Orthogonal Range Reporting
in Three and Higher Dimensions

Peyman Afsharii Lars Arge' Kasper Dalgaard Larsén

MADALGOf
Department of Computer Science
Aarhus University, Denmark.

{peynman, | arge, | ar sen}@radal go. au. dk

Abstract by many researchers and in different models of com-
putation, including in the pointer machine (e.g., [9],
In orthogonal range reporting we are to preprocess [17], [24]), the RAM (e.g., [5], [12], [20], [25]),
N points in d-dimensional space so that the points and the external memory (e.g., [1], [7], [27], [29])
inside ad-dimensional axis-aligned query box can be models. Various lower bounds have also been obtained
reported efficiently. This is a fundamental problem in (e.g., [13], [14], [19], [26]). The problem is especially
various fields, including spatial databases and compu- well-understood in two dimensions, where space and
tational geometry. query optimal structures have been developed in most
In this paper we provide a number of improvements models of computation. This is not the case in higher
for three and higher dimensional orthogonal range dimensions.
reporting: In the pointer machine model, we improve In this paper we provide a number of improvements
all the best previous results, some of which have for the three and higher dimensional versions of the
not seen any improvements in almost two decades.problem in the pointer machine model and the external
In the I/O-model, we improve the previously known memory (I/0O) model.
three-dimensional structures and provide the first (non-

trivial) structures for four and higher dimensions. 1.1. Previous Pointer Machine Model Results

Keywords-data structures; computational geometry; or-

. In this section we review previous pointer ma-
thogonal range searching; external memory;

chine model orthogonal range reporting results. For

brevity, we focus on static near-linear space structures

1. Introduction with polylogarithmic query bounds. For other variants
see [2], [3].

Orthogona| range reporting is a fundamental prob- The one-dimensional version of the problem can be
lem in several fields, including spatial databases andsolved with optimalO(log N + K) query time and
computational geometry (e.g., see the surveys by Gaeddinear space using a binary search tree. Herdenotes
and Giinter [21], Arge [6], Agarwal [2] or Agarwal the number of elements returned by a query. Using
and Erickson [3] for a data base, external memory and Priority search trees [24] and fractional cascading [16],
Computationa| geometry point of view, respective|y)_ Chazelle described a two-dimensional structure using
In this problem, we are to preprocess a setf O(NlogN/loglog N) space that answers queries in
points in d-dimensional space so that the points in a O(log N + K) query time [11]. This is optimal [13].
d-dimensional axis-parallel query box can be reported Three results are known in three and higher dimen-
efficiently. This problem has been studied extensively sions, each offering a different trade-off between query
time and space. The first data structure was given by

*Work was supported in part by the Danish National Research Chazelle and use@(N logdfl /10g10g N) space and
Foundation and the Danish Strategic Research Council.

TCenter for Massive Data Algorithmics, a center of the Danish can answer queries Iﬁ)(log N + K) time [11]-
National Research Foundation. The second data structure, also by Chazelle, uses

O(N (log N/loglog N)?~!) space but has a slightly
higher query time of(log? ' N + K [13] (in the

space, which is optimal [7]. Finally, the best data struc-
ture for Q(3, k) usesO(N log" N) space and answers

same paper Chazelle proves that this space complexityqueries inO(logz N + K/B) 1/0s [1]. This is optimal

is the best possible for any polylogarithmic query

only for & = 0.

bound). The third data structure has the fastest query The dimension reduction and side reduction tech-

time, O(log®~? N + K), but it occupiesO(N log? N)
space [10], [17]. All the three high-dimensional data

niques are applicable in the 1/0-model. However, they
still incur alog, N (or ratherlog,(N/B)) factor in-

structures are essentially obtained using techniques thatrease in the query and/or space complexity, respec-
extend low-dimensional (restricted queries) structurestively. Thus higher-dimensional structures based on the

to higher dimensions.
1.2. Restricted Queries

Let Q(d, k), 0 < k < d, denote the restricted case
of the d-dimensional problem in whick of the dimen-
sions have finite ranges. Refer to Fig. 1. TB&2, 1)
and Q(d,0) problems are oftercalled 3-sided planar
range reportinganddominance reportingrespectively.
The Q(1,0) problem can obviously be solved with
optimal O(log N + K) query time and linear space.
Q(2,1) can be solved in the same bounds using a
priority search tree [24]. Th€)(3, k) problem can be
solved with O(N log" N) space andD(log N + K)
query time [1], [10], [17].

Using a couple of general techniques, the above

structures (along with structures fof(1,1) and
Q(2,2)) can be used to obtai@(d, d) structures (in-

cluding the ones discussed in Section 1.1). The first

uses range trees and a data structure o, k) to
solve Q(d + 1,k + 1), while incurring alog N fac-

tor increase in both space and query complexity [9].
We call this methoddimension reductionThe sec-
ond solvesQ(d, k + 1) by using a data structure for
Q(d, k) and paying dog N factor increase in the space
complexity [17]. We call thisside reductionNote that
this means that any improvements to lower-dimensiona
structures immediately carries over to higher dimen-
sions.

1.3. Previous I/O-Model Results

External memory data structures are designed in an

I/O-model whereB elements are moved between main
memory and disk in one 1/O; computations can only
occur on elements in the main memory of sike[4].

two techniques are not explicitly mentioned in the
external memory literature, since thes, (N/B) factor
seems far from optimal.

The best known lower bound for three- and higher-
dimensional orthogonal range reporting in the 1/O-
model is due to Hellerstein et al. [23], who showed that
Q(N(log B/loglog N)?~1) space is needed to solve
Q(d,d). Note thelog B (rather tharlog N) denomina-
tor in this bound, and thus the large gap between the
lower bound and the know@(3, 3) structure.

1.4. Our Results

Our main result is a reduction of the penal-
ties suffered by side and dimension reductions to
log N/loglog N in the pointer machine model and
to log N/loglogg N logg N/logglogg N
logjog,, n IV in the 1/0-model, (with two-dimensional
problems as base cases).

Our result has several immediate implications
in the pointer machine model. The most
significant one is a Q(d,d) data structure
with O(N(log N/loglog N)?~!) space and
O(log® ' N/(loglog N)4=2 4+ K) query time.
This improves both data structures by Chazelle [11],
[13] and achieveso(log?~ ! N) query search time

IWith optimal space. Alternatively, we can obtain a

structure withO(log? 2 N + K) query time but using
O(Nlog? N/(loglog N)3) space, which improves
the third known Q(d,d) data structure. Our main
result also gives the first optimal data structure
for Q(3,1) with O(log N + K) query time using
O(Nlog N/loglog N) space.

In the I/O-model the impact of our main result
is also significant. We show thaf)(d,d) can be
solved with O(N(log N/ loglogy N)¢~1) space and
O(log’h ' N/(logp logy N)4=2 + K/B) query 1/Os.

The goal is to answer a query using as few I/Os as Another consequence is an optimal data structure for

possible.

In the I/O-modelQ(1, 1) can be solved optimally in
linear space and using(log; N + K/B) 1/0s using a
B-tree [18]. Similar to the pointer machine model, lin-
ear space structures with(logz N+ K/B) query I/Os
also exist forQ(2,1) [7]. For Q(2,2), the same query
bound can be obtained witth(Nlog N /loglogg N)

Q(3,1) with O(logg N + K/B) query I/Os using
O(Nlog N/loglogy N) space. In three dimensions,
we also obtain a query optimal structures answering
queriesQ(3,k) queries inO(logg N + K/B) 1/0s
usingO(N (log N/ loglog N)*) space. Fok = 1 the
space bound is also optimal.

On the lower bound side, we show that afyd, d)

Q(2,0) Q(2,1) Q(2,2) «
Figure 1. Two- and three-dimensional queries.
Queries | Space Query bound Ref./Notes Deviation
Q1) | N log N + K PM, [24] 1 (opt)
Q@21 | N logy N + K/B 10, [7] 1 (opt)
Q(2,2) | N-logey N logN + K PM, [11] 1 (opt)
Q(2,2) | N-logy,, v N logz; N+ K/B 10, [7] 1 (opt)
Q@30 | N loggy N+ K/B 10, [1] 1 (opt)
Q(3,1) N -log N log N + K PM, [1], [17], [10] | (loglog V)
Q1) N -log N loggy N + K/B 10, [1] (loglogg N)
Q@BL)* | N- Iog|ogNN logN + K PM 1 (opt)
Q@B1)* | N- |°9IogBNN loggN + K/B 10 1 (opt)
Q@3,3) | N-log®N logg N + K/B 10, [1] (loglog g N)?
Q(3,3* | N- IoglzogNN logN - logjogn N + K PM 1
Q(3,3)* | N- IogfogNN logN + K PM 1
Q(3,3* | N.- IogfogBNN loggN - logjpg N +K/B | 10 1
Q3,3 | N- IogfogBNN logs N + K/B 10 1
Qd,d) | N-log? *N -log,, y N | log? "N+ K PM, [11] (log log N)?4=4
Q(dd) | N-logi 'y N logd="** N + K PM,[13] log® N
Qud,d) | N-log N log2 N + K PM, [1], [17], [10] | (loglog N)%¢~3
Q(d,d)* | N- Iogf'ogNN log? 3N | log 2N + K PM (loglogIN)24—¢
* d—1 d—2
Q(d,d) N- IoglogNN logN - IoglogNN + K PM 1
Q(d,d)* | N- Iogiiob;NN logg N - |ogf})§1NN +K/B | IO 1

Table I. A summary of our upper bound results in bold as well as the best previous upper
bounds on orthogonal range reporting. Our results are marke d with an *. PM and 10 stand for
the pointer machine and 1/O-model, respectively. Deviatio n measures the ratio of the space-

query product, S(N)-Q(N),to N -logh™ =2 N/(logy log N)4t%=3 (B = 2 for the pointer machine

model). Deviations marked with (opt) indicate that the result is provablyoptimal.

data structure with a query complexity polynomial structures are optimal!

in logy N has to useQ(N(log N/loglogy N)~') In the next section we describe the dimension re-
space. This proves the space complexity of Qud, d) duction technique and describe how it motivates a
data structure is optimal for a large range of values “concurrent” version of range searching where the same
of B. A comparison of our results with the pre- query needs to be answered on several different point
vious ones is given in Table I. Note that the Ta- sets. In Section 3, we show how to use concurrent
ble displays a curious pattern: f@)(d, k) the space range searching to obtain our improved versions of the
S(N) and the query search tim@(N) of all the dimension and side reduction techniques. Using these,
optimal results lie on the curve§(N) - Q(N) = we present our main orthogonal range searching results
Nlogi™ =% N/(logglog N)*™*=3 (B = 2 for the in Section 4. Finally, in Section 5 we prove our space

pointer machine model). If this is the right trade-off |ower bound. Conclusions and open problems are given
curve for S(NV) and Q(N), then all our main data in Section 6.

2. Dimension Reduction 3. Concurrent Q(d, k) Problem

The motivation for concurrent range reporting is
clear in the light of the previous discussion: we want to
solve all thet queries generated by a tree of fanoait
the same time. The caveat is that the obvious definition
fails to provide us with any means of attack.

We formally define the concurrent range searching

problem as follows. LefS be an input set ofV points
ck- . .
and assume each point S has been assigned a color
A(p) from a setC' of colors. A concurrentQ(d, k)
problem is defined by a s@ C 2 (intuitively, the set
of all the “possible” sets of colors) and is an orthogonal
range reporting problem where the query is a tuple
(¢, L) in which L € P andq is aQ(d, k) query. The
output should be the set of all the poinissuch that
A(p) € L andp € q. Note that this should not be
confused with the usual colored range searching where
we are interested in the set oblorsin ¢ and not the
points (e.g., see [22]). We usg 4 ¢ »(d, k) to denote
this concurrent)(d, k) problem.

Our main results of this section are the dimension
and side reduction techniques for concurrent orthogonal
range reporting and a solution for concurrén, 1).

Dimension reduction is the only known tool that
allows us to solve orthogonal range searching in higher
dimensions. As our ideas build upon this technique, we
briefly describe it here. Consider thig(d + 1,k + 1)
problem and assume we have access to a bla
box solution A for Q(d, k). Let p1,...,pn be the
points of the input sefS sorted increasingly accord-
ing to the value of the last coordinate. Implemeft
on the projection ofS onto the firstd dimensions,
then recurse on the setsy := {p1,...,pn/2} and
S, = {pnj2+1.---,pN}. Let H be the hyperplane
passing throughpy/» and orthogonal to the vector
(0,0,...,0,my/2) Wheremy, is the last coordinate
of pn/o. For the queryg we have two cases: (i) If
completely lies at one side df, then it is answered
recursively using data structures implementedseror
S,. (ii) If ¢ intersectsH then it can be decomposed
into two Q(d + 1, k) queries, one on each of the sets
Sy, andS,.. Thus, it suffices to describe how to answer
a Q(d+ 1,k) query. Assume now thaj is one such
query. Again, we have two cases: (i) ¢fcompletely
lies at one side ofd, then it is answered recursively.
(ii) If ¢ intersectsH then it can be decomposed into
two queries; one query will be §(d + 1,%) query,
which is answered recursively, but the other will be a
Q(d, k) query which can be answered directly y

3.1. Side Reduction

Consider theQ 4,c»(d + 1,k + 1) problem. We
describe our reduction only for queries that have two
sides at the last dimension; otherwise, we can apply
basic geometric transformations on the input set and
Let S4(N) and Q4(N) be the worst-case Use the solution for this specific case. This will increase

space and the query time ofl, respectively. The the space by a constant factor only.

above solution take)(S4(N)log N) space and has Build a balf’:mced tre@ pf fanoutt on the poinft set
O(Q.4(N)log N) query time. If we model this recur- ~Sorted by their last cogrdmates. Letbe a node irll’
sive construction with a tree, it becomes clear that the @ndci, . .., ¢; be the children ob. Now, v corresponds
log N factor comes from the height of the tree. In other t0 an intervala,;b,) on the last dimension and the last
words, a tree of heightt will result in anO(hS 4 (N))- coordinate of all the points in the subtree rooted at
subdivide this interval int@ disjoint smaller intervals.
Itis known that if a tree of fanoutis used instead of ~ We defineC,, asC x {1, ...,t} andP, as the set con-

a binary tree (in other words, at each step the point settaining all the setd.;,; ; :== {(c,k)|c € L,i < k < j}

is partitioned inta: sets rather than two), then the height for all L € P and all0 < ¢ < j < t. Clearly,
of the tree will belog, N. Fort = log® N this is equal |C,| = t|C| and|P,| < t?|P|. For the pointe € T'(v)

to log N/loglog N. Unfortunately, answering queries we define a new color assignmend, by setting
using a tree of larger fanout is difficult as we might A,(p) = (A(p),j) wherej is the index of the subset
need to answer one query on up ttaifferent point T'(c;) that containg. We implement a data structure
sets. Previously, three techniques were used to handleD, for Q.,.c, »,(d + 1,k) on T'(v). We repeat this
this issue. One incurs extra penalties in space, the otheoperation for every node iff'.

incurs extra penalties in query time and the last one To answer the queryq, L), let [a;b] be the pro-
only works in 2-d [11]. Thus, achieving factbsg, N jection of ¢ on the last dimension. We start from the
penalty in both space and query was left open. This root and walk down the tree to find the first node
barrier is also responsible for the lack of I/O efficient such that[a;] is not contained in the interval of one
results in higher dimensions. child of v. Let ¢1,...,¢; be the children ofv and

assumefq; b] intersects the intervals af;, .. ., ¢;, for
1 <i < j <t Findingv costsQgearch V). We have
ac, < a < b, < ag; < b < b,. We create two
new boxes,q. and ¢, by modifying the coordinates
of ¢: ¢ is made by setting to —oo and ¢, is made
by settingb to +oco. Next, we define two lists of
colors,L; := {(c,z)|c € L,i < x < j—1} for ¢, and
L, == {(c,j)|c € L} for g,.. The pairs(q,, L,) and
(g¢, Le) form two valid Q(d + 1, k) concurrent queries
since bothL, and L,. are inP,. We query both oD,
Correctness:We must report all the poingssuch
thatp € ¢ and A(p) € L. Consider a poinp and letz

of T'(v) onto the firstd dimensions and implement a
data structur@®, for Q 4, c,.»,(d, k) on the projected
points.

To answer the queryg, L), let [a; b] be the projec-
tion of ¢ on the last dimension. Find the first nodge
such that[a; b] is not contained in the interval of one
child of v;. Assume|a;b] intersects the intervals of
Ci,...,cj, forl <4 < j <t. Thistime, we create three
boxesqy, ¢,, andgq, by modifying coordinates of. g,
is obtained by settingto +oo, ¢,- is obtained by setting
a to —oo, andg,, is ad-dimensional box obtained by
settinga = —oo andb = +o00. We define the color

be the value of its last coordinate. We have four possiblelist L,,, as{(c¢,z)|c € L,i < « < j} and queryD,, with

cases:

1) A(p) € L: In this cased,(p) € L, and A,(p) ¢
L, and thusp will not be reported. From now on,
we assumed(p) € L.

2) p € T(c;): In this caseA,(p) = (A(p),J), so
A, (p) € L, and A,(p) ¢ Ly. Clearly, the query
(ge, L¢) will not reportp but (¢, L,-) will report
p if and only if p is contained ing,.. However, if
pisin g, thenz <b. Note that we know.; < z
sincep € T'(¢;) and thusa < z. These implyp
will be reported if and only if it is contained iq.

3) p € Ui<a<j—1T(cy): Let z be the index such that
T'(c,) containsp. As with the previous case, we
have A,(p) = (A(p),z) € Ly, and A,(p) & L,.
Similarly, sincez < b., , <b, p will be reported
if and only if it is contained ing.

4) p & Ui<z<;T(cy): This is the else case to the
above three. It is clear that in this case ¢ and
since A,(p) ¢ L, U L, none of the queries will
reportp.

Thus, we have the following result.

Lemma 1. Qa.cp(d+ 1,k + 1) can be solved with
O (N + hSn, n,.a+1,.(N)) space and with the query
complexity of O (Qsearcf{N) + an,np,d-&-l,k(N))-
Here, h is the height of ', S, ., q4+1,x(-) and
Qne.n,.d+1,k(-) are the worst-case query and space
complexity of the concurrentQ(d + 1,k) data
structure used, respectivelyp, max,er |Cyl,

n, = maxyer |Py|, and QsearcH+) is the cost of
search for a node in the tree.

3.2. Dimension Reduction

We describe the dimension reduction for concurrent
Q(d+ 1,k + 1) queries. We assume the query has two
sides at the last dimension.

Build a balanced treel” of fanoutt on the last

dimension and consider the notations introduced in the

previous subsection and buitd,, P, and.A, similarly.
The difference is that this time we project the points

(¢m, Lm). Boxesq, andg, define twou; to leaf query
paths (to be described); we only analyze the query path
for ¢, below, as the other one is similar.

Definewv, := ¢;. Now (¢,, L) is a concurreng)(d +
1,k) query onvy, and we answer it as follows. Let
¢? ... be the children ofi, and assume is the
index such thatzc<2> <b< bcgcz). We create a color

list L2 - {(c,y)|ce L,1 <y <z —1} and query
(Gms Lﬁﬁ)) onD,,. Now we sets := cf) and continue
until we reach a leaf.

Correctness:An analysis similar to that of side
reduction showsg,,, L,,) and (qm,Lgﬁ)) respectively
return all the points iny N (T'(¢ci+1) U---UT(cj-1))
andgn (T(?)u---uT(?)) with the right colors
and nothing more. The recursive callidgtakes care of
the points inT(cg)). Finally, the same analysis holds
for the other query path determined ky. Thus, we

have the following lemma.

Lemma 2. Qa.cp(d+ 1,k + 1) can be solved with
O (N + hSn, n,.ar(N)) space and with the query
complexity of O (QsearcHN) + hQn. n,.a.k(N)).
Here, h is the height of T', S, ., ax(-) and
Qneon,ak(-) are the worst-case query and
space complexity of the concurrer®(d, k) data
structure used, respectivelyp, max,er |Cyl,
n, = maxyer |Py|, and Qsearc{+) is the cost of
search for a node in the tree.

3.3. Answering ConcurrentQ(2, 1) Queries

Here we solve the concurre@ts ¢ »(2, 1) problem.
As this will be used at the base case for our higher
dimensional results, any suboptimal space or query
bound will carry over to higher dimensions. Thus,
it is crucially important that we obtain an efficient
structures. Our main result of this subsection is the
following.

Lemma 3. Qa,c»(2,1) can be solved withD(N)
space andO(|P||C| + log N + K) query time in a

pointer machine and(|P||C|+logy N+ K/B) query 4. Answering Q(d, d) Queries
I/Os in the 1/0-model.
The Q(d, d) problem is a concurrer®(d, d) prob-
Proof: We only provide a data structure for the lemwithC = {1}, P = {{1}} andA(p) = 1. To solve
I/0-model. By settingB = 2 it can be turned into a data it, we apply our reductions outlined in Lemmas 1 and
structure for a pointer machine. We also assume that thep,
three-sided query is in the form ¢f;; z3] x (—o0, y]; After d — 2 applications of dimension reduction,
general three-sided queries can be reduced to this casey(d, d) will be reduced to a concurred(2,2) prob-
lem. Notice that each dimension reduction increases the
size of the set€’ andP by factors oft andt? respec-
tively. Next we apply a side reduction which further
increasesC' and P by factors oft and t2. Thus, at
the end, our subproblems will consist @f4.c »(2,1)
problems whereC| = t4~! and |P| = 242,
We sett := 1og}5{(3d_3) N. This means in all
our subproblems we havgl||P| = O(logg N). By
Next, for every set. € P, we build a search struc- Lemma 3 these can be solved with linear space and
ture of sublinearsize which we denote bYsearc). O(loggz N + K/B) 1/0s. As the height of the trees
To do this, first we copy the basic data structure but we used in our constructs idog, N, we have h =
delete some of its points in two stages. First, we deletelog N/loglogz N. By Lemma 1, our side reduction
all pointsp such thatd(p) ¢ L. Letpc1,pc2; - - - s Peyt. adds a factor of to space. By Lemma 2, ouf — 2
be the remaining points in slaly sorted increasingly dimension reductions add a factor/gt—2 to both space
according to theiry-coordinates. Next we delete all and query. Thus we obtain the following results.
the pointsp.;, i > B. The DgearciL) is made by
implementing an optimal 1/O efficiert®(2, 1) structure
on the remaining points. Finally, we place a pointer
from p. g (if it exists) to its copy iNDpasid).

Sort the points according to theircoordinates and
partition the point set inté(;’— vertical slabs, where :=
B|C||P|, such that each slab contains points. For
each slabh we build a basic data structuf@y,sidb) as
follows: for every colore in b, the points with color
are stored increasingly according to thgicoordinates
in consecutive blocks (linked list in a pointer machine).

Theorem 1. In the [1/O-model, the orthogonal
range reporting problem onV input points can be
solved with O(N(log N/ loglogy N)¢~1) space and
O(logy N(log N/ loglogy N)?~2+ K/B) query I/Os.

Each slabb containsa points but at mosB|L| <
B|C| points are stored in each slablingacr L). Thus,
the size ofDsearck L) is O (£ B|C|) = O(N/|P|). We
build |P| different search structures (one for each list
in P), so our space complexity is linear.

Theorem 2. In a pointer machine, the orthogonal
range reporting problem onV input points can be
solved with O(N(log N/loglog N)4~1) space and
O(log?* N/(loglog N)?~2 4+ K) query time.

The space usage of Theorem 2 is optimal by [13].

Using our techniques we can also obtain the first
optimal result forQ(3,1) queries.

Let (¢, L) be the query and,,...,b; be the slabs
intersected byy. We decompose into three smaller
boxes,qs, ¢, andg, such thatg, andg, are contained
in b; andb; respectively andy,,, := ¢\ (¢/ U ¢,). We Theorem 3. Q(3,1) queries can be solved op-
answer (g, L) and (¢, L) by scanning all the points timally in the pointer machine model (resp. the
in b; andb; and this take®)(«/B) = O(|C||P|) I/Os. I/0-model) usingO(N log N/ loglog N) space (resp.
To answer(g,, L), using Dsearck L) first we find all O(Nlog N/loglogg N) space) and withO(log N +
the points of Dgearci{) that are insidey,,. This costs K) query time (respO(logz N + K/B) query 1/0s).
O(logg N + K'/B) 1/0s whereK”’ is the number of
points reported. A helpful observation is that the set of
points reported is a subset of the final output. During
this operation, whenever we encounter a ppjng that

's 0 be reported, we foliow the pointer Byasic and linear-space data structures outlined in [1]. TH&, 0)

scan all the points stored in the following blocks until Leries can be solved using Lemma 3. The space bound
the y-coordinates of the stored points exceed that of 4 g : P

am. The crucial observation is that the cost of the is optimal since with a simple geometric transformation

pointer jump can be charged to the output size (to the one can use a data structure fQx(3,1) to answer
B points of colorc that have been outputted from the @(2,1) queries and am2(N log N/loglog N) (resp.

slab containingp.). It is easy to check that all the (N log N/ loglog; ') space lower bound is known

relevant points are reported and that the cost of thefor Q(2.1) [7], [13]. -
query isO(|C||P| + logg N + K/B) I/Os. [Theorem 4. For k& = 2,3, Q(3,k) can be

Proof: Use the traditional side reduction technique
with a tree of fanoutt := log!/® N. As discussed,
this results in twoQ(3,0) queries and up to Q(2,0)
queries. TheQ(3,0) queries can be solved by the

solved in pointer machine model (resp. 1/0O- The refined redundancy theorem then states that if we
model) usingO(N (log N/loglog N)¥) space (resp. can construct a set oV points andm query boxes
O(N(log N/loglogz N)¥) space) and with optimal ¢i,...,¢n, such that any box contains at least4,
queries. points and where the intersection of any pair of boxes
contains at mosB/(64c%) points, then the amount of
space needed by any data structureQi$ """, |g:).

The goal is thus to maximize the sum of the sizes of
the queries.

In two-dimensions, theQ(Nlog N/loglogy N)
space lower bound forQ(2,2) was obtained us-
Corollary 1. Orthogonal range reporting can be ing a Fibonacci workload However, generalizing
solved with O(Nlog? N/(loglog N)?) space and the Fibonacci workload to higher dimensions seems

Proof: The proof is similar to that of Theorem 3:
by normal side reduction, we get tw@(3,k — 1)
queries and one concurre@t(2, k — 1) query which
can be solved by their corresponding theorems outlined
above. [|

O(log"* N + K) query time. hard, and the previously best knowhdimensional
Q(N(log B/ loglogy N)4~1) space lower bound in-
5. 1/0-model Lower Bound stead utilizes a simple pointset consisting aV&/¢ x

- x NY4 grid. In internal memory, the space

In this section we use the indexability theory of lower bounds in the pointer machine model [28]
Hellerstein et al. [23] to prove that any data struc- for d-dimensional range searching were proven by
ture answering(d, d) queries in the 1/0-model using Chazelle [13]. In 2-d, a fairly simple point-set (work-

O(log% N + K/B) query 1/Os for any constant> 0, load) was used to prove the bounds, whereas a much

has to use(N (log N /loglogy N)¢~1) space. more complex point-set and a randomized argument
In the indexability model [23] an indexing problem were used in higher dimensions.

is described by avorkload W = (I, @), wherel is a Here we generalize Chazelle’'s planar point set

set of input elements ang is a set of subsets df, the to higher dimensions using a deterministic construc-

elements ofy) are calledqueries Given a workloadV tion. Such a deterministic generalization was given by

and a block sizeB, anindexing schemé&' is defined Chazelle as well, but for the off-line orthogonal range
on I by a block assignment functiof$, which is a set searching in the semi-group model [15]. In fact, by
of B-sized subsets of. Intuitively, all the elements in modifying the parameters used in his proof, one can
a setb € B are stored in one block. prove the Q(N(log N/loglogy N)?~1) space lower
The quality of an indexing scheme is quantified by bound; however, the lower bound will be valid only if
two parametersedundancyandaccess overhead he B = O(logg N), which is an unrealistic assumption in
redundancy- of S is a measure of the space overhead the I/O-model. Relaxing this constraint seems to require
and is defined as = B|B|/|I|. If any query inQ is more substantial changes, e.g., changing the query or
covered by at mos#l, + A4 [|q|/B] blocks of B, then the point set. Here we present an alternate but similar
the access overhead is defined as(thg, A;) tuple [8] construction that achieves this. Our lower bound holds
(this a slight variation on the original definition of for 2 < B < vM < /N, known also as theall-
access overhead [23]). For any data structure in the 1/0O-cache assumptigrwhich is a much more reasonable
model, an indexing scheme is naturaly defined by just assumption.
looking at the points stored in the blocks of the storage Point setl.. Let a; = 644942 and a; =
medium. The followingredundancy theorentelates [[Za)+1forj=2,...,d—1.ltis easily verified
redundancy and access overhead and is the main toofha(al’ag’ ...,aq_1 are relatively prime. We define

for proving space lower bounds in the 1/0-model [8], e point setl := {(pa,(7),Pa, (i), ..., Pay ,(i),7) |
[23]. i = 0,1,...,N — 1}, where p,, (i) is obtained by
Theorem 5 (Refined Redundancy Theorem [8for ~ first writing i in base a;, then removing all but
a workload W = (I,Q) with |I| = N and where the Uogaj N1a] least significant digits (adding lead-
Q = {q1,q2,...,qm}, let S = (I,B) be an indexing ing O-digits if necessary), and finally reversing all
scheme foriW with access overheadA,, A;) with the digits of the constructed number. We will use

Ay < VB/8 such that for anyl < i,j < m,i # Mg—1-.. Mo to denote the reversal ohk,l...rr_zo,

j :lg:| > BAy and |¢; N ¢j| < B/(64A%). Then the that is, my_1...mg = mg...mg_1. The following

redundancy ofS is bounded by- > ﬁ S gl lemma is an easy consequence of the defitions given
a above.

Consider a data structure foQ(d,d) with
cology N + 61% query bound wherey and c; are Lemma 4. Consider the ¢'th point p;, =
constants. We choosé, = ¢glogz N and 4; = ¢;. (Pay (3), ..., Pay_,(i),4) In I. The k most significant

digits of the j'th coordinate p,, (i) are precisely
1
i mod a¥ for k < log,, N7].

Let X be the box in the positive guadrant an-

log,, N1/4d
L ! J><~-~><ad1 x N; X contains

aII points in/. Now consider a boy inside X, and let
[x1; 22] be the range it spans in thi&h dimension. If
xr1 =mg...mEp_100...0 andl'g = mo...mk_l(aj—
1)(a;—1)...(a;—1) in basea; for somemy ... my_1,
it foIIows from Lemma 4 that each poin; with 4
mod a¥ = ing.Tmi_; has thej'th coordinate in the
range[:cl,:vg] If the same holds for each of the first

— 1 dimensions, we can determine whether a point is the origin,q will span the rangé; = [c;a;

insideq simply by looking at itsd’'th coordinate.

Query set@.: Consider the setR consisting
of one box with each of the following dimenS|ons
al’ x a2 x - Yol BAgaltak® add 5 for

X agy
ij €10,..., log,, N7i |} andk; = |log,, Nia | —ij.

Lemma 5. Any r € R placed at the origin ind-
dimensional space is completely containedXin Fur-
thermore,| R| = Q((log N/ log AgA2)41)

Proof: The firstd — 1 dimensions ofr are obvi-
ously within X. Using the tall-cache assumption we
get that BAy = Beglogg N < VNeglogy N <
V/Neglogs N which for N greater than some con-
stant is at mostyNNi Ni. Thus the size
of the d’'th dimension of r is bounded byBA, -

o 1/4d
[T a ™ " < Ni (VA < N, and
thereforer fits within X.

To see the bound on the size Bf simply count the

number of combinations af; in the definition of R

d—1 d—1

|R| = HLlogaiNﬁJ +1> Hlogai Nia >
i=1 i=1

1 d—1 1
(10gad71 Nﬁ) > (logaﬂ Nﬁ)
1
Jo1 a1
(logal Nﬁ) - (IOgal N)

4d- 24
(logal N) - d—1
d)i-1 97 = 2 ((log,, N)"")

d—1 log N a1
Q1 (1 2 N =0 —_—
((084,43)) <<1ongA%>)

[|
Our query set) consists of the boxes obtained by
tiling X with each of the boxes € R in turn, starting
at the origin. Notice that we will use only those queries
that are completely contained ik. Refer to Fig. 2.

= BAy.

d—1

1

Lemma 6. For any queryq € Q, |q|

Figure 2. Tiling X with a box r € R. Note
that » might not tile X completely in all
dimensions.

Proof: Let ¢ be a box inQ with dimen5|0n31
- x al= x BAgdk ...k, and consider |tg th
dimenS|onj < d). Sinceq was placed by tiling from
5 (cj+1)ay)
in the j'th dimension for some:; = momy ... my, 1,
wherec; is written in basez;. From Lemma 4 it then
follows that thei’th point p; = (pa, (), - .., pa—1(%),17)
of I is insidegq if and only if

«—

Vi<j<d-1, =& (1)

k;’.
mod aj’

and

ka—1

caBAgat" .. ad T <i<(ca+ 1)BAgat" . coagth

Asay,...,aq—1 are relatively prime andcd(a, b) = 1,

by the Chinese Remainder Theorem there is a unique
value of i moduloa® ak? ... a"*" that satisfies all of
thed — 1 requirements in (1). Since C X, it follows
from the last requirement ointhat ¢ contains precisely
(BAgak ... aki-1)/(a¥ .. aki ') = BA, points. m

Having defined our workloadl = (I, Q), we now

bound the number of points in the intersection of any

two query boxes inQ.

Lemma 7. For any two query boxeg;, g2 € Q, |¢1 N
q2| < B/(64A)%

Proof: If ¢; and ¢» have the same dimensions,
we get from the tiling thatg; N ¢o = 0§ and the
lemma follows. Now consider the case whereand
qo differ in at least one dimension. Leff X oo X

. Eia . .
a'=! x BA, a, Mo a, """ be the dimensions af

d—1

andal' x --- x a;‘i X BAOaIf(j’“ e aflf’ld’l) be the
dimensions ofg,. Letl < d be any dimension where

iy # j1- W.l.o.g we assume that > j. Sinceafl is

just a multiplicative ofa{l, it follow from the tiling that

the intersection of;; andq, is either empty in thé’th
dimension, or spans the same range-asf the range is
empty, our proof is done, so assume it equals the range
of ¢». Now consider the box that spans exactly the

same ranges ag, except in thd’'th dimension, where

1This property is one of the main differences between ourtpoin
set and the one developed by Chazelle; his constructiorrensoat
|g1Ng2| = O(1) which is a more strict condition than ours and thus
his bound is valid for small values dB.

it spans the same range as Clearly ¢ Ng2 C J.
Using the Chinese Remainder Theorem, we get fhat
contains at most

k(i1 k(i,d—1
BA()(II() - ad(—l) BAO B
ki1 e k@a-1y = g — 6442
a,) cee gy l 1

points. Sinceq; N g2 C J, we have thatg N 2| <
|J| < B/(64A%) and the lemma follows.]

We now apply the redundancy theorem. By
Lemma 6 and Lemma 7, our worklodd" = (I, Q)
fulfills the requirements of the Refined Redundancy
Theorem. Thus, the redundaney,of any solution for
this workload is at leasty Y- |qil.

Now consider any box € R. By Lemma 5 we
know thats will be contained inX if placed at the
origin. We also get from the definition o, that the
d — 1 first dimensions ofX are multiplicative of the
d — 1 first dimensions ofs. It then follows from the
tiling that every point in/ will have its d — 1 first
coordinates inside one query box for everg R, and
at least half the points will have theifth coordinate
inside one query box for every € R. Therefore
> lai| = |R|%. Plugging this value in the bound for
redundancy and using Lemma 5 implies= Q(|R|) =
Q((log N/log AgA2)4=1). Since Ay = cology; N and
A1 = c1, we obtain the desired lower bound.
Theorem 6. There exist a workload (i.e., a set of
points and a set of queriedy for Q(d,d) such that
any data structure foV that can answer queries in

O(logz N + %) I/Os for any constant > 0, requires
Q(N(log N/loglogy N)4~1) space.

6. Conclusion

In this paper we improved the dimension and side

reduction techniques and thus obtained new orthogonal

range reporting data structures in both the pointer
machine model and the 1/0-model. In the latter model

available but as the source of both query and space
penalties are the same (namely, the height of the tree
used in the reduction), we suspect lowering the query
penalty (without increasing the space penalty) needs
completely new ideas.

Finally, we believe this work brings up many inter-
esting open problems, including the following:

Open Problem. What is the right trade-off curve for
the query time and the space bound of the best possible
Q(d, k) data structures in the pointer machine model
or the I/O-model?

References

[1] P. Afshani, “On dominance reporting in 3D,” BSA'08:
Proc. of the 16th conference on Annual European Sym-
posium 2008, pp. 41-51.

[2] P. K. Agarwal, “Range searching,” @RC Handbook of
Discrete and Computational Geometd. E. Goodman
and J. O'Rourke, Eds. CRC Press, Inc., 2004.

[3] P. K. Agarwal and J. Erickson, “Geometric range search-
ing and its relatives,” inAdvances in Discrete and
Computational GeometnB. Chazelle, J. E. Goodman,
and R. Pollack, Eds. AMS Press, 1999.

[4] A. Aggarwal and J. S. Vitter, “The input/output com-
plexity of sorting and related problemsCommun.
ACM, vol. 31, pp. 1116-1127, 1988.

[5] S. Alstrup, G. S. Brodal, and T. Rauhe, “New data struc-
tures for orthogonal range searching,” FROCCS'00:
Proc. of the 41st Annual Symposium on Foundations of
Computer Science2000, pp. 198-207.

[6] L. Arge, “External memory data structures,” Hand-
book of Massive Data Setd. Abello, P. M. Pardalos,
and M. G. C. Resende, Eds. Kluwer Academic
Publishers, 2002, pp. 313-358.

[7] L. Arge, V. Samoladas, and J. S. Vitter, “On two-
dimensional indexability and optimal range search in-
dexing,” in PODS '99: Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database system$\New York, NY, USA: ACM,
1999, pp. 346-357.

we also provided a space lower bound. Our reductions [8] L. Arge, V. Samoladas, and K. Yi, “Optimal external-

incurlog N/ loglog N (resp.log N/ loglogy N) factor
penalties in space and/or query complexity in the
pointer machine model (resp. the I/O-model).

Note that in the I/O-model, the penalties are mini-
mized for B = 2 and for large values aB are far away
from logg N. Still, for all our structures the overall
qguery complexity decreases wifB.

We believe it is unlikely that the techniques (spe-
cially the dimension reduction) can be further im-
proved. Focussing on the I/O-model for example, our
space lower bound proves that it is impossible to
achieveo(log N/ loglogy N) space penalty in dimen-
sion reduction even withO(log® ") N) penalty in
query. Currently there are no query lower bounds

memory planar point enclosure,” iIESA'04: Proc. of
the 12th conference on Annual European Sympasium
2004, pp. 40-52.

[9] J. L. Bentley, “Multidimensional divide-and-conquer,
Communications of the ACMol. 23, no. 4, pp. 214—
229, 1980.

[10] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis,
“New results on intersection query problemsltie Com-
puter Journal vol. 40, pp. 22—-29, 1997.

[11] B. Chazelle, “Filtering search: a new approach to query
answering,"SIAM Journal on Computingol. 15, no. 3,
pp. 703-724, 1986.

[12] ——, “Functional approach to data structures and its
use in multidimensional searchingSIAM Journal on
Computing vol. 17, no. 3, pp. 427-462, 1988.

[13] ——, “Lower bounds for orthogonal range searching: I.

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

the reporting caseJournal of the ACMvol. 37, no. 2,
pp. 200-212, 1990.

——, “Lower bounds for orthogonal range searching:
part Il. the arithmetic model, Journal of the ACM
vol. 37, no. 3, pp. 439-463, 1990.

——, “Lower bounds for off-line range searching,” in
STOC '95: Proc. of the 27th annual ACM symposium
on Theory of computingl995, pp. 733-740.

B. Chazelle and L. J. Guibas, “Fractional cascading: I.
A data structuring technique&lgorithmicg vol. 1, pp.
133-162, 1986.

——, “Fractional cascading: Il. Applications&lgorith-
mica vol. 1, pp. 163-191, 1986.

D. Comer, “The ubiquitous B-tree ACM Computing
Surveysvol. 11, no. 2, pp. 121-137, 1979.

M. L. Fredman, “The inherent complexity of dynamic
data structures which accommodate range queries,” in
FOCS '80: Proc. of the 21st Annual Symposium on
Foundations of Computer Scienc®ctober 1980, pp.
191-199.

H. N. Gabow, J. L. Bentley, and R. E. Tarjan, “Scaling
and related techniques for geometry problems3TOC
'84: Proc. of the 16th annual ACM symposium on
Theory of computing1984, pp. 135-143.

V. Gaede and O. Gunther, “Multidimensional access
methods,”ACM Computing Surveysol. 30, no. 2, pp.
170-231, 1998.

P. Gupta, R. Janardan, and M. Smid, “Computational
geometry: generalized intersection searchingHand-
book of Data Structures and Applications Chapman

& Hall/CRC, 2005, ch. 64, pp. 1-17.

J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H.
Papadimitriou, and V. Samoladas, “On a model of
indexability and its bounds for range queriedgurnal

of the ACM vol. 49, no. 1, pp. 35-55, 2002.

E. M. McCreight, “Priority search treesSIAM Journal

on Computingvol. 14, no. 2, pp. 257-276, 1985.

Y. Nekrich, “A data structure for multi-dimensional
range reporting,” iSCG '07: Proc. of the 23rd Annual
Symposium on Computational GeometrpACM, 2007,
pp. 344-353.

M. Patrascu, “Unifying the landscape of cell-probe
lower bounds,” inFOCS '08: Proc. of the 49th Annual
Symposium on Foundations of Computer Scie@6688,
pp. 434-443.

S. Subramanian and S. Ramaswamy, “The P-range tree:
a new data structure for range searching in secondary
memory,” in SODA '95: Proc. of the 6th Annual Sym-
posium on Discrete Algorithmd4995, pp. 378-387.

R. E. Tarjan, “A class of algorithms that require nonlin
ear time to maintain disjoint setsJournal of Computer
and System Sciencesol. 18, pp. 110-127, 1979.

D. E. Vengroff and J. S. Vitter, “Efficient 3-D range
searching in external memory,” iISTOC '96: Proc.
of the 28th annual ACM symposium on Theory of
computing 1996, pp. 192-201.

