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Abstract

Boosting is one of the most successful ideas in machine learning, achieving great prac-
tical performance with little fine-tuning. The success of boosted classifiers is most often
attributed to improvements in margins. The focus on margin explanations was pioneered
in the seminal work by Schapire et al. (1998) and has culminated in the k’th margin gen-
eralization bound by Gao and Zhou (2013), which was recently proved to be near-tight for
some data distributions (Grønlund et al. 2019). In this work, we first demonstrate that
the k’th margin bound is inadequate in explaining the performance of state-of-the-art gra-
dient boosters. We then explain the short comings of the k’th margin bound and prove a
stronger and more refined margin-based generalization bound for boosted classifiers that
indeed succeeds in explaining the performance of modern gradient boosters. Finally, we
improve upon the recent generalization lower bound by Grønlund et al. (2019).

1 Introduction

Boosting is a powerful technique for producing highly accurate voting classifiers by combining
less accurate base learners. Boosting algorithms are typically easy to fine tune and obtain
state-of-the-art performance on many learning tasks. Boosting dates back to the seminal work
introducing the AdaBoost algorithm [FS97] and much work has gone into understanding and
developing better boosting algorithms. The best performing boosting algorithms are typically
variants of gradient boosters [Fri00], such as LightGBM [KMF+17] and XGBoost [CG16],
using Regression Trees as base learners.

Classic experiments [SFBL98] showed that boosting algorithms tend to improve their
test accuracy even when training past the point of perfectly classifying the training data.
This may seem counter-intuitive, as adding more base learners, results in a more complex
model, that hence might be more prone to overfitting. This phenomenon is often explained
by observed improvements in margins. For binary classification with a sample space X , labels
in {−1, 1} and a class of base learners H ⊆ X → [−1, 1], a voting classifier f : X → {−1, 1}
has the form f(x) = sign(

∑
h∈H αhh(x)) with all αh ≥ 0. A voting classifier thus takes a

weighted “vote” among the base learners to obtain its prediction. When speaking of margins,
we assume

∑
h αh = 1, which can always be achieved by rescaling the α’s by their sum

without changing f . The margin of a training point (x, y) with x ∈ X and y ∈ {−1, 1} is
then defined as y

∑
h αhh(x). The margin is thus a value in [−1, 1] which is positive when
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f(x) = y and negative otherwise. Intuitively, large (positive) margins mean that f is not only
correct but very certain in its predictions. Margin theory, starting with the work of Schapire et
al. [FS97], formalized this by proving generalization bounds demonstrating that large margins
imply better generalization. It was also shown that the theoretical generalization bounds fit
very well with the observed behavior of AdaBoost that tends to keep improving margins even
when training past the point of perfectly classifying the training data [SFBL98].

However, shortly after [FS97] and [SFBL98] was published, Breiman [Bre99] proved
a generalization bound based on the minimal margin (the smallest margin achieved by a
training point) that was sharper than the generalization bound in Schapire et al. [FS97].
He then designed a new boosting algorithm, named Arc-GV, that provably optimizes the
minimal margin, which AdaBoost does not (see [GGM19] for the full story of maximizing the
minimal margin). In the same paper, Breiman experimentally showed that Arc-GV produced
not just a better minimal margin, but better margins overall, than AdaBoost. However,
AdaBoost still obtained a better generalization and test error. This seemed to contradict
margin theory, as according to margin theory, all other things being equal, then larger margins
should imply better generalization. Later it was shown by Reyzin and Schapire [RS06] that
Breiman’s experiments did not accurately take into account the complexity of the base learner
trees created by AdaBoost and Arc-GV, as repeating the experiments showed that Arc-GV
produced trees of larger depth than AdaBoost, and deeper trees may be more prone to
overfitting. Reyzin and Schapire then considered the same experiments using stumps as base
learners, forcing identical depth trees between the algorithms, and in this case, AdaBoost
produced better margin distributions than Arc-GV and also generalized better. These findings
support the view that better margins provide better generalization as presented in [FS97,
SFBL98].

Later, [WSJ+11, KP02, GZ13] showed improved generalization bounds that subsumed
both the generalization bounds by Schapire et al., and Breiman, providing further theoretical
support for margin theory. The current strongest generalization bounds are as follows. Let
D be any distribution over X × {−1, 1} and define LD(f) = Pr(x,y)∼D[f(x) 6= y] as the out-
of-sample error of a voting classifier f . Also, for a set S = {(xi, yi)}mi=1 of m labeled samples
drawn i.i.d. from D, define LθS(f) = Pr(x,y)∼S [yf(x) < θ] as the fraction of points in S with
margin less than θ (the notation (x, y) ∼ S denotes a uniform random point (x, y) in S).
With this notation, there are two strongest current generalization bounds. The first [KP02]
uses Rademacher complexity to show that with high probability over the sample set S, it
holds for every margin θ ∈ (0, 1] and every voting classifier f that:

LD(f) ≤ LθS(f) +O

(√
lg |H|
θ2m

)
. (1)

The k’th margin bound by Gao and Zhou [GZ13] improves this for LθS(f) = o(1/ lgm) and is
as follows:

LD(f) ≤ LθS(f) +O

(
lg |H| lgm
θ2m

+

√
LθS(f) · lg |H| lgm

θ2m

)
. (2)

The k’th margin bound subsumes both Breiman’s min margin generalization bound and the
original generalization bound by Schapire et al. For infinite H, one may replace lg |H| in the
above bounds with the VC-dimension of H times a lgm factor (as is standard). For simplicity,
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we focus on the case of finite H throughout the paper. Moreover, recent work by Grønlund
et al. [GKGL+19] shows that the margin bounds above are near-tight. Formally, they show
that for (almost) all margins θ, there exists a data distribution D and a set of base learners
H, such that with constant probability over the sample set S, there is a voting classifier f
such that

LD(f) ≥ LθS(f) + Ω

(
lg |H| lgm
θ2m

+

√
LθS(f) · lg |H|

θ2m

)
. (3)

Moreover, the lower bound holds for any value of LθS(f) ≤ 49/100 and any value of lg |H| [GKGL+19].
Remark. Many boosting algorithms produce classifiers f =

∑
h αhh where

∑
h αh 6= 1 or

where base learners output values in R rather than [−1, 1]. To apply margin theory, following
[SS99], such classifiers are rescaled as follows: For each h with output range [ah, bh] and
coefficient αh, divide all outputs of h by ∆h = max{|ah|, |bh|}, multiply αh by ∆h, ans then
divide all αh by

∑
h αh.

1.1 Our contribution.

A new margin lower bound: Comparing the current best upper and lower bounds, we
see that (2) and (3) match when LθS(f) approaches 0. Similarly, we see that (2) and (1) match
as LθS(f) approaches a constant. But what is the true behavior in-between? The k’th margin
bound (2) gained the factor LθS(f) inside the

√· but lost a factor lgm compared to (1). Can
the lgm factor be removed? What is the correct behavior as LθS(f) goes from 0 towards 1?
In this work, we show an improved generalization lower bound of:

LD(f) ≥ LθS(f) + Ω

 lg |H| lgm
θ2m

+

√
LθS(f) · lg |H| lg(LθS(f)−1)

θ2m

 . (4)

Our lower bound shows that the lgm factor inside the
√· has to show up as LθS(f) drops

to m−ε for any constant ε > 0. Moreover, our new lower bound completely settles the
generalization performance of boosting in terms of margins whenever LθS(f) is outside the
range m−o(1) to o(1). It also nicely interpolates between the Lθs(f) = 0 and LθS(f) = 1 case.
We conjecture that the lower bound gives the correct margin-based tradeoff, i.e. that it is
possible to improve the upper bounds (1) and (2) to match (4). Our proof is based on the
work in [GKGL+19], and the recent near-tight generalization lower bound proof for Support
Vector Machines shown in [GKL20].

A new refined margin generalization bound: The main part of our paper considers
a new refined margin based generalization bound for voting classifiers (boosting algorithms).
First, we present experiments showing that the classic margin bounds alone fail to explain
the performance of state-of-the art gradient boosting algorithms. More concretely, we show
that gradient boosters actually may produce smaller and smaller margins when run for many
iterations, despite the test accuracy staying the same or even improving. We additionally
demonstrate that the classic version of AdaBoost may produce significantly better margins
than gradient boosters, despite gradient boosters obtaining similar or even better test ac-
curacy and generalization error than AdaBoost. To explain this inconsistency, we observe
experimentally that the trees produced by gradient boosters return very small values on all
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but a few training points, thus making minimal changes to most predictions when added to
the voting classifier. We then use this insight to prove a new margin-based generalization
bound for boosting algorithms which also take into account the magnitude of predictions
by base learners. Finally, we run experiments demonstrating that our refined generalization
bounds in fact succeed in explaining and predicting the performance of boosting algorithms.
In addition to achieving a better theoretical understanding of boosting algorithms, in partic-
ular gradient boosters, these new insights may potentially lead to new algorithms with better
accuracy by using regularization inspired by our new generalization bound or more directly
optimizing it.

2 Insufficiency of current margin bounds

From the margin-based upper and lower bounds, it may seem that we have all the theory
necessary for understanding the generalization performance of boosters. To confirm the the-
ory, we ran experiments with AdaBoost and the state-of-the-art gradient booster LightGBM
on standard data sets with the same size trees as base learners. For all experiments we only
change the tree size and learning rate of the LightGBM hyperparameters. For AdaBoost we
allow the same tree size, unlimited depth, as well as forcing a minimum number of elements
in each tree learner to be 20 as is default in LightGBM.

Figure 1b shows a plot of the margin distributions for the two boosters trained on the
Forest Cover dataset. From this plot, it is obvious that AdaBoost achieves significantly better
margins than LightGBM. Indeed, the k’th smallest margin of AdaBoost, is much larger than
the k’th smallest margin of LightGBM for all k where at least one of the two margins are
non-negative. Thus, from the generalization bounds (1) and (2), AdaBoost should have a
much smaller out-of-sample error than LightGBM. However, the corresponding test errors
in Figure 1a show a very different story, with LightGBM slightly outperforming AdaBoost.
Furthermore, as shown in Section 3, the trees produced by LightGBM are in fact deeper than
the trees produced by AdaBoost. This gives rise to some concerns regarding the explanatory
power of margins. To further underline the theoretical inconsistency, we examine the two
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(a) Mean training and test error over five runs. The
standard deviation of the final test error is 0.00037
for AdaBoost and smaller for LightGBM.
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(b) Sorted margin values.

Figure 1: Accuracy and margin plots for AdaBoost and LightGBM on the Forest Cover data
set.

generalization bounds (1) and (2). When applying the generalization bounds to AdaBoost
and LightGBM, then for any choice of p = LθS(f) ∈ [0, 1], the only parameter that vary
between AdaBoost and LightGBM is θ−2. That is, if we choose θ as the (pm)’th smallest
margin, i.e. fix LθS(f) = p, then only the value of θ differ between the two boosters and the
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generalization error grows as θ−2. Figure 2a shows a plot of θ−2 as a function of LθS(f) for the
two boosters. Clearly the penalty in the generalization error is much smaller for AdaBoost,
suggesting that AdaBoost should perform much better than LightGBM, despite the test errors
in Figure 1a showing that LightGBM outperforms AdaBoost. To investigate this phenomenon
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(a) Plot of θ−2 when choosing θ as the (pm)’th
smallest margin for p ∈ [0, 1]. The margins are
those also shown in Figure 1b.
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aBoost and LightGBM.

Figure 2: Generalization penalties and margin distributions on the Forest Cover data set.

further, we have plotted the margin distribution of the two boosters after t = 10, 20 and 50
iterations of training, see Figure 2b. It is clear from this plot that the margins of the gradient
booster, learned by LightGBM, deteriorate quickly with the number of training iterations.
To explain why the margins quickly drops towards 0 for the gradient booster, we take a
closer look at the trees produced by LightGBM compared to AdaBoost. Figure 3 shows a
histogram of the predictions made by the trees produced by LightGBM. It is very striking
from this histogram that the trees making up the LightGBM gradient booster makes very
small (in absolute value) predictions on most data points, whereas AdaBoost always makes
predictions in {−1, 1}. Note that each tree always has its largest prediction among {−1, 1}.
Thus, LightGBM produces trees that only significantly change the predictions of very few
data points, while leaving almost all others unchanged. When training more and more trees,
this causes the margins to diminish. To see this, consider as an example a training point (x, 1)
and assume the first trained tree h makes a (correct) prediction of h(x) = 1 and is assigned
a weight of αh = 1. After the first training iteration, the margin of (x, 1) is 1. However, as
training progresses, many more trees may be produced that all predict 0 on x while being
assigned a weight of 1. Since margins are normalized,

∑
h∈H αh = 1, this means that the

margin of x drops to 1/t after t rounds of training. The drop in predicted accuracy by the
generalization bounds (1) and (2) seem unreasonable if we think about the data point x (the
error is expected to grow as t2 or t). A possible explanation of the shortcomings of current
generalization bounds is thus that they simply treat base learners as arbitrary functions in
X → [−1, 1]. That is, they pay no attention to the fact that base learners trained by gradient
boosters make very small predictions on almost all data points. To further support this claim,
we note that the proof of the previous generalization lower bound (3) as well as our improved
bound (4) construct a set of base learners H where all h ∈ H make predictions among {−1, 1},
i.e. they make no predictions of small magnitude. This further supports the belief that an
explanation based on the magnitude of predictions may be found, which is the focus of the
next section. We have used a tree size of 256 as large tree sizes are used in practice and
provide better test errors. Furthermore, the phenomena we are studying is clearer for large
tree sizes. In Section 3 we show results for both large trees and stumps. We note that base
learners with real valued predictions were first considered by Schapire and Singer [SS99] that
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Figure 3: Histogram of base learner predictions for LightGBM on the Forest Cover data set.
Only about 1 in 5000 predictions are larger than 0.95 in absolute value.

generalized the generalization bound of Schapire et al. [SFBL98] to work with real values but
without otherwise changing the bound.

3 Refined margin bounds

Motivated by the empirical observations in the previous section, we prove a more refined
margin based generalization bound for voting classifiers. Define from a voting classifier f
the notation ∆(x, h) := |f(x) − h(x)|. Intuitively, if a voting classifier f has a small margin
on a training point x, but this is the result of using mostly base learners h that make small
predictions (in absolute value), then ∆(x, h) will be small for most h in f . Also define from a
voting classifier f =

∑
h αhh the distribution Q(f) over base learners, which simply returns

h with probability αh. With this notation, our new generalization bound states that for any
distribution D over X × {−1, 1} and for any margin θ, it holds with high probability over a
set S ∼ Dm that all voting classifiers f satisfy:

LD(f) ≤ LθS(f) +O

(
N lg |H| lgm

m
+

√
LθS(f) · N lg |H| lgm

m

)
, (5)

where N = max{θ−2 ·
(
E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

, θ−1}.

Never worse. Comparing our bound to the k’th margin bound (2), we see that (5) equals
the k’th margin bound when N = Θ(θ−2). First, we argue that we always have N = O(θ−2),
i.e. (5) is never worse than the k’th margin bound. To see this, observe that ∆(x, h) ≤ 2
since all h ∈ H produce values in [−1, 1]. Thus, ∆(x, h)2 ≤ 4 and Eh∼Q(f)

[
∆(x, h)2

]
≤ 4.

This implies
(
E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/ lg(16m)

≤ 4, hence we always have

N = O(θ−2).

Potentially much better. Next, we demonstrate that our new bound may be significantly
better than previous generalization bounds for very natural voting classifiers. For any de-

sired margin θ ∈ (0, 1], consider an example of a voting classifier f(x) =
∑1/θ

i=1 θhi(x) such
that for each training point (x, y), there is exactly one hypothesis hi with hi(x) = y and
all others have hj(x) = 0. This example is quite similar to the empirical performance of
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LightGBM seen in Section 2, where most hypotheses make small predictions on most train-
ing points. The voting classifier f has a margin of θ on all training points and thus the
k’th margin bound predicts a generalization error of O(lg |H| lgm/(mθ2)) (since LθS(f) = 0
when all points have margin θ). Let us now estimate N in (5). First, fix an (x, y) ∈ S

and consider the expression Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
=
(∑1/θ

i=1 θ ·∆(x, hi)
2
)(lg(16m))/2

=(
θ · (1− θ)2 + (1− θ)θ2

)(lg(16m))/2
< θ(lg(16m))/2. Since this holds for every (x, y), we have(

E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/ lg(16m)

< θ. Plugging that into the definition of

N , we see that N ≤ max{θ−2 · θ, θ−1} = θ−1. That is, the dependency on the margin has im-
proved by a factor θ and our new generalization bound predicts LD(f) = O(lg |H| lgm/(mθ)).
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Figure 4: Generalization penalty N on the Forest Cover data set when choosing θ as the
(pm)’th smallest margin for p ∈ [0, 1].

Comparison to earlier work. In recent work, Cortes et al. [CMS19], also proved refined
generalization bounds for gradient boosters. Their works shows, that if the q-norm of the vec-
tor of leaf predictions for each tree trained by a gradient booster is small, then the trees have
smaller VC-dimension and hence the voting classifier has better generalization performance
(by using previous generalization bounds). Note that their bound only depends on the leaf
predictions and does not take into account the number of training points in each leaf. Our
experiment in Figure 3 shows that for each base learner, only a tiny fraction (about 1 in 5000)
of training points end in a leaf with large prediction, which our bound takes into account.

Empirical evaluation. Our new generalization bound carefully takes the magnitude of
predictions made by the base learners into account, thus there is hope that (5) may better
explain the experiments in the previous section. To test this, we have run the experiments
again, this time plotting the value of N as a function of p = LθS(f). That is, we notice that
for two voting classifiers produced by AdaBoost and LightGBM, respectively, the only thing
that varies in (5) when choosing the (pm)’th smallest margin, i.e. p = LθS(f), is the value of
N . Thus smaller values of N imply better generalization according to the theory. Figure 4
shows the result of the experiment. Quite remarkably, the relative ordering of AdaBoost
and LightGBM match the observed test errors from Figure 1a much better, i.e. LightGBM
slightly outperforms AdaBoost. We have repeated the same experiment on more data sets
and summarized the results in Table 1. The parameters for the experiments are shown in
Table 2

In all experiments, the margin distribution, here represented by the mean margin, is much
worse for the LightGBM classifier, while the height of the trees used, both the max height
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Table 1: Comparing AdaBoost with LightGBM. In this experiment the trees used as
bare learners are of increasing size relative to the data size. Each value shown is
the average over several runs and each run use 200 rounds of boosting. Moment is(
E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(m))/2
])2/ lg(m)

.

Data Set Alg. Train Err Test Err Mean Margin Max Depth Mean Depth Moment

Forest
ada 0.0001 0.0331 0.1696 22.0 12.4 0.969
lgb 0.0002 0.0291 0.0280 23.7 13.9 0.025

Boone
ada 0.00009 0.0589 0.311 17.5 10.2 0.917
lgb 0.00009 0.0552 0.0818 17.6 10.4 0.0564

Higgs
ada 0.178 0.277 0.0747 24.9 13.5 0.99
lgb 0.185 0.251 0.018 26 14.7 0.0289

Diabetes
ada 0 0.268 0.148 3.5 2.63 0.973
lgb 0.0264 0.26 0.142 3.5 2.63 0.214

and the mean height, is larger. Still the LightGBM classifier generalizes at least as well (in
fact, slightly better) than the AdaBoost classifier. Table 1 also shows that the moment value
from our generalization bound is significantly better for the LightGBM classifier. When we
consider our new generalization bound, the theory nicely matches the observed test errors in
the same way as was shown in Figure 4 for all data sets. While not final proof that this is the
real or only explanation, it suggests that the success of gradient boosters, despite having poor
margins, may be explained by the many small predictions made by the base learner trees.
The standard deviations of the test statistics are left out since they are extremely small for
the three large data sets (and we have run 100 iterations of the small Diabetes data set). For
completeness we have included the same experiment replacing the large trees with stumps
and shown the results in Table 3. The results for stumps match those from the larger trees,

Table 2: Data sets, all freely available, and parameters considered in the experiments. LR
means learning rate as used in LightGBM. For each experiment we randomly split the data
set in half to get a training set and a test set of equal size. For the Higgs dataset of size 11
million, we sample a subset of 2 million data points that we randomly split evenly into train
and test set. For Forest Cover only the first two classes are used to make it into a binary
classification problem.

Data Set Data Size Tree Size LR Stumps LR Runs

Diabetes 768 5 0.1 0.1 100

Boone 65032 96 0.2 0.6 5

Forest Cover 495141 256 0.3 0.3 5

Higgs 2000000 512 0.3 0.3 5
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just with a smaller difference in margins and moment values.

Table 3: Experiments with stumps as base learners. Same setup as in Table 1.

Data Set Alg. Train Err Test Err Mean Margin Moment

Forest
ada 0.223 0.224 0.0754 0.987
lgb 0.217 0.218 0.0225 0.0986

Boone
ada 0.0781 0.0817 0.138 0.975
lgb 0.0669 0.0744 0.0422 0.239

Higgs
ada 0.309 0.31 0.059 0.986
lgb 0.301 0.302 0.0309 0.329

Diabetes
ada 0.161 0.246 0.108 0.976
lgb 0.176 0.238 0.138 0.299

4 Generalization Bound Proof

This section is devoted to the proof of our refined margin based generalization bound for
voting classifiers, presented hereafter as Theorem 1. First we recollect some notation. Let X
be some ground set, D a distribution over X × [−1, 1], H ⊆ X → [−1, 1], and C = C(H) be the
convex hull of H. Fix a voting classifier f , then there exists a sequence 〈αh〉h∈H ∈ RH+ such
that

∑
h∈H αh = 1 and f =

∑
h∈H αh · h. Thus f implicitly defines a distribution Q = Q(f)

over H, where Prh∼Q[h = h′] = αh′ for all h′ ∈ H. Finally, let ∆ : X ×H → R be defined by
∆(x, h) := |f(x)− h(x)| for every x ∈ X , h ∈ H. We show the following.

Theorem 1. Let D be a distribution over X × {−1, 1} where X is some ground set, and let
H ⊆ X → [−1, 1]. For every δ > 0, it holds with probability at least 1 − δ over a set of m
samples S ∼ Dm, that for every voting classifier f ∈ C(H) and every margin θ > 0, we have

LD(f) ≤ LθS(f) +O

(
N lg |H|+ lg(1/δ)

m
+

√
N lg |H|+ lg(1/δ)

m
LθS(f)

)
, (6)

where N = O

(
max{θ−2 ·

(
E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

, θ−1} lgm

)
.

Denote by E = E(δ) the event that for every voting classifier f and every margin θ > 0,
the bound in (6) holds with N as defined in Theorem 1. In these notations we prove that
PrS∼Dm [E ] ≥ 1− δ.

Proof overview. Inspired by techniques presented by Schapire et al. [SFBL98] and
employed by Gao and Zhou [GZ13], our proof incorporates a discretization of the set of all
voting classifiers over H to a discrete net of classifiers, such that, loosely speaking, every
voting classifier over H can be approximated by a classifier that belongs to the net, and in
addition, the size of the net is not too big, and thus union bounding over the net yields
the desired probability bounds. Thus, intuitively speaking, by randomly rounding every
voting classifier f to the net we get an upper bound on the out of sample error for f . More
specifically, N ∈ N+ be some positive integer. We define a net CN of voting classifier by
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CN :=
{

1
N

∑
j∈[N ] hj : 〈hj〉j∈[N ] ∈ HN

}
. For every voting classifier f over H, we then give

a randomized rounding scheme that essentially associates a random net element g ∈ CN
with f , and show that with high probability the out of sample error with respect to g well-
approximates that of f . By choosing N carefully and union bounding over CN we get an
upper bound on the out of sample error for all voting classifiers f . The crux of the proof lies
in carefully choosing the size of the net, namely N . Loosely speaking, the net size N has to
be large enough, so that the net is rich enough to approximate every voting classifier well,
but on the other hand small enough, so that union bounding over the net does not incur too
large a cost for the probability bound. By subtly choosing N and proving refined bounds on
the rounding scheme we get the bound in Theorem 1.

Formally we define for every N ∈ N+, the event EN to be the set of all samples S ∈
(X × {−1, 1})m satisfying that for all voting classifiers g ∈ CN and integer ` ∈ [0, N ] it holds
that

L`/ND (g) ≤ L`/NS (g) +
8 ln(2δ−1N(N + 1)2|H|N )

m
+ 4

√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g) ;

and

Pr
(x,y)∼D

[ |f(x)−g(x)| > `/N ] ≤ 2 Pr
(x,y)∼S

[ |f(x)−g(x)| > `/N ]+
8 ln(4δ−1N(N + 1)2|H|N )

m
.

Intuitively speaking, for S ∈ EN , the first bound ensures a good generalization bound for
every voting classifier g in the net, whereas the second bound shows that g approximates f
over D almost as well as it approximates f over S. In turn these two bounds imply that the
behavior of f, g over S predicts their behavior over D. As

∑∞
N=1

1
N(N+1) = 1, the following

lemma implies Theorem 1 by applying a union bound.

Lemma 2. For every N ∈ N+ we have Pr
S∼Dm

[EN ] ≥ 1− δ
N(N+1) , and moreover,

⋂
N∈N+

EN ⊆ E.

The proof of the lemma is quite involved technically, and most of the proof is thus deferred
to the appendix. Our main novelty lies in showing that for our choice of N = N(f, θ), for
every sample set S ∈ supp(Dm), with very high probability over the choice of a point x ∈ X
and a net-classifier g ∈ CN , g approximates f . In turn, this implies that if S ∈ ⋂N∈N+ EN ,
then for every voting classifier f and θ > 0, f is well-approximated by a randomized rounding
to the net CN . Formally we show the following for every f and θ.

Lemma 3. Pr(x,y)∼S
g∼QN

[ ∆(x, g) > 49θ/100] ≤ 1
m2 , where

N = N(f, θ) := lg(16m) ·max{256θ−1‖∆(x, h)‖lg(16m), 100/θ ,

128eθ−2 ·
(

E
(x,y)∼S

[
E

h∼Q

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

} .

Proof. Let Z = ∆(x, g), then for every integer r ≥ 1 we conclude from Markov’s inequality
that

Pr
(x,y)∼S
g∼QN

[ Z > 49θ/100] = Pr
(x,y)∼D
g∼QN

[Zr > (49θ/100)r] ≤
(

100

49θ

)r
‖Z‖rr . (7)
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It is therefore enough to show ‖Z‖rr ≤
(

49θ
100

)r
m−2 for some positive integer r ≥ 1. Let r =

2·dlg(4m)/2e, then r is an even integer, satisfying lg(4m) = 2 lg(4m)/2 ≤ r ≤ lg(4m)+2 ≤ N .
Since r is even, then for g = 1

N

∑
j∈[N ] hj we get that

Zr = Z(x, g)r =

 1

N

∑
j∈[N ]

(f(x)− hj(x))

r

=
1

N r

∑
T=(ji)i∈[r]∈[N ]r

∏
i∈[r]

(f(x)− hji(x)) .

For every T = (ji)i∈[r] ∈ [N ]r let D(T ) := {j ∈ [N ] : ∃i ∈ [r].ji = j} be the set of distinct
indices occurring in T , and for every j ∈ [N ], let cT (j) := |{i ∈ [r] : ji = j}| be the number
of times j occurs in T . Then in these notations we have

Zr =
1

N r

∑
T∈[N ]r

∏
j∈D(T )

(f(x)− hj(x))cT (j) .

As h1, . . . , hN are chosen independently, we get that

E
(hk)k∈[N ]∼QN

[Zr] =
1

N r

∑
T∈[N ]r

∏
j∈D(T )

E
(hk)k∈[N ]∼QN

[
(f(x)− hj(x))cT (j)

]
.

Let T ∈ [N ]r, and assume that for some j ∈ D(T ) we have cT (j) = 1, then

E
(hk)k∈[N ]∼QN

[
(f(x)− hj(x))cT (j)

]
= E

h∼Q
[f(x)− h(x)] = f(x)− E

h∼Q
[h(x)] = f(x)−

∑
h∈H

αhh(x) = 0 ,

Denote T := {T ∈ [N ]r : ∀j ∈ D(T ). cT (j) > 1}, then

E
(hk)k∈[N ]∼QN

[Zr] =
1

N r

∑
T∈T

∏
j∈D(T )

E
(hk)k∈[N ]∼QN

[
(f(x)− hj(x))cT (j)

]
=

1

N r

∑
T∈T

∏
j∈D(T )

E
h∼Q

[
∆(x, h)cT (j)

]
.

(8)

By Lyapunov’s Theorem (see, e.g. [MOA11]), Eh∼Q[∆(x, h)ξ] is logarithmic convex for ξ ∈
[1,+∞), and as cT (j) ≥ 2 for all j ∈ D(T ) we get that∏

j∈D(T )

E
h∼Q

[
∆(x, h)cT (j)

]
≤ E

h∼Q

[
∆(x, h)2

]|D(T )|−1 E
h∼Q

[
∆(x, h)r−2|D(T )|+2

]
.

Plugging into (8) we get that

E
(hk)k∈[N ]∼QN

[Zr] ≤ 1

N r

∑
T∈T

E
h∼Q

[
∆(x, h)2

]|D(T )|−1 E
h∼Q

[
∆(x, h)r−2|D(T )|+2

]
. (9)

For every d ∈ N denote Td := {T ∈ T : |D(T )| = d}. Since for every T ∈ T and every
j ∈ D(T ), we know that cT (j) ≥ 2, then for every d > r/2 we get that Td = ∅. Therefore
T =

⋃· d∈[r/2] |Td|. Moreover, for every d ∈ [r/2] and every T ∈ Td, we have

E
h∼Q

[
|h(x)|2

]|D(T )|−1 E
h∼Q

[
|h(x)|r−2|D(T )|+2

]
= E

h∼Q

[
|h(x)|2

]d−1 E
h∼Q

[
|h(x)|r−2d+2

]
.

We therefore refine (9) to get

E
(hk)k∈[N ]∼QN

[Zr] ≤ 1

N r

∑
d∈[r/2]

|Td| E
h∼Q

[
∆(x, h)2

]d−1 E
h∼Q

[
∆(x, h)r−2d+2

]
. (10)

11



Claim 4. For every d ∈ [r/2], |Td| ≤ rr
√

2eπr
(
Ne
r

)d
.

Proof. Fix some d ∈ [r/2]. There are at most
(
N
d

)
ways to choose a subset Y ⊆ [N ] such that

|Y | = d. Once such a set Y is fixed, there are at most
(d+(r−2d)−1

r−2d

)
solution to the equation∑

j∈Y yj = r under the constraint that yj ∈ N \ {0, 1} for all j ∈ Y . Moreover, once {yj}j∈Y
is fixed, there are r! · ∏j∈Y (yj !)

−1 ways to form a sequence T satisfying that D(T ) = Y ,

cT (j) = yj for all j ∈ Y and cT (j) = 0 otherwise. Note that
∏
j∈Y (yj !) ≥ ((r/d)!)d for every

choice of {yj}j∈Y , and therefore

|Td| ≤
(
N

d

)
·
(
r − d− 1

r − 2d

)
· r!

((r/d)!)d
≤
(
Ne

d

)d
· 2r−d ·

√
2eπr(r/e)r

(
√

2π(r/d)(r/(ed))r/d)d

≤
√

2eπr (Ne)d · rr−d ≤ rr
√

2eπr

(
Ne

r

)d

Plugging into (10) we conclude that

E
(hk)k∈[N ]∼QN

[Zr] ≤ 1

N r

∑
d∈[r/2]

rr
√

2eπr

(
Ne

r

)d
E

h∼Q

[
∆(x, h)2

]d−1 E
h∼Q

[
∆(x, h)r−2d+2

]

=
√

2eπr
( r
N

)r ∑
d∈[r/2]

(
Ne

r

)d
E

h∼Q

[
∆(x, h)2

]d−1 E
h∼Q

[
∆(x, h)r−2d+2

]

As
(
Ne
r

)ξ
,Eh∼Q

[
∆(x, h)2

]ξ−1
,Eh∼Q

[
∆(x, h)r−2ξ+2

]
are all logarithmic convex for ξ ∈ [1, r/2],

their product is also logarithmic convex over that range, and thus gets its maximum on either
1 or r/2. Concluding we get that

E
(hk)k∈[N ]∼QN

[Zr] ≤ r

2
·
√

2eπr
( r
N

)r((Ne
r

)
E

h∼Q
[∆(x, h)r] +

(
Ne

r

)r/2
E

h∼Q

[
∆(x, h)2

]r/2)
.

Taking the expectation over (x, y) ∼ D gives

‖Z‖rr ≤
r

2

√
2eπr

( r
N

)r((Ne
r

)
‖∆(x, h)‖rr +

(
Ne

r

)r/2
E

(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]r/2])
(11)

To finish the proof of Lemma 3, we show that our bound onN implies that ‖Z‖rr ≤
(

49θ
100

)r
m−2.

Denote

Ψ1 =
r

2
·
√

2eπr
( r
N

)r
·
(
Ne

r

)
‖∆(x, h)‖rr =

r

2
·
√

2eπr

(
r‖∆(x, h)‖r

N

)r
·
(
Ne

r

)
Ψ2 =

r

2
·
√

2eπr
( r
N

)r((Ne
r

)r/2
E

(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]r/2])

Plugging into (11) we get that ‖Z‖rr ≤ Ψ1 + Ψ2.
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We will show that max{Ψ1,Ψ2} ≤
(

49θ
100

)r · 1
2m2 , which proves the claim. To bound Ψ1,

note first that Ψ1 decreases as a function of N (since r ≥ 2). Since N ≥ 256θ−1 lg(16m) ·
‖∆(x, h)‖lg(16m) we get that

Ψ1 ≤
r

2
·
√

2eπr

(
r · ‖∆(x, h)‖r

256θ−1 lg(16m) · ‖∆(x, h)‖lg(16m)

)r
·
(

256θ−1 lg(16m) · ‖∆(x, h)‖lg(16m) · e
r

)

Since r < lg(16m), and by monotonicity of norms, ‖∆(x, h)‖r ≤ ‖∆(x, h)‖lg(16m) ≤ 2, where
the last inequality is due to the fact that |f(x) − h(x)| ≤ 2 for all h ∈ H, x ∈ X . Moreover,
lg(4m) ≤ r ≤ lg(16m) ≤ 2(lg(4m)), therefore

Ψ1 ≤
r

2
·
√

2eπr

(
θ

256

)r
· 1024eθ−1

≤
(

49θ

100

)r
· 3r3/2125−r ·

(
1024eθ−1

)
≤
(

49θ

100

)r
· 3r3/264− lgm125−2 ·

(
1024eθ−1

)
≤
(

49θ

100

)r
· 1

5
lg3/2(4m) ·m−6θ−1 ≤

(
49θ

100

)r
· 1

2m2
· 1

2
(lg(4m)/m)3/2(m5/2θ)−1

For large enough m, we have that lg(4m)/m ≤ 5/8, and therefore (lg(4m)/m)3/2 ≤ 1/2.
Since θ ≥ 1/m we get that Ψ1 ≤

(
49θ
100

)r · 1
2m2 . We now turn to bound Ψ2. Recall that

N ≥ 128eθ−2 lg(16m) ·
(
E(x,y)∼D

[
Eh∼Q

[
∆(x, h)2

]lg(16m)/2
])2/ lg(16m)

, and therefore

Ψ2 ≤ 3r3/2

 erE(x,y)∼D

[
Eh∼Q

[
∆(x, h)2

]r/2]2/r

128eθ−2 lg(16m)
(
E(x,y)∼D

[
Eh∼Q [∆(x, h)2]lg(16m)/2

])2/ lg(16m)


r/2

≤
(

49θ

100

)r
· 3r3/2

 rE(x,y)∼D

[
Eh∼Q

[
∆(x, h)2

]r/2]2/r

30 lg(16m)
(
E(x,y)∼D

[
Eh∼Q [∆(x, h)2]lg(16m)/2

])2/ lg(16m)


r/2

Since r < log(16m), and by monotonicity of norms of random variables, we get that

E
(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]r/2]2/r

≤ E
(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]log(16m)/2
]2/ log(16m)

.

Therefore

Ψ2 ≤
(

49θ

100

)r
· 3r3/2 (30)−r/2 ≤

(
49θ

100

)r
· 3r3/2 (30)−(lgm)/2−1 ≤

(
49θ

100

)r
· 1

2m2
· 1

5
r3/2m−2/5

Similarly to before, for large enough m, lg3/2(4m) ·m−2/5 ≤ 5, and therefore we conclude that
Ψ2 ≤

(
49θ
100

)r · 1
2m2 , which completes the proof of the lemma.

5 Generalization lower bound

In this section we state and prove our new generalization lower bound, presented as Theorem 5.
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Theorem 5. For every large enough integer N , every θ ∈ (1/N, 1/40), τ ∈ [0, 1] and every(
θ−2 lnN

)1+Ω(1) ≤ m ≤ 2N
O(1)

, if lnN lnm
mθ2

≤ τ ≤ 1, then there exist a set X , a hypothesis
set H over X and a distribution D over X × {−1, 1} such that ln |H| = Θ(lnN) and with
probability at least 1/100 over the choice of samples S ∼ Dm there exists a voting classifier
fS ∈ C(H) such that

1. LθS(fS) ≤ τ ; and

2. LD(fS) ≥ LθS(fS) + Ω

(
ln |H| lnm
mθ2

+
√
τ ln(τ−1) · ln |H|

mθ2

)
.

Our proof is inspired by the constructions in [GKL20, GKGL+19] and makes use of the
following lemma, whose proof can be found in [GKGL+19].

Lemma 6. For every θ ∈ (0, 1/40), δ ∈ (0, 1) and integers d ≤ u, there exists a distribution
µ = µ(u, d, θ, δ) over hypothesis sets H ⊂ X → {−1, 1}, where X is a set of size u, such that

the following holds for N = Θ
(
θ−2 ln d ln(θ−2dδ−1)eΘ(θ2d)

)
.

1. For all H ∈ supp(µ), we have |H| = N ; and

2. For every labeling ` ∈ {−1,+1}u, if no more than d points x ∈ X satisfy `(x) = −1,
then

Pr
H∼µ

[∃f ∈ C(H) : ∀x ∈ X . `(x)f(x) ≥ θ] ≥ 1− δ ,

We start by describing the outlines of the proofs. To this end fix some integer N , and fix
θ ∈ (1/N, 1/40). Let u be an integer, and let X = {ξ1, . . . , ξu} be some set with u elements.
The distribution D over X ×{−1, 1}, is simply the uniform distribution over X ×{1}. That is
for every i ∈ [u] and y ∈ {−1, 1}, PrD[(ξi, y)] = 1+y

2u . The following claim is straightforward.

Claim 7. For every f : X → R we have Pr
(x,y)∼D

[yf(x) < 0] = 1
u

∑
i∈[u] 1f(ξi)<0.

We will show that with some constant probability over a random choice S ∼ Dm, an
adversarial voting classifier has a high generalization probability. We additionally show ex-
istence of a hypothesis set Ĥ such that with very high (constant) probability over a random
choice of ` ∈ {−1, 1}u, C(Ĥ) contains a voting classifier that attains high margins with ` over
the entire set X . Finally, we conclude that with positive probability over a random choice of
S ∼ Dm both properties are satisfied.

To prove existence of a “rich” yet small enough hypothesis set Ĥ we apply Lemma 6
together with Yao’s minimax principle. In order to ensure that the hypothesis sets constructed
using Lemma 6 is small enough, and specifically has size NO(1), we need to focus our attention
on sparse labelings ` ∈ {−1, 1}u only. That is, the labelings cannot contain more than lnN

θ2

entries equal to −1. To this end we will focus on d-sparse vectors. More formally, we define
a set of labelings of interest L(u, d) as follows.

L(u, d) := {` ∈ {−1, 1}u : |{i ∈ [u] : `i = −1}| ≤ d} . (12)

We next show that there exists a small enough (with respect to N) hypothesis set Ĥ that is
rich enough. That is, with high probability over ` ∈ L(u, d), there exists a voting classifier
f ∈ C(Ĥ) that attains high minimum margin with ` over the entire set X . Note that the
following result, similarly to Lemma 6 does not depend on the size of X , but only on the
sparsity of the labelings in question.
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Claim 8. If u ≤ 2N
O(1)

and d ≤ lnN
θ2

then there exists a hypothesis set Ĥ such that ln |Ĥ| =
Θ (lnN) and

Pr
`∈RL(u,d)

[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(ξi) ≥ θ] ≥ 1− 1/N .

Proof. Let µ = µ(u, d, θ, 1/N), be the distribution whose existence is guaranteed in Lemma 6.
Then for every labeling ` ∈ L(u, d), with probability at least 99/100 over H ∼ µ, there exists a
voting classifier f ∈ C(H) that has minimal margin of θ. That is, for every i ∈ [u], `if(ξi) ≥ θ.
By Yao’s minimax principle, there exists a hypothesis set Ĥ ∈ supp(µ) such that

Pr
`∈RL(u,d)

[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(xi) ≥ θ] ≥ 1− 1/N .

Moreover, since Ĥ ∈ supp(µ), then |Ĥ| = Θ
(
θ−2 lnu · ln(Nθ−2 lnu) · eΘ(θ2d)

)
. Since θ ≥

1/N , lnu ≤ NO(1), and d ≤ lnN
θ2

, and thus eθ
2d = N we get that there exists some universal

constant C > 0 such that |Ĥ| = Θ(NC), and thus ln |Ĥ| = Θ(lnN).

Let u = lnN
16τθ2

, and let d = lnN
16e28θ2

. We next introduce some notation. With every
set T ⊆ [u] we associate the classifier hT : X → {−1, 1} satisfying that for every x ∈ X ,
hT (x) = −1 if and only if x ∈ T . For every m-point sample S ∈ (X ×{1})m and every i ∈ [u],
let bSi be the number of times ξi is sampled into S. If the set S is clear from context, we simply
denote bi. In these notations, LS(hT ) = 1

m

∑
i∈T b

S
i for every T ⊆ [u]. Given a sample set S

Let T ∗ = T ∗(S) ⊆ [u] be a random set of size d that minimizes LS(hT ∗(S)) =
∑

i∈T ∗(S) b
S
i .

We will show the following.

Lemma 9. With probability at least 1/100 over the choice of sample S ∼ Dm, the following
holds.

1. There exists a voting classifier fS ∈ C(Ĥ) such that fS(ξi)hT ∗(S)(ξi) ≥ θ for all i ∈ [u];
and

2. LS(hT ∗(S)) ≤ d
u

(
1−

√
ln(u/2d)

9m/u

)
.

Note that as τ ≥ lnN lnm
mθ2

we know that u = lnN
16τθ2

≤ m
16 lnm and therefore ln(u/2d)

9m/u ≤
u ln(e28/τ)

9m ≤ ln(e28/τ)
144 lnm ≤ 1

2 for large enough N , and therefore the bound in the second part of
Lemma 9 is meaningful. We first show that the lemma implies Theorem 5.

Proof of Theorem 5. Fix some lnN lnm
mθ2

≤ τ ≤ 1. From Lemma 9 with probability 1/100

over the choice of a sample S ∼ Dm there exists a voting classifier fS ∈ C(Ĥ) such that
fS(ξi)hT ∗(S)(ξi) ≥ θ for all i ∈ [u] and moreover LS(hT ∗(S)) ≤ τ . Consider fS , and note first
that

LD(fS) =
1

u

∑
i∈[u]

1fS(ξi)<0 =
1

u

∑
i∈[u]

1hT∗(S)(ξi)<0 =
|T ∗(S)|
u

=
d

u
.

Additionally, since for every i ∈ [u], fS(ξi) ≤ 0 if and only if fS(ξi) ≤ θ, then

LθS(fS) = LS(fS) = LS(hT ∗(S)) ≤
d

u

(
1−

√
ln(u/2d)

9m/u

)
≤ d

2u
≤ τ .
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Summing up we get also that

LD(fS)− LθS(fS) ≥ d

u

√
ln(u/2d)

9m/u
= Ω

(
τ

√
u ln(τ−1)

m

)
= Ω

(√
lnNτ ln(τ−1)

mθ2

)
.

For the rest of the section we therefore prove Lemma 9. First note that since D is uniform
over X ×{1}, and since given S ∼ Dm, T ∗ is sampled uniformly over all subsets T ∈

([u]
d

)
such

that the sum
∑

i∈T b
S
i is minimized, we get that for every T ∈

([u]
d

)
, PrS∼Dm [T ∗(S) = T ] =(

u
d

)−1
. In other words, for every h ∈ L(u, d), PrS∼Dm [hT ∗(S) = h] =

(
u
d

)−1
. Therefore hT ∗(S) is

uniformly distributed over L(u, d). From claim 8 it follows that for large enough N , the prob-
ability over the choice of S ∼ Dm that there exists fS ∈ C(Ĥ) such that fS(ξ)hT ∗(S)(ξi) ≥ θ
for all i ∈ [u] is at least 99/100. In order to prove Lemma 9, it is therefore enough to show that

with probability at least 1/50 over the choice of S ∼ Dm, LS(hT ∗(S)) ≤ d
u

(
1−

√
ln(u/2d)

9m/u

)
.

We will show that with probability at least 1/50 over the choice of S there exist i1, . . . , id ∈ [u]

such that for every j ∈ [d], bSij ≤
m
u

(
1−

√
ln(u/2d)

9m/u

)
. Since T ∗(S) minimizes

∑
i∈T ∗(S) b

S
i , it

follows that

LS(hT ∗(S)) =
1

m

∑
i∈T ∗(S)

bSi ≤
1

m

∑
j∈[d]

bSij ≤
d

u

(
1−

√
ln(u/2d)

9m/u

)
.

To this end, fix some i ∈ [u]. For every j ∈ [m], let ISj be an indicator for the event that the

jth element selected into S is (ξi, 1). Then bSi =
∑

j∈[m] I
S
j , and as D is uniform, we get that

E[bSi ] =
∑

j∈[m] E[ISj ] = m/u. We will use the following reverse Chernoff bound and show

that with good enough probability, bSi is far from its expectation.

Lemma 10. Let m ∈ N+ and let I1, . . . , Im be independent indicator random variables with
success probability 1/u. Then for every

√
3/(m/u) ≤ δ ≤ 1/2 we have

Pr

∑
j∈[m]

Ij ≤ (1− δ)mp

 ≥ e−9mδ2/u .

Denote δ :=
√

ln(u/2d)
9m/u . As we have shown earlier, δ ≤ 1/2. Moreover, since u

2d ≥ e27τ−1 ≥
e27, we get that δ ≥

√
27

9m/u =
√

3
m/u . We can therefore conclude from Lemma 10 that

Pr[bSi ≥ (1− δ)m/u] ≥ e−9mδ2/u = e− ln(u/2d) =
2d

u
.

Let BS
i be the indicator for the event bSi ≥ (1 − δ)m/u, then E[BS

i ] ≥ 2d
u . Finally, let

BS =
∑

i∈[u]B
S
i , then E[BS ] ≥ 2d. We will show that with probability at least 1/8 ≥ 1/50

we have BS ≥ d. This implies that there exist i1, . . . , id such that for every j ∈ [d], bSij ≤
m
u (1− δ) = m

u

(
1−

√
ln(u/2d)

9m/u

)
. To show BS ≥ d with reasonable probability, we use the

Paley-Zigmund inequality.

Pr[BS ≥ d] = Pr

[
BS ≥ 1

2
E[BS ]

]
≥ E[BS ]2

4E[(BS)2]
.
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Since BS
1 , . . . , B

S
u are negatively correlated, we have that E[BS

i B
S
j ] ≤ E[BS

i ][BS
j ] = E[BS

1 ]2

for every i, j ∈ [u]. Moreover, as BS
1 , . . . , B

S
u are indicators, E[(BS

i )2] = E[BS
i ] for all i ∈ [u].

Therefore

E[(BS)2] =
∑
i,j∈[u]

E[BS
i B

S
j ] ≤ (u2 − u)E[BS

1 ]2 + uE[BS
i ]

≤ u2E[BS
1 ]2 + E[BS ] = E[BS ]2 + E[BS ] ≤ 2E[BS ]2 ,

where the last inequality is due to the fact that E[BS ] ≥ 2d ≥ 1. We conclude that

Pr[BS ≥ d] ≥ E[BS ]2

4E[(BS)2]
≥ 1

8
.

The proof of the lemma, and therefore of Theorem 5 is now complete.
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A Proof of Lemma 2

We start by handling the first part of the lemma, namely that for every N ∈ N+, with high
probability over S ∼ Dm, S ∈ EN .

Claim 11. For every N ∈ N+, g ∈ CN and ` ∈ [0, N ], with probability at least 1− δ
N(N+1)2|H|N

over S ∼ Dm we have

L`/ND (g) ≤ L`/NS (g) +
8 ln(4δ−1N(N + 1)2|H|N )

m
+ 4

√
ln(4N(N + 1)2|H|N/δ)

m
L`/NS ; (13)

and

Pr
(x,y)∼D

[ |f(x)−g(x)| > `/N ] ≤ 2 Pr
(x,y)∼S

[ |f(x)−g(x)| > `/N ]+
8 ln(4δ−1N(N + 1)2|H|N )

m
.

(14)

We draw the reader’s attention to the fact that by union bounding over all g ∈ CN and
` ∈ [0, N ] we get that PrS∼Dm [EN ] ≥ 1 − δ

N(N+1) for every N ∈ N+, which proves the first
part of Lemma 2.

Proof. First note that if L`/ND (g) ≤ 8m−1 ln(4δ−1N(N+1)2|H|N ) then (13) holds for all S, and

thus with probability 1 over S ∼ Dm. Assume therefore that L`/ND (g) > 8m−1 ln(2δ−1N(N +
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1)2|H|N ). Denote S = {(xj , yj)}j∈[m], then

L`/NS (g) = Pr
(x,y)∼S

[yg(x) ≤ `/N ] =
1

m

∑
j∈[m]

1yg(xj)≤`/N .

Moreover E[1yg(xj)≤`/N ] = L`/ND (g) for all j ∈ [m], and therefore E[L`/NS (g)] = L`/ND (g). Let

γ :=

√
2 ln(4N(N+1)2|H|N/δ)

mL`/ND
. Then γ ∈ (0, 1/2), and therefore a Chernoff bound gives the

following two inequalities.

Pr
S∼Dm

[
L`/NS (g) < (1− γ)L`/ND (g)

]
≤ e−γ2mL

`/N
D (g)/2 ≤ δ

4N(N + 1)2|H|N

Pr
S∼Dm

[
L`/NS (g) > 2L`/ND (g)

]
≤ e−mL

`/N
D (g)/3 ≤ δ

4N(N + 1)2|H|N ,

where the last inequality follows from the fact that L`/ND (g) ≥ 8m−1 ln(2δ−1N(N + 1)2|H|N ).
Therefore with probability at least 1− δ/(2N(N + 1)2|H|N ) we get that

L`/ND (g) ≤ (1−γ)−1L`/NS (g) ≤ (1+2γ)L`/NS (g) ≤ (1+2γ)L`/NS (g)+
8 ln(2δ−1N(N + 1)2|H|N )

m
,

(15)

and moreover

γ =

√
2 ln(N(N + 1)2|H|N/δ)

mL`/ND (g)
≤
√

4 ln(N(N + 1)2|H|N/δ)
mL`/NS (g)

(16)

Plugging (16) into (15) and summing up we get

L`/ND (g) ≤ L`/NS (g) +
8 ln(2δ−1N(N + 1)2|H|N )

m
+ 4

√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g) .

Next note once again that if Pr(x,y)∼D[ |f(x)− g(x)| > `/N ] ≤ 8m−1 ln(4δ−1N(N + 1)2|H|N )
then (14) holds for all S, and thus with probability 1 over S ∼ Dm. Assume therefore that
Pr(x,y)∼D[ |f(x) − g(x)| > `/N ] > 8m−1 ln(4δ−1N(N + 1)2|H|N ). Similarly to the first part
of the proof a Chernoff bound gives the following inequality.

Pr
S∼Dm

[
Pr

(x,y)∼S
[ |f(x)− g(x)| > `/N ] > 2 Pr

(x,y)∼D
[ |f(x)− g(x)| > `/N ]

]
≤ e−mPr(x,y)∼D[ |f(x)−g(x)|>`/N ]/3 ≤ δ

4N(N + 1)2|H|N ,

where the last inequality follows from the fact that Pr(x,y)∼D[ |f(x) − g(x)| > `/N ] ≥
8m−1 ln(2δ−1N(N+1)2|H|N ). Therefore with probability at least 1−δ/(2N(N+1)2|H|N ) we
get (14). Union bounding we get that with probability with probability at least 1−δ/(N(N+
1)2|H|N ) over the choice of S ∼ Dm we have both (13) and (14).
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We turn now to prove the second part of Lemma 2, namely that
⋂
N∈N+ EN ⊆ E . To

this end, let S ∈ ⋂N∈N+ EN . Let f be some voting classifier and let θ > 0. As f is a
voting classifier, then there exists a sequence 〈αh〉h∈H ∈ RH+ such that

∑
h∈H αh = 1 and

f =
∑

h∈H αh · h. Thus f implicitly defines a distributionQ = Q(f) overH, where Prh∼Q[h =
h′] = αh′ for all h′ ∈ H. Recall that ∆ : X × H → R is defined by ∆(x, h) := |f(x) − h(x)|
for every x ∈ X , h ∈ H.

Definition 1. Let X be a random variable, and let r ∈ N, then the rth moment of X is
defined by ‖X‖rr := E[Xr]. The rth norm of X is defined by ‖X‖r := r

√
E[Xr].

Set hereafter

N := lg(16m) ·max{256θ−1‖∆(x, h)‖lg(16m), 100/θ ,

128eθ−2 ·
(

E
(x,y)∼S

[
E

h∼Q

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

}

The product distribution QN defines a distribution over HN . By identifying an N -tuple
h1, . . . , hN ∈ H with the corresponding classifier 1

N

∑
j∈[N ] hj we can think of QN also as a

distribution over CN . We first observe that

LD(f) ≤ Pr
(x,y)∼D,g∼QN

[yf(x) ≤ 0 ∧ yg(x) ≤ θ/2] + Pr
(x,y)∼D,g∼QN

[yf(x) ≤ 0 ∧ yg(x) > θ/2]

≤ Pr
(x,y)∼D,g∼QN

[yg(x) ≤ θ/2] + Pr
(x,y)∼D,g∼QN

[ |f(x)− g(x)| > θ/2]

(17)

To bound the first summand, let ` ∈ [0, N ] be the smallest integer such that θ/2 ≤ `/N .
Such ` clearly exists as θ ∈ [0, 1]. Moreover we know that θ/2 ≤ `/N ≤ θ/2+1/N ≤ 51θ/100.
Since S ∈ EN we get that

Pr(x,y)∼D
g∼QN

[yg(x) ≤ θ/2] ≤ Pr
(x,y)∼D
g∼QN

[yg(x) ≤ `/N ] = E
g∼QN

[
Pr

(x,y)∼D
[yg(x) ≤ `/N ]

]

≤ E
g∼QN

[
Pr

(x,y)∼S
[yg(x) ≤ `/N ] + εN (g)

]
≤ Pr

(x,y)∼S
g∼QN

[yg(x) ≤ 51θ/100] + E
g∼QN

[εN (g)] ,

where εN (g) = 8 ln(2δ−1N(N+1)2|H|N )
m + 4

√
ln(N(N+1)2|H|N/δ)

m L`/NS (g). Similarly to (17) we get
that

Pr
(x,y)∼S
g∼QN

[yg(x) ≤ 51θ/100] ≤ Pr
(x,y)∼S

[yf(x) ≤ θ] + Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > 49θ/100] ,

and therefore

Pr
(x,y)∼D
g∼QN

[yg(x) ≤ θ/2] ≤ Pr
(x,y)∼S

[yf(x) ≤ θ]+ Pr
(x,y)∼S
g∼QN

[ |f(x)−g(x)| > 49θ/100]+ E
g∼QN

[εN (g)] .

(18)
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Moreover, since S ∈ EN we get the following bound over the second summand in (17).

Pr
(x,y)∼D
g∼QN

[ |f(x)− g(x)| > θ/2] ≤ Pr
(x,y)∼D
g∼QN

[ |f(x)− g(x)| > (`− 1)/N ]

≤ 2 Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > (`− 1)/N ] +
8 ln(2δ−1N(N + 1)2|H|N )

m

≤ 2 Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > 49θ/100] +
8 ln(2δ−1N(N + 1)2|H|N )

m

(19)

Plugging (18) and (19) into (17) we get that

LD(f) ≤ Pr
(x,y)∼S

[yf(x) ≤ θ] + 3 Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > 49θ/100]

+
16 ln(2δ−1N(N + 1)2|H|N )

m
+ E
g∼QN

[√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g)

] (20)

From Lemma 3 we get that by Jensen’s inequality and sub-additivity of square root

E
g∼QN

[√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g)

]
≤
√

ln(N(N + 1)2|H|N/δ)
m

E
g∼QN

[
L51θ/100
S (g)

]
≤
√

ln(N(N + 1)2|H|N/δ)
m

(
LθS(f) +

1

m2

)
≤ 1

m
+

√
ln(N(N + 1)2|H|N/δ)

m
LθS(f) ,

(21)

and therefore

LD(f) ≤ LθS(f) +O

(
N lg |H|+ lg(1/δ)

m
+

√
N lg |H|+ lg(1/δ)

m
LθS(f)

)
,

which concludes the proof of Theorem 1.
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B Experiments Details

In this section we visually analyze the extra data sets and results shown in Table 1 in the
same way as was done for the Forest Cover data set in the main test.

Higgs

In Figure 5, 6, 7 we see the result of our new refined margin analysis on the Higgs data
set, trained with a learning rate 0.3 for LightGBM and a max tree size of 512, following the
analysis in the the main text. As the plots show, the results are in perfect agreement with
the results seen for the Forest Cover data set in the main text. Figure 5b, shows that the
LightGBM model has much worse margins while Figure 5a show that the LightGBM classifier
generalizes better. The comparison between the k’th margin generalization bound and our
new refined margin generalization bound is shown in Figure 6a and 6b. While the existing
k’th margin bound shows that AdaBoost should generalize better, which it does not, our
new generalization fits the observed performance of the two classifiers. We have shown the
histogram of all tree predictions for all data points for the LightGBM classifier in Figure 7,
explaining why our new generalization bound is able to explain the results.
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(a) Mean training and test error over five runs. The
std. deviation of the test error at iteration 200 is
approx. 0.0006 for both classifiers
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(b) Sorted margin values.

Figure 5: Accuracy and margin plots for AdaBoost and LightGBM on the Higgs data set
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(a) Plot of θ−2 when choosing θ as the (pm)’th
smallest margin for p ∈ [0, 1]. The margins are
those also shown in Figure 5b.
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(b) Generalization penalty N when choosing θ as
the (pm)’th smallest margin for p ∈ [0, 1].

Figure 6: Comparing generalization penalties on the Higgs data set.
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Figure 7: Histogram of base learner predictions for LightGBM on the Higgs data set. The
number of large predictions in the base learners on the training data (|h(x) ≥ 0.95|) is less
than 1 percent (0.07 percent).

Boone

In Figure 8, 9, 10 we see the result of our new refined margin analysis on the Boone data set,
trained with a learning rate 0.2 for LightGBM and a max tree size of 96. The results are in
perfect agreement with the results shown for Forest Cover and Higgs.
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(a) Mean training and test error over five runs. The
std. deviation of the test error after the last itera-
tion is approx. 0.0006 for LightGBM and 0.001 for
AdaBoost.
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(b) Sorted margin values.

Figure 8: Accuracy and margin plots for AdaBoost and LightGBM on the Boone data set.
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(a) Plot of θ−2 when choosing θ as the (pm)’th
smallest margin for p ∈ [0, 1]. The margins are
those also shown in Figure 8b.
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(b) Generalization penalty N when choosing θ as
the (pm)’th smallest margin for p ∈ [0, 1].

Figure 9: Comparing Generalization penalties on the Boone data set.
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Figure 10: Histogram of base learner predictions for LightGBM on the Boone data set. The
number of large predictions in the base learners on the training data (|h(x) ≥ 0.95|) is less
than 1 percent (0.67).

Diabetes

Finally, in Figure 11, 12, 13 we see the result of testing our new refined margin analysis on the
much smaller Diabetes data set. The LightGBM classifier has a smaller generalization error
when compared to AdaBoost. The margin distributions are harder to compare, but when we
look at the generalization errors in Figure 12a it seems that AdaBoost achieves the better
margin distribution. However, when we consider our new bound in Figure 12b we again get
a better explanation of the observed performance of the two different methods.
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(a) Mean training and test error over 10 runs.
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(b) Sorted margin values.

Figure 11: Accuracy and margin plots for AdaBoost and LightGBM on the Diabetes data
set.
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(a) Plot of θ−2 when choosing θ as the (pm)’th
smallest margin for p ∈ [0, 1]. The margins are
those also shown in Figure 11b.
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(b) Generalization penalty N on the Boone data set
when choosing θ as the (pm)’th smallest margin for
p ∈ [0, 1].

Figure 12: Comparing Generalization penalties on the Diabetes data set.
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Figure 13: Histogram of base learner predictions for LightGBM on the Diabetes data set.
The number of large predictions in the base learners on the training data (|h(x) ≥ 0.95|) is
9.5 percent.
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