 simplifies the programming task of getFirstAvailable (at the
expense of runtime efficiency). The method can be implemented
as a simple linear search where each repetition requires another
repetition over the set of appointments (i.e. getFirstAvailable will
be O(n2) where n denotes the number of appointments in the cal-
endar), but the required programming effort is manageable.

We know that R2 allows for a more efficient implementation (get-
FirstAvailable will have time complexity O(log(n) + m) where m
denotes the number of collisions until a free slot is found), but
clearly this is at the expense of a considerable increase in the
complexity of the programming task. R2 requires the definition of
a total ordering (natural order) of appointments as well as fluency
with the SortedSet interface, which is an order of magnitude more
complex than the more straightforward Set interface.

897

242

The result of the analysis is summarized in the Effort REM for
Calendar (Table 3).

R1: Use unordered set to store appointments

R2: Use a sorted set to store appointments

IMPL. EFFORT R1 R2

add() Trivial Trivial

remove() Trivial Trivial

getFirstAvailable() Average Challenging

Table 3: Estimate of required effort to implement Calendar
We choose R1 because it clearly allows for the simplest imple-
mentation of Calendar.

4.4 Implementation of Calendar
Having decided upon a representation of a calendar (i.e. having
defined the representation invariant), we have decoupled the three
subtasks of implementing the methods of the Calendar interface.
This is an instance of the principle separation of concerns –
Dijkstra’s mantra and primary instrument of thought [10, pp. 209-
217].

Having decided upon a set representation, where we are free to
choose any concrete class that implements the Set interface, we
can make a partial implementation of Calendar (Figure 9).
/** A calendar with appointments */
class CalendarUnsorted {
 private Set<Appointment> appointments;

 /** Create an empty calendar */
 public CalendarUnsorted() {
 appointments = new HashSet<Appointment>();
 }

 public void add(Appointment a) {
 // FixMe
 }

 public void remove(Appointment a) {
 // FixMe
 }

 public Appointment getFirstAvailable(int s, int d) {
 return null; // FixMe
 }
}

Figure 9: Partial implementation of Calendar
This is indeed a very small step toward a complete implementa-
tion of Calendar, but it compiles and maybe even makes a few
test cases run. For novices (and indeed for others), making small
successful steps toward the goal is a rewarding and satisfying way
of developing software.

Using a set as the representation of a calendar allows for a
straightforward implementation of each of the three methods in-
dependently of each other.

Methods add and remove can be implemented simply by delegat-
ing the method call to the similar Set methods. Adding this to the
initial implementation gives the next two methods of our solution
to the problem (Figure 10).

 /** Add appointment a to this calendar */
 public void add(Appointment a) {
 appointments.add(a);
 }

 /** Remove appointment a from this calendar */
 public void remove(Appointment a) {
 appointments.remove(a);
 }

Figure 10: Implementation of methods add and remove
Method getFirstAvailable is somewhat more complicated. It can
be implemented as a linear search by successively checking for
availability of appointment slots (s, d), (s+1, d), (s+2, d), ... until
an available appointment slot is found ((s, d) denotes the ap-
pointment with start time s and duration d). A first attempt at im-
plementing getFirstAvailable is shown in Figure 11.

/** Return the first free slot of
 duration d at or after time s */

 public Appointment getFirstAvailable(int s, int d) {
 Appointment result;
 boolean available = false;
 do {
 result = new Appointment(s++, d);
 // set 'available' such that available holds iff
 // result does not collide with any appointment
 // already in the calendar
 } while (!available);
 return result;
 }

Figure 11: Partial implementation of method getFirstAvailable
It is obvious that the calculation of available involves an iteration
over the appointments in the calendar, and consequently a nested
loop. One of our rules for method implementation is the Nested
Loop rule: use a new private method to unfold nested loops. In-
stead of proceeding with development of the inner loop, we define
a new private method for the calculation of the boolean expres-
sion available as defined above. We name the method isAvailable
(Figure 12).

/** Return true iff Appointment a does not collide
 with any appointments in this calendar */

 private boolean isAvailable(Appointment a) {
 return true; // FixMe
 }

Figure 12: Specification of method 'isAvailable'
With method isAvailable to serve us, we can now finish the loop
body of method getFirstAvailable (Figure 13).
 public Appointment getFirstAvailable(int s, int d) {
 Appointment result;
 boolean available = false;
 do {
 result = new Appointment(s++, d);
 available = isAvailable(result);
 } while (!available);
 return result;
 }

Figure 13: Implementation of method getFirstAvailable
Removing the unnecessary variable available gives the final ver-
sion of getFirstAvailable (Figure 14).
 public Appointment getFirstAvailable(int s, int d) {
 Appointment result;
 do {
 result = new Appointment(s++, d);
 } while (!isAvailable(result));
 return result;
 }

Figure 14: Improvement of method getFirstAvailable
(Side note: we assume here an unbounded calendar, i.e. there will
always be an available slot, and the loop will always terminate.

898

243

For a bounded calendar, we would have to add a test for reaching
the end of the calendar in the loop condition. This would, of
course, again involve the Mañana Principle, and we would use a
method atCalendarEnd.)

Now we only need to implement the new private method isAvail-
able. As mentioned earlier, this can be done by a repetition check-
ing for collision between a and each appointment i in the set
(Figure 15).
private boolean isAvailable(Appointment a) {
 for (Appointment i : appointments) {
 if (a.collidesWith(i)) return false;
 }
 return true;
}

Figure 15: Implementation of method 'isAvailable'
This completes the development of an implementation of Calen-
dar based on R1. The development of an implementation of Ap-
pointment is left to the reader.

4.5 Discussion of development of Calendar
The discussion of the calendar example has shown the application
of the Nested Loop rule. When consistently applying this rule, the
code remains considerably simpler (and easier to understand for
beginners) than an alternative using a nested loop.

In this example, all the methods introduced through our rules
were private methods in class Calendar. In the general case, this
does not always have to be the case. If, for instance, class Ap-
pointment did not have a method collidesWith, this method may
have been introduced by applying the Hard Problem rule while
implementing the calendar's isAvailable method.

In early exercises, we usually start with problems where the meth-
ods that naturally develop are in the same class. This can then – a
bit later – be extended and linked to a discussion of responsibility-
driven design, and the question which class should provide a new,
required method.

5. RELATED AND FUTURE WORK
Numerous software engineering topics relate to our efforts of
identifying a systematic programming process for novices. We
will discuss these topics in turn.

Stepwise refinement. More than 35 years ago Dijkstra and Wirth
identified the need for a constructive and systematic approach to
programming – not only for novices but for the community as a
whole [8, 9, 22, 23]. Our work builds on the work of Wirth and
Dijkstra but concentrates on a specialized process for novices
learning object-oriented programming.

Programming methodology. In the early seventies Dijkstra for-
malized his ideas about structured programming and developed a
methodology for systematic construction of programs using func-
tional specifications (pre and post conditions) and loop invariants
to drive the development process [10]. In continuation of Dijk-
stra’s seminal work, Back developed a refinement calculus [1, 2]
while Gries and others produced text books based on the method-
ology (e.g. [6, 14, 20]). Our approach differs from this work by
being a formally-based but informally-practiced approach to sys-
tematic program development.

Responsibility-driven design. The Mañana Principle is related to
responsibility-driven design [21]. In this paper, we apply the

Mañana Principle only for functional decomposition, but even
here it reveals its relationship to responsibility-driven design (the
nested loop rule factors a part of the program to a separate method
with the responsibility of implementing the nested loop function-
ality).
Refactoring. During a programming session, it is inevitable that
decisions made earlier in the session need to be altered at a later
stage. Realizing and learning that this is the rule rather than the
exception helps novice programmers come to terms with the fact
that programming is not a linear process. This is refactoring-in-
the-small [12]. An interesting aspect here is programming envi-
ronment support: in a similar manner in which refactoring is now
commonly supported in development environments, the Mañana
Principle could easily be supported by automating the creation of
method stubs whenever a new private method is introduced.
XP and agile software development. Extreme programming and
agile software development covers many aspects of software en-
gineering [3, 19]; two of the basic principles are: “Take small
steps” and “Always do the simplest thing that will work”. We use
these principles as guidelines for choosing among several possible
implementations of an abstraction (a method specification or an
interface) and for the process of implementing it. They are wise
guidelines for novices as well as experts.
Test-driven development. The strategy of test-driven development
[4, 15] relates closely to step 2 in our process: Create tests. Test-
driven development is gaining increased recognition, and it is
beneficial to apply this strategy with novices for several reasons
(e.g. force a consumer view as well as producer view of program
components). But it is not necessary to adopt test-driven devel-
opment in order to apply our process; instead test cases can be
provided as part of the specification of a programming task.
In this paper, we have concentrated on a part of the process where
decomposition generates support methods. This part is not exclu-
sively object-oriented and is equally applicable to functional and
procedural languages, even though we have presented it in the
context of an object-oriented language. Future work includes ex-
tending the set of rules that unfolds the Mañana Principle to cover
cases of decomposition that generate not only new methods but
also new classes (or interfaces).
A second direction of future work will focus on investigating and
designing tool support for the process in general and in particular
for the Mañana Principle.

6. CONCLUSIONS
We have argued that we need to teach novices about the process
of software development in order to enable them to follow organ-
ised steps to move toward a solution to a problem, and that we
must treat software development explicitly as a process that is
carried out in stages and small steps, rather than the writing of a
single, monolithic solution.
Furthermore we have identified and described principles and sys-
tematic programming techniques particularly suited for novices
learning object-oriented programming. To complement the prin-
ciples and techniques, we have presented an informal but system-
atic process designed to be applied by beginners. Through two
examples we have demonstrated the application of the process.
The process we propose is a carefully down-scaled version of a
full and rich software engineering process. By using it we hope to
achieve two things: To help novice programmers learn faster and

899

244

better while at the same time laying the foundation for a more
thorough treatment of the various aspects of a software engineer-
ing process.
The complete programs discussed in this paper are available at
www.daimi.au.dk/~mec/oopsla2006/.

7. Acknowledgement
It is a pleasure to thank David Gries for numerous careful com-
ments and improvements to an earlier version of the paper.

References
[1] Back, R.-J., On the Correctness of Refinement Steps in Pro-

gram Development, PhD thesis, Department of Computer
Science, University of Helsinki, 1978.

[2] Back, R.-J., Refinement Calculus: A Systematic Introduction,
Springer-Verlag, 1998.

[3] Beck, K. Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

[4] Beck, K., Test-Driven Development by Example, Addison-
Wesley, 2003.

[5] Bennedsen, J. and Caspersen, M.E., ”Revealing the Pro-
gramming Process”, Proceedings of the thirty-sixth SIGCSE
Technical Symposium on Computer Science Education, St.
Louis, Missouri, USA, 2005, pp. 186-190.

[6] Cohen, E., Programming in the 1990’s, Springer-Verlag,
1990.

[7] Dahl, O.-J., Dijkstra, E.W. and Hoare, C.A:R., Structured
Programming, Academic Press, 1972.

[8] Dijkstra, E.W., “A Constructive Approach to the Problem of
Program Correctness”, BIT 8, 1968.

[9] Dijkstra, E.W., “Notes on Structured Programming”, EWD
249, 1969. In [7].

[10] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall,
1976.

[11] Dr. Java, http://drjava.org, Accessed 12 July 2006.

[12] Fowler, M., Refactoring: Improving the Design of Existing
Code, Addison-Wesley, 1999.

[13] Gries, D., “What Should We Teach in an Introductory Pro-
gramming Course”, Proceedings of the fourth SIGCSE Tech-
nical Symposium on Computer Science Education, 1974, pp.
81-89.

[14] Gries, D., The Science of Programming, Springer-Verlag,
1981.

[15] Hunt, A. and Thomas, D., Pragmatic Unit Testing in Java
with JUnit, The Pragmatic Programmers, 2003.

[16] JUnit. www.junit.org.

[17] Kölling, M., Unit Testing in BlueJ. www.bluej.org/tutorial/
testing-tutorial.pdf. Accessed 12 July 2006.

[18] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J., “The
BlueJ System and its Pedagogy”, Computer Science Educa-
tion, Vol. 13, No. 4, 2003, pp. 249-268.

[19] Martin, R.C., Agile Software Development: Principles, Pat-
terns, and Practices, Prentice-Hall, 2003.

[20] Morgan, C., Programming from Specifications, Prentice-
Hall, 1990. http://users.comlab.ox.ac.uk/carroll.morgan/PfS/
Accessed 12 July 2006.

[21] Wirfs-Brock, R. and McKean, A., Object Design: Roles, Re-
sponsibilities, and Collaborations, Addison-Wesley, 2003.

[22] Wirth, N., “Program Development by Stepwise Refinement”,
Communications of the ACM, Vol. 14, No. 4, April 1971, pp.
221-227.

[23] Wirth, N., Systematic Programming, Prentice-Hall, 1973.

900

245

246

17 CS1: Getting Started

The paper CS1: Getting Started presented in this chapter has been published
as a conference paper [Caspersen et al. 2000] and as a chapter [Caspersen et
al. 2007b] of the forthcoming book [Bennedsen et al. 2007a].

The book chapter is a revised version of the conference paper. The content
of this chapter is equal to the book chapter [Bennedsen et al. 2007a].

[Bennedsen et al. 2007a] Bennedsen, J., Caspersen, M.E. and Kölling, M.,
(Eds.) Reflections on the Teaching of Programming. Springer-Verlag, 2007.

[Caspersen et al. 2000] Caspersen, M.E. and Christensen, H.B., “Here, there
and everywhere ⎯ on the recurring use of turtle graphics in CS1”, ACSE
'00: Proceedings of the Australasian Conference on Computing Education,
Melbourne, Australia, 2000, pp. 34-40.

[Caspersen et al. 2007b] Caspersen, M.E. and Christensen, H.B., “CS1: Get-
ting Started”. In Reflections on the Teaching of Programming, Springer-
Verlag, 2007.

247

248

CS1: Getting Started

Michael E. Caspersen and Henrik Bærbak Christensen

Department of Computer Science, University of Aarhus, Denmark
{mec, hbc}@daimi.au.dk

Abstract. The Logo programming language implements a virtual drawing ma-
chine—the turtle machine. The turtle machine is well-known for giving stu-
dents an intuitive understanding of fundamental procedural programming prin-
ciples. In this paper we present our experiences with resurrecting the Logo tur-
tle in a new object-oriented way and using it in an introductory object-oriented
programming course. While, at the outset, we wanted to achieve the same
qualities as the original turtle (understanding of state, control flow, instructions)
we realized that the concept of turtles is well suited for teaching a whole range
of fundamental principles. We have successfully used turtles to give students an
intuitive understanding of central object-oriented concepts and principles such
as object, class, message passing, behaviour, object identification, subclasses
and inheritance; an intuitive understanding of recursion; and to show students
the use of abstraction in practice as the turtles at a late stage in the course
becomes a handy graphics library used in a context otherwise unrelated to the
turtles.

1 Introduction

It is our firm conviction that the primary aim for an introductory programming course
is that students learn fundamental programming principles and techniques. The mas-
tery of a programming language is, of course, necessary, but we view it as a secon-
dary concern; we want to focus on fundamental principles and general techniques as
early as possible and thereafter unfold these throughout the course.

Contrary to this, most introductory programming texts focus on the programming
language, often described in a bottom-up fashion starting with the simpler constructs
of the language and progressing to more advanced constructs. Only subordinate to the
presentation of the language constructs follows the presentation of programming
techniques; however, all too often these programming techniques are not even explicit
in textbooks.

Another motivation for our approach is that most people learn more easily through
the concrete towards the abstract [5,9]. Having seen constructs and techniques being
applied in an appealing intuitive way, and thereafter mimicking these to solve similar
problems, like in a craft’s apprenticeship, provides an excellent basis for a later thor-
ough and more abstract treatment. In this way the students have a practical experience
to ground the abstract treatment.

249

1.1 The Inverted Curriculum

Our view is not a novel one as is evident from many papers from past SIGCSE con-
ferences [4, 6, 7, 11, 12]. Bertrand Meyer [8] coined the term “the inverted curricu-
lum” (or “consumer-to-producer-strategy”) meaning that important topics and con-
cepts should be covered first by using classes solely through their abstract specifica-
tions, and only then the students learn about the internals of classes. A simplified
variant of Meyer’s vision is the objects-first approach which is prevailing in many
new textbooks, but still many of these books are structured on the basis of the con-
structs in the programming language and not on the basis of the language independent
concepts, principles and techniques that the students are supposed to master by the
end of the course.

Of course, in order to be able to focus on programming techniques and apply these
in concrete programs, it is necessary to be—at least to some extent—fluent in a pro-
gramming language. However, we do not want the learning of the language to take
over and become the primary concern, especially not in the beginning of the course.
What we want is to jump start the students so that they, as early as possible, can start
writing interesting and challenging programs based on the fundamental principles and
techniques that are our primary concern in the course: programs as physical models,
objects, behaviour, classes, state, control flow, parameterisation, design by contract
(specifications), inheritance, etc.

In order to facilitate a jump start of CS1,w e have developed a Java package, Tur-
tles, that takes as it starting point the familiar turtle graphics developed by Seymour
Papert and others at MIT in 1967 [10,1]. We use it to give an intuitive introduction to
concepts such as state, control flow, and parameterisation. Somewhat to our surprise,
it turned out that the Turtles package could play many more roles within CS1 than
initially anticipated: It has become a recurring vehicle for introducing such diverse
topics as objects and classes, object models, recursion, polymorphism and class hier-
archies. Indeed, turtles popped up here, there, and everywhere...

In the current version of our introductory programming course we are using the
programming language Java which is also the language of choice for the presentation
in this paper.

2 The Turtle Machine

The original Logo turtle machine is a virtual drawing machine that uses the metaphor
of a turtle with a coloured pen moving around in a Cartesian drawing area to produce
drawings. The state of the turtle machine can be described as a 4-tuple: a turtle posi-
tion (x, y)-coordinates, an angle, a colour and an up/down status for the pen. Initially
the turtle is placed in the lower left corner (0, 0) , the angle is zero, the colour is black
and the pen is down (figure 1).

250

Fig. 1. Architecture of the Turtle Machine.

The set of instructions for the machine is minimal; only nine instructions are used

to operate the machine (see Table 1).

Table 1. Instruction set for the Turtle Machine

Command Behaviour
move(l) move l units in current direction
moveTo(x, y) move to position (x, y)
turn(d) increase the angle d degrees
turnTo(d) set the angle to d degrees
center() move to center
penUp() lift the pen
penDown() lower the pen
setColour(c) set the pen’s colour to c
clear() clean the drawing area

3 The Turtle Machine Resurrected: Turtles

The original turtle machine sprang out of the procedural programming paradigm that
views a program as a sequence of instructions carried out by some virtual machine. In
contrast the object-oriented programming paradigm views a program as a model
where model elements are objects that have behaviour and interact with other objects.
Thus—in our object-oriented CS1 course—the turtle machine has naturally been

251

replaced by turtle objects. In our Java implementation, there is no machine that exe-
cutes turtle commands; instead there are objects that exhibit turtle behaviour; behav-
iour that is described by the Turtle class. The instruction set in Table 1 is replaced by
(otherwise semantically equivalent) methods in the Turtle class.

This change of view and paradigm comes natural because the original metaphor of
a turtle moving around on a drawing area is inherently an object-oriented model.

4 Jump Starting

At the beginning of the course we teach the concepts from the concrete towards the
abstract. We start by introducing our “mascot” turtle with the odd, but short, name t.
t lives in a sandbox (the large drawing area) and has a pen that leaves a trail when it
moves around. t has behaviour: move-,turn-, and pen-behaviour. t exhibits the
move-,turn-, and pen-behaviour when we pass it the message to do so, e.g.
t.move(100) tells t to move 100 units forward. Before we show a computerised
turtle, we actually let the audience command the lecturer around the floor in an at-
tempt to produce a rectangle—while it reinforces the intuitive understanding of the
behaviour concept, it also ‘breaks the ice’ between audience and lecturer as the audi-
ence for a short period is ‘in control of the lecturer’ as they pass messages: “Henrik,
please move 2 meters” and so on. Controlling the turtle (or lecturer) also brings an
intuitive understanding of the importance of the sequencing of messages passed, the
control flow. Parameterisation also follows naturally as e.g. the ’move’-behaviour
needs additional detail, namely the actual distance to travel.

The computerised turtle is then described through online viewing, editing , and
running of Java code using a laptop computer connected to a projector.

We motivate loops in control flow in order to avoid textual repetition, e.g. looping
four times over {t.move(100); t.turn(90);} is easier than writing eight
turtle messages. This quickly leads to quite interesting drawings as illustrated in fig-
ure 2 that is produced by program 1.

252

Fig. 2. The Spirille.

Program 1. The “Spirille” program

// 36 squares each turned an angle
// of 10 degrees from the previous
public class Spirille {

 public static void drawSpirille() {
 Turtle t = new Turtle();

 t.setColor(Color.blue);
 t.center();
 for (int i= 0; i<36; i++) {
 for (int j= 0; j<4; j++) {
 t.move(100);
 t.turn(90);
 }
 t.turn(10);
 }
 }
}

253

At this point, through a concrete and highly visual metaphor, students have already
an intuitive first understanding of fundamental object-oriented concepts: object, ob-
ject identification and message passing, as well as fundamental procedural concepts:
state, flow of control (including loops) and parameters. The immediate visual feed-
back from the program makes it easy for students to identify logical programming
errors and helps the inexperienced student; at the same time the material is still ad-
vanced enough to challenge those students that are already familiar with the basic
topics.

The lab exercises are about making simple drawing (a flag and a house), nested
drawings (pyramid seen from the top, a high-rise block, etc.) and animations (various
objects that move around).

Typically, students can be divided into two groups; one group of students tend to
use the relative commands turn and move whereas others are more comfortable with
the absolute commands turnTo and moveTo. We discuss the different approaches
in class, and in particular we investigate the difference of using the relative and the
absolute commands. This turns into a discussion on important and fundamental soft-
ware engineering issues such as generality, modifiability and reusability of programs.

5 Objects and Classes

A natural next step is to introduce two turtles into the same drawing area. This seem-
ingly trivial addition is actually an intuitive and powerful way to introduce the stu-
dents to another important range of fundamental concepts in object orientation—a
trivial and natural step in an object-oriented language but difficult in the original
turtle machine.

Having two turtles makes the importance of object identification clear: How else
can you identify the actual turtle to whom a message is sent? Another reinforced point
is that the two turtles have different states though they share a common behaviour—
they appear and draw in different areas of the drawing area. From this example it is
natural to discuss the benefits of categorising objects with common behaviour, and
give examples from everyday life where we classify concepts and phenomena. Intro-
ducing the notion of a (Java) class is thus relatively easy.

6 Class Hierarchies and Procedural Abstraction

The next step is to introduce procedural abstraction through defining new methods to
draw, say, a rectangle. At first sight this seems like an overwhelming task to do in the
second lecture as the only way to add a new method in Java is either to introduce it
into the Turtle implementation or to extend the Turtle class and introduce the method
in the subclass. The first alternative is not an option—primarily because the turtle is
provided as a Java package and secondly because we do not want to expose the im-

254

plementation with all its details of the Java graphics. But the second option, to extend
the Turtle class, turns out to be quite natural as described below.

6.1 Class Hierarchies

What do you do when you want your turtle to learn new “tricks”, say, drawing a rec-
tangle? You train your turtle until its behaviour extends to include the ability to draw
rectangles—and your turtle becomes a skilled turtle.

Program 2. Procedural abstraction and parameterisation

public class SkilledTurtle extends Turtle {

 public void rectangle(int w, int h) {
 for (int j= 0; j<4; j++) {
 t.move(100);
 t.turn(90);
 }
 }

 public static void main() {
 SkilledTurtle t= new SkilledTurtle();

 ... t.rectangle(100, 50); ...
 }
}

Program 3. Specialisation of turtles

public class GeometryTurtle extends Turtle {
 public void rectangle(int w, int h) { ... }
 public void circle(int r) { ... }
 ...
}

public class ArchitectTurtle extends GeometryTurtle {
 public void window(int w, int h) { ... }
 public void door(int w, int h) { ... }
 public void roof(int w, int h) { ... }
 ...
}

By focusing on the idea of ‘extending behaviour’ the Java syntax for declaring

subclasses seems feasible (program 2 and 3). We show the students how (program 2),
and they are able to mimic the idea in exercises where turtles with new special skills
are required as exemplified in program 3. We do not dwell on abstract, complex,
properties of inheritance and class hierarchies; rather, we show how this technique—
grounded in an intuitive understanding of “training turtles”—can be used to solve a
concrete problem. In this way we have an excellent basis for a thorough treatment
later in the course when the students have concrete experience and an intuitive under-

255

standing of inheritance. Also, the students have seen an aspect of what inheritance is
actually used for—and in the end we find this is the basic purpose of the course: not
merely to understand language constructs and object oriented principles but being
able to apply them to solve recurring problems in computer science.

6.2 Procedural Abstraction and Design by Contract

Based on the metaphor of skilled turtles the focus is turned to the problem of “train-
ing”. The first skilled turtle is one that can draw rectangles, and clearly, one wants to
be able to define once and for all how to draw a rectangle with width w and height h
(program 2).

From the SkilledTurtle example (or similar ones) we initiate a discussion on the
necessity of the last t.turn(90) in the procedure of program 2. The statement is
superfluous as far as the resulting drawing is concerned, but there are obvious reasons
to include the statement: to leave the turtle in the same state as before the call, making
it easier to make composite drawings by multiple calls (like the Spirille). The students
understand the point, and hopefully valuable seeds have been sown.

On the basis of simple examples like this we discuss important fundamental prin-
ciples such as design, specifications and the distinction of what and how. In the con-
text of the turtles, it comes natural for the students to express sound and well estab-
lished principles for procedural abstractions, and later in the course when things get
more complicated, we return to this common ground and recall the principles.

The moral of the discussion is that we need to be precise about what we want a
piece of software to do. The best way to express such requirements is by writing a
functional specification; hence we introduce the notion of design by contract [8], and
from then on we use the technique throughout the course. This is reinforced as we
provide the specification of the Turtle as JavaDoc API documentation, thereby forc-
ing the students to become acquainted with the standard way of documenting Java
classes and packages.

7 Recursion and Fractals

A traditional way to introduce recursion is to compute factorials. We find this unfor-
tunate, because it introduces the technique on a problem for which it is inefficient and
an iterative solution is straight-forward to express. Contrary to this, we introduce
recursion for problems where the recursive solution is effective and iterative solutions
are difficult to express elegantly.

The students are asked to write a program that can produce the list of drawings,
Triangle, Penta and Poly, in figure 3 (and the next seven figures which are given
equally odd names). However, first we demonstrate how to write methods for the first
two drawings (program 4).

256

Fig. 3. superTriangles.

Program 4. Java code for triangle and penta

public class TriangleTurtle {
 public void triangle(int length) {
 for (int i= 0; i<3; i++) {
 move(length);
 turn(120);
 }
 }
 public void penta(int length) {
 triangle(length/2);
 move(length/2);
 triangle(length/2);
 turn(120); move(length/2); turn(-120);
 triangle(length/2);
 turn(-120); move(length/2); turn(120);
 }
}

As expected, the students produce eight new methods by copy-paste-and-substitute

of the penta method. It works, but of course the students get the hunch that this cannot
be the proper way to do it.

Once more we emphasise the notion of parameterisation, and we introduce the
term superTriangle(n) to mean “a superTriangle of degree n”. Defining su-
perTriangle(0) to denote Triangle, superTriangle(1) to denote Penta and so
forth, brings us more than half way towards the general solution; realizing that su-
perTriangle(-1) does not make sense and handling this special case brings us
the rest of the way (program 5).

Program 5. A general (recursive) solution

public class TriangleTurtle {
 public void triangle(int length) { ... }

 // pre: n � 0
 public void superTriangle(int n, int length) {

Triangle
superTriangle 0

Penta
superTriangle 1

Poly
superTriangle 2

257

 if (n == 0)
 triangle(length);
 else {
 superTriangle(n-1, length/2);
 move(length/2);
 superTriangle(n-1, length/2);
 turn(120); move(length/2); turn(-120);
 superTriangle(n-1, length/2);
 turn(-120); move(length/2); turn(120);
 }
 }
}

The derivation is fairly easy; with little guidance the derivation is almost exclu-

sively done by the students. But even more interesting: Nobody mentions the notion
of recursion; the solution just turns out to be what we call recursive.

8 Turtles as a Class Library

Later in the course,when we are covering more advanced object-oriented topics such
as class hierarchies, polymorphism and application frameworks, we dig out the “old”
Turtles package and use it as just another class library. We also .nd it important for
students to use class libraries and the accompanying documentation as early as possi-
ble in the undergraduate curriculum, as pointed out in e.g. [14].

8.1 Class Hierarchies and Polymorphism

We use geometric shapes as example of a class hierarchy. An abstract class Shape has
concrete methods move and erase and an abstract method draw that is implemented in
subclasses of the Shape class. Each Shape instance has a turtle associated that it dele-
gates the drawing tasks to; in this way the turtle becomes our graphical drawing li-
brary effectively encapsulating the Java specific graphical toolbox (figure 4).

258

Rectangle Triangle

Shape

move()
draw()
erase()

Turtle

move()
turn()
set Color()

11

Fig. 4. A hierarchy of geometric shapes.

There is another important point in (re-)using the Turtles package as a drawing
toolbox: Abstraction is the key concept in programming, and the code which is the
intense focus of design, development, and testing today (the implementation view,
how), will be taken for granted next month and simply used (the specification view,
what). In a similar vein, the turtle was “the problem” in the beginning of the course—
now it is the solution to the problem of drawing shapes in a new and different context.

8.2 Application Frameworks

Before introducing the students to GUI-programming with AWT or Swing, we give a
lesson about frameworks in general, and we exemplify by providing a simple frame-
work for the students. The purpose of the framework, called Presenter, is to allow fast
development of graphical presentations of a set of images (actually graphical compo-
nents) and text, where the ordering in the set is arranged using a familiar navigational
metaphor: The compass with directions north, east, south, and west.

Our initial instantiation of the framework is a multimedia presentation of the tomb
of Tutankhamun—using the compass buttons the user can move between the different
chambers of the tomb, each chamber described both in text and by a picture from the
original opening of the tomb.

In an exercise the students are asked to program a turtle controller i.e. the buttons
North, West, South and East must control the movement of the turtle (moving at right
angles),as shown in figure 5. While it shows the turtle in yet another context the main
point here is that the turtle’s drawing area is actually a subclass of
java.awt.Component, the basic graphical component in Java, and therefore the frame-
work accepts to display the turtle drawing area. This way another important property

259

of inheritance is demonstrated to the students; not as much as a language construct,
but as a technique for solving a specific set of problems.

Fig. 5. A turtle in the Presenter framework

9 Conclusion

We have described our use of a Java package, Turtles, which is an object-oriented
variant of the classical turtle machine. Early in the course we are using the Turtles
package to jump start our CS1 course by giving an intuitive introduction to classical
procedural concepts in the spirit of the Logo language, introducing only the most
necessary constructs and only by example; we do not want to provide detailed expla-
nations that will not be understood nor remembered at this early stage.

Turtles is a great way to introduce simple as well as more advanced object-oriented
concepts such as state, behaviour, object identification, inheritance, and polymor-
phism because the metaphor of a turtle on a drawing area is inherently an object-
oriented model.

260

Furthermore, the Turtles package has been successfully used to illustrate abstrac-
tion at a later stage in the course: while the semantics and details of turtles were the
focus and problems in the early part of the course, it is simply used as a drawing class
library in the later part of the course.

The applicability of the Turtle graphics in introductory programming is acknowl-
edged by the ACM Java Task Force who have included a class GTurtle in the
acm.graphics package of the JTF library [13].

Though we have not conducted qualitative nor quantitative analysis of the effec-
tiveness of our use of turtles to introduce object-oriented concepts to students, we
have many indications of the positive effect. Our teaching assistants report that most
students are proficient in basic object-oriented and procedural techniques early in the
course, and students report using the turtles as fun and motivational. After all, this is
not too bad.

9 Acknowledgement

We acknowledge Jens Bennedsen for stimulating discussions and collaboration dur-
ing early development and use of the Turtle Machine.

References

1. Abelson, H., and diSessa, H. Turtle Geometry: The Computer as a Medium for Exploring
Mathematics. The MIT Press, 1980.

2. ACM SIGCSE. The Papers of the Twenty-fourth SIGCSE Technical Symposium on Com-
puter Science Education (March 1993), vol. 25 of SIGCSE Bulletin.

3. ACM SIGCSE. The Papers of the Twenty-sixth SIGCSE Technical Symposium on Computer
Science Education (March 1995), vol. 27 of SIGCSE Bulletin.

4. Astrachan, O., and Reed, D. “The Applied Apprenticeship Approach to CS1”, in The Papers
of the Twenty-sixth SIGCSE Technical Symposium on Computer Science Education [3].

5. Brightman, H.J. On Learning Styles. Technical Report, Georgia State University, 1998.
www.gsu.edu/~dschjb/masterteacher.html.

6. Decker, R., and Hirshfield, S. “Top-Down Teaching: Object-Oriented Programming in CS
1”, in The Papers of the Twenty-fourth SIGCSE Technical Symposium on Computer Science
Education [2].

7. Hilburn, T.B. “A Top-Down Approach to Teaching an Introductory Computer Science
Course”, in The Papers of the Twenty-fourth SIGCSE Technical Symposium on Computer
Science Education [2].

8. Meyer, B. Object-Oriented Software Construction (2nd edition). Prentice-Hall, 1997.
9. Myers, I.B. and McCaulley, M. Manual: A Guide to the Development and Use of the Myers-

Briggs Type Indicator, Consulting Psychologist Press, 1985.
10. Papert, S. Children, Computers, and Powerful Ideas, Harvester Press, 1980.�
11. Pattis, R.E. “The ‘Procedures Early’ Approach in CS 1: A Heresy”, in The Papers of the

Twentyfourth SIGCSE Technical Symposium on Computer Science Education [2], pp. 122–
126.

261

12. Reek, M. “A Top-Down Approach to Teaching Programming”, in The Papers of the
Twenty-sixth SIGCSE Technical Symposium on Computer Science Education [3], pp. 6–9.

13. Roberts, E. et al. “The ACM Java Task Force Version 1.0”, http://jtf.acm.org/.
14. Tewari, R. and Gitlin, D. “On Object-Oriented Libraries in the Undergraduate Curriculum:

Importance and Effectiveness”, in The Papers of the Twenty-fifth SIGCSE Technical Sym-
posium on Computer Science Education (March 1994), vol. 26 of SIGCSE Bulletin, ACM
SIGCSE, pp. 319–323.

262

18 Frameworks in CS1

The paper Frameworks in CS1: a different way of introducing event-driven
programming presented in this chapter has been published as a conference
paper [Christensen et al. 2002] and as a chapter [Christensen et al. 2007] of
the forthcoming book [Bennedsen et al. 2007a].

The book chapter is a revised version of the conference paper. The content
of this chapter is equal to the conference paper [Christensen et al. 2002].

[Bennedsen et al. 2007a] Bennedsen, J., Caspersen, M.E. and Kölling, M.,
(Eds.) Reflections on the Teaching of Programming. Springer-Verlag, 2007.

[Christensen et al. 2002] Christensen, H.B. and Caspersen, M.E., “Frame-
works in CS1: a different way of introducing event-driven programming”,
ITiCSE '02: Proceedings of the 7th annual conference on Innovation and
Technology in Computer Science Education, Aarhus, Denmark, pp. 75-79,
2002.

[Christensen et al. 2007] Christensen, H.B. and Caspersen, M.E., “Frame-
works and their Role in Teaching”. In Reflections on the Teaching of Pro-
gramming, Springer-Verlag, 2007.

263

264

Frameworks in CS1 – a Different Way of Introducing
Event-driven Programming

Henrik Bærbak Christensen
Department of Computer Science

University of Aarhus
8200 Aarhus N, Denmark

hbc@daimi.au.dk

Michael E. Caspersen
Department of Computer Science

University of Aarhus
8200 Aarhus N, Denmark

mec@daimi.au.dk

ABSTRACT
In this paper we argue that introducing object-oriented frameworks
as subject already in the CS1 curriculum is important if we are to
train the programmers of tomorrow to become just as much soft-
ware reusers as software producers. We present a simple, graph-
ical, framework that we have successfully used to introduce the
principles of object-oriented frameworks to students at the intro-
ductory programming level. Our framework, while simple, intro-
duces central abstractions such as inversion of control, event-driven
programming, and variability points/hot-spots. This has provided a
good starting point for introducing graphical user interface frame-
works such as Java Swing and AWT as the students are not over-
whelmed by all the details of such frameworks right away but given
a conceptual road-map and practical experience that allow them to
cope with the complexity.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Program-
ming; D.2 [Software]: Software Engineering; D.2.2 [Software
Engineering]: Design Tools and Techniques; D.2.13 [Software
Engineering]: Reusable Software; I.3 [Computing Methodolo-
gies]: Computer Graphics; K.3 [Computing Milieux]: Computers
and Education

General Terms
Design, Human Factors

Keywords
CS 1 Curriculum, Event-driven Programming, Frameworks

1. INTRODUCTION
We are presently teaching a CS1 course with an objects-first ap-

proach using Java. The curriculum covers four central subjects:

� Jump start: classes, objects, methods, control flow, parame-
terization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006 ...$5.00.

� Basic object-oriented programming: state, behavior, infor-
mation hiding, modeling, UML to Java

� Algorithmic patterns: sweep, loop invariants, searching,
merging, divide-and-conquer

� Advanced object-oriented programming: polymorphism, in-
terfaces, specifications, design-by-contract, class invariants,
frameworks, GUI-programming

As part of the advanced object-oriented programming subject,
we teach the principles of programming using frameworks (not
building them) and, based upon this treatment, graphical user in-
terface frameworks. While the subject of frameworks is considered
an advanced and complex topic, we have decided to include it in
the CS1 curriculum nevertheless for several reasons.

The most important reason is the realization that the program-
ming context most programmers are facing today is radically dif-
ferent from the one that existed, say, 10-15 years ago. Few modern
programs (or “systems”) are monolithic entities; instead they draw
upon functionality from many different sources: third party com-
ponents, object-oriented frameworks, dynamic link libraries, etc.
Thus programming today is more a matter of “gluing” application
code together with one or several frameworks and components than
to be able to write a large monolithic program that does it all by it-
self. In this changed context we find it natural that students at an
early stage are exposed to sound principles for making their code
cooperate with third party code, and we find object-oriented frame-
works to be a good vehicle for demonstrating these principles.

Another reason is pinpointed by Culwin [6]—today’s students
are confronted exclusively with graphical user interfaces as the in-
terface to programs. To demonstrate programming only using text
IO is not very motivating.

We also strongly think that we as teachers have a prime respon-
sibility to educate software reusers just as much as software pro-
ducers. Systematic software reuse [8, 10] is at the moment our
best cure against the “software crisis”. Forcing students to pro-
gram using frameworks is the right step towards producing soft-
ware reusers—and the result of their efforts look much more pro-
fessional than mere sequences of, say, prime numbers in a text box.

In this paper, we describe the introductory framework and the
exercises associated with it. We then discuss how the terminology
introduced by the simple framework is used in our introduction to
Java AWT as representative of modern object-oriented graphical
user interface frameworks. Finally we summarize and discuss some
of our experiences.

75

265

2. A TWO-STEP LEARNING PROCESS
We have adopted a two-step learning process for introducing

graphical user interface frameworks in order to lessen the learning
curve [3].

In the first step we teach the students a basic understanding of
the principles underlying frameworks, using a concrete, simple, yet
flexible, framework example. The example has nevertheless the
fundamental characteristics of a framework:

� Inversion of control: The framework defines the control flow
and collaboration patterns of the objects in the final applica-
tion, instead of the usual “driver” program that the students
write themselves.

� Hotspots [11]: The provided framework is abstract and needs
to be specialized to the particular domain of the final appli-
cation. Abstract classes that must be subclassed define the
hotspots of our concrete framework.

In the second step we introduce Java AWT to the students
through the context and terminology introduced by the first step—
what are the hotspots of AWT and how do we tailor them to our
needs? The main point is that AWT/Swing is large and complicated
and thus confusing to the beginner, and you simply must master the
underlying concepts and principles in order not to be overwhelmed
by the sheer number of classes and methods.

3. FIRST STEP: PRESENTER FRAME-
WORK

Our requirements of the framework were the following aspects:
It should illustrate the basic principles of frameworks (inversion of
control and hotspots); it should be simple for students to use; it
should be flexible in the sense that a number of sensible instantia-
tions should be possible; it should be fun, challenging, and visual.

The result is a presenter framework. The presenter framework
facilitates construction of multi-media presentations of a domain
where the compass-directions are a suitable metaphor for user nav-
igation. (So far “multi-media” is limited to images and text but it is
straightforward to extend it to movies and sound.)

In our first step lecture we introduce the presenter framework
through a specific instantiation, namely a multi-media presentation
of the tomb of Tutankhamen, the pharaoh whose tomb was mirac-
ulously found rather intact in 1922 by Howard Carter [4].

In fig. 1 is shown a screen snapshot of the Tutankhamen tomb
presentation. The presenter framework is an applet thus the presen-
tation and later the student exercises can be run in a web browser.

Using the four buttons marked with the compass directions the
user can navigate around the chambers of the tomb. In each cham-
ber the user is presented with a picture taken during the original
opening of the tomb along with some explanatory text.

It is our experience that the concrete instantiation—moving
around a tomb with pictures from the original opening—grabs the
imagination of the students.

The Tutankhamen’s tomb instantiation also allows us to under-
line an important software engineering principle, namely separat-
ing model/domain code and user interaction code. We build a small
object-oriented model of the domain with classes: chamber (hav-
ing exits, an image and a description) and visitor (having an asso-
ciation with a specific chamber and a move method). As the user
interaction code is completely defined by the framework, it is sim-
ply impossible for the students to mix UI and model code except
through the well-defined hotspots provided by the framework.

Figure 1: The presenter framework instantiated to present Tu-
tankhamen’s tomb.

3.1 Design
The presenter framework provides the application programmer

with a simple interface (in practice the interface is split into two, as
described in the next section):

public abstract class ImagePresenter
{
public void showImage(String filename)
{...}
public void showText(String text) {...}

public abstract void northButtonPressed();
public abstract void eastButtonPressed();
public abstract void southButtonPressed();
public abstract void westButtonPressed();

}

An instance of ImagePresenter is an applet that provides
the graphical user interface: a large area for displaying images,
a smaller one for displaying text, and the four compass direction
buttons that respond to user clicks.

The showImage and showText methods are methods that
provide services for the application programmer (the students are
well versed in object oriented thinking at this point in the course).

Thus, to instantiate the tomb presentation is a matter of overrid-
ing the ..ButtonPressed() methods as e.g. in:

public void northButtonPressed() {
visitor.move(NORTH);

}

where the move method of visitor must test for an exit leading north
and invoke the showImage and showText methods with appro-
priate parameters.

The new technique the students must adopt is that in order to
provide application specific functionality that reacts on user inter-
action, they have to subclass the abstract ImagePresenter to
define the actions to perform when the user presses the buttons on
the user interface. This raises discussions on the central points in
frameworks as outlined below.

76

266

3.2 Inversion of control
In their previous programming experience from example code

and exercises, there are always a number of interacting objects and
a single ‘driver’ that does the setup and defines the main control
flow. Now the control flow is dictated and controlled by the pre-
senter framework instead. The application code comes into play
only when the overridden ...ButtonPressed() methods are
called. This is a simple variant of event-driven programming and
illustrates the inversion of control principle.

3.3 Hotspots
Frameworks define core functionality, control flow and object

collaboration patterns. Application programmers refine frame-
works to specific domains by adding code at well-defined points
denoted hotspots (also called hooks or variability points). Hotspots
can be defined using a number of different techniques: callback
methods, objects that implement interfaces, subclassing, etc. We
have adopted the subclassing technique as we find it the simplest
and as it also demonstrates yet another use of polymorphism and
specialization.

4. ELABORATION
We found that the framework could be used in more contexts

by introducing a higher level of abstraction: A presenter that does
not demand that the central graphical area is an image. Thus we
split the framework into providing a Presenter class and a more
specific subclass ImagePresenter, the latter being the one used
for the tomb instantiation. The Presenter only demands that the
graphical centre component is a Java AWT component and provides
an abstract factory method [7] for subclasses to define the concrete
instance.

Thus, the real framework classes are:

public abstract class Presenter
extends java.applet.Applet
implements ActionListener

{
public abstract java.awt.Component

createCenterComponent();
public void showText(String text) {...}
public abstract void northButtonPressed();
public abstract void eastButtonPressed();
public abstract void southButtonPressed();
public abstract void westButtonPressed();
...

}
public abstract class ImagePresenter

extends Presenter
{
public void showImage(String filename){...}
public Component createCenterComponent() {

// return a Canvas instance
// that can display images

}
}

5. STUDENT EXERCISES
Several interesting, yet simple, instantiations can be made from

the Presenter and ImagePresenter frameworks.
The first exercise is to make a virtual tour of a museum or gallery;

a layout of a number of locations in a gallery is defined and a paint-
ing is associated with each location. The buttons can be used to
move around the gallery and see the various paintings. This exer-
cise is deliberately similar to the tomb instantiation. In another ex-
ercise only the “north” and “south” buttons are used to run through

a list of images, essentially making the presenter a slide-show ap-
plication.

The basic directional navigation metaphor also lends itself natu-
rally to “classic” adventure games. We have an extension of the
framework to include the ability to show two scrollable lists of
images, one on either side of the center image. The application
programmer can then program these so that one list represents an
inventory of objects (images) carried by the user and the other list
represents an inventory of objects in the visited location. A click-
event on an image in a list is a hotspot of the framework that the
student can refine to mean that objects are moved between the two
inventories.

In other exercises we base ourselves on the Presenter class that
takes any java.awt.Component as center component. Our
course uses an object-oriented variant of turtle graphics to intro-
duce people to programming and object-oriented thinking [5]. We
therefore ask the students to make a demonstration of the turtle
where the turtle moves some distance in the direction correspond-
ing to the compass direction that the user clicks. A snapshot of the
turtle instantiation is shown in fig. 2.

Figure 2: The presenter framework instantiated to demon-
strate turtle graphics.

After having introduced the students to AWT, a slightly more
advanced exercises in instantiating the presenter framework is to
make a 4x4 slide-puzzle by defining a grid of buttons marked with
the numbers 1–15 and an empty button denoting the “hole”. The
“hole” is then moved by pressing the compass buttons so the user
can try and solve the puzzle by arranging the numbers in the right
pattern in the grid.

In summary we find that though the provided functionality of the
framework is limited and simple, there are a number of intriguing
exercises to be made based upon the framework that forces the stu-
dents to negotiate the basic principles of inversion of control and
refining hotspots.

77

267

6. SECOND STEP: JAVA AWT
The next step in the learning is introducing a real GUI frame-

work. We restrict ourselves to AWT instead of Swing: the prin-
ciples are the same but Swing contains even more detail that may
blur the picture for the students.

We have many indications that the students are helped by the
presenter framework as they learn AWT. They have seen the inver-
sion of control principle; they have seen the principle of refining
hotspots and can now concentrate on the particular technique used
in AWT for doing this refinement; finally, they are acquainted with
the underlying concepts and principles of framework design.

7. EXPERIENCE
At the time of writing our CS1 course has been taught seven

times. While we have made many changes in the course material
over the years, the Presenter framework has been taught with
success every time. As the framework has been used ever since we
started teaching this course we have no comparative evaluations of
the advantages and drawbacks of our approach compared to other
ways of introducing graphical user interfaces. However, we have a
number of experiences; though they are not rigid scientific evalua-
tions, they do illustrate key aspects of our approach.

First of all the students generally value the approach: The ex-
ercises are reported as “fun” and not too hard, the students value
the visual appearance of their programs, and most importantly they
value that the framework terminology they have learned is used to
ease and enhance their understanding of the much more compli-
cated AWT.

At the exams the students demonstrate adequate performance
on the topics of frameworks and graphical user interfaces, but of
course it is very difficult to measure curriculum quality from ex-
ams.

Finally we also find that the impact of teaching frameworks must
be measured on a long-term scale. We feel that even to students
that “just don’t get it” at this early stage, we have still planted a
small but important seed that will ease their learning of framework
theory, reuse techniques, design patterns, and software architecture
at a later stage.

8. RELATED WORK
To the best of our knowledge our approach is novel and has not

been reported elsewhere. However, several authors have reported
and discussed approaches for teaching how to program graphical
user interfaces at an early point in the CS curriculum. Common to
most approaches is the desire to shield students from the underlying
complexity (through the use of design patterns such as adapter and
wrapper) more than to provide the conceptual tools to understand
the complexity.

Woodworth et al. [14] describe how migrating from console- to
event-driven models can be eased by introducing a module that acts
as an adapter between the event-driven user interface and the do-
main classes. This way the adapter behaves like the program driver
the students are used to from the console driven model. Wolz
et al. [13, 12] describe an approach that reduces the complexity
of GUI programming by wrapping the underlying user interface
toolkit in simpler abstractions.

Bruce et al. [2] describe an interesting approach where event-
driven models are introduced right at the start of the course and
report their approach to be successful.

Common to most approaches is that the main goal is to teach
programming GUI toolkits in CS1 and the event-driven model is
the obstacle to be handled (by wrapping it, adapting it, or other-

wise simplifying it). Our focus is radically different. Our main
goal is to teach frameworks and a GUI framework is just one type
of framework (although an important one). Teaching frameworks
is teaching inversion of control and how to refine hotspots, i.e. the
event-driven model comes out as a special case of inherent frame-
work behavior.

Buck et al. [3] outline an inside/out pedagogical approach based
on Bloom’s taxonomy for cognitive development. We find that our
two-step approach is in line with their ideas as the introductory
framework has relatively simple building blocks that allow students
to comprehend the basic concepts before they are asked to apply
them to build GUI interfaces themselves.

Our approach is an instance of the early bird pedagogical pat-
tern by Bergin [1]. We find that frameworks, reuse, and reuse tech-
niques are extremely important and must be presented at an early
point in the careers of the students and reinforced throughout their
studies.

9. SUMMARY
We have described our two-step approach for teaching the prin-

ciples of object-oriented frameworks. In the first step, we intro-
duce a simple framework that nevertheless has all main features
of a full-blown framework. This allows us to concentrate on the
main principles underlying frameworks without distracting details.
In the second step, we expose the students to the AWT framework
but can now draw upon their experiences with the concepts from
the much simpler Presenter framework.

As outlined earlier, we cannot present rigid evaluations that
demonstrate the strength of our approach. We do feel, however,
that our argumentation in favour of the approach is strong and
valid. The learning curve to climb for the students in order to tackle
object-oriented graphical user interface frameworks is a steep one,
and breaking it into smaller steps is essential to succeed. Our ap-
proach is one of many possible ways of providing such smaller
steps but it has some unique benefits. It focuses on fundamental
issues in frameworks and reuse techniques instead of concentrat-
ing narrowly on event-driven user interfaces. The students are in-
troduced to the principles of object-oriented frameworks. In the
Presenter framework they are forced to separate domain model
code from their user interaction code, which is accepted as a su-
perior architecture for designing interactive applications. They are
taught that a programmer of today reuses code provided by others
instead of building everything from scratch. Finally they are taught
some of the central techniques for integrating reusable code with
their own application code laying a strong basis for later courses
that teach design patterns and software architecture.

The Presenter framework and sample instantiations can be
obtained free of charge by contacting one of the authors.

10. REFERENCES
[1] Bergin, J. Fourteen Pedagogical Patterns.

http://www.csis.pace.edu/˜bergin/PedPat1.3.html.
[2] Bruce, K. B., Danyluk, A. P., and Murtagh, T. P.

Event-driven Programming is Simple Enough for CS1. In
Proceedings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE’01
(Canterbury, UK, 2001), pp. 1–4.

[3] Buck, D., and Stucki, D. J. Design early considered harmful:
graduated exposure to complexity and structure based on
levels of cognitive development. In Thirty-first SIGCSE
Technical Symposium on Computer Science Education
(Austin, Texas, USA, mar 2000), pp. 75–79.

78

268

[4] Carter, H., Mace, A., and White, J. M. The Discovery of the
Tomb of Tutankhamen. Dover Publications, 1985.

[5] Caspersen, M. E., and Christensen, H. B. Here, There and
Everywhere — On the Recurring Use of Turtle Graphics in
CS1. In Proceedings of the Fourth Australasian Computing
Education Conference, ACE 2000 (Melbourne, Australia,
Dec 2000), pp. 34–49.

[6] Culwin, F. Object Imperatives. In Joyce [9], pp. 31–36.
[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design

Patterns: Elements of Reuseable Object-Oriented Software.
Addison-Wesley, 1994.

[8] Jacobson, I., Griss, M., and Jonsson, P. Software Reuse:
Architecture Process and Organization for Business Success.
ACM Press, 1997.

[9] Joyce, D., Ed. Thirtieth SIGCSE Technical Symposium on
Computer Science Education (New Orleans, Louisianna, mar
1999).

[10] Karlsson, E.-A. Software Reuse – A Holistic Approach. John
Wiley and Sons, 1995.

[11] Pree, W. Design Patterns for Object-Oriented Software
Development. Addison-Wesley, 1995.

[12] Wolz, U., and Koffman, E. simpleIO: a Java package for
novice interactive and graphics programming. In
Proceedings of the 4th annual SIGCSE/SIGCUE on
Innovation and technology in computer science education
(Krakow, Poland, jun 1999), pp. 139–142.

[13] Wolz, U., Weisgarber, S., Domen, D., and McAuliffe, M.
Teaching introductory programming in the multi-media
world. In Proceedings of the Conference on Integrating
Technology into Computer Science Education, ITiCSE’96
(Barcelona, Spain, jun 1996), pp. 57–59.

[14] Woodworth, P., and Dann, W. Integrating Console and
Event-Driven Models in CS1. In Joyce [9], pp. 132–135.

79

269

270

19 Model-Driven Programming

The paper Model-Driven Programming presented in this chapter has been
published as a conference paper [Bennedsen et al. 2004] and as a chapter
[Bennedsen et al. 2007c] of the forthcoming book [Bennedsen et al. 2007a].

The book chapter is a revised version of the conference paper. The content
of this chapter is equal to the book chapter [Bennedsen et al. 2007c].

[Bennedsen et al. 2004] Bennedsen, J. and Caspersen, M.E., “Programming
in context: A model-first approach to CS1”, SIGCSE '04: Proceedings of the
35th SIGCSE Technical Symposium on Computer Science Education, Nor-
folk, Virginia, USA, pp. 477-481, 2004.

[Bennedsen et al. 2007a] Bennedsen, J., Caspersen, M.E. and Kölling, M.,
(Eds.) Reflections on the Teaching of Programming. Springer-Verlag, 2007.

[Bennedsen et al. 2007c] Bennedsen, J. and Caspersen, M.E., “Model-
Driven Programming”. In Reflections on the Teaching of Programming,
Springer-Verlag, 2007c.

271

272

Model-Driven Programming1

Jens Bennedsen* and Michael Caspersen#

*IT University West
Fuglesangs Allé 20
DK-8210 Aarhus V

Denmark
jbb@it-vest.dk

#Department of Computer Science
University of Aarhus

Aabogade 34, DK-8200 Aarhus N
Denmark

mec@daimi.au.dk

Conceptual modelling is the defining characteristic of object-orientation and
provides a unifying perspective and a pedagogical approach focusing upon the
modelling aspects of object-orientation. Reinforcing conceptual modelling as a
basis for CS1 provides a course structure integrate the core elements from a
conceptual framework for object-orientation and a systematic approach to pro-
gramming; both of these are help to newcomers. The progression of the course
is defined by the growing complexity of the conceptual model which is to be
implemented. The focus is not on conceptual modelling per se, but on the use of
conceptual models as a structuring mechanism and a guide for the
implementation. In this article we discuss different ways to structure an
introductory programming course and give concrete examples on how a course
where the complexity of the conceptual model is defining the structure.

1. INTRODUCTION

Over the years there have been ongoing discussions on the content and structure of
an introductory programming course, what programming language and tools to use in
such a course as well as the pedagogy to apply. There have been many suggestions
(e.g. Bell & Scott 1987; Evans & Patterson 1985; Koffman & Wolz 1999; Oldham
2005; Shaffer 1986; Henze, Nejdl & Wolpers 1999; Fjuk, Berge, Bennedsen, &
Caspersen, 2004). Most of the suggestions are structured according to the complexity
of the programming language and are focused on the syntax of the programming

1 This chapter is partly based on Bennedsen, J. and Caspersen, M: “Programming in Context
– A Model-First Approach to CS1”Procedings of the 35th SIGCSE technical symposium on

Computer Science Education, 2004. p. 477 - 481

273

2

language. In this chapter we will describe and discuss what we have found to be a
useful structuring mechanism for an introductory programming course, namely the
complexity of the class model to be implemented.

1.1. Three implementations of a programming-first curriculum

In order to define a common computer science curriculum, including an
introductory programming course, ACM and IEEE established the Joint Task Force
on Computing Curricula 2001. The charter was: “To review the Joint ACM and IEEE
CS Computing Curricula 1991 and develop a revised and enhanced version for the
year that will match the latest developments of computing technologies in the past
decade and endure through the next decade”. In the final report (The joint task force
2001), the role and place of programming in the curriculum is discussed. Is
programming what needs to be taught first (what they call a programming-first
approach) or are there other topics that need attention first? The conclusion is: “the
programming-first model is likely to remain dominant for the foreseeable future”. (p.
24)

The report describes three implementations of a programming-first curriculum
based on three programming paradigms: The imperative, the functional and the
object-oriented paradigm. The object-oriented paradigm has gained much interest in
the past decade resulting in many textbooks (e.g. Arnow, Dexter & Weiss 2004;
Barnes & Kölling 2003; Horstmann 2001; Niño & Hosch 2001) and much interest
among teachers on implementing the object-first strategy (e.g. Alphonce & Ventura
2002; Cooper, Dann,& Pausch 2003).

1.2. Objects-first curriculum

Objects-first is not a well-defined term. It seems that every CS1 teacher has his or
her own interpretation of the term (e.g. Cooper, Dann & Pausch 2003; Jones, Boyle
& Pickard 2003; Kölling & Rosenberg 2001; Schmolitzky 2004). The Joint Task Force
(2001) described objects-first as: “an objects-first approach that emphasizes early use
of objects and object-oriented design” (p. 28). What does early mean, and what is
meant by object-oriented design?

To add to the confusion of the objects-first concept is the problem that students
often struggle with, namely the concepts “class” and “object”. They see and work
with the program text and therefore mostly with the classes and not object directly. To
have students understand the difference between the class as the concept on compile
time and the objects on run-time is a major challenge (Fleury, 2000; Holland,
Griffiths, & Woodman, 1997) We have experienced that the explicit use of the
conceptual framework for object-orientation and talking about it helps the students to
understand it (for example by talking about a concepts extension, intension and
designation (Madsen, Møller-Petersen & Nygaard 1993 p. 291) and to use a tool that
supports intuitive and easy creation of objects from the cases (Kölling 2005))

Lewis (2000) discusses nine myths about object-orientation and its pedagogy; one
is that the phrase “objects first” is well defined. The author writes: “No matter what
your definition of objects first is, it is likely to be different from that of the person

274

Model-Driven Programming 3

next to you.” (p. 247), and “The phrases ‘objects first’ and ‘objects early’ are bandied
about in a variety of contexts. When discussing a CSI course they are often used to
convey the general idea that objects are discussed early in the course and established
as a fundamental concept. Beyond that, however, these phrases seem to take on a
variety of meanings, with important implications.” (p. 246).

Our definition of objects-first is:
• Objects from day one – in the beginning the students uses predefined classes to

create objects, then they imitate the implementation of a class and finally they
creates classes.

• A balanced view on the three perspectives on the role of a programming
language (see next section)

• Enforcing the use of a systematic way to implement a description of a solution
(see section 1.4 Contracts)

1.3. The role of the programming language

In (Knudsen & Madsen 1988) three perspectives on the role of a programming
language are described:

Instructing the computer: The programming language is viewed as a high-level
machine language. The focus is on aspects of program execution such as storage
layout, control flow and persistence. In the following we also refer to this perspective
as coding.

Managing the program description: The programming language is used for an
overview and understanding of the entire program. The focus is on aspects such as
visibility, encapsulation, modularity, separate compilation.

Conceptual modelling: The programming language is used for expressing concepts
and structures. The focus is on constructs for describing concepts and phenomena.

These represent a widespread three-level perspective on object-oriented

programming as represented by the three abstraction levels for the interpretation of
UML (Rumbaugh, Jacobson & Booch 2005) class models (Fowler 2000): conceptual
level, specification level and code/implementation level.

When designing a programming course one decides how much time, effort and
focus are given to each of the three perspectives. It is possible just to focus on the
first, instructing the computer, and ignore the two others. This results in a course
where the details of the programming language are in focus but where the students do
not learn the underlying programming paradigm. If on the other hand one just focuses
on conceptual modelling (using a case-tool to generate code), the result is a course
where the students cannot produce code by themselves. We find it vital to balance the
three views on the role of the programming language. The primary advantages are

• A systematic approach to programming
• A deeper understanding of the programming process
• Focus on general programming concepts instead of language constructs in

a particular programming language.
Most of the descriptions and discussions of the object-first strategy tend to focus

on instructing the computer and managing the program description (see e.g. Rountree,
Rountree & Robins 2003). To our knowledge, no introductory programming textbook

275

4

exists that addresses conceptual modelling, and we have been able to find only a few
articles discussing the adoption of conceptual modelling in CS1 (e.g. Alphonce &
Ventura 2002; Knudsen & Madsen, 1996; Sicilia, 2006). It is our experience from
many years of teaching CS1, that the inclusion of conceptual modelling perspective
has a major impact on the students’ skills and their understanding of the programming
process. It is our conviction that the general omission of conceptual modelling is one
of the major reasons for the problems identified by The Joint Task Force (2001, p.
23):”Introductory programming courses often oversimplify the programming process
to make it accessible to beginning students, giving too little weight to design,
analysis, and testing relative to the conceptually simpler process of coding. Thus, the
superficial impression students take from their mastery of programming skills masks
fundamental shortcomings that will limit their ability to adapt to different kinds of
problems and problem-solving contexts in the future.”

The Joint Task Force (2001) generally ignores conceptual modelling in the object-
first recommendations for CS1. Aspects of conceptual modelling are mentioned only
briefly and the recommended time to be used on the subject is four core hours!

1.4. Contracts

We identify contracts (Meyer 1992) and techniques for the systematic creation of
object-oriented programs at four (six) different levels of abstraction:

1. Problem domain � conceptual model: Create a UML class model of the
problem domain, focusing on classes and structure between classes

2. Problem domain � Dynamic model: Create a UML state chart to capture
dynamic behaviour

3. Conceptual model and dynamic model � specification model: Specify
properties and distribute responsibility among classes.

4. Specification model � implementation:
a. Specification model � implementation of inter-class structure:

Create a skeleton for the program using standard coding patterns
for the different relations between classes.

b. Specification model � implementation of intra-class structure:
Create class invariants describing the internal constraints that
have to be fulfilled before and after each method call.

c. Specification model � implementation of methods: Use
algorithm patterns for the traditional algorithmic problems e.g.
sweeping, searching. Use loop-invariants for the systematic
construction of loops.

In the introductory programming course focus is on the fourth level; beginning

students cannot design (Pattis 1993), and therefore we provide a conceptual
model/specification model as the basis of almost every programming assignment in
the course.

We reinforce the notion of contracts at each level.
• At the conceptual level the contract is expressed as relations between

classes; this contract is between the use and the programmer.

276

Model-Driven Programming 5

• At the specification level the contract is expressed as functional
specifications of the interfaces (classes) in the model; this contract is
between clients and implementations of interfaces.

• At the implementation level the contract is expressed as assertions in the
program text (e.g. general assertions, class invariants, and loop
invariants).

In the intro course we focus on contracts at the conceptual level and the implication
of these contracts for the implementation in Java. It is our experience that the notion
of contract in the context of a model-driven approach is a great help to beginning
students.

2. CONCEPTUAL MODELING

In (Madsen, Møller-Petersen & Nygaard 1993) object-oriented programming is
defined as follows:

A program execution is regarded as a physical model, simulating the behavior of

either a real or imaginary part of the world.

The key point here is model. An object-oriented program is a model, and this

model can be viewed at different levels of detail characterized by different degrees of
formality: An informal conceptual model describing key concepts from the problem
domain and their relations, a more detailed class model giving a more detailed
overview of the solution, and the actual implementation in an object-oriented
programming language.

Object-orientation has a strong conceptual framework (notions of concepts and
phenomena, identification of objects, identification of classes, classification,
generalization and specialization, multiple classification, reference- and part-of
composition). One of the advantages of the conceptual framework is that it gives an
integrating perspective on analysis, design and programming thus making it much
easier for the students to understand these normally fuzzy concepts. Analysis is the
process by which you create a conceptual model of the problem domain, design is the
process where you fit the model to the restrictions of the particular programming
language and implementation environment, and implementation is coding the design
model. Omitting this integrating perspective and focusing only on object-orientation
for implementation will leave out one of the most important assets of object-orienta-
tion.

We focus on the conceptual modelling perspective, emphasizing that object-
orientation is not merely a bag of solutions and technology, but a way to understand,
describe and communicate about a problem domain and a concrete implementation of
that domain.

The integration of conceptual modelling and coding provides structure, traceability
and a systematic approach to program development which strongly motivates and
supports the students in their understanding and practice of the programming process.

The course is still a programming course, not a course on how to create conceptual
models of given phenomena. We do not expect the students to create conceptual
models of the referent system (Madsen et al. 1993 p. 286), that is to perform the

277

6

activity they call analysis (ibid p. 310) nor do we expect the students in the beginning
to be able to create a design for the program. We supply them with the program
design described as a class model, and then they implement this design in a systematic
way.

3. STRUCTURE OF A MODEL-FIRST COURSE

In this section we discuss different aspect of a model-first programming course:
Progression, goals, on example of a model-first course describing the progression in
terms of the concepts from the object-oriented conceptual framework.

3.5. Progression

One of the key problems in designing a programming course is to define the
progression – what to start with, what next and so on. Traditionally one starts with the
simple things, but that quickly rises the question is: “Simple related to what?”
Traditionally the answer is “Simple programming language constructs” i.e. the
progression is defined by the complexity of the programming language. Robbins,
Rountree and Rountree (2003) conclude that “typical introductory programming
textbooks devote most of their content to presenting knowledge about a particular
programming language” (pp 141), that is to say the majority of them are based on an
“instructing the computer” or “managing the computer” perspective.

The approach taken here is to use the three perspectives on the role of the
programming language as a guide for the structure of the course. In the first half of
the course, roughly speaking, focus is concurrently on understanding and using a
conceptual model as a blue print for programming and actual coding; in the second
half of the course the primary focus is on internal software quality, i.e. managing the
program description. The answer to the question on “simple related to what” is
therefore simple related to the complexity of the underlying conceptual model.

In section 3.7 “A concrete implementation of a model-first course” our course
design is presented. The interpretation is what we find simple and complex in the
object-oriented conceptual framework; other interpretations are of cause doable. If
you e.g. find inheritance simpler than association, then the next concept to introduce
after the class concept is inheritance.

Apart from using the complexity of the underlying conceptual framework as a
definition of progress we also use the “early bird” pedagogical pattern (Bergin): “The
course is organized so that the most important topics are taught first. Teach the most
important material, the "big ideas," first (and often). When this seems impossible,
teach the most important material as early as possible.

3.6. Goals

Coding and understanding conceptual models is done hand-in-hand, with the latter
leading the way. Introduction of the different language constructs are subordinate to
the needs for implementing a given concept in the conceptual framework. After

278

Model-Driven Programming 7

introducing a concept from the conceptual framework a corresponding coding pattern
is introduced; a coding pattern is a guideline for the translation from UML to code of
an element from the conceptual framework.

This approach supports a spiral course layout (Bergin), reinforcing the most
important concepts several times in the course. There are two criteria for the design of
the spiral layout: the most common concepts of the conceptual framework are
introduced first, and throughout the course the students must be able to create wor-
king programs.

The conceptual framework is comprehensive; for CS1 we restrict the coverage to
association, composition and specialization which by far are the most used concepts
in object oriented modelling and programming.

The starting point is a class and properties of that class and the relationship
between the class and the objects created from this class. One of the properties of a
class can be an association to another class; consequently the next topic is association.
This correlates nicely to the fact that association (reference) is the most common
structure between classes (objects). Composition is a special case of association;
composition is taught in the next round of the spiral. The last structure to be
thoroughly covered is specialization. Specialization bridges nicely to the second half
of the course where the focus is on software quality and design where specialization is
often used as a way to make more flexible designs.

3.7. A concrete implementation of a model-first course

In the following subsections we describe some of the elements of the design of the
course focusing on the first half of the course where transformation from models to
code dominates.

Experience
The presentation below is based on the authors experience for more than 15 years

of teaching introductory programming. The ideas have been used both in traditional
university courses (5-10 ECTS) with a lecture style of teaching and 200+ students
attending and in classroom style of teaching. It has been used both for young students
just entered the university without any computer science background as well as adults
in further education courses where the students have been programming in another
paradigm (the imperative). It has been used for students majoring in a computer
science as well as students with a liberal arts and humanities background.

Getting Started
We want to give the students an everyday understanding of object-orientation and a

very informal understanding of the process of creating a UML class model. We
therefore start by illustrating the concepts using everyday life situations in a role-play.
The goal for the role-play is to illustrate structure and dynamics in terms of concepts,
phenomena and messages in a problem domain and classes, objects and method calls
in a corresponding (class and program) model. We use UML (primarily class
diagrams) to describe concepts and their properties, without any formal introduction
to the modelling language.

279

8

To introduce the students to basic coding we use a graphics package (Christensen
& Caspersen 2000). The graphics package is presented in terms of a class diagram;
hence, the students experience very early the strength of a class model as an abstract
description of a program component as well as a communication tool; the UML-
model provides an effective “language” for documenting and communicating about
classes.

This introductory part of the course provides an external view of classes and
objects. For a further discussion on these problems, see (Caspersen & Christensen
“CS1: Getting started”, this volume).

Class
After having used classes and objects, we turn to an internal view and start writing

classes; we do this by introducing the first coding pattern: Implementation of a class.
A coding pattern is a general description of (one way of) implementation of an
element of the conceptual framework. The students discuss a domain concept, select a
few properties, and express the domain concept using UML. We emphasize however
that the description of concept in it self is not important, we use that fact that the
students themselves create the concept as a motivation for the students. Using the
coding pattern the UML-description is systematically translated into Java code. The
general coding pattern are not show to the students; the students observe
implementations of classes and little by little abstract over these different
implementations of different models. The learning is from Diverging,
accommodating, converging to assimilating in the four learning styles described by
Kolb (1984).

In this phase of the course the students learn about basic language constructs such
as assignment, parameters, conditional statements; constructs needed for the
systematic translation of model into code like classes and objects, state and behaviour,
primitive types and object types, reference, parameterization, this, methods, attributes
and constructors.

As described before a spiral approach is used. This implies that, for example, in the
coverage of primitive types only what is strictly needed is taught. In this case we only
use int and do not worry about the other types – they will be introduced when they
are needed by the exercises.

The focus is on a systematic way of programming. This implies three things: many
examples are shown to the students; explicit use of UML and a focus on the
programming process (see Caspersen & Kölling, 2006 for details on the process)

The examples used are general concepts from the students every day life like
Person, Account, Die and Date.

We use BlueJ (Kölling, Quig, Patterson & Rosenberg 2003, Kölling this volume)
as the programming tool. In BlueJ the user has a kind of UML diagram, but the
internal details of the classes are not shown. We therefore use drawings of a UML
class in order to explain an abstract understanding of a class.

Since we find it important to focus on the programming process and not just the
end products (the program), we use a lot of “live coding” (Hyland & Clynch 2002).
The purpose of this is not to show the students the nice and linear way from problem
to solution, but to show the students how a professional programmer attacks the
problem, making the actions visible and a source of identification (Nielsen & Kvale

280

Model-Driven Programming 9

1997). For more elaboration on this see Caspersen & Bennedsen, The Programming
Process this volume.

Association
In the model of the problem domain the most common structure between classes is

an association. We use several examples with progressive complexity to illustrate the
concept and its implementation.

One Class with a Reference to Itself
Through a number of progressive examples we illustrate that an association is a

property of a class, a class can have more than one association, and an association is a
dynamic relation.

The students extend a previous example with a recursive association. One example
is that a Person can be married_to another Person or the lover of another Person. This
results in the model in figure 1.

Figure 1: One class with two associations

In order to implement associations with 0..1 cardinality the student needs to know
about programming language elements (e.g. reference and the null value). It also
gives the students an understanding of interaction between objects (calling methods
on other objects) and reference semantics.

Another example of a recursive association is a simple adventure game where the
rooms in the game are connected to other rooms in different directions. This can be
modelled by the following model:

Figure 2: One class with four recursive associations

Again the idea is that the students sees many implementations of the same general
concept from the conceptual framework and realizes the general coding pattern:

281

10

Figure 3: General, recursive association

This can be implemented using the following coding pattern:

public class A {

 private A a;

 public void setA(A a) {

 this.a=a;

 }

 public A getA() {

 return A;

 }

}

Turning to 0..* associations imply that the student needs to know about Collections

(either one of the Java standard Collections or the array type) and the need for
iteration arises (the for-each loop, an Iterator or an index variable and a simple
loop). This is done using a simple algorithm pattern for sweeping through a
collection. One example we use is the concepts of “friends” - a Person can have many
friends:

Figure 4: A person with many friends

More Classes
In order to get more interesting collaboration between classes, the next concept is

associations between different classes. As a starting point we use a domain model
with the following structure:

282

Model-Driven Programming 11

Figure 5: One customer can have many accounts

The students quickly understand that an association between different classes in
principle is the same as a recursive association. This is true for the implementation as
well; again the students generalize to a generic coding pattern for 0..* associations.

3.8. Composition, Specialization and Interfaces

We treat the remaining elements of the conceptual framework, composition and
specialization, in a similar way. As mentioned earlier, specialization bridges nicely to
the second half of the course focusing on software design and quality. The primary
quality aspect is coupling and the main language construct by which to achieve low
coupling is interfaces. Interfaces play an important role in the separation of
specification and implementation: the specification of properties of a domain concept
and (different) implementation(s) of these properties.

4. ON THE ROLE OF CONCEPTUAL MODELING IN CS1

In the following we will discuss some of the aspects of our integration of
conceptual modelling in an introductory programming course. As mentioned in
section 3.6 “Goals” it is not a goal in this course that the students creates conceptual
models by themselves, but use the conceptual model as a map of the code guiding
their actual programming.

4.9. Systematic Approach to Programming

The goal is to teach the students to appreciate and achieve quality software. By
good quality software we mean modifiable software, i.e. readable and understandable
programs with a good structure, low coupling and high cohesion. These quality
measures are by no means obvious to newcomers, and how to achieve them is even
harder. We need to teach the students guidelines for achieving it and a vocabulary to
talk abut their programs in order to help them build quality programs. The guidelines
can be at different levels – see section 1.4 “Contracts”

4.10. Providing Confidence

To program is difficult! In McCracken et al (2001) the authors found “shockingly low
performance on simple programming problems, even among second-year, college-

283

12

level students at four schools in three different countries”. It requires knowledge and
skills of many things such as the programming language, development tools and the
capability of formulating a solution in such a way that a computer is able to
understand it. Especially the last demand implies the need for creativity when
programming.
Students find the creative process very difficult. In a more traditional programming
course students are guided by standard algorithmic techniques such as searching,
sorting, divide and conquer etc. The problem is that algorithmic techniques do not
help the students to create the overall structure of a solution; they do not know where
and how to start because the mental gap between the problem description and an
implementation in terms of algorithms is too big. Conceptual modelling gives a
systematic and structured approach to programming which provides confidence and a
safe ground for addressing the programming task.
Most programming tasks are trivial and can be handled using simple standard
techniques such as the generic coding patterns described above. By focusing on
standard techniques first, the need for algorithmic creativity is reduced (and a
thorough treatment is postponed to CS2).

4.11. The Programming Process

The modelling approach to programming invites for an iterative process where the
program is developed incrementally. Through progressive exercises we reinforce
such a process in order to imitate modern program development processes (Beck
2000).

4.12. Abstraction

One of the important skills we want our students to possess is the capability to
abstract. One way of stimulating the student’s ability to abstract is to give several
exercises with similar structure.

One example from the bank domain is the model shown in Figure 5. In a student
administration domain we have the following model:

Figure 6: A student can participate in many courses

Initially the students see these two models as completely different, but gradually
they realize they are both instantiations of the same abstract model:

284

Model-Driven Programming 13

Figure 7: Abstract to many association
From this abstract model they can produce a corresponding generic coding pattern

(see figure 8).

Figure 8: Generic coding pattern for 0..* association

4.13. Object-orientation and procedural programming

A part from implementing the overall static structure of a program, students need
to implement the inside of the methods as well. As described in the section 1.4
“Contracts” we use several systematic approaches to this. In the introductory
programming course however, we do not teach the complete picture of systematic
tools useful for implementing methods nor does the students themselves create class
invariants or loop invariants – we supply them in an informal way (e.g. by describing
the role and constraints on each attribute of the classes using a comment or by general
comments in the javadoc of the class) and shows the students how we as experienced
programmers use this information when implementing methods. In a later course the
students will learn how to create contracts them selves at all the levels mentioned in
the section 1.4 “Contracts”.

This focus on the use of contracts implies that our focus on the more traditional
procedural aspects of programming is scaled back – the students learn how to
implement general sweep algorithms but the more subtle problems related to
algorithmic problem solving is postponed to a later course.

5. CONCLUSIONS

In our many years of experience in teaching introductory programming we have
found this approach to be useful. It gives the students structure and confidence when
the program and helps them to focus on the local problems instead of focusing all

import java.util.*;

public class A

{ private Collection bs;

 public A()

 { bs = new ArrayList(); }

 public Collection getBs()

 { return bs; }

 public void addB(B b)

 { bs.add(b); }

285

14

over the program text. We believe that this way of structuring the course helps
especially the weaker students.

The structuring and the content of the course of cause depend on the learning goals
for the course. One of our learning goals is that the programming process should be
demystified. We have demystified the programming process by focusing on
systematic way to convert specifications to working code, thereby postponing the
“design” element of the course – the students do not design but are given the design
by the lecturer. We believe that a good “reading” ability is a prerequisite for a
“writing” ability – in other words the students need to read a lot of contracts and have
a good understanding of how one can implement the contract before the students
create contracts themselves.

6. REFERENCES

Alphonce, C., and Ventura, P.J.: “Object-Orientation in CS1-CS2 by Design”, Proceedings of
Innovation and Technology in Computer Science Education, Aarhus, Denmark, 2002.

Arnow, D., Dexter, S., and Weiss, G., Introduction to Programming Using Java: An Object-
Oriented Approach, Addison-Wesley, 2004.

Barnes, D.J., and Kölling, M. Objects First with Java – A Practical Introduction using BlueJ,
Pearson Education, 2003.

Beck, K., Extreme Programming Explained, Addison-Wesley, 2000.
Bell, D. and Scott, P. 1987. A first course in programming. SIGCSE Bull. Vol 19(2) (Jun.

1987). pp. 48-50
Bergin, J., ”14 Pedagogical Patterns”. Last accessed January 10, 2007. Available on-line at

http://csis.pace.edu/~bergin/PedPat1.3.html.
Caspersen, M. E. and Kölling, M. 2006. A novice's process of object-oriented programming.

Companion To the 21st ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, Portland, Oregon, USA, October 22 - 26, 2006.

Christensen, H.B., and Caspersen, M.E.: “Here, There and Everywhere – On the Recurring Use
of Turtle Graphics in CS1”, Proceedings of the Fourth Australasian Computing Education
Conference, ACE 2000 Melbourne, Australia, 2000.

Cooper, M. et al.: “Teaching Objects-First in Introductory Computer Science”, Proceedings of
the 34th SIGCSE Technical Symposium on Computer Science Education, Reno, Nevada,
USA, 2003, pp. 191–195.

du Bouley, B (1989). Some difficulties of learning to program. In E. Soloway & J.C. Spohrer
(Eds) Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum.

Evans, H. and Patterson, W. 1985. Implementing Ada as the primary programming language. In
Proceedings of the Sixteenth SIGCSE Technical Symposium on Computer Science Education
(New Orleans, Louisiana, United States, March 14 - 15, 1985). pp. 255-265

Fjuk, A., Berge, O., Bennedsen, J., & Caspersen, M. E. (2004). Learning object-orientation
through ICT-mediated apprenticeship. ICALT '04: Proceedings of the IEEE International
Conference on Advanced Learning Technologies (ICALT'04), Joensuu, Finnland. 380-384.

Fleury, A. E. (2000). Programming in java: Student-constructed rules. SIGCSE '00:
Proceedings of the Thirty-First SIGCSE Technical Symposium on Computer Science
Education, Austin, Texas, United States. 197-201.

Fowler, M., UML Distilled – A Brief Guide to the Standard Object Modeling Language,
Addison-Wesley, 2000.

Henze, N., Nejdl, W., and Wolpers, M. 1999. Modeling constructivist teaching functionality
and structure in the KBS Hyperbook System. In Proceedings of the 1999 Conference on

286

Model-Driven Programming 15

Computer Support For Collaborative Learning. Palo Alto, California, December 12 - 15,
1999.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. SIGCSE
Bulletin (Association for Computing Machinery, Special Interest Group on Computer
Science Education), 29(1), 131-134.

Horstmann, C.S., Big Java, John Wiley & Sons, 2001.
Hyland, E. and Clynch, G. 2002. Initial experiences gained and initiatives employed in the

teaching of Java programming in the Institute of Technology Tallaght. Proceedings of the
inaugural Conference on the Principles and Practice of Programming, 2002 and Proceedings
of the Second Workshop on intermediate Representation Engineering For Virtual Machines,
2002 (Dublin, Ireland, June 13 - 14, 2002). pp. 101-106.

Jones, R., Boyle, T. & Pickard, P. (2003) Objectworld: Helping Novice Programmers to
Succed through a Graphical Objects-first Approach. Proceedings of 4th Annual LTSN-ICS
Conference, NUI Galway, pp. 111 – 114.

Knudsen, J. L., & Madsen, O. L. (1996). Using object-orientation as a common basis for
system development education. ACM SIGPLAN Notices, 31(12), 52-62.

Knudsen, J.L., and Madsen, O.L. (1998). Teaching Object-Oriented Programming is more than
Teaching Object-Oriented Programming Languages, proceedings of ECOOP '88 (LNCS
322), p. 21-40. Springer Verlag.

Koffman, E. and Wolz, U. 1999. CS1 using Java language features gently. In Proceedings of
the 4th Annual SIGCSE/SIGCUE ITiCSE Conference on innovation and Technology in
Computer Science Education (Cracow, Poland, June 27 - 30, 1999). pp. 40-43.

Kolb, David A. 1984. Experiential Learning: Experience as the Source of Learning and
Development. Prentice-Hall, Inc., Englewood Cliffs, N.J.

Kölling, M. & Rosenberg, M. (2001) Guidelines for teaching object orientation with Java,
ITiCSE '01: Proceedings of the 6th annual conference on Innovation and technology in
computer science education, pp 33 – 36.

Kölling, M: Using BlueJ to Introduce Programming, Chapter 8, this volume.
Kölling, M., Quig, B., Patterson, A. & Rosenberg, J (2003): The BlueJ system and its

pedagogy Journal of Computer Science Education, Special Issue on Learning and Teaching
Object Technology, Vol 13, No 4, Dec 2003.

Lewis, J. (2000) Myths about object-orientation and its pedagogy, Proceedings of the thirty-
first SIGCSE technical symposium on Computer science education, pp. 245-249.

Madsen, O.L., Møller-Petersen, B., and Nygaard, K., Object-Oriented Programming in the
BETA Programming Language, Addison-Wesley/ACM Press, 1993.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer, C.,
Thomas, L., Utting, I., and Wilusz, T. “A multinational, multiinstitutional study of
assessment of programming skills of first-year CS students”, ACM SIGCSE Bulletin, 33 (4),
2001, pp. 125–140.

Meyer, B. (1992). Applying ‘Design by Contract’. IEEE Computer, Vol. 25 (10), October
1992, pp. 40-51.

 Nielsen, K. and Kvale, S. (1997). "Current issues of apprenticeship.". Nordisk Pedagogik 17
pp. 130 - 139.

Niño J., and Hosch, F.A., (2001). An Introduction to Programming and Object-Oriented Design
Using Java, John Wiley & Sons.

Oldham, J. D. 2005. What happens after Python in CS1?. J. Comput. Small Coll. 20, 6 (Jun.
2005), 7-13.

Pattis, R. (1993). The ‘Procedures Early’ Approach in CS 1: A Heresy”, Proceedings of the
twenty-fourth SIGCSE Technical Symposium on Computer Science Education, pp. 122-126.

Rumbaugh, J., Jacobson, I., Booch, G. (2005) Unified Modeling Language Reference Manual,
The, 2nd Edition. Addison-Wesley

Robins, A., Rountree, J. and Rountree N (2003). Learning and Teaching Programming: A
Review and Discussion, Computer Science Education, Vol. 13, No 2 pp 137 - 172

287

16

Schmolitzky, A. (2004) Objects first, interfaces next" or interfaces before inheritance,
Educators symposium, OOPSLA '04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications pp. 64 –
67.

Shaffer, D. 1986. The use of Logo in an introductory computer science course. SIGCSE Bull.
Vol 18(4) (Dec. 1986). pp. 28-31.

Sicilia, M. (2006). Strategies for teaching object-oriented concepts with java. Journal of
Computer Science Education, 16(1), 1-18.

The Joint Task Force on Computing Curricula (IEEE Computer Society and Association for
Computing Machinery). Computing Curricula 2001 (final report), December 2001.
Available on-line at “http://www.computer.org/education/cc2001/final”.

288

20 Killer “Killer Examples” for De-
sign Patterns

The paper Killer “Killer Examples” for Design Patterns presented in this
chapter has been published as a conference paper [Alphonce et al. 2007].

[Alphonce et al. 2007] Alphonce, C., Caspersen, M.E. and Decker, A., “Kil-
ler ‘Killer Examples’ for Design Patterns”, SIGCSE '07: Proceedings of the
38th Technical Symposium on Computer Science Education, Covington,
Kentucky, USA, 2007.

289

290

Killer “Killer Examples” for Design Patterns

Carl Alphonce
Department of Computer
Science & Engineering

University at Buffalo, SUNY
Buffalo, NY 14260-2000

alphonce@cse.buffalo.edu

Michael Caspersen
Department of Computer

Science
University of Aarhus

DK-8200 Aarhus N, DK

mec@daimi.au.dk

Adrienne Decker
Department of Computer
Science & Engineering

University at Buffalo, SUNY
Buffalo, NY 14260-2000

adrienne@cse.buffalo.edu

ABSTRACT
Giving students an appreciation of the benefits of using de-
sign patterns and an ability to use them effectively in de-
veloping code presents several interesting pedagogical chal-
lenges. This paper discusses pedagogical lessons learned at
the “Killer Examples” for Design Patterns and Objects First

series of workshops held at the Object Oriented Program-
ming, Systems, Languages and Applications (OOPSLA) con-
ference over the past four years. It also showcases three
“killer examples” which can be used to support the teach-
ing of design patterns.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms
Design

Keywords
Object-orientation, Design Patterns

1. WHY TEACH DESIGN PATTERNS?
The underlying premise of this paper, and indeed of the

workshops from which it derives, is that students need to
learn skills and concepts which will be of long-term value to
them even as the technology of the day changes. We believe
that design patterns are an important part of a student’s
education in this regard.

However, giving students an appreciation of the benefits
of using design patterns as well as an ability to use them ef-
fectively in developing code presents several interesting ped-
agogical challenges. This is especially true for instructors of
introductory courses.

The first challenge is that students tend to focus on the
input-output behavior of their programs rather than high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07
Copyright 2007 ACM .

level properties of their code. While the input-output be-
havior of a program is measure of its correctness, there are
other aspects of software design that are important. These
include the ability of a software solution to scale from small
problems to large problems, the degree to which the soft-
ware is extensible, how robust the software is, and so forth.
Workshop participants have observed that students do not
pay enough attention to these properties of software in their
coursework. Knowledge and use of design patterns highlight
these broader issues because they are in large measure the
raison d’etre of design patterns.

The second challenge to educators is that students often
do not believe that what they consider to be very “abstract”
design pattern solutions are used or even desirable in fast-
paced real-world settings.

A third challenge is that examples which benefit from the
application of patterns tend to be more complex (in the
sense of involving more code and a “richer” domain) than
typical textbook examples. This can make it more difficult
for students to grasp the examples and discern their essential
characteristics. Pattern catalogs, such as the classic “Gang
of Four” [4], are great resources for faculty, but not necessar-
ily for design pattern novices. Faculty need more accessible
examples to support their teaching.

A final challenge in teaching design patterns is that ex-
amples which are constructed by faculty to demonstrate
the power of patterns run the risk of lacking “street cred”:
students can easily perceive them to be ivory tower prod-
ucts with no grounding in real-world software development.
For this reason real-world examples are valuable, since they
drive home points better, but they are generally much too
complex to present directly to students.

Erich Gamma, in an interview with Bill Venners [5], says
of learning design patterns that “You have to feel the pain
of a design which has some problem. I guess you only ap-
preciate a pattern once you have felt this design pain.” His
point is that students will not appreciate design patterns if
the are presented to them without an appreciation of the
problem they solve. On reflection this makes pretty good
sense since a pattern is a solution to a problem in a context.
If you don’t believe in the problem – if you don’t own it–
how can you ever appreciate a solution? No problem, no
solution!

The “Killer Examples” workshop series was born of a de-
sire to gather examples of design pattern use which address
these challenges.

2. WHAT IS A “KILLER EXAMPLE”?

291

We define a “Killer Example” to be one which gives over-
whelmingly compelling motivation for something. The term
is inspired by “Killer App”, which is described by the Jargon

File [1] as, “The application that actually makes a sustain-
ing market for a promising but under-utilized technology.”

The “Killer Examples for Design Patterns and Object
First” workshops have been held at the OOPSLA (Object-
Oriented Programming, Systems, Languages and Applica-
tions) conference annually since 2002. In the first four years
we have had eighteen examples presented at the workshops.
Approaches to teaching design patterns in various settings
have also been discussed at these workshops.

This paper shares some of the general lessons we have
learned from the workshops, as well as three examples pre-
sented at the workshops which we feel best demonstrate
what it means to be a “Killer Example”.

3. LESSONS LEARNED: THE PEDAGOGY
OF “KILLER EXAMPLES”

Many lessons have emerged from the workshops. The
most important and recurring ones are described below.

Context Design patterns cannot effectively be taught in-
dependent of an application of it. Patterns must be
presented in a context which clearly demonstrates the
usefulness of the pattern in comparison to the software
built without the pattern.

Accessibility Design patterns cannot effectively be taught
if the examples used to demonstrate the benefits of the
patterns is too complex or too far removed from the
experience of students to be meaningful to them.

Real-world Design patterns cannot effectively be taught
unless the examples which demonstrate their applica-
tion and benefits have a real-world grounding. Since
patterns are mined from practitioner code, this is im-
portant.

Clear benefits Design patterns cannot effectively be taught
unless their benefits in terms of desirable high-level
properties of software, such as scalability, robustness,
extensibility, flexibility and maintainability are clearly
evident.

3.1 Intra-Pattern considerations
Although a single “killer example” may demonstrate the

use of several design patterns, it is important that for each
pattern students move through a sequence of stages of ex-
posure to a single pattern – we therefore refer to these as
intra-pattern considerations. These stages are motivated by
the “read-before-write” pedagogical pattern.[2]

Use it Students should gain an appreciation of the useful-
ness of a pattern by using an implementation of it. For
example, when learning the Iterator pattern students
should gain experience by using an Iterator to traverse
some collection.

Conceptualize it Students should be engaged in a discus-
sion of the general architecture of a given pattern. For
example, when learning the Iterator pattern students
must come to understand the concept of an iterator;
alternate approaches, such as a cursor, must be dis-
cussed.

Build it The next gain in understanding comes from a stu-
dent’s implementation of a pattern. When learning the
Iterator pattern students must next create a class that
is an iterator over some collection.

Analyze/study high quality code A deeper understand-
ing of any pattern comes from studying a variety of
high quality implementations of the pattern. In the
case of the Iterator pattern it is perhaps at this point
that students begin to truly grasp the beauty of hav-
ing a separate iterator which can access private parts
of a collection; in Java this is achieved by defining a
class’s iterator as a public inner class.

3.2 Inter-Pattern considerations
At some point the focus must shift from a single pat-

tern back to a system of mutually supporting patterns, as
demonstrated in a killer example. At this inter-pattern level
of experience, we find the following stages:

Design and construct Students must at some point ap-
ply their knowledge of patterns to design and construct
software. Killer examples can serve as useful exercises
for students also in this regard.

Evaluate A final step in the process of learning to use pat-
terns comes in being able to evaluate and critique the
use (or lack of use) of design patterns in software.

4. FIRST EXAMPLE: FRAMEWORKS
Software reuse, after decades of unfulfilled promises, is

beginning to become true in the form of object-oriented
frameworks.1 Industrial developers can build large, com-
plex software systems that are reliable and computational
efficient because they do not build from scratch; the reuse
the vast effort invested into software frameworks such as the
Java 2 Enterprise Edition, Java Swing, or Remote Method
Invocation (RMI).

4.1 Why Frameworks?
Good object-oriented frameworks are unique examples of

the strength of the object-oriented paradigm. Looking be-
hind the scenes of good frameworks shows how careful mod-
eling of domain concepts, use of polymorphism, and the use
of design patterns makes a piece of software highly flexi-
ble and demonstrates the power of low coupling and high
cohesion. It is simply a brilliant case study to learn from,
and as such the ultimate killer example of the use of design
patterns. The framework we present is developed specifi-
cally for educational purposes at the introductory level; the
framework encapsulates the MVC design pattern.[3]

4.2 Framework Essentials
The essential characteristics of software frameworks are

inversion of control and hotspots.

Inversion of control Typical novice programs consist of
a number of interacting objects and a single driver
that does the setup and defines the main flow of con-
trol. The novice programmer applies services provided
through classes that are part of the program or through

1This example is due to Michael Caspersen. It was presented
at the 2003 workshop.

292

library classes (e.g. collection classes). When pro-
gramming using a framework, the main flow of control
is out of the programmer’s sight; it is dictated and
controlled by the framework. The novice program-
mer’s task is to supply code that implements inter-
faces or specializes (abstract) super classes. This is
also known as the Hollywood principle: Don’t call us,
we’ll call you.

Hotspots Frameworks define core functionality, control flow,
and object collaboration patterns. Application pro-
grammers refine frameworks to specific domains by
adding code at well-defined points: the hotspots (also
known as hooks or variability points). Hotspots can be
realized in a number of different ways: call-back meth-
ods, delegation to objects implementing interfaces de-
fined by the framework, or subclassing.

A killer example framework must demonstrate the essen-
tial characteristics in a simple and convincing way; it must
be simple for novices to use and it must be flexible, i.e.
allowing a number of distinct, sensible, and interesting in-
stantiations.

4.3 Example: Presenter Framework
The killer example we have chosen is a presenter frame-

work. The presenter framework facilitates construction of
multi-media presentations of a domain where the compass-
directions are a suitable metaphor for user navigation; Fig-
ure 1 demonstrates an instantiation of the framework that
shows a presentation of the tomb of Tutankhamon. Using
the compass-directions it is possible to visit the different
parts of the tomb while pictures and text is being presented
to the user.

The presenter framework provides the application pro-
grammer with the simple interface shown in Figure 2. This
is the hotspot of the framework; an abstract class which the
application programmer must specialize to a specific appli-
cation.

The presenter framework provides the backbone function-
ality: a large area for displaying images, a smaller one for
displaying text, and the four buttons labeled North, East,
South, and West. The buttons respond to user clicks by
invoking one of the four abstract methods in the abstract
class Presenter which the application must specialize.

Instantiating the framework is a matter of redefining the
four abstract methods in class Presenter (see Figure 3).

4.4 Model-View-Controller in Action
The presenter framework encapsulates the MVC design

pattern by defining a View and an abstract Controller which
can be plugged with a concrete Controller and a Model
to provide a full application. The overall architecture is
sketched in Figure 4.

4.5 Discussion
Frameworks can serve in teaching in several ways. At the

introductory level frameworks may serve as a black box that
makes even a small student effort into a rather impressive
program. Later, the black box can be opened to demon-
strate how good frameworks are structured. The presenter
framework is also used as a stepping stone toward learning
more advanced frameworks; the simplicity of the presen-
ter frameworks makes it easier to grasp and understand the

Figure 1: Instantiation of the Presenter Framework

public abstract class Presenter {

public void showImage(String filename) { ... }

public void showText(String text) { ... }

public abstract void northButtonPressed();

public abstract void eastButtonPressed();

public abstract void southButtonPressed();

public abstract void westButtonPressed();

}

Figure 2: The abstract class Presenter

public class TutankahmonPresenter {

public abstract void northButtonPressed() {

guest.move(NORTH);

}

....

}

Figure 3: Specialization of the abstract class Pre-
senter

Figure 4: Software architecture

293

essential characteristics of frameworks (inversion of control
and hotspots) and provides a solid ground for working with
more complex frameworks (e.g. the Java GUI framework
Swing).

We claimed that a killer example framework should allow
a number of distinct, sensible, and interesting instantiations.
Here are a few such instantiations for this framework:

Virtual museum tour An application which collects pic-
tures of paintings and other artifacts from the Internet
and presents a user with a virtual tour of a museum.

Presentation tool The framework forms the core of a pre-
sentation tool, along the lines of PowerPoint.

Map navigation Rather than having user interaction gen-
erating buttonPressed events, one can have them gen-
erated indirectly from a GPS receiver, such that if the
coordinates change sufficiently much in a given direc-
tion, a buttonPressed event is generated.

While this example does not come directly from a real-
world application, the connection to real-world applications
is clear and therefore compelling to students.

5. SECOND EXAMPLE: HARDWARE AND
SOFTWARE TESTING

Since Design Patterns have grown from the OO commu-
nity, there are many outside of that community that have
difficulty accepting design patterns as applicable to other do-
mains.2 This is especially true once you leave the software
domain and travel to the lands of hardware development,
embedded systems, or distributed real-time systems.

In the software domain, and when students study soft-
ware engineering, an often discussed topic is the idea that
when developing large software systems, their development
is broken into modules. Those modules are often developed
concurrently. The different modules often need to communi-
cate with one another, but development of one module can
not stop to wait for another module to be completed.

The same is true in the hardware domain, except some of
the modules are software pieces while others are hardware
components and their drivers. Developing the software af-
ter the hardware is available is often impossible, and both
pieces need to be developed and tested concurrently. How-
ever, without the hardware to use in the tests, test-driven
development, which has shown to be a useful development
methodology, can be a challenge.

This example is an industrial example that has been used
by a company that develops real-time and embedded sys-
tems. They needed to devise a way to develop and test their
entire product, the software components and the hardware
it will run on concurrently.

5.1 A First Attempt
A näıve attempt to solve this problem is shown in figure 5.

A test case is written (TestCase) to test the class/component
(ClassUnderTest). ClassUnderTest requires one or more of
the hardware components controlled by drivers A, B, and
C. The problem with this design stems from the fact that
the hardware components are still under development and

2This example is due to Bruce Trask and Angel Roman. It
was presented at the 2005 workshop.

ClassUnderTestTestCase

HWElementDriverC

HWElementDriverB

HWElementDriverA

Figure 5: Näıve implementation

therefore their drivers are not available. Therefore, testing
the class would not be possible until the drivers become
available. However, we can introduce a solution which allows
us to program to an interface, not an implementation and
complete the testing of ClassUnderTest.

5.2 The Strategy Pattern
If we introduce the strategy pattern to this problem, we

create interfaces for each one of the hardware driver ele-
ments. The drivers themselves have yet to be written be-
cause the hardware components are not yet completed. The
introduction of interfaces enforces what the drivers will look
like (i.e. what methods the drivers will contain). Then, test-
ing can be completed of ClassUnderTest before the hardware
is ready. Also, when introducing this pattern, we allow for
differences in the underlying implementation of the drivers
(i.e. multiple classes that implement the driver interface but
actually connect to different hardware implementations).

5.3 The Abstract Factory Pattern
Introducing the Strategy pattern allows us to test the

ClassUnderTest independent of the hardware or hardware
driver implementations. However, we could have introduced
a potential problem. Suppose that some implementations of
the driver for hardware component A, only work with certain
other configurations of hardware components B and C. We
need a way to ensure that the correct configuration of hard-
ware components and drivers are tested. Thus, the intro-
duction of an abstract factory becomes necessary to manage
the configurations of the drivers for the hardware compo-
nents. Then, the TestCase can interact directly with the
factory to invoke the proper configuration of the hardware
when testing the ClassUnderTest.

Applying both these patterns results in a design as shown
in figure 6.

5.4 Why this example is Killer
The applications of the patterns to help solve this problem

are not buried in the complexity of the solution to under-
stand. It illustrates the fact that patterns do not always
exist in isolation and the introduction of one pattern often
necessitates the introduction of more. This example also
illustrates that design patterns are not limited to organi-
zations that strictly develop software, but can be used to
work with embedded and real-time systems development. It
also shows how design patterns can support the test-driven
development methodology.

294

HWFactory

AlternateFactory

ClassUnderTest

TestCase

AlternateImplA

HWElementDriverA

+createA()
+createB()
+createC()

Factory
<<interface>>

<<interface>>
HWElementDriverAInterface

Figure 6: A more flexible approach

6. THIRD EXAMPLE: INTERACTIVE PRO-
GRAM GUIDE

An interactive program guide (IPG) allows a user to browse
television (cable/satellite) content in various ways, such as
by channel, title, timeslot, and genre.3 Some systems pro-
vide access to weather forecasts. It is also possible to use
the IPG to set subtitle or closed captioning options. To
control the IPG a user presses keys on a remote control.
The remote control typically has a small number of buttons
used for navigation and selection. Depending on the current
state of the IPG system, different things might happen when
a given button is pressed.

For example, selecting a program to watch in the normal
TV mode will switch to the indicated channel. However,
in pay-per-view (PPV) mode some additional level of con-
firmation is required, so that a user does not accidentally
incur a charge for a program they do not wish to pay for.

Similar systems are used in hotels to present guests with
various kinds of information. For example, hotel systems
allow guests to order things as diverse as movies and room
service. They typically also allow guests to view their hotel
bill on-screen and also to check out.

This example is especially interesting because it is a real-
world example combining a large number of patterns which
nonetheless is accessible. Among the many patterns incor-
porated in this example are state, model-view-controller, ob-
server, iterator, composite, command, singleton, and proxy.
The role of a few of these patterns in the example is pre-
sented below.

6.1 Iterator Pattern
The iterator pattern is used to allow the IPG system to

traverse a variety of data structures, representing things
such as channels, groups of channels, programs, etc. The
IPG system maintains a “current” position during brows-
ing, something that lends itself to implementation using a
bi-directional iterator.

6.2 State Pattern
An obvious design issue is that the system is state-based.

In other words, its behavior is governed by the particular
state that it is in. Indeed, the behavior associated with all

3This example is due to Asher Sterkin. It was presented at
the 2003 workshop.

the buttons on the controller change together as the state of
the IPG changes. This is modelled this using a state pattern.

Using the state pattern in this example helps to ensure
robustness: the behavior of the system is always coherent,
since the behaviors associated with a collection of buttons
is changed en masse.

6.3 Command Pattern
The command pattern is used to represent the behaviors

associated with particular buttons on the controller. Be-
cause these behaviors are “objectified” as command objects
the system retains the flexibility to easily accomodate new
menus with new features.

6.4 Mediator Pattern
The mediator pattern is used to maintain loose coupling

between components in the case where the IPG displays cat-
egory information in one pane and element information in
another, and changes to the category must result in changes
to the set of elements displayed.

6.5 Discussion
This example has demonstrated the potential application

of a handful of design patterns in a real-world software sys-
tem. The beauty of this particular example is that it is one
that is familiar to most, if not all, students. The domain of
the problem is therefore immediately accessible to them.

7. CONCLUSION
In this paper, we have discussed three “Killer Examples”

that introduce students to problems that lend themselves
nicely to solutions using design patterns. Many of the com-
plaints of instructors about teaching design patterns stem
from the inability to find examples that show the utility of
patterns. Many examples are of “toy problems” that do not
show the usefulness of the pattern in a larger context, or
the examples involve a system that is too complex to break
down. A unique balance has been reached in these three ex-
amples that allows an instructor to provide a problem and
a problem domain that is accessible to students that points
to where design patterns can be useful and beneficial to the
overall system.

The example used to illustrate patterns is arguably the
“make or break” point in a student’s pattern education. If
patterns are presented as some lofty educational-only idea,
students will not see them for their usefulness in real-world
software development settings. If patterns are viewed and
presented by educators as a real-world-only problem, then
students will miss out on an opportunity to be exposed to a
beneficial tool for software engineering early in their careers.

8. REFERENCES
[1] The jargon file. http://catb.org/~esr/jargon/.

[2] J. Bergin. Some pedagogical patterns.
http://csis.pace.edu/ bergin/patterns/fewpedpats.html.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture.
John Wiley & Sons, 1996.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[5] B. Venners. How to use design patterns – a
conversation with Erich Gamma, part I. 2005.

295

296

21 Assessing Process and Product

The paper Assessing Process and Product ⎯ A Practical Lab Exam for an
Introductory Programming Course presented in this chapter has been pub-
lished as a conference paper [Bennedsen et al. 2006b].

[Bennedsen et al. 2006b] Bennedsen, J. and Caspersen, M., “Assessing proc-
ess and product ⎯ A practical lab exam for an introductory programming
course”, Proceedings of the 36th Annual Frontiers in Education Conference,
San Diego, California, pp. M4E-16-M4E-21, 2006.

297

298

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-1

Assessing Process and Product
– A Practical Lab Exam for an Introductory Programming Course

Jens Bennedsen1 and Michael E. Caspersen 2

1 Jens Benendsen, IT University West, Fuglsangs Alle 20, DK- 8210 Aarhus V, Denmark, jbb@it-vest.dk
2 Michael E. Caspersen, Department of Computer Science, University of Aarhus, DK-8200 Aarhus N, Denmark, mec@daimi.au.dk

Abstract - The final assessment of a course must reflect its
goals, and contents. An important goal of our introductory
programming course is that the students learn a systematic
approach for the development of computer programs.
Having the programming process as learning objective
naturally raises the question how to include this in
assessments. Traditional assessments (e.g. oral, written, or
multiple choice) are unsuitable to test the programming
process.
 We describe and evaluate a practical lab examination
that assesses the students’ programming process as well as
the developed programs. The evaluation is performed in
two ways: By analyzing the results of two lab examinations
(with more than 500 students) and by semi-structured
individual interviews with representatives of the involved
persons (students, TAs, lecturer, and examiner).
 The result of the evaluation is encouraging and
indicates the value of alignment and strong conformity
between goal, content and assessment of the introductory
programming course.

Index Terms – CS1, Examination, Evaluation, Programming
Process, Objects-First, Pedagogy.

INTRODUCTION

The final assessment must reflect aims, goals, and con-
tents of a course [1].

An important goal of our introductory programming cour-
se is that the students learn a systematic approach to the
development of computer programs. Learning a systematic
approach to programming implies that the students must gain a
clear understanding of the programming process and the
activities that are part of this process. They must also develop
the ability to apply these to develop programs.

Recognizing the importance of programming techniques
and the programming process when designing a programming
course implies the need for adoption of a suitable assessment
form. Traditional assessment forms (e.g. oral or written
examinations, multiple choice questions) are unsuitable to test
the programming process.

Another equally important argument for assessing the
programming process is that “The spirit and style of student
assessment defines de facto the curriculum” [2][p.1]. Ramsden
makes a similar observation: “the type of grading influences
the student’s learning approach” [3].

The bottom line is that it is essential to apply an
evaluation form where the students demonstrate their practical
programming skills as well as their understanding of the
fundamental concepts and theories from the curriculum of the
course. Consequently, we need to develop a new type of
assessment suitable to test the programming process as well as
the product.

The lab examination described and evaluated in this paper
has as characteristics that it

i. provides a valid and accurate evaluation of the student’s
programming capabilities,

ii. evaluates the process as well as the product,
iii. encourages the students to practice programming

throughout the course, and
iv. can be used assess 120-140 students pr. day.

The rest of the paper is structured as follows: Section 2
describes the context of the lab examination. Section 3 gives a
more thorough description of the final lab examination.
Section 4 presents and discusses the findings from the
evaluation of the lab examination. In section 5 we discuss
related and future work. The conclusions are drawn in section
6.

GOALS, CONTENT AND ASSESMENT

To provide an understanding of the context, this section
describes goal, form, and content of the introductory program-
ming course.

General Information

Our programming course spans the first half of CS1 at
University of Aarhus. The course runs for seven weeks, and
after the course there is a lab examination with a binary
pass/fail grading.

The grading is based solely upon the behaviour in and
result of the final examination; acceptable performance during
the course is a prerequisite for the final exam but does not
count as part of the grading.

There are approximately 250 students per year from a
variety of study programmes, e.g. computer science,
mathematics, geology, nano science, economy, multimedia.
40% of the students are majors in computer science, and they
are the only group of students that continue with the second
half of CS1. The rest of the students proceed to other
programming courses related to their fields (e.g. multimedia

299

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-2

programming, scientific computing) if they proceed with
programming at all.

The students are grouped in teams of 18-20 students;
typically there are 13-14 teams per year. Each team has its
own teaching assistant (TA) – a PhD or MSc student.

Goals

The purpose of the course is that students learn the
foundation of systematic construction of simple programs and
through this obtain knowledge about the role of conceptual
modelling in object-oriented programming. Furthermore, it is
the goal that students become familiar with a modern
programming language, fundamental programming language
concepts, and selected class libraries.

After the course the students must be able to explain and
use fundamental elements in a modern programming
language, use conceptual modelling in relation to preparing
simple object-oriented programs, implement simple object-
oriented models in a modern programming language, and use
selected class libraries.

Form

The course runs for seven weeks; every week there are
four lecture hours and one lab hour plus three class hours with
a TA. In addition to the scheduled hours, students work
approximately seven hours per week in study groups or on
their own.

The four lecture hours per week are used for presentation
and discussion of general concepts and the programming
process. The programming process is revealed through live
programming in front of the students in the lecture theatre
using computer and projector and through process recordings
(narrated, screen-captured video recordings of program
development sessions), see [4].

Every week (except for the first) there is a mandatory
assignment that must be submitted to the TA. The TA
examines the assignments and gives personal as well as
collective feedback to the students. Approval of five out of six
weekly assignments is a prerequisite for the final exam but
does not count as part of the grading. The weekly assignments
are primarily used to keep the students up to the mark on the
practice of programming.

Content

The course content is fundamental programming language
concepts, object-orientation, and techniques for systematic
construction of simple programs.
• Fundamental programming language concepts:

variable, value, type, expression, object, class,
encapsulation, control structure, method/procedure,
recursion, type hierarchies.

• Object-orientation: modelling; class structures
(specialization, aggregation and association); use of
selected class libraries (in particular collection libraries),
interfaces and abstract classes.

• Systematic development of small programs:
modularization, stepwise refinement/incremental
development, test.

This is a logical listing of the course contents; it is not the
order in which the content is covered. The content is covered
using a spiral approach [5]; for further details of the structure
and content of the course, see [6, 7].

ASSESSMENT THROUGH A LAB EXAMINATION
This section discusses the examination requirements, the

organization of the lab examination and the actual lab
examination.

Conformity between Goals, Content, and Assessment

As mentioned in section “Goals”, the goals of the course
are that the student must be able to explain and

• use fundamental elements in a modern programming
language,

• use conceptual modelling in relation to preparing
simple object-oriented programs,

• implement simple object-oriented models in a modern
programming language, and

• use selected class libraries.
During the course, as in real life, programs are developed

using a standard development environment running on a
computer. An ordinary written exam with pen and paper is an
artificial situation and therefore insufficient and inappropriate
to test the student’s ability to develop programs. For the same
reasons an ordinary oral examination and a multiple choice
test would be inappropriate.

To ensure alignment and maximum conformity between
goals, content, and assessment we have designed a practical
examination organized in a lab.

Organization of the Lab Examination

The examination resembles an ordinary lab session. 20
students are tested concurrently.

We schedule one hour per group of 20 students, but only
30 minutes for the actual lab examination. The rest of the time
is used for administrative activities and as buffer.

Each group of students receives a different assignment
consisting of nine small progressive programming tasks. In
principle the assignments are identical (they are all instances
of the same generic assignment), but the students does not
know nor realize this. The similarity of the assignments is
important for fairness as well as comparability of the students’
results. The sample assignment in Figure 1 deals with tracks
and play lists; other exercises concern luggage and flights,
employees and departments, museums and paintings, etc.
Although the concepts modelled by the classes vary, the
assignments have similar structure.

300

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-3

Assessment of Product and Process

In test for completed apprenticeship of traditional crafts,
the examiner inspects the apprentice while they construct their
exam product; the quality of the apprentice’s construction

process as well as the quality of the final product counts in the
final grading.

Because of similar goals regarding the assessment of
process and product, we have adopted a similar examination
form where the lecturer and the external examiner evaluate the
programming process as well as the program produced by
each student by inspecting the students during the
examination.

To avoid practical problems during start-up and
finalization of the lab examination (e.g. login problems,
applying naming conventions, delivery of the exam products),
and to ensure that minor unimportant programming errors, tool
problems, etc. does not hinder the student’s problem solving
and programming, five TAs are present during the lab
examination to support the students. If the TAs have doubts
about their role (e.g. how much to interact with the students),
they consult the lecturer or external examiner on-the-fly.

To let the students settle down and get started, they are
not inspected until they have passed a checkpoint after the first
three programming tasks. The students are instructed to call
upon a TA or the lecturer when they reach the checkpoint to
show and demonstrate their solution. When a student has
passed the checkpoint, the lecturer and external examiner start
inspecting the student’s behaviour. The poorest students never
reach the checkpoint i.e. the inspection time is focused on
those students who have a chance of passing.

The examiner and lecturer note the time when the first
three tasks are done. After five to seven minutes, they start
inspecting the process of each student; around that time, and
after a short inspection of the students programming process,
it is usually possible to determine the pass grade. This is a
very efficient way to know when and in what order to look at
the students’ solutions. This is also a method to ensure that the
students have some silence and can concentrate during the
exam.

To allow for efficient inspection, the students are
instructed to keep all editor windows open and tiled on the
screen.

The students’ behaviour as well as the quality of the
programs they produce count in the final grading but not on
equal footing. An appropriate and systematic programming
process can compensate for minor flaws and errors in the
product and result in a pass mark for the student, and similarly
a poor process can be the determining factor when the product
is on the edge. Although we emphasize the programming
process, it is not the case that a nice product will be turned
down due to a poor process (which is unlikely anyway).

EVALUATION
In this section, we present and discuss an evaluation of

the lab examination described above.

Evaluation Method

The evaluation of the lab exam was performed in two
ways: By analyzing the results of three consecutive lab
examinations (2003, 2004 and 2005) and by semi-structured

Lab Exam Exercise (30-minute exam)
1. Create a class, Track, that represents a piece of music; the

Track class is specified in the following UML diagram.

Track

String artist
String songName
int min
int sec

String toString()

The four field variables must be initialized in a constructor
(through four parameters of suitable types). The method
toString must return a string representation for a piece of
music, e.g.

 ”Yesterday: The Beatles (2:05)”
2. Create a test method named exam in class Driver. The

method must be static, have return type void, and have no
parameters.

3. Create two Track objects in the exam method using object
references t1 and t2; print the two Track objects using the
toString method.

4. Create a new class, Playlist, representing a collection of
Tracks; the Playlist class and its relation to the Track class is
specified in the following UML diagram:

Playlist

String playlistName

void addTrack(Track t)
void removeTrack(Track t)
Track findShortestTrack()

Track

String artist
String songName
int min
int sec

String toString()

*

5. Implement the method addTrack (and removeTrack) so that

it adds (removes) the object t to (from) the Playlist object.
6. Create a Playlist object in the exam method in the Driver

class; associate the two existing Track objects with the
Playlist object.

7. Implement the method findShortestTrack. The method must
return a shortest (measured in playing time) Track object
from a Playlist object. You can assume a non-empty Playlist
object. In other words, you need not worry about the playlist
being empty.

8. Use methods findShortestTrack (from class Playlist) and
toString (from class Track) to print the shorter of the two
Track objects created in task 3.

9. Let the Track class implement the Comparable interface. The
natural order of Track objects is defined by the length of the
song.

Figure 1: Sample Lab Exam Exercise

301

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-4

individual interviews with students, TAs, the examiner, and
the lecturer.

Quantitative Evaluation

For each of the three years we have collected data about
the students for four variables (and two derived). The
description of the variables can be found in Table 1.

Variable Description
students students enrolled for the course
abort students that aborted the course before the final exam
exam students allowed to take the final exam
skip students that did not show up for the final exam but

was allowed to
fail students who failed the final exam
pass students who passed the final exam

Table 1: Description of type of data

The numbers in table 1 are related as follows:
 students = abort + exam
 exam = skip + fail + pass
From these numbers we calculate exam rate, pass rate

and retention rate (exam/students, pass/exam, pass/students).
The results are presented in Table 2.

 2003 2004 2005
students 276 220 295
abort 63 26 28
exam 213 194 267
exam rate 77.2 % 88.2 % 90.5 %
skip 13 5 3
fail 15 19 29
pass 185 170 235
pass rate 86.9 % 87.6 % 88.0 %
retention rate 67.0 % 77.3 % 79.7 %

Table 2: Statistics from three years of practical lab exams

The figures in Table 2 reveals two interesting aspects: the
improved exam rate (and retention rate) from 2003 to the
following years, and the high pass rate in general.

The curriculum was radically redesigned in 2003 going
from a semester structure to a quarter structure; consequently
the traditional CS1 course was split in two courses with an
exam in between. The students of 2003 were the first to take
the new course with the new examination form, and therefore
there where no tradition for the students to lean on. In the
following years (2004-2005) the students have had the old
exam questions to use for practice, and older students to hear
war stories from. In the following years the lecturer could be
more explicit when describing the requirements for the exam
and the exam form. We believe that this is the primary reason
for the improved exam rate.

The pass rate is high compared to what others report [8,
9]. We believe that this primarily is due to the alignment and
the strong conformity between goal, content and assessment of
the course.

Qualitative Evaluation

The semi-structured interviews were conducted two to
three weeks after the final exam. Ten students were selected to
get a mixture of major and gender. One interviewer conducted
each interview. The interviews were audio taped for later
analysis. The interviews followed an interview guide focusing
on three topics: The lab exam form in general, this specific
exam, and the evaluation form compared to other evaluation
forms. In the analysis that follows, quotations from the
interviews are presented that describes the general attitude of
the group. The interviews were done in Danish, and the
quotations translated into English by the authors.

The Students

There was a very little difference in the way that the
interviewed students had experienced the lab exam; their
answers were largely similar. We find therefore that the
students are representative of the general attitude towards the
exam, although we cannot be sure.

All of the interviewed students found the evaluation form
fair. They defined fair as “if you have practiced during the
course, you can expect to pass the exam”. They all found that
the form and content of the exercise was very adequate with
respect to the goals of the course. As one student noticed:
“Programming requires very abstract thinking, but it is also a
craft ... the examination form perfectly suits this mixture.”

One of the students did not like that a TA was looking
over her shoulder. She felt insecure and nervous. However,
she was the only one having this experience – no one else
minded having the TAs around (some even found their
presence to give more peace of mind).

The examination incited the students to practice
programming. As an option for the students, exam exercises
from the previous year were available for preparation for the
exam. As one student replied when asked about his
preparations, “I solved all the [old] exam exercises”.

Students were instructed to call the TA after solving the
first three tasks of the exercise (Figure 1) to demonstrate what
they had achieved. None of the students found this to be
problematic, but some of them pointed to the possible
problem, that the slow students might feel this as an extra
stress factor (knowing that many of the other students have
finished). In conclusion, only one of the interviewed students
felt the examination to be stressful.

All of the interviewed students felt that a more fine-
grained marking could take place, but it would require more
time and more tasks. Most thought that one hour would be
sufficient for this.

The Teaching Assistants

The interviews with the teaching assistants in many ways
supported the statements from the students. They also found
the exam to be fair and had the impression that it evaluates the
students programming skills.

In the beginning, the TAs had some difficulties knowing
to what extent they could answer questions. During the exam,

302

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-5

the TAs developed a practice: they helped a student who had
spent several minutes trying to figure out a simple problem,
but did not help with problems that were more fundamental. If
in doubt, the TAs asked the lecturer or examiner. Apart from
this, they did not feel uncomfortable with they role.

The Lecturer and the External Examiner

Both the lecturer and the examiner found the exam form
to be both fair and evaluating the learning objectives of the
course. The external examiner found that the exam evaluated
the student’s understanding of the general concepts although it
was impossible to evaluate that the student was “able to
explain [...] fundamental elements in a modern programming
language”. They found that it was easy to assess an objective
pass/fail criterion due to the generic exercises. The examiner
thought that a little longer time would give an even better eva-
luation criterion.

The examination gave a good impression of the students
programming skills including their programming process. As
the examiner said: “When you get an error message from the
compiler you must be able to figure out what is wrong … that
is a part of a practical programming skill”.

Concluding the Evaluation

The exam tests the process as well as the product. In some
cases the process was the decisive factor. One special example
of this was a student that was ill and therefore worked very
slowly; however slow, her programming process was very
good demonstrating a systematic approach to solving the
problems.

The evaluation indicates that the lab examination supports
the learning objective of the course. The students and the
lecturer/examiner consider the lab examination fair. The
assessment does not require many resources: 250 students can
be handled using less than 90 person-hours.

Low retention is one of the main problems in CS1
courses. As noticed by [10][p.40] their retention “has been
around 50%”. In this course, the retention is around 75%. We
have found that the examination form kept the students up to
the mark; they did actually practice programming. We think
this is one of the explanations of the relatively high retention
rate.

For computer science students the examination form must
be seen in conjunction with the examination form of the
following course (the second part of CS1), which is an oral
examination focusing more on the conceptual aspects of
introductory programming. There is a progression from the
first exam to the next, from testing practice to testing
conceptual knowledge.

RELATED AND FUTURE WORK
Recently, a growing number of papers reporting on

laboratory exams for introductory programming courses have
been published [11-15]. All report good results using this
apparently novel assessment form. However, a common
characteristic of the assessment methods presented in these

articles, and a deficiency compared to the method described
herein, is that the evaluation and grading is based solely upon
the end product, the students’ final solutions.

In [12] the authors describe the grading in their lab final
(their word for lab exam): “Grading on the exam is focused on
working programs”. Only the result of the process is
evaluated, not the process. Barros [11][p.18] report on the use
of lab exams during the course, but the final exam is a
traditional written exam. The “rationale behind maintaining
code written in the final exam was to evaluate the students in
an environment where trial and error is simply not possible”.
Again, they do not include an evaluation of the programming
process in their lab exam; the focus is on the final product
only.

Focus on the programming process during the course is
very important. We are currently investigating the idea of
having the students supply information about their
programming process (in the form of a screen capture of a
programming session) and include this as part of their weekly,
mandatory assignment. We expect this information to be
valuable and useful for the TAs and the lecturer in order to
provide feedback on the process as well as the product, and in
general to improve the ability to address the actual needs of
the students.

CONCLUSION
We have described and evaluated a lab exam which has a

number of advantages. It is simple to evaluate the student’s
programming process as well as the product (the result of the
student’s efforts). It is a fair and effective exam. We use
standardized exercises that each covers more than 80% of the
curriculum. The environment for the exam is the normal daily
work environment. It is a lightweight exam easy to prepare
and carry out. It requires a couple of days to prepare the
exercises for the exam, and we had a throughput of 100
students per day. Everyone involved, in particular the students,
regard form as well as content of the exam to be very good
and in excellent correspondence with the learning objectives
of the course.

ACKNOWLEDGEMENT
It is a pleasure to thank Gudmund Frandsen for valuable

comments during development and practice of the lab exam
described and evaluated in this paper. We will also like to
thank the students and TAs who participated in the interviews.
A special thank to Michael Kölling for valuable comments on
an earlier version of this article.

303

Session T1A

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

T1A-6

REFERENCES

[1] J. C. Prior and R. Lister, "The backwash effect on SQL skills grading," in
ITiCSE '04: Proceedings of the 9th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, 2004, pp. 32-36.

[2] D. Rowntree, Assessing Students. how Shall we Know them? , vol. rev. ed.,
repr., London: Kogan Page, 1988,

[3] P. Ramsden, Learning to Teach in Higher Education. London: Routledge,
1992,

[4] J. Bennedsen and M. E. Caspersen, "Revealing the programming process,"
in SIGCSE '05: Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education, 2005, pp. 186-190.

[5] J. Bergin. Fourteen pedagogical patterns. Available:
http://csis.pace.edu/~bergin/PedPat1.3.html

[6] J. Bennedsen and M. E. Caspersen, "Programming in context: A model-
first approach to CS1," in SIGCSE '04: Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education, 2004, pp. 477-481.

[7] M. E. Caspersen and H. B. Christensen, "Here, there and everywhere - on
the recurring use of turtle graphics in CS1," in ACSE '00: Proceedings of the
Australasian Conference on Computing Education, 2000, pp. 34-40.

[8] R. Andersson and T. Roxå , "Encouraging students in large classes," in
SIGCSE '00: Proceedings of the Thirty-First SIGCSE Technical Symposium
on Computer Science Education, 2000, pp. 176-179.

[9] J. Börstler, T. Johansson and M. Nordström, "Teaching OO concepts - a
case study using CRC-cards and BlueJ," in Proceedings of the 32nd
ASEE/IEEE Frontiers in Education Conference, 2002, pp. T2G-1-T2G-6.

[10] A. N. Kumar, "The effect of closed labs in computer science I: an
assessment," J. Comput. Small Coll., vol. 18, pp. 40-48, 2003.

[11] J. P. Barros, L. Estevens, R. Dias, R. Pais and E. Soeiro, "Using lab
exams to ensure programming practice in an introductory programming
course," in ITiCSE '03: Proceedings of the 8th Annual Conference on
Innovation and Technology in Computer Science Education, 2003, pp. 16-20.

[12] M. E. Califf and M. Goodwin, "Testing skills and knowledge:
Introducing a laboratory exam in CS1," in SIGCSE '02: Proceedings of the
33rd SIGCSE Technical Symposium on Computer Science Education, 2002,
pp. 217-221.

[13] A. T. Chamillard and K. A. Braun, "Evaluating programming ability in
an introductory computer science course," in SIGCSE '00: Proceedings of the
Thirty-First SIGCSE Technical Symposium on Computer Science Education,
2000, pp. 212-216.

[14] C. Daly and J. Waldron, "Assessing the assessment of programming
ability," in SIGCSE '04: Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, 2004, pp. 210-213.

[15] N. Jacobson, "Using on-computer exams to ensure beginning students'
programming competency," SIGCSE Bull, vol. 32, pp. 53-56, 2000.

304

22 Beauty and the Beast

The paper Beauty and the Beast ⎯ Toward a Measurement Framework for
Quality of Example Programs presented in this chapter has been submitted
for ITiCSE 2007 [Börstler et al. 2007].

[Börstler et al. 2007] Börstler, J., Caspersen, M.E. and Nordström, M.,
“Beauty and the Beast — Toward a Measurement Framework for Quality of
Example Programs”, submitted for ITiCSE '07: The 12th international con-
ference on Innovation and Technology in Computer Science Education,
Dundee, Scotland, 2007.

305

306

Beauty and the Beast
Toward a Measurement Framework for Quality of Example Programs

Jürgen Börstler
Department of Computing Science

Umeå University
SE-90187 Umeå, Sweden

jubo@cs.umu.se

Michael E. Caspersen
Department of Computer Science

University of Aarhus
DK-8200 Aarhus N, Denmark

mec@daimi.au.dk

Marie Nordström
Department of Computing Science

Umeå University
SE-90187 Umeå, Sweden

marie@cs.umu.se

ABSTRACT
Examples are important tools for programming education. In
this paper, we investigate desirable properties of programming
examples from a cognitive and a measurement point of view.
We argue that some cognitive aspects of example programs are
“caught” by common software measures, but they are not suffi-
cient to measure understandability of examples. We conclude
that a framework for measuring understandability of examples
should also consider factors related to the usage of the example.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education - Computer Science Education.

General Terms
Design, Measurement.

Keywords
CS1, Programming Examples, Measurement, Understandabil-
ity.

1. INTRODUCTION

Example isn’t another way to teach. It is the only way to
teach. [A. Einstein]

Examples are important teaching tools. Research in cognitive
science confirms that “examples appear to play a central role in
the early phases of cognitive skill acquisition” [34]. More spe-
cifically, research in cognitive load theory has shown that alter-
nation of worked examples and problems increase learning out-
come [31].
Students use examples as templates for their own work. Exam-
ples must therefore be consistent with the principles and rules
of the topics we are teaching and free of any undesirable prop-
erties or behaviour. If not, students will have a difficult time
recognizing patterns and telling an example’s superficial sur-
face properties from those that are structurally important.
Perpetually exposing students to “exemplary” examples, desir-
able properties are reinforced many times. Students will even-
tually recognize patterns of “good” design and gain experience
in telling desirable from undesirable properties. Trafton and
Reiser [32] note that in complex problem spaces, “[l]earners
may learn more by solving problems with the guidance of some
examples than solving more problems without the guidance of

examples”.
With carefully developed examples, we can minimize the risk
of misinterpretations and erroneous conclusions, which other-
wise can lead to misconceptions. Once established, misconcep-
tions can hinder students in their learning and be difficult to re-
solve [8, 27].
But how can we tell “good” from “bad” examples? Can we
measure the quality of an example?

2. PROPERTIES OF GOOD EXAMPLES
Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.
 [M. Fowler]

Programming is a human activity, often done in teams. About
40-70% of the total software lifecycle costs can be attributed to
maintenance and the single most important cost factor of main-
tenance is program understanding [33]. That said, Fowler
makes an important point in the quote above. In an educational
context, this statement is even more important. In the beginning
of their first programming course, students can’t even write a
simple program that a computer can understand.
A good example must obviously be understandable by a com-
puter. Otherwise it cannot be used on a computer and would
therefore be no real programming examples.
A good example must also be understandable by students. Oth-
erwise they cannot construct an effective mental model of the
programs. Without “understanding”, knowledge retrieval works
on an example’s surface properties only, instead of on its more
general underlying structural properties [10, 32, 34].
A good example must also effectively communicate the con-
cept(s) to be taught. There should be no doubt about what ex-
actly is exemplified. To minimize cognitive load [25], an ex-
ample should furthermore only exemplify one (or very few)
new concept at a time.
The “goodness” of an example also depends on “external” fac-
tors, like the pedagogical approach taken. E.g., when our main
learning goal is proficiency in object-oriented programming (in
terms of concepts, not specific syntax), our examples should al-
ways be truthfully object-oriented and “exemplary”, i.e. adhere
to accepted design principles and rules and not show any signs
of “code smells” [12, 22, 28]. If examples are not always truth-
fully object-oriented, students will have difficulties picking up
the underlying concepts, principles, and rules.
These three properties might seem obvious. However, the re-
curring discussions about the harmfulness or not of certain
common examples show that there is quite some disagreement
about the meaning of these properties [37, 1].

3. SOFTWARE MEASUREMENT
When you can measure what you are speaking about, and
express it in numbers, you know something about it; but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ITiCSE 2007, June 25–27, 2007, Dundee, Scotland.
Copyright 2007 ACM X-XXXXX-XX-X/XX/X.

307

when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory
kind. [Lord Kelvin]

From our discussion in the previous sections, it would be useful
to find some way of determining the understandability of a pro-
gramming example. A suitable measure could help us choose
between examples and guide the shaping of examples.
According to SEI’s quality measures taxonomy, understandabil-
ity is composed of complexity, simplicity, structuredness, and
readability [29]. Bansiya and Davis [3] describe understand-
ability as “[t]he properties of the design that enable it to be eas-
ily learned and comprehended. This directly relates to the com-
plexity of the design structure”.
There are large bodies of literature on software measurement
[14, 26, 4] and program comprehension [6, 21, 5, 13]. The work
on software measurement focuses mainly on the structural
complexity of software. There is only little work on measuring
the cognitive aspects of complexity [7, 30]. The work on pro-
gram comprehension focuses on the cognitive aspects, but is
mainly concerned with the comprehension process and not with
software measurement.

4. ONE PROBLEM, TWO SOLUTIONS
Technical skill is mastery of complexity, while creativity is
mastery of simplicity. [C. Zeeman]

Let us forget for a moment about actual software measures and
look at two example programs for implementing a class Date:
the Beauty and the Beast.

4.1 The Beauty
The Beauty (Figure 4-2) is developed according to sound prin-
ciples of decomposition; we could call it extreme decomposi-
tion. The Beauty consists of four classes: Date with compo-
nents Day, Month, and Year. A Date object knows its Day,
Month, and Year. The three classes Day, Month, and Year are
encapsulated as inner classes of the Date class, since they are
not relevant to the surroundings. Their existence is a result of
our choice of representation for class Date (see Figure 4-1).

Figure 4-1: UML diagram for the Beauty

The Beauty is beautiful for several reasons. First, there is an
explicit representation of each of the key concepts in the prob-
lem domain. These can work as clues (beacons) aiding in code
comprehension [13]. Second, the interfaces and implementa-
tions of all classes are very simple and represent an easily rec-
ognizable distribution of responsibilities. Third, carefully cho-
sen identifiers, matching problem domain concepts, enhance the
readability of the code. Fourth, extreme decomposition supports
independent and incremental comprehension, development, and
test of each of the four component classes, as well as each of
the methods in the classes.

A drawback of The Beauty is that one has to look into several
classes to get the full picture of the solution. This problem can,
however, be easily solved by providing a class diagram, like the
one in Figure 4-1.
public class Date_Beauty {
 private Day day;
 private Month month;
 private Year year;

 public Date_Beauty(int y, int m, int d) {
 this.year = new Year(y);
 this.month = new Month(m);
 this.day = new Day(d);
 }
 public void setToNextDay() {
 day.next();
 }

 private class Day {
 private int d; // 1 <= d <= month.days()

 public Day(int d) {
 this.d = d;
 }
 public void next() {
 d = d + 1;
 checkOverflow();
 }
 private void checkOverflow() {
 if (d > month.days()) {
 d = 1;
 month.next();
 }
 }
 } // Day

 private class Month {
 private int m; // 1 <= m <= 12
 private final int[] daysInMonth=
 {0,31,28,31,30,31,30,31,31,30,31,30,31};
 /* 1 2 3 4 5 6 7 8 9 10 11 12 */

 public Month(int m) {
 this.m = m;
 }
 public int days() {
 int result= daysInMonth[m];
 if (m == 2 && year.isLeapYear()) {
 result = result + 1;
 }
 return result;
 }
 public void next() {
 m = m + 1;
 checkOverflow();
 }
 private void checkOverflow() {
 if (m > 12) {
 m = 1;
 year.next();
 }
 }
 } // Month

 private class Year {
 private int y;

 public Year(int y) {
 this.y = y;
 }
 public void next() {
 y = y + 1;
 }
 public boolean isLeapYear() {
 return (isMultipleOf(4) && !isMultipleOf(100))
 || isMultipleOf(400);
 }
 private boolean isMultipleOf(int a) {
 return (y % a) == 0;
 }
 } // Year
} // Date_Beauty

Figure 4-2: The Beauty

4.2 The Beast
The Beast (Figure 4-3) is structured as one monolithic method.
We could say it was developed according the principle of no
decomposition.

Date

+setToNextDay()

Day
Month

+next()
+days()
-checkOverflow()

Year
-daysInMonth[]

+next()
-checkOverflow()

+next()
+isLeapYear(): Boolean
-multipleOf(): Boolean

308

The Beast has the advantage of collecting everything in one
place. This leads to much less code in total. All necessary in-
formation is contained in a single statement sequence. The
drawbacks are however numerous.
First, there is no explicit representation of the key concepts in
the problem domain. Although this solution is much smaller
than The Beauty, it is nevertheless difficult to get the full pic-
ture. It is not even possible to provide a high-level diagram to
resolve that problem, since all processing is contained in a sin-
gle method. Second, there is mainly one long statement se-
quence where everything is happening. Such an approach
makes it impossible to introduce meaningful identifiers as clues
(beacons) aiding in code comprehension. Third, the Beast
shows no signs of “work units” or “chunks” of information.
That makes it difficult to deconstruct the program and find ap-
propriate starting points for a code comprehension effort. Stu-
dents might furthermore conclude that such a program is con-
structed as a large monolithic unit. The Beast does not lend it-
self as a pattern for incremental testing and development.
Fourth, The Beast is highly nested. Students have to keep track
of many conditions at the same time, which increases cognitive
load [25].
class Date_Beast {
 private int day; // 1 <= day <= days in month
 private int month; // 1 <= month <= 12
 private int year;

 public Date_Beast(int y, int m, int d) {
 day = d;
 month = m;
 year = y;
 }
 public void setToNextDay() {
 int daysInMonth;
 if (month == 1 || month == 3 ||
 month == 5 || month == 7 ||
 month == 8 || month == 10 ||
 month == 12) {
 daysInMonth = 31;
 } else {
 if (month == 4 || month == 6 ||
 month == 9 || month == 11) {
 daysInMonth = 30;
 } else {
 if ((year%4 == 0 && year%100 != 0)
 || (year%400 == 0)) {
 daysInMonth = 29;
 } else {
 daysInMonth = 28;
 }
 }
 }
 day = day + 1;
 if (day > daysInMonth) {
 day = 1;
 month = month + 1;
 if (month > 12) {
 month = 1;
 year = year + 1;
 }
 }
 } // setToNextDay()
} // Date_Beast

Figure 4-3: The Beast

4.3 Conclusion
Large, monolithic units of code are difficult to understand. Pro-
gram decomposition into suitable units1 is important to under-
standing.
There is no doubt that solutions like the Beauty should be pre-
ferred. The Beauty is not only superior in structure, it is also
superior from a learning theoretic point of view. Small units re-

1 These units can be declarative, functional, or object-oriented.

The Beast could for example be improved significantly with-
out introducing further classes.

duce cognitive load [9, 25], structural similarities support the
recognition of programming plans or patterns [6, 32, 34], and
the frequent appearance of mnemonic names help to give mean-
ing to program elements [10, 13].
The essence of developing programming examples is finding an
appropriate structure that supports understanding, and hence
learning. But when is one structure better than another? And
how much better is it? Can we provide a yardstick for measur-
ing the potential understandability of programs?

5. READABILITY AND UNDERSTAND-
ABILITY
A basic prerequisite for understandability is readability. The
basic syntactical elements must be easy to spot and easy to rec-
ognize. Only then, one can establish relationships between the
elements. And only when meaningful relationships can be es-
tablished, one can make sense of a program. Although readabil-
ity is a component of understandability in SEI’s quality meas-
ures taxonomy [29] and there is a large body of literature on
software measurement, we couldn’t find a single publication on
measures for software readability.

5.1 The Flesch Reading Ease Score
The Flesch Reading Ease Score (FRES) is a measure of read-
ability of ordinary text [11, 35]. Based on the average sentence
length (words/sentences) and the average word length (sylla-
bles/words) a formula is constructed to indicate the grade level
of a text. Lower values of the ratios indicate easy to read text
and higher values indicate more difficult to read text. I.e. the
shorter the sentences and words in a text, the easier it is to read.
Please note that FRES does not say anything about understand-
ability. The FRES is just concerned with “parsing” a text. Its
understanding depends on further factors, like for example fa-
miliarity of the actual words and sentence structure, or reader
interest in the text’s subject.
Flesch’s work was quite influential and has been applied suc-
cessfully to many kinds of texts. There are also measures for
other languages than English.

5.2 A Reading Ease Score for Software
Following the idea of Flesch, we introduce a Software Read-
ability Ease Score (SRES) by interpreting the lexemes of a pro-
gramming language as syllables, its statements as words, and its
units of abstraction as sentences. We could then argue that the
smaller the average word length and the average sentence
length, the easier it is to recognize relevant units of understand-
ing (so-called “chunks” [9, 15, 24, 25]).
A chunk is a grouping or organization of information, a unit of
understanding. Chunking is the process of reorganizing infor-
mation from many low level “bits” of information into fewer
chunks with many “bits” of information [24]. Chunking is an
abstraction process that helps us to manage complexity. Since
abstraction is a key computing/programming concept [2, 16,
19], proper chunking is highly relevant for the understanding of
programming examples.
Clearly, there are other factors influencing program readability,
like for example control flow, naming, and how much the stu-
dents have learned already. We will come back to these factors
in our discussion section. For a good overview over code read-
ability issues, see [10].

5.3 Measurement Data
 As mentioned above SRES only measure readability (ease of
parsing) of a program. Readability is necessary but not suffi-

309

cient for understanding a program. Other factors such as the
structural and cognitive complexity also influence understand-
ing. If we use cyclomatic complexity (CC) [23] as a measure of
structural complexity and difficulty (D) [17] as a measure of
cognitive complexity, and calculate these measures for the
Beauty and the Beast, we get the figures as shown in the em-
bedded table.
As indicated by the figures, the
SRES measure clearly is in favour
of the Beauty. Even more so are
the standard measures of cyclo-
matic complexity and difficulty.
According to these, the Beast is in
total 3.6 times more difficult to
understand than the Beauty.

Of course, this is just an example; the programs we measure as
well as the measures we apply are more or less randomly cho-
sen among countless options. To expand a bit on the empirical
investigations, we have investigated a number of other standard
measures, and we have extended the suite of program examples.

The measures we have investigated have been selected for their
reported significance in the literature; the selected measures are
presented in Table 1.

Selected measures
Acronym Description
LoC Total lines of code

SRES The software reading ease score as described in sec-
tion 5.2.

CCmax(m) Cyclomatic complexity; the number of (statically)
distinct paths through a method; should be <10 [23].

D The difficulty of the program [17]

avgV(c)-
avgLOC(c)

Factors of the Maintainability Index, a measure with
high predictive value for software maintainability
[36]. The measures report average values for Volume,
V (size in terms of the numbers operators and oper-
ands [17]), CC, and LoC per class (c).

CC/LoC Average CC per LoC; should be ≤0.16 [20].
LoC/m Average LoC per method; should be ≤7 [20].

m/c Average number of methods per class; should be ≤4
[20].

WMC Weighted Method Count, a product of the three pre-
vious measures; should be ≤5 [20].

Table 1: Selected measures

The suite of program examples is extended from two to five
representing a continuum of programs solving the Date prob-
lem: Beauty (E1), Good (E2), Bad (E3), Ugly (E4), Beast (E5). E2
is the same as E1 except that daysInMonth is handled by nested
if’s. E3 is the same as E2 except that the classes are not nested.
E4 is the same as E5 except that setToNextDay is decomposed
into helper methods.

The result of our investigations is captured in Table 2. For all
measures, lower values are considered better. Threshold values
suggested in the literature are given in column T.

Program
Measure T E1 E2 E3 E4 E5
LoC 50 59 57 31 32

SRES 7±2 10.3 8.9 9.3 11.9 16.2

CCmax(m) 10 3 7 7 7 17

D 7.92 7.15 9.71 22.4 43.2

avgV(c) 387 412 363 752 798

avgCC(c) 10 4.8 6.25 5.25 14.0 18.0

avgLoC(c) 12.5 14.8 14.3 31.0 32.0

CC/LoC 0.16 0.4 0.42 0.37 0.45 0.56

LoC/m 7 2.9 3.27 4.09 6.75 14.0

m/c 4 3.3 3.75 2.75 4.0 2.0

WMC 5 3.6 5.2 4.1 12.2 15.8

 T E1 E2 E3 E4 E5
Table 2: Values of selected measures for sample programs

6. DISCUSSION
Although the measures focus on different aspects of a program,
it can be noted that they “favour” programs with high degrees
of decomposition (E1−E4). This is not surprising, since all re-
search in software design and measurement proposes decompo-
sition as a tool to manage complexity. In relation to education it
is important to note that a high degree of decomposition also is
an advantage from a cognitive point of view.
However, there are many important aspects of understandability
not covered by any measure, like for example the choice of
names, commenting rate, etc. Any example must furthermore
take into account the educational context, i.e. what the students
already (are supposed to) know.

7. TOWARD A MEASUREMENT
FRAMEWORK
From the discussion above, we conclude that a framework for
measuring programming example understandability should con-
sider properties of the example itself as well as the context of its
use. These properties could be divided into the following or-
thogonal intra-example factors:

• Readability: Captures how easy a programming text is to
read, based on SRES or similar measures.

• Structural complexity: Captures the structural properties
of a program, based on measures for control flow com-
plexity (cyclomatic complexity), coupling cohesion, etc.

• Cognitive complexity: Captures the information contained
in a program, based on Halstead’s measures or informa-
tion theory [18].

• Commenting: Captures how well the example is com-
mented (excessive use of comments may be a bad thing).

• Size: Captures the size of the example, based on a com-
mon size measure like LoC.

• Consistency: Captures how well the example follows ac-
cepted design principles and rules, based on the amount
of “code smells”.

and the following orthogonal inter-example factors related to
usage:

• Presentation: Captures the degree of conformance to a
style guide or standard or the similarity of style with other
examples.

• Progression: Captures how well the example “fits” with
what the students (are supposed to) know.

• Vocabulary: Captures the familiarity of the names occur-
ring in the example (could be a sub-factor of progression).

Such a factorization makes it easier to argue about understand-
ability. A perfectly readable and structured program can very
well be difficult to understand, when all identifiers are chosen
badly, and perfect values for all example factors are no guaran-
tee for an understandable program, when its usage is badly
timed.

Program
Measure Beauty Beast
SRES 10.3 16.2

CC 3.0 17.0

D 7.9 43.2

Total (Σ) 21.2 76.4

310

8. CONCLUSION AND FUTURE WORK
We have shown that many common software measures respect
basic cognitive aspects of example programs, in particular cog-
nitive load; all measures we have investigated say that decom-
position is good⎯the more extreme the decomposition, the bet-
ter. We also propose and discuss a new measure for software
readability (SRES). We conclude that all these measure, al-
though useful, lack in their disregard of factors related to the
usage of examples. Based on our discussion, we propose a
framework for measuring the understandability of programming
examples that aims to take such factors into account.
In future research we aim at developing and empirically vali-
dating a simple quality measure of example programs by study-
ing a wide variety of examples from textbooks and course ma-
terial.

9. REFERENCES
[1] ACM Forum “`Hello, World' Gets Mixed Greetings”,

Communications of the ACM, Vol 45(2), 2002, 11-15.
[2] Armstrong, D. “The Quarks of Object-Oriented Develop-

ment”, Communications of the ACM, Vol 49(2), 2006,
123-128.

[3] Bansiya, J., Davis, C. G. “A Hierarchical Model for Ob-
ject-Oriented Design Quality Assessment”, IEEE Transac-
tions on Software Engineering, Vol 28(1), 2002, 4-17.

[4] Briand, L., Wüst, J. “Empirical Studies of Quality Models
in Object-Oriented Systems”. In M. Zelkovitz (ed.) Ad-
vances in Computers, Academic Press, Vol 56, 2002, 1-46.

[5] Brooks, R. “Towards a Theory of the Comprehension of
Computer Programs”, Intl. J. Man-Machine Studies, Vol
18(6), 1983, 543-554.

[6] Burkhardt, J.-M., Détienne, F., Wiedenbeck, S. “Object-
riented Program Comprehension: Effect of Expertise, Task
and Phase”, Empirical Software Engineering, Vol 7, 2002,
115-156.

[7] Cant, S. N., Henderson-Sellers, B., Jeffery, D. R. “Appli-
cation of cognitive complexity metrics to object-oriented
programs, Journal of Object-Oriented Programming, Vol
7(4), 1994, 52-63.

[8] Clancy, M. “Misconceptions and attitudes that infere with
learning to program”. In S. Fincher and M. Petre (eds.)
Computer Science Education Research. Taylor & Francis,
2004, pp. 85–100.

[9] Clarck, R, Nguyen, F and Sweller, J. Efficiency in Learn-
ing: Evidence-Based Guidelines to Manage Cognitive
Load, Pfeiffer, John Wiley & Sons, 2006.

[10] Deimel, L. E., Naveda, J. F. “Reading Computer Pro-
grams: Instructor’s Guide and Exercises”, CMU/SEI-90-
EM-3, Software Engineering Institute, 1990.

[11] Flesch, R. “A new readability yardstick”, Journal of Ap-
plied Psychology, Vol 32, 1948, pp. 221-233.

[12] Fowler, M. Refactoring: Improving the Design of Existing
Code, Addison-Wesley, 2000.

[13] Gellenbeck, E. M., Cook, C. R. “An Investigation of Pro-
cedure and Variable Names as Beacons During Program
Comprehension”, Proc. 4th Workshop on Empirical Studies
of Programmers, 1991, pp. 65-81.

[14] Genero, M., Piattini, M., Calero, C. “A Survey of Metrics
for UML Class Diagrams”, Journal of Object Technology,
Vol 4(9), 2005, 59-92.

[15] Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H.,
Jones, G., Oliver, I., & Pine, J.M. “Chunking Mechanisms

in Human Learning” Trends in Cognitive Sciences, Vol 5,
236-243.

[16] Görz, G.: “Abstraction as a Fundamental Concept in
Teaching Computer Science”, Les langages applicatifs
dans l'enseignement de l'informatique, Specif no. special
93, Rennes/Paris, 1993, 168-178.

[17] Halstead, M. H. “Toward a theoretical basis for estimating
programming effort”, Proc of the Annual ACM Conference
(ACM/CSC-ER), 1975, 222-224.

[18] Khoshgoftaar, T. M., Allen, E. B. “Empirical Assessment
of a Software Metric: The Information Content of Opera-
tors”, Software Quality Journal, Vol 9, 2001, 99-112.

[19] Kramer, J. “Abstraction—the key to Computing?” Com-
munications of the ACM, to appear.

[20] Lanza, M., Marinesu, R. Object-Oriented Metrics in Prac-
tice, Springer, 2006.

[21] Li, Y., Yang, H. “Simplicity: A Key Engineering Concept
for Program Understanding”, Proc. 9th Internat. Workshop
on Program Comprehension, 2001.

[22] Martin, J. Principles of Object-Oriented Analysis and De-
sign, Prentice Hall, 1993.

[23] McCabe, T. J. “A complexity measure”, IEEE Transac-
tions on Software Engineering, Vol 2(4), 1976, 308–320.

[24] Miller, G.A. “The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing Infor-
mation”, The Psychological Review, Vol 63, 1956, pp. 81-
97.

[25] Paas, F., Renkl, A. and Sweller, J. “Special Issue on Cog-
nitive Load Theory”, Educational Psychologist, Vol 38
(1), 2003.

[26] Purao, S., Vaishnavi, V. “Product Metrics for Object-
Oriented Systems”, Computing Surveys, Vol 35(2), 2003,
191-221.

[27] Ragonis, N., Ben Ari, M, “A long-term investigation of the
comprehension of OOP concepts by novices”, Computer
Science Education, Vol 15(3), 2005, pp. 203-221.

[28] Riel, A. Object-Oriented Design Heuristics, Addison-
Wesley, 1996.

[29] SEI (Software Engineering Institute) “Quality Measures
Taxonomy”,
http://www.sei.cmu.edu/str/taxonomies/view_ qm.html,
Dec 2006, accessed Jan 11, 2007.

[30] Shao, J., Wang, Y. “A new measure of software complex-
ity based on cognitive weights”, Can. J. Elect. Comput.
Eng., Vol 28(2), 2003, 1-6.

[31] Sweller, J. and Cooper, G.A. “The Use of Worked Exam-
ples as a Substitute for Problem Solving in Learning Alge-
bra”, Cognition and Instruction, Vol. 2, pp. 59-89, 1985.

[32] Trafton, J. G., Reiser, B. J. “Studying Examples and Solv-
ing Problems: Contributions to Skill Acquisition”, Naval
HCI Research Lab, Washington, DC, 1992.

[33] Tryggeseth, E. “Support for Understanding in Software
Maintenance”, PhD thesis, Norwegian University of Sci-
ence and Technology, Trondheim, Norway, 1997.

[34] VanLehn, K. “Cognitive Skill Acquisisition”, Annual Re-
view of Psychology, Vol 47, 1996, 513-539.

[35] Wikipedia “Flesch-Kincaid Readability Test”,
http://en.wikipedia.org/wiki/Flesch-Kincaid_Readability_
Test, Jan 8, 2007, accessed Jan 12, 2007.

[36] Welker, K. D. “The Software Maintainability Index Revis-
ited”, CrossTalk, Aug 2001.

[37] Westfall, R. “`Hello, World´ Considered Harmful”, Com-
munications of the ACM, Vol 44(10), 2001, 129-130.

311

	Intro
	Front page
	Title page
	Abstract
	Acknowledgments
	Contents

	I Overview
	1 Introduction
	1.1 Theses and research questions
	1.2 Contributions and organization of the dissertation

	2 Programming Education: A Grand Challenge
	2.1 Programming is hard
	2.1.1 An explorative activity of discovery and invention
	2.1.2 A tale of two companies

	2.2 Grand challenges in computing education
	2.2.1 Failure rates in introductory programming
	2.2.2 Grand challenges in computing

	3 Cognition and Learning
	3.1 Cognitive science and educational psychology
	3.1.1 Schemas
	3.1.2 Chunking
	3.1.3 Summary

	3.2 Learning versus problem solving
	3.2.1 A failed experiment
	3.2.2 Misguided advice

	3.3 A survey of cognitive load theory
	3.3.1 Milestones in cognitive load theory
	3.3.2 Development of cognitive load theory

	3.4 Worked examples and cognitive skill acquisition
	3.4.1 The power law of practice
	3.4.2 Transfer

	3.5 Conclusion

	4 Programming Education Research
	4.1 Selected conferences and publications
	4.1.1 SIGCSE
	4.1.2 ITiCSE
	4.1.3 Koli Calling
	4.1.4 Workshop in “killer examples” for design patterns
	4.1.5 ICER
	4.1.6 Joint Modular Language Conference
	4.1.7 Informatics Education Europe (IEE)
	4.1.8 Scandinavian Pedagogy of Programming Network (SPoP)
	4.1.9 The ACM Education Board and Council
	4.1.10 Personal involvement and commitment

	4.2 Research areas
	4.2.1 Student understanding
	4.2.2 Animation, visualization, and simulation
	4.2.3 Teaching methods
	4.2.4 Assessment
	4.2.5 Educational technology
	4.2.6 Transferring practice into the classroom
	4.2.7 Incorporating new developments and new technologies
	4.2.8 Transferring to distance education
	4.2.9 Recruitment and retention
	4.2.10 Constructing the discipline

	4.3 Conclusion

	5 Programming Aptitude
	5.1 Related work
	5.2 Local replication of previous studies
	5.3 Abstraction ability
	5.3.1 Operationalization of hypothesis
	5.3.2 Students and data
	5.3.3 Findings
	5.3.4 Discussion

	5.4 Mental models
	5.4.1 The test instrument
	5.4.2 Failure of verification

	5.5 Conclusion

	6 Programming Methodology
	6.1 A contemporary perspective
	6.1.1 CC2001 on teaching programming skills
	6.1.2 A textbook survey
	6.1.3 Two educator surveys
	6.1.4 The programming education research perspective

	6.2 A historical perspective
	6.2.1 Emphasis in education
	6.2.2 Two misconceptions
	6.2.3 Stepwise enhancement
	6.2.4 From structured to object-oriented programming
	6.2.5 Conclusion

	6.3 A future perspective
	6.3.1 Best practice
	6.3.2 A study of the programming practice of experts
	6.3.3 Horizontal programming

	6.4 Conclusion

	7 Stepwise Improvement
	7.1 Toward a unified programming methodology
	7.1.1 The refinement calculus
	7.1.2 A conceptual framework for program extension
	7.1.3 Unification of methodologies
	7.1.4 Programming strategies
	7.1.5 Degrees of correctness
	7.1.6 Two examples

	7.2 Incremental development and OOP
	7.2.1 Programming as a modeling process
	7.2.2 Implementing specification models

	7.3 Conclusion

	8 A Programming Method for Novices
	8.1 Random walk or guided tour
	8.1.1 Random walks
	8.1.2 Guided tours
	8.1.3 Cognitive apprenticeship using videos

	8.2 STREAM
	8.2.1 Stubs
	8.2.2 Tests
	8.2.3 Representations
	8.2.4 Evaluation
	8.2.5 Attributes
	8.2.6 Methods
	8.2.7 The mañana principle

	8.3 An example
	8.3.1 Stubs
	8.3.2 Tests
	8.3.3 Representations
	8.3.4 Evaluation
	8.3.5 Attributes
	8.3.6 Methods
	8.3.7 Discussion

	8.4 Graspability of STREAM
	8.5 Conclusion

	9 Instructional Design
	9.1 Principles of programming education
	9.1.1 Consume before produce
	9.1.2 Worked, exemplary examples
	9.1.3 Reinforce specifications
	9.1.4 Reveal process and pragmatics
	9.1.5 Hands-on
	9.1.6 Progression in terms of complexity of tasks
	9.1.7 Reinforce patterns and conceptual frameworks
	9.1.8 Constructive alignment
	9.1.9 Care and support

	9.2 A model-driven approach to OOP
	9.2.1 Goal
	9.2.2 Getting started
	9.2.3 Learning the basics
	9.2.4 Conceptual framework and coding recipes
	9.2.5 Programming method
	9.2.6 Subject specific assignments
	9.2.7 Practice
	9.2.8 Final examination
	9.2.9 Patterns and frameworks
	9.2.10 Conclusion

	9.3 Evaluation of process competence
	9.4 Related work
	9.5 Conclusions

	10 Future Work
	10.1 Books
	10.2 Evaluation of instructional design
	10.3 Tools
	10.3.1 A notional machine workbench
	10.3.2 Tool support for STREAM
	10.3.3 Tool support for incremental program development
	10.3.4 An educational programming language

	10.4 Programming methodology
	10.4.1 Extension of STREAM
	10.4.2 Theoretical foundation of conceptual framework
	10.4.3 Extension of conceptual framework

	11 Conclusion
	Bibliography

	II Papers
	12 Potential Success Factors
	13 Abstraction Ability as an Indicator of Success?
	14 Mental Models and Programming Aptitude
	15 Exposing the Programming Process
	16 A Novice’s Process of Object-Oriented Programming
	17 CS1: Getting Started
	18 Frameworks in CS1
	19 Model-Driven Programming
	20 Killer “Killer Examples” for Design Patterns
	21 Assessing Process and Product
	22 Beauty and the Beast

