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Abstract

In this work, we prove a Ω̃(lg3/2 n) unconditional lower bound on the maximum of the query time and
update time for dynamic data structures supporting reachability queries in n-node directed acyclic graphs
under edge insertions. This is the first super-logarithmic lower bound for any natural graph problem. In
proving the lower bound, we also make novel contributions to the state-of-the-art data structure lower
bound techniques that we hope may lead to further progress in proving lower bounds.

1 Introduction

Graph problems are among the most well-studied topics in algorithms and data structure, with a wealth
of new exciting results every year. Just in the recent year, this included a near-linear time algorithm for
max-flow [3] and single-source shortest paths with negative weights [2]. The area of fine-grained complexity
has provided a large number of complementary conditional lower bounds via reductions from a few carefully
chosen conjectured hard problems. This includes lower bounds for graph Diameter and Radius which fol-
low by reduction from All-Pairs-Shortest-Paths (APSP) [1], or lower bounds for dynamic graph problems,
such as Dynamic Reachability, that follow both from the 3SUM conjecture [15], the Online Matrix-Vector
conjecture [6] and the Strong Exponential Time Hypothesis [7].

However, if we turn to unconditional lower bounds, the situation is much more depressing. The strongest
known unconditional lower bound for any natural graph problem, is an Ω(lg n) lower bound on the maximum
of the update time and query time for the dynamic maintenance of an undirected graph with connectivity
queries. This lower bound is due to Pǎtraşcu and Demaine [13] and dates back to 2004. In the meantime,
stronger techniques for proving lower bounds for dynamic data structures have been developed, including a
technique by Larsen [8] for proving Ω̃(lg2 n) lower bounds for dynamic problems with Ω(lg n)-bit outputs to

queries, and a technique for proving Ω̃(lg3/2 n) lower bounds for dynamic decision problems (1-bit outputs)
due to Larsen, Weinstein and Yu [10]. Unfortunately, none of these techniques have so far been successfully
applied to a natural graph problem and the strongest unconditional lower bound remains the Ω(lg n) bounds
by Pǎtraşcu and Demaine. The main contribution of this work, is to provide the first such ω(lg n) lower
bound for a graph problem. Concretely, we prove the following

Theorem 1. Any data structure for Dynamic Reachability in n-node directed acyclic graphs under edge
insertions, with worst case update time tu, expected query time tq and w-bit memory cells for w = Ω(lg n),
must satisfy

tq = Ω

(
lg3/2 n

lg2(tuw)

)
.

In addition to the Ω(lg n) lower bound by Pǎtraşcu and Demaine, the only other known lower bounds
for Dynamic Reachability are two threshold lower bounds. First, Pǎtraşcu and Thorup [17] showed that for
Dynamic Reachability, even in the undirected case, any data structure with update time tu = o(lg n) must
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have query time tq = n1−o(1). As a complimentary result, Clifford et al. [4] showed that any data with query

time tq = o(lg n/ lg lg n) and space n lgO(1) n (for graphs with n lgO(1) n edges) must have an update time of
tu = n1−o(1). These bounds however do not exceed Ω(lg n) on the maximum of tu and tq.

In addition to proving the first ω(lg n) lower bound for a natural graph problem, we also make several
contributions on a technical level, hopefully paving the way for further ω(lg n) lower bounds for dynamic data
structure problems. In the following section, we start by giving a high level overview of previous techniques
for proving data structure lower bounds. We then give a more technical description of our new approach
and argue how we overcome some of the obstacles that have prevented previous works from breaking the
lg n barrier for graph problems.

1.1 Lower Bounds in the Cell Probe Model

Unconditional lower bounds on the operation time of data structures are proved in the cell probe model of
Yao [19]. In this model, a data structure consists of a random access memory, partitioned into cells of w bits
each.

For static data structures, an input to a data structure problem is preprocessed into a memory represen-
tation. For space usage S, the data structure uses memory cells of integer addresses [S] = {0, . . . , S − 1} to
represent the input. Preprocessing is free of charge and only the space usage is measured.

To answer a query, the data structure is allowed to read, or probe, up to tq memory cells and must
announce the answer to the query based on the contents of the probed cells. In this model, computation
is free of charge, and the addresses of the cells to probe may be determined as an arbitrary function of the
query and the contents of previously probed cells. Formally, this can be modelled by having a decision tree
for each query. Each node of a tree is labeled with a cell address in [S] and has 2w children, corresponding
to each possible contents of that cell. The leaves of the trees are labeled with the answer to the query.

When proving lower bounds for static data structures, we study the tradeoff between S and tq.
For dynamic data structures, we also need to support updates to the underlying data. This could, for

example, be edge insertions or deletions in a graph. For dynamic data structures, we assume cells have
integer addresses in [2w] = {0, . . . , 2w−1}. Queries are still answered as in static data structures. To process
an update, a data structure may probe up to tu memory cells. While probing a cell, the data structure may
also change the contents of that cell. Similarly to queries, we only count the number of cell probes when
stating update time and any computation is free of charge.

Previous Techniques for Static Lower Bounds. The current state-of-the-art technique for proving
lower bounds for static data structures, is the cell sampling technique by Panigrahy et al. [11] that was later
refined in [9] and used in early work on hashing by Siegel [18]. As it plays a central role in more advanced
techniques for dynamic data structures, including ours, we briefly sketch it here. Also, to present the different
techniques in a coherent manner, we use the same example data structure problem when discussing them.
The example we use is 2d range sum. In the static version of this problem, the input is a set of n points in
2d having integer coordinates on the [n] × [n] grid. Each point is assigned a b-bit weight. A query is also
specified by a point (x, y) ∈ [n]× [n] and the goal is to return the sum of the weights assigned to input points
(x′, y′) with x′ ≤ x and y′ ≤ y.

To prove a lower bound for this problem using the cell sampling technique, we use an encoding argument.
The idea is to consider a uniform random assignment of weights to a fixed set of n points. Assuming
the availability of an efficient data structure for 2d range sum, we now give an encoding and decoding
procedure for reconstructing most of the random weights. Intuitively, if we can reconstruct m weights from
the encoding, then the encoding length must be at least mb bits. The idea is thus to give an encoding
with a short length as a function of S and tq. For this, the cell sampling technique first constructs a data
structure on the random input. For a sampling probability p = (n/(Sw))O(1), we randomly sample each
memory cell independently with probability p. The encoding is then the contents and addresses of the
sampled cells, costing an expected pS(w + lgS) = O(pSw) = o(n) bits. To reconstruct many weights from
this encoding, a decoder can now simulate every possible query (x, y) ∈ [n]× [n]. When simulating a query,
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the decoder runs the query algorithm, and for every probed cell, checks whether it is in the random sample
that was encoded. If so, the simulation can continue and otherwise the decoder discards the query and
moves on to the next query point. Note that for any fixed query, the chance that all tq cells it probes are
in the sample is ptq . If tq = o(lg n/ lg(Sw/n)), this is n−o(1). Since there are n2 queries, the decoder will
succeed in recovering the answer to n2−o(1) queries. If these queries are sufficiently different (the rank is
Ω(n) when interpreted as linear combinations over the point weights), then they together reveal Ω(nb) bits
of information about the weights. This is a contradiction since the encoding size was o(n) and thus one
concludes t = Ω(lg n/ lg(Sw/n)). We note that such a rank argument for 2d range sum was first used by
Pǎtraşcu [14] in a communication complexity based lower bound proof [14, 16].

The Chronogram Technique for Dynamic Lower Bounds. The basic idea in most of the central
techniques for proving dynamic lower bounds, is to boost a static lower bound by a logarithmic factor. For
this reason, these techniques only apply to so-called decomposable problems. To explain this, we start by
presenting the seminal chronogram technique by Fredman and Saks [5]. The main idea in their technique,
is to consider a sequence of n random updates, partitioned into geometrically decreasing sized epochs of
ni = βi updates for some β ≥ 2. The first epoch of updates to be processed is epoch number lgβ n − 1,
then comes epoch lgβ n− 2 and so forth, until epoch 1. Finally, a random query is asked after the epochs of
updates have been processed. For our running example of 2d range sum, each epoch of updates would insert
ni points with uniform random weights and the random query is again a point in [n] × [n]. The answer to
the query is still the sum of all weights assigned to points (x′, y′) with x′ ≤ x and y′ ≤ y. The key property
of this data structure problem, is that it is decomposable. By this, we mean that if we know all updates of
epochs j ̸= i as well as the answer to a query (x, y), then we also know the answer to the query if only the
updates of epoch i were present. For 2d range sum, this follows simply by subtracting off the contribution
to the sum from epochs j ̸= i. From this observation, we can intuitively use the dynamic data structure to
obtain an efficient static data structure for any epoch i.

We explain this in more detail. From a dynamic data structure and a sequence of n updates partitioned
into epochs, consider the memory cells of the data structure after having processed all the updates. Each
cell of the memory is then associated with the epoch in which it was updated the last time. Let Ci denote the
cells associated with epoch i. There are now a few crucial observations. First, for any epoch i, if the updates
of the epochs are independent, then the cells in Cj for j > i cannot contain any information about epoch
i. This is because these cells were last written before the updates of epoch i arrived. Secondly, the cells in
epochs j < i are very few. Concretely, with an update time of tu, we have |Cj | ≤ βjtu so for β = ω(tuw),
we have

∑
j<i |Cj |w = o(βi). This means that all cells that are changed in epochs after i contain o(1) bits

on average about each of the βi updates of epoch i. Intuitively, if the answer to the random query depends
a lot on the updates of epoch i, then the data structure has to probe Ω(1) cells from Ci as other epochs
contain too little information to correctly answer the query. Since the sets Ci are disjoint, we may sum this
lower bound over all epochs to conclude tq = Ω(lgβ n) = Ω(lg n/ lg(tuw)).

Static Data Structures with Pre-Initialized Memory and a Cache. The above approach can be
implicitly seen as proving a static lower bound on each epoch. In this work, we make this connection clearer
by defining a special form of static data structure that fits the reduction. We define a static cell probe data
structure with pre-initialized memory and a cache, as a static data structure that before seeing the input
may pre-initialize all memory cells (with addresses in [2w]) to arbitrary contents (independent of the input).
Upon receiving its input, it updates up to S of the memory cells and finally it creates a cache of up to Scac

memory cells. On a query, the data structure probes memory cells and must announce the answer to the
query based on the contents of the probed cells and the cache. The cell probed in each step may be an
arbitrary function of the cache and all previously probed cells. Compared to a standard static cell probe
data structure, it thus has free access to the cache (which does not count towards the query time), plus it
may probe into pre-initialized memory. The query time of a data structure with pre-initialized memory and
a cache consists of two parameters. We let ttot denote the total number of cells probed when answering the
query, counting probes to both updated memory cells and cells that were not changed when seeing the input.
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We let tq denote the number of probes to updated cells.
The chronogram technique of Fredman and Saks can now be seen as a reduction to a static data structure

problem with pre-initialized memory and a cache. To see this, consider again the 2d range sum problem.
Among the epochs lgβ n−1, . . . , 1, there must be an epoch i where the expected number of probes to cells in
Ci is O(tq/ lgβ n) simply by disjointness of the sets Ci. Focus on such an epoch i. We now obtain a static data

structure with pre-initialized memory and a cache for the static problem of 2d range sum on ni = βi points
as follows: Before seeing the input ni points, we pre-initialize memory by running a hard-coded sequence
of updates for epochs j > i using the dynamic data structure. As updates are independent across epochs,
this can be done without knowing the input of epoch i. Upon receiving the input, we interpret it as the
updates of epoch i and run the updates on the dynamic data structure. This updates at most S = tuni
cells. Finally, we run a hard-coded sequence of updates for epochs j < i on the dynamic data structure and
put all changed cells in the cache. We thus have Scac ≤

∑
j<i β

jtu = o(ni/w). To answer a query on the
static data structure, we run the query algorithm of the dynamic data structure. Whenever it probes a cell,
if that cell was updated during epoch j < i, the contents of the cell is in the cache. Otherwise, we simply
probe the memory. When the query algorithm of the dynamic data structure has finished, we exploit that
we have a decomposable search problem by subtracting off the contributions to the query answer from the
hard-coded epochs j ̸= i. If tq is the query time of the dynamic data structure, then ttot ≤ tq for the static
data structure. Furthermore, we have t′q = O(tq/ lgβ n), where t

′
q denotes the number of probes the static

data structure makes to updated cells.
In light of the above, the chronogram technique now boils down to proving a t′q = Ω(1) lower bound on

the number of probes to updated cells for a static data structure with pre-initialized memory and a cache
when the data structure updates S = nitu cells and has a cache of size Scac = o(ni/w) cells.

Super-Logarithmic Lower Bounds. Building on the chronogram technique, Larsen [8] later developed
a technique capable of proving lower bounds of tq = Ω((lg n/ lg(tuw))

2) for dynamic data structures. His
approach is very intuitive in light of the just described reduction to static data structures with pre-initialized
memory and a cache: simply use the cell sampling technique (for static data structures) to prove a tq =
Ω(lg n/ lg(Sw/n)) lower bound for static data structures with pre-initialized memory and a cache. Combining
this with the reduction above, a dynamic data structure with query time tq and update time tu now gives a
static data structure with pre-initialized memory that updates S = nitu cells and has a cache of o(ni) bits
for some epoch i ∈ {lgβ n − 1, . . . , (1/2) lgβ n}. Furthermore, the static data structure probes O(tq/ lgβ n)
updated cells. The lower bound from cell sampling now implies tq/ lgβ n = Ω(lg ni/ lg(Sw/ni)). Since

ni ≥
√
n and β = (tuw)

O(1), this is tq = Ω((lg n/ lg(tuw))
2).

At first sight, this seems like a trivial extension. However, one critical step of the cell sampling technique
breaks when attempting to prove the static lower bound. Recall that in cell sampling, each memory cell is
sampled independently with probability p = (n/(Sw))O(1). To reach a contradiction for 2d range sum, we
want to sample o(n/w) of the updated cells and argue that if the number of probes to updated cells is too
small, then Ω(n) bits of information about the weights may be recovered from the sample and the cache
(which also has size o(n) bits). If the number of probes to updated cells was o(lg n/ lg(Sw/n)), then there
would indeed be n2−o(1) queries in [n] × [n] for which all their probes to updated cells are in the sample.
If a decoding procedure simulates the query algorithm of any such query, it will recover its answer, since
whenever it probes a cell that is not in cache and not in the sample, we know its contents is the same as
after pre-initializing the memory (which is independent of the input). Now the critical observation is that
we cannot detect which queries have all their probes to updated cells in the sample. For normal static data
structures, we could simply discard the query if it probes outside the sample, but with a pre-initialized
memory, if a cell is not in cache and not in the sample, we have no clue whether it was an updated cell that
was not sampled, or if it was merely a pre-initialized cell. A decoding procedure thus has no clue which
queries to simulate. Larsen circumvents this issue by requiring that every weight assigned to a point has
b ≥ 3 lg n bits. In this way, the encoding procedure can afford to explicitly write down a set of queries for
which the simulation succeeds. Since a query costs 2 lg n bits to write down, but it recovers b = 3 lg n bits
of information about the weights, this still yields a contradiction.
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Larsen’s technique critically requires a large number of output bits such that the answer to a query
reveals more bits than it takes to describe the query. Breaking the logarithmic barrier for a dynamic
decision problem, i.e. a problem with a 1-bit output, remained open for another 5 years until the work of
Larsen, Weinstein and Yu [10]. In their work, which is what we expand upon in this paper, they showed that
a static data structure with pre-initialized memory and a cache may be used to obtain a one-way protocol
for a natural communication game. In this game, Alice receives a random input to the static data structure
problem and Bob receives a random query. Alice then sends Bob a message of o(n) bits and Bob must
answer the query correctly with probability slightly better than guessing. Larsen, Weinstein and Yu showed
that a data structure with total probes ttot and tq probes to updated memory cells can be used to obtain a
protocol where the chance of Bob outputting the correct answer is at least

1/2 + exp(−Õ(
√
ttottq)).

They applied their technique to 2d range parity, which is just 2d range sum with 1-bit weights and where the
answer needs only be reported mod 2. They also showed that any protocol with o(n) bits of communication
can only predict the answer to a query with probability 1/2 + n−Ω(1). Using that tq = O(ttot/ lgβ n) in the

reduction from dynamic to static data structures, this finally implies ttot/
√
lgβ n = Ω̃(lg n), i.e. a lg3/2 n

lower bound for the original dynamic problem.

1.2 Technical Barriers Overcome

With previous techniques described, we are now ready to give an overview of the technical barriers we
overcome to prove our lower bound for Dynamic Reachability. Clearly, Reachability is a decision problem, so
the most relevant previous technique is the technique by Larsen, Weinstein and Yu [10] for proving Ω̃(lg3/2 n)
lower bounds. However several obstacles prevent an immediate application of their framework. First, all the
previous techniques for dynamic lower bounds above require that the problem is decomposable. If we think
about Dynamic Reachability and the reduction from dynamic to static data structures with pre-initialized
memory and a cache, this would correspond to each epoch inserting ni edges of a graph Gi. After performing
the insertions, one Reachability query is asked. For 2d range sum, the answer to a counting query is the sum
over the answers on all epochs and thus is decomposable as we can subtract off contributions from epochs
j ̸= i. But if we think of Reachability, whether a node s can reach a node t when having numerous graphs
Glgβ n−1, . . . , G1 to traverse, the answer to the Reachability query is an OR over the epochs, not a sum.
That is, if s can reach t using the edges in graph Gj , then the answer to the query is Yes regardless of the
other epochs. The problem is thus not decomposable.

To overcome this, we consider distributions over input graphs Gi where the probability that a query pair
of nodes (s, t) can reach each other through Gi is small. Concretely it is around 1/ lg n. This implies that
if we zoom in on an epoch i, most query pairs of nodes (s, t) cannot reach each other through graphs Gj
with j ̸= i. In some sense, the other epochs do not block the answer to the query and we are back at a
decomposable problem.

Attempting the above creates another issue. The technique by Larsen, Weinstein and Yu critically
requires that the answer to a query in the static problem is uniform random among 0 and 1. Said briefly, if
the query answer is 0 with probability say 1− 1/ lg n, then it is trivial for Bob to predict the query answer
with probability much higher than 1/2. Our second contribution is thus to adapt their communication game
to “biased” problems, where the query answer is not uniform random. We believe this extension, and our
new lower bound, is critical for proving future lower bounds for problems that are not decomposable.

Finally, let us remark that even after having adapted the framework of Larsen, Weinstein and Yu, proving
the concrete lower bound for Dynamic Reachability is far from trivial and requires numerous ideas and non-
trivial problem specific reductions. We present these in later sections.
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2 Data Structures with Pre-Initialized Memory and a Cache

In this section, we give more details on static data structures with pre-initialized memory and a cache (as
discussed in Section 1.1). Such a data structure has memory cells with addresses in [2w], where each memory
cell is pre-initialized to a fixed content independent of the input data. Cells may have different initialized
contents. Upon receiving the input data I, the preprocessing algorithm will update at most S memory cells
and write to a separate cache of Scac cells. We call this set of S memory cells the updated cells. The set of
updated cells is allowed to depend on the input data.

Then the data structure must be able to answer queries Q efficiently by a query algorithm. The query
algorithm can access both the memory and the cache. Probing the cells in cache is free of charge. Let
ttot(Q, I) be the query time on (Q, I), i.e., the total number of memory cells the query algorithm probes
when answering query Q on input I. Let tq(Q, I) be the query time into updated cells on (Q, I), i.e.,
the number of updated cells it probes for query Q on input I. Finally, we let ttot = E[ttot(Q, I)] and
tq = E[tq(Q, I)] be the expected query times.

Data Structure Problems with Weights and One-Way Communication Problems. As discussed
in Section 1.2, we need to extend the technique of Larsen, Weinstein and Yu [10] to handle problems where
the answer to a query is not uniform random. For this, we define data structure problems with weights.

Let P be a data structure problem with input data from I and queries from Q. P is a data structure
problem with weights if P maps query-data pairs Q× I to real numbers [−1, 1]. A data structure for P is
only required to compute the sign of P(Q, I) for query Q on input I. Equivalently, one may view P as a
data structure problem with one-bit output, and |P(Q, I)| as the weight of the instance (Q, I).

Given P and a (product) distribution DQ×DI over Q×I such that EI [P(Q, I)] = 0 for all Q, we define
the one-way communication problem GP as follows: Alice gets a random input I ∼ DI , Bob gets a random
query Q ∼ DQ, Alice sends one message MA of C bits to Bob, and their goal is to maximize the weighted
advantage

E
Q,MA

[∣∣∣∣E
I
[P(Q, I) |MA]

∣∣∣∣] . (1)

The maximum value of the advantage is denoted by adv(GP ,DQ,DI , C).
When P(Q, I) only takes values in {−1, 1}, it is a normal data structure problem with one-bit output. In

this case, (1) is simply the bias of the output of the query Q given MA: adv(GP ,DQ,DI , C) measures how
much advantage Bob has over random guessing after seeing a message from Alice. In general, we measure
this bias when the instances may have different weights. Note that technically, we could also view it as
re-weighing the distribution DQ × DI according to |P(Q, I)| when calculating the bias, but the expected
query times are still defined with respect to the “unweighted” distribution DQ ×DI .

2.1 Simulation

Similarly to the work of Larsen, Weinstein and Yu [10], we also show that an efficient data structure with
pre-initialized memory and a cache may be used to obtain an efficient protocol for the above one-way
communication game. Our simulation theorem is the following

Theorem 2. Let P : Q×I → [−1, 1] be a data structure problem with weights, and DQ×DI be a distribution
over the queries and inputs such that EI [P(Q, I)] = 0 for all Q ∈ Q and |P(Q, I)| ≥ β for some β > 0. If
there is a data structure D with pre-initialized memory and a cache for P such that D has at most S updated
cells, Scac cells in cache, expected query time ttot and expected query time into updated cells tq, then for any
p ∈ (0, 1), there is a one-way communication protocol for GP such that

adv(GP ,DQ,DI , (8pS + Scac) · w) ≥ 2−O(
√
ttot(tq lg 1/p+lg 1/β)·lg 1/p) − 2−Ω(pS).

As the proof is heavily inspired by previous work, we defer the proof to Section 6.
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3 Data Structure Problems

With the necessary framework for obtaining a one-way protocol from a static data structure with pre-
initialized memory and a cache, we are now ready to focus on the concrete problem of Dynamic Reachability.
In our proof, we consider Reachability queries in a variant of the so-called Butterfly graph. This graph was
also used by Pǎtraşcu [12] in his seminal work that established lower bounds for a host of static data
structure problems. However, when constructing a dynamic problem involving multiple Butterfly graphs,
we found it more convenient to define an intermediate data structure problem that we name 0-XOR in
Multiple Butterflies. This problem is easier to prove one-way communication lower bounds for. We then
show via a reduction that a data structure for Dynamic Reachability may be used to solve 0-XOR in Multiple
Butterflies. We define this new data structure problem in the following.

Butterfly Graphs. For a degree B and depth d, a Butterfly graph with degree B and depth d has d+ 1
layers of Bd nodes. The nodes at layer 0 are the sources and the nodes in layer d + 1 are the sinks. All
nodes, except the sinks, have degree B.

To describe the edges, we index the nodes in every layer by consecutive integers in [Bd]. For nodes in
layer i for 0 ≤ i ≤ d, we have B outgoing edges. The edges leaving a node vij go to the B nodes vi+1

k in layer
i+ 1 for which the base-B representation of j and k are equal in all digits c ̸= i (they may be equal or not
in digit i). The least significant digit is digit number 0 and so forth.

Observe that there is a unique path between any source-sink pair (s, t). This path is obtained by writing
s and t in base B. Then, for each layer i = 0, . . . , d, starting at the node s in layer 0, we think of changing
digit i of s to the i’th digit of t. This means that if we are at some node vij in layer i, we go to the node

vi+1
k where j and k are equal in all digits except possibly the i’th in which the digit of k is equal to that of
t. See Figure 1 for an example of a Butterfly of degree 2 and depth 3.

0-XOR in One Butterfly. This is a static data structure problem in which the input is a Butterfly of
degree B and depth d with an assignment of a b-bit string to every edge of the Butterfly. A query is specified
by a source-sink pair (s, t) and the answer to the query is 1 if the XOR of bit strings along the path from s
to t is the all-zero bit string and the answer is 0 otherwise. See Figure 1 for an illustration.

Figure 1: A Butterfly with degree 2 and depth 3 with b-bit strings on the edges for b = 2. Given the query
(2, 1), we interpret 2 as the index of a source and 1 as the index of a sink. The query (2, 1) thus asks whether
the XOR of bit strings along the path from the source indexed by 2 = 010 to the sink indexed by 1 = 001 is
the all-zero bit string. In this example, the XOR is 00⊕ 10⊕ 11 = 01, i.e. not the all-zero bit string. Thus
the answer to the query is 0. For clarity, we have only shown the bit strings on edges along the queried path.

0-XOR in Multiple Butterflies. This is a dynamic data structure problem. For a depth d and degree
B, we must maintain multiple Butterfly graphs Gd, . . . , G1 all of degree B and where the depth of Gi is i.
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Updates in this problem arrive in epochs. The first epoch has number d, then comes epoch d− 1 and so
forth, until epoch 1. The updates of epoch i assign a b-bit string to each edge of the Butterfly Gi.

Figure 2: Consider 0-XOR in the three Butterfly graphs of degree 2 and depths 3, 2 and 1 respectively, with
b-bit strings for b = 2. Given the query (2, 4), we interpret ⌊2/20⌋ = 2 = 010 as the index of a source in the
first graph, ⌊2/21⌋ = 1 = 01 as the source index in the second and ⌊2/22⌋ = 0 as the index of the source in
the third and smallest graph. In the first graph, the sink is ⌊4/20⌋ = 4 = 100, in the second graph, the sink
is ⌊4/21⌋ = 2 = 10 and in the third graph, the sink is ⌊4/22⌋ = 1. The query (2, 4) thus asks whether the
XOR of bit strings along at least one of the three bold paths is the all-zero bit string. This is the case in the
second graph where 01⊕ 01 = 00 and thus the answer to the query is 1.

After the updates have been processed, we must answer queries. A query is specified by two integers
(s, t) ∈ [Bd] × [Bd]. In each Butterfly Gi, the pair (s, t) specifies the source-sink pair (si, ti) such that si
is the source of index ⌊s/Bd−i⌋ in Gi and ti is the sink of index ⌊t/Bd−i⌋ in Gi. The answer to a query
(s, t) is 1 if there is at least one Gi for which the query (si, ti) has the answer 1 for 0-XOR in one Butterfly.
Otherwise the answer is 0. See Figure 2 for an illustration.

4 0-XOR in Multiple Butterflies to Dynamic Reachability

In this section, we give a reduction from 0-XOR in Multiple Butterflies, to Dynamic Reachability (in directed
graphs). We perform the reduction in two steps to ease the presentation.

Reduction for One Butterfly. Consider first the (static) problem of 0-XOR in One Butterfly. Recall
that in this problem, we are given a Butterfly graph G of degree B and depth d with a b-bit string assigned
to each edge. For a query (s, t), we must return whether the XOR of the bit strings along the unique s-t
path is the all-zero bit string 0̄ or not.

From G, we construct a new graph G′ for Reachability queries. The intention is that every 0-XOR query
in G can be answered by one Reachability query in G′. For every node u in G, we construct 2b nodes in G′.
We think of these nodes as representing each of the 2b possible b-bit strings. A node u ∈ G is thus replaced
by nodes {uσ}σ∈{0,1}b in G′. For an edge from a node u to a node v in G with bit string σ ∈ {0, 1}b, we
insert 2b edges in G′. There is one such edge leaving every node uτ . The edge leaving uτ enters vτ⊕σ, where
⊕ denotes bitwise XOR. The key observation is that for any path from a source s to a sink t in G, if we start
in s0̄ in G′ and descend along the same path, always following the unique outgoing edge from a current node
uτ to a node vτ⊕σ along the path, then there is exactly one reachable sink tσ. Moreover, σ is equal to the
XOR of the bit strings assigned to edges along the s-t path in G. Thus the answer to a 0-XOR query (s, t)
in G is 1 if and only if source s0̄ can reach sink t0̄ in G′. See Figure 3 for an illustration.

Full Reduction. We now use the reduction above for one Butterfly to reduce 0-XOR in Multiple Butterflies
to Dynamic Reachability. In our Dynamic Reachability problem, the graph has n =

∑d
i=1 2

b(i + 1)Bi +

8



Figure 3: On the left, we have three nodes in a Butterfly G with b-bit strings on the edges for b = 2. To
transform it into a reachability instance G′, each node is represented by 2b = 4 nodes, one for each b-bit
string. For the edge from u to v with bit string 01, we add an edge from uσ to vσ⊕01 for every σ ∈ {0, 1}2.
The node u0̄ = u00 can reach precisely the node w10 corresponding to the XOR 01⊕ 11 = 10.

2
∑d
i=0B

i nodes. There are 2b(i + 1)Bi nodes corresponding to the Butterfly Gi. These nodes correspond
to the nodes in G′

i created in the reduction from 0-XOR in One Butterfly of degree B and depth i to

Reachability. The remaining 2
∑d
i=0B

i nodes correspond to two perfect B-ary trees S and T with Bd

leaves. Initially, there are no edges in the graph.
Recall that in 0-XOR in Multiple Butterflies, the updates arrive in epochs, where the updates of epoch

i assign bit strings to the edges of Gi, where Gi has degree B and depth i.
In epoch d (the first to be processed), we start by inserting edges to construct the two perfect B-ary

trees S and T with Bd leaves each. We think of the leaves of S as representing the sources in Gd. The
nodes just above represent the sources in Gd−1 and so forth. Similarly with T , the leaves represent sinks of
Gd and so on. The tree S has its edges pointing from children to parents, whereas T has its edges pointing
from parents to children. For the nodes at depth i in S (leaves have depth d) we add an edge from the node
representing source s in Gi to the corresponding source s0̄ in G′

i. For the nodes t at depth i in T , we instead
add an edge from the sink t0̄ in G′

i to t.
To handle the updates of epoch i, we simply insert the 2biBi edges into G′

i corresponding to the reduction
shown above from 0-XOR in One Butterfly to Reachability. Finally, to answer a query (s, t) ∈ [Bd] × [Bd]
after having processed all epochs of updates, we simply ask whether the leaf corresponding to s in S can
reach the leaf corresponding to t in T . To see that this correctly answers the query, observe that the leaf
corresponding to s can only leave S through one of the ancestors of s. If it leaves the ancestor at depth i,
then it enters the source s0̄ indexed ⌊s/Bd−i⌋ in G′

i. To leave G′
i, it has to reach a sink t0̄. If the sink it

reaches is not indexed ⌊t/Bd−i⌋, then the edge leaving to T enters a node u where t is not in the subtree
rooted at u and hence cannot reach t. On the other hand, if it reaches the sink t0̄ indexed ⌊t/Bd−i⌋, then
the leaving edge enters a node u in T where t is in the subtree and thus t is reachable. It follows that s can
reach t if and only if there is at least one G′

i in which the source ⌊s/Bd−i⌋ can reach the sink ⌊t/Bd−i⌋. This
concludes the reduction. See Figure 4 for an illustration. We thus have

Theorem 3. If there is a data structure for Dynamic Reachability in n-node graphs, with worst case update
time tu and expected query time tq, then for any d, B and b such that n ≥

∑d
i=1 2

b(i+1)Bi+2
∑d
i=0B

i, there
is a data structure for 0-XOR in Multiple Butterflies of degree B and depth up to d with b-bit strings, that
probes O(tun/B

d−i−1) cells when processing the updates of epoch i, and that answers the query in expected
tq probes.

In light of this, we prove a lower bound for 0-XOR in Multiple Butterflies:

Theorem 4. Consider 0-XOR in Multiple Butterflies of degree B and depth up to d with (lg2 d + 6)-bit
strings, for d at least a sufficiently large constant. If B = (dtuw)

12, then any data structure updating

9



Figure 4: Full reduction. The query (s, t) = (2, 4) on three Butterfly graphs of degree 2 and depth 3, 2, 1
with b-bit strings for b = 1. For clarity, most edges in the Reachability instance have been hidden. In this
example, the answer to the query is 1. The leaf in S corresponding to s can reach the leaf in T corresponding
to t by using the Butterfly graph of depth 2 in which the XOR along the path from source ⌊s/2⌋ to sink
⌊t/2⌋ is the all-zero bit string.

O(tudB
i+1) cells in epoch i must have an expected query time tq satisfying

tq = Ω

(
lg3/2 n

lg2(tuw)

)
where n =

∑d
i=1 dB

i is the total number of nodes in all Butterfly graphs.

Let us combine Theorem 3 and Theorem 4 to obtain our lower bound for Dynamic Reachability.
For any sufficiently large n, assume we have a data structure for Dynamic Reachability in n-node graphs

with worst case update time tu and expected query time tq. Pick d as the largest integer such that for

B = (dtuw)
12, we have

∑d
i=1 2

6d(i + 1)Bi + 2
∑d
i=0B

i ≤ n. Observe that increasing d by one increases
the sum by a factor (tuw)

O(1) when w satisfies w = Ω(lg n) = Ω(d). Thus for the chosen d, we get∑d
i=1 2

6d(i+ 1)Bi + 2
∑d
i=0B

i ≥ n/(tuw)O(1) implying Bd ≥ n/(tuw)O(1).
From Theorem 3 with b = (lg2 d+ 6), we now obtain a data structure for 0-XOR in Multiple Butterflies

of degree B = (dtuw)
12 and depth up to d that probes

O(tun/B
d−i−1) = tuB

d(tuw)
O(1)/Bd−i−1 = Bi+1(tuw)

O(1)

cells when processing the updates of epoch i. Theorem 4, with t′u = (tuw)
O(1), finally implies that

tq = Ω

(
lg3/2 n

lg2(tuw)

)
.
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This proves our main result, Theorem 1.

5 Lower Bound for 0-XOR in Multiple Butterflies

In this section, we prove our lower bound for 0-XOR in Multiple Butterflies stated in Theorem 4.
The first step of the proof is to reduce 0-XOR in One Butterfly to 0-XOR in Multiple Butterflies.

Concretely, we show that an efficient (dynamic) data structure for 0-XOR in Multiple Butterflies gives an
(even more) efficient (static) data structure for 0-XOR in One Butterfly with pre-initialized memory and a
cache. The exact statement is as follows

Lemma 5. If there is a dynamic data structure for 0-XOR in Multiple Butterflies of degree B and depth up
to d with b-bit strings for b ≥ lg2 d+6, with worst case update time tu, and that answers a query in expected
tq probes, then there is an i ∈ {d/2 + 1, . . . , d}, a set of queries Q ⊆ [Bi] × [Bi] with |Q| ≥ B2i/4 and a
deterministic static data structure for 0-XOR in One Butterfly of degree B and depth i, with pre-initialized
memory that updates S = O(tudB

i+1) cells and uses a cache of Scac = O(tudB
i) cells, such that on a

uniform random assignment of b-bit strings to the edges of the input Butterfly, it holds that

• For all queries q ∈ Q, the data structure answers q correctly and the expected number of probes (over
the random choice of b-bit strings) into updated memory cells is O(tq/d) and the expected total number
of probes ttot is at most O(tq).

The last step is then to prove a lower bound for 0-XOR in One Butterfly for static data structures with
pre-initialized memory and a cache. Here we prove the following

Lemma 6. Consider 0-XOR in One Butterfly of degree B, depth d with b-bit strings, for any B ≥ d7 and
d at least a sufficiently large constant. Assume there is a subset of queries Q ⊆ [Bd]× [Bd] = [n]× [n] with
|Q| ≥ n2/4 and a deterministic data structure with pre-initialized memory, updating at most S cells, with a
cache of size Scac making an expected total ttot probes on any query (s, t) ∈ Q and making at most tq probes
to updated cells in expectation on any query (s, t) ∈ Q. Here both expectations are over a uniform random
input. If Scac = o(nB1/6/w), then it must be the case that

ttot(tq lg(Sw/n) + b) = Ω((lg n/ lg(Sw/n))2).

Let us combine the two lemmas to prove Theorem 4. Consider 0-XOR in Multiple Butterflies of degree
B and depth up to d with b = lg2 d + 6 bit strings. Assume there is a data structure with worst case
update time tu that answers queries in expected tq probes. For B = (dtuw)

12, we invoke Lemma 5 to obtain
a deterministic static data structure for 0-XOR in One Butterfly Gi of degree B and depth i ≥ d/2 + 1
with pre-initialized memory that updates S = O(tudB

i+1) cells and uses a cache of Scac = O(tudB
i) cells.

Furthermore, for n = Bi, there is a set Q ⊆ [n] × [n] with |Q| ≥ n2/4 such that the static data structure
answers every query in Q in expected total O(tq) probes and an expected O(tq/d) probes into updated cells,
where the expectation is over a uniform random assignment of b-bit strings to the edges of the Butterfly Gi.

For B = (dtuw)
12, we see that Scac = O(tudB

i) = O(tudn) = o(nB1/6/w). Hence from Lemma 6 we get
that

tq((tq/d) lg(Sw/n) + lg d) = Ω((lgn/ lg(Sw/n))2).

Since lg n = d lgB, we have lg d ≤ lg lg n. The lower bound thus becomes

tq = Ω

(
min

{ √
d lg n

lg3/2(Sw/n)
,

lg2 n

lg2(Sw/n) lg lg n

})
.

We also have Sw/n = O(tudB) = (tuw)
O(1) and d = lgB n and thus the lower bound becomes

tq = Ω

(
min

{
lg3/2 n

lg2(tuw)
,

lg2 n

lg2(tuw) lg lg n

})
= Ω

(
lg3/2 n

lg2(tuw)

)
.

Since n = Bi ≥ Bd/2 and B > d, we have that lg n = Ω(lgN) where N is the total number of nodes in all
Butterfly graphs. This concludes the proof of Theorem 4.
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5.1 0-XOR in One Butterfly to 0-XOR in Multiple Butterflies

In the following, we show that an efficient dynamic data structure for 0-XOR in Multiple Butterflies gives
an efficient static data structure for 0-XOR in One Butterfly. Concretely, we prove Lemma 5 from above.

Proof of Lemma 5. Recall that in 0-XOR in Multiple Butterflies, there are d Butterfly graphs Gd, . . . , G1 of
depths d, d − 1, . . . , 1. The updates arrive in epochs, starting with epoch d, then d − 1 until epoch 1. In
epoch i, we set the bit strings on the edges in Gi independently to uniform random b-bit strings. We let Ui

be the random variable giving the updates of epoch i.
After epoch 1, we ask a query chosen as a uniform random pair (s, t) ∈ [Bd]× [Bd]. We let D denote the

joint distribution of the random updates U = Ud, . . . ,U1 and query (s, t).
The graph Gi has ni = (i+1)Bi nodes and mi = iBi+1 edges and thus there are mi updates in epoch i.
Given a dynamic data structure for 0-XOR in Multiple Butterflies, with worst case update time tu and

expected tq query time to answer the query (s, t) under the distribution D, we start by fixing the randomness
to obtain a deterministic data structure whose expected query time is no more than tq under D.

Next, we zoom in on an epoch i and derive a static data structure for 0-XOR in One Butterfly. The data
structure will have pre-initialized memory corresponding to memory cells changed in epochs j > i and a cache
corresponding to cells changed in epochs j < i. More formally, for a sequence of updates U = Ud, . . . , U1 in
the support of D, consider processing the updates using the deterministic data structure. Assign each cell
in the memory to the epoch in which it was last updated. We let Ci(U) denote the cells assigned to epoch
i. For a query (s, t), we let T (U, (s, t)) denote the set of cells probed when answering (s, t) after updates U .

By disjointness of the sets Ci(U), we have tq = E[
∑d
i=1 |T (U, (s, t)) ∩ Ci(U)|]. By linearity of expectation,

there must be an epoch i ∈ {d/2+1, . . . , d} for which E[|T (U, (s, t))∩Ci(U)|] ≤ 2tq/d. Fix such an epoch i.
Next we wish to fix the updates U ̸=i = Ud, . . . ,Ui+1,Ui−1, . . . ,U1 in epochs different from i. Intuitively,

this will give us a data structure for 0-XOR in One Butterfly graph corresponding to Gi, with the random
edge strings given by Ui.

For notational convenience, define for a query (s, t) the answer ϕj(s, t) to (s, t) on Gj as 1 if the XOR
along the path from sj = ⌊s/Bd−j⌋ to tj = ⌊t/Bd−j⌋ in Gj is the all-0 bit string and let ϕj(s, t) be 0

otherwise. The answer to the query (s, t) is then ϕ(s, t) = 1−
∏d
j=1(1−ϕj(s, t)). Our goal is to fix U ̸=i such

that we can compute ϕi(s, t) from ϕ(s, t) for most pairs (s, t). The main issue is that if any of the epochs
j ̸= i has ϕj(s, t) = 1, then ϕ(s, t) = 1 regardless of ϕi(s, t). In this case, we say that epoch j blocks the
answer. We will fix U ̸=i to avoid blocking most queries.

For a query (s, t), call it valid for a fixing U̸=i if:

1. (s, t) is not blocked by an epoch j ̸= i.

2. E[|T (U, (s, t)) ∩ Ci(U)| | U ̸=i = U ̸=i] ≤ 72tq/d.

3. E[|T (U, (s, t))| | U ̸=i = U ̸=i] ≤ 36tq.

For epoch i, there are n = Bi sources and n sinks. We claim that there is a fixing U̸=i such that at least n2/4
pairs (sj , tj) ∈ [n]× [n] satisfies that there is a valid query (s, t) with sj = ⌊s/Bd−i⌋ and tj = ⌊t/Bd−i⌋. To
see this, notice that for a uniform random U ̸=i, any query (s, t) is blocked by epoch j with probability 2−b.
A query (s, t) is thus blocked by an epoch j ̸= i with probability at most d2−b. The expected number of
blocked queries is thus at most d2−b(Bd)2. Markov’s inequality and a union bound implies the existence of
a fixing U̸=i such that at most 3d2−b(Bd)2 queries are blocked by an epoch j ̸= i and at the same time for a
uniform (s, t) we have E[|T (U, (s, t))∩Ci(U)| | U ̸=i = U̸=i] ≤ 6tq/d and E[|T (U, (s, t))| | U ̸=i = U̸=i] ≤ 3tq.
We claim such a fixing U̸=i satisfies our requirements.

To see this, we start by defining Q(sj , tj) as the set of all queries (s, t) ∈ [Bd]× [Bd] with sj = ⌊s/Bd−i⌋
and tj = ⌊t/Bd−i⌋. Now assume for the sake of contradiction that less than n2/4 pairs (sj , tj) ∈ [n] × [n]
satisfies that there is a valid query (s, t) ∈ Q(sj , tj). Under this assumption, there are at least (3/4)n2 pairs
(sj , tj) with no valid query (s, t) ∈ Q(sj , tj). Let (sj , tj) be an arbitrary such pair. One of the following three
must hold: 1) at least |Q(sj , tj)|/3 queries (s, t) ∈ Q(sj , tj) are blocked, or 2) at least |Q(sj , tj)|/3 queries
(s, t) ∈ Q(sj , tj) have E[|T (U, (s, t)) ∩ Ci(U)| | U ̸=i = U̸=i] > 72tq/d, or 3) at least |Q(sj , tj)|/3 queries
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(s, t) ∈ Q(st, tj) have E[|T (U, (s, t)) ∩ Ci(U)| | U ̸=i = U ̸=i] > 36tq. Call the first case a type-1 failure, the
second case a type-2 failure and the last case a type-3 failure.

It follows that either there are 1) at least (1/4)n2 pairs (sj , tj) that have a type-1 failure, or 2) at least
(1/4)n2 pairs (sj , tj) that have a type-2 failure or 3) at least (1/4)n2 pairs with a type-3 failure. Since
|Q(sj , tj)| = (Bd−i)2, the first case gives at least (1/3)(1/4)(Bi)2(Bd−i)2 = (1/12)(Bd)2 blocked pairs (s, t).
This contradicts that at most 3d2−b(Bd)2 pairs are blocked if we let b ≥ lg2 d + 6. In the second case,
since (s, t) is uniform random, we have E[|T (U, (s, t)) ∩ Ci(U)| | U ̸=i = U̸=i] > (1/4)(1/3)(72tq/d) =
6tq/d. This contradicts that E[|T (U, (s, t)) ∩ Ci(U)| | U ̸=i = U̸=i] ≤ 6tq/d. In the third case, we have

E[|T (U, (s, t)) ∩ Ci(U)| | U ̸=i = U̸=i] > (1/4)(1/3)(36tq) = 3tq, which is again a contradiction.
We now have our static data structure. For the fixing U̸=i, we pre-initialize the memory by performing all

updates in epochs j > i. For a uniform random input to 0-XOR in One Butterfly with degree B and depth
i, we notice that the distribution of the edge strings is identical to Ui. We thus think of the input to 0-XOR
in One Butterfly as the updates of epoch i in 0-XOR in Multiple Butterflies. We thus run the updates in Ui

to update some of the pre-initialized memory cells. Finally, we run the fixed updates in U̸=i corresponding
to epochs j < i and put all cells they change into the cache. We let Q be the set of all source-sink pairs
(sj , tj) for which there is at least one valid query (s, t) in Q(sj , tj) (this set does not depend on the concrete
input Ui).

To answer a query (sj , tj) ∈ Q for 0-XOR in One Butterfly, we let (s, t) be the lexicographical first valid
query in Q(sj , tj) and simply execute the query algorithm of the deterministic dynamic data structure on
the query (s, t). When it requests a cell, we first check whether it is in the cache (was updated during epochs
j < i). If so, it is free to access. Otherwise, we simply probe the cell. Since (s, t) is valid, we know it is not
blocked and also E[|T (U, (s, t)) ∩ Ci(U)| | U ̸=i = U̸=i] ≤ 72tq/d and E[|T (U, (s, t))| | U ̸=i = U̸=i] ≤ 36tq.
Thus Q satisfies the claims in the theorem. Since the worst case update time is tu, we have that the updates
of epoch i update at most S = tumi = tuiB

i+1 = O(tudB
i+1) cells. By the same argument, the cache

contains at most O(
∑
j<i tudB

j+1) = O(tudB
i) cells.

5.2 Lower Bound for 0-XOR in One Butterfly

We now turn to proving a lower bound for for the static data structure problem 0-XOR in One Butterfly
when a data structure has pre-initialized memory and a cache. To be compatible with the reduction given
in the previous section, the lower bound must hold even if only a constant fraction of the queries can be
answered correctly. The goal of the section is to prove Lemma 6.

To prove Lemma 6, we would like to invoke our simulation theorem to obtain a one-way protocol for the
communication game in which Alice receives a uniform random input to 0-XOR in One Butterfly and Bob
receives a uniform random query (s, t) that has good advantage as a function of S, Scac, ttot and tq. Then
the lemma would follow by a proving that no such one-way protocol can have a large advantage.

However, doing this directly on a set of queries Q ⊆ [Bd]× [Bd] will not lead to the desired lower bound.
This is because there is a protocol with low communication and high advantage. For ease of notation, let
n = Bd. To obtain the lower bound we want, we basically need to show that no protocol with communication
n/ lgΘ(1) n can have advantage more than n−Ω(1). But there is a simple protocol with much higher advantage
(at least if Q is the set of all queries). We sketch the protocol here for the interested reader:

• Alice picks the first n/ lgΘ(1) n sources and sinks. The total number edges on paths between these

sources and sinks is n/ lgΘ(1) n since there is a large overlap in these paths (all leading digits of visited
nodes across the layers start with 0’s). She sends the bit strings on all these edges to Bob. On

a uniform random query (s, t), there is a 1/ lgΘ(1) n chance that both s and t are among the first

n/ lgΘ(1) n sources and sinks. In this case, Bob knows the answer to the query. If it is not, Bob simply

guesses. The advantage is thus 1/ lgΘ(1) n, i.e. much higher than n−Ω(1).

What we exploited in the above protocol, is that there is a large collection of queries that together are
easy, namely all those (s, t) with s and t among the first n/ lgΘ(1) n indices. To get around this, we follow
previous works and introduce the concept of meta-queries. A meta-query is specified by a set of queries
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T ⊆ Q with |T | = k, and its answer is the XOR of the answers to all the queries in T . Clearly a data
structure that can answer every individual query (s, t) ∈ T in expected ttot total probes and tq probes to
updated cells, can answer the meta-query in expected kttot total probes and ktq probes to updated cells. We
will thus define meta-queries that are sufficiently well-spread, i.e. the paths on which to compute XOR’s do
not share any nodes or edges. We formalize this in the following.

Meta-Queries. Let Q ⊆ [n]×[n] be a subset of queries. From Q, we construct a set of meta-queries M(Q).
Let k = n/ lg2 n. We add toM(Q) one query for every set T of k source-sink pairs T = {(s1, tt), . . . , (sk, tk)}
with the property that the unique paths between the source-sink pairs (si, ti) share no nodes. The answer to
the query T = {(s1, tt), . . . , (sk, tk)} is obtained as follows: If I is an input to 0-XOR in One Butterfly, then
for a query (s, t) ∈ Q, let ψI(s, t) be 1 if the XOR of bit strings on the edges along the path from s to t with
edge weights given by I is all-zero. Otherwise, let ψI(s, t) = 0. Finally, let the answer to the query T be⊕

(s,t)∈T ψI(s, t). The answer to the meta-query is thus the XOR of the answers to the individual queries.

We first prove that M(Q) is large if Q is large

Lemma 7. For any Q ⊆ [n]× [n] with |Q| ≥ n2/4, if n and B are at least some sufficiently large constants,
then we have |M(Q)| ≥ nk/9.

Proof. We give a probabilistic argument. Consider a fixed meta-query T ∈ M(Q) with T = {(si, ti)}ki=1.
Now let T ′ = (s′1, t

′
1), . . . , (s

′
10k, t

′
10k) be an ordered list of 10k uniform and independent source-sink pairs.

We show two things. First, we argue that there is only a very small chance that all the pairs in (si, ti) ∈ T
are among the queries in T ′. Next, we argue that there is a large chance that T ′ contains a subset T ′′ of k
queries such that T ′′ ∈M(Q). These two can only both be true if M(Q) is large.

For the first part, notice that for a fixed T , there are at most
(
10k
k

)
k!(n2)9k choices of T ′ such that

T ⊆ T ′. The
(
10k
k

)
term accounts for positions in the list T ′ where T occurs, k! accounts for all permutations

of these positions and (n2)9k accounts for the queries in T ′ outside the chosen k positions. Since there are
(n2)10k choices for the uniform random T ′, the probability that T ⊆ T ′ is then bounded by

(
10k
k

)
k!n−2k =

n−2k(10k)!/(9k)! ≤ n−2k(10k)k = (10k/n2)k = (10/(n lg2 n))
k. For n ≥ 210, this is at most n−k.

For the second part, define an indicator Xi for every pair (s′i, t
′
i) in T

′. The indicator takes the value 1 if
(s′i, t

′
i) ∈ Q and the unique path from s′i to t

′
i in the Butterfly does not share any node with a path between

any other pair (s′j , t
′
j) in T

′. We first argue that E[Xi] is large. For this, notice first that Pr[(s
′
i, t

′
i) ∈ Q] ≥ 1/4.

Next, consider a pair (s′j , t
′
j) with i ̸= j. For any layer ℓ of the Butterfly, the distribution of the node visited

by the two paths is uniform random, and the two are independent. Hence the probability that they use
the same node in any of the d + 1 layers is no more than (d + 1)/Bd = (d + 1)/n = (lgB n)/n. A union
bound over all 10k − 1 choices of j′ implies that the path from s′i to t

′
i intersects any of the other paths is

no more than 10k(lgB n)/n = 10/ lg2B. For B larger than some constant, this is at most 1/100. It follows
that Pr[Xi = 1] ≥ 1/4 − 1/100 = 24/100. Hence E[

∑
iXi] ≥ 10k(24/100) = (24/10)k > 2k. Now consider

the random variable Y = 10k −
∑
iXi. This is a non-negative random variable with expectation at most

8k. Hence by Markov’s inequality, we have Pr[Y > 9k] < 8/9. That is, Pr[
∑
iXi < k] < 8/9. But choosing

any set of k pairs (s′i, t
′
i) where Xi = 1 for all of them results in a set T ′′ ∈ M(Q). Thus a T ′′ exists with

probability at least 1/9.
We now combine the above two to lower bound |M(Q)|. For this, notice that the probability that the

random T ′ contains a T ′′ ∈ M(Q) and yet no T ∈ M(Q) is contained in T ′ is 0 (these are contradictory).
But a union bound implies that the probability of this event is at least 1/9 − |M(Q)|n−k. Hence we must
have |M(Q)| ≥ nk/9.

Meta-Query Communication Game. With meta-queries defined, we are ready to reduce to a one-way
communication game. Assume we have a data structure for 0-XOR in One Butterfly as in the requirements
of Lemma 6. Let Q ⊆ [n]×[n] be the promised set of at least n2/4 queries and letM(Q) be the corresponding
meta-queries. Let I be the set of all possible assignments of b-bit strings to a Butterfly of degree B and
depth d.
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We now define a data structure problem P with weights M(Q)×I → [−1, 1]. For a query (s, t) ∈M(Q),
define ϕI(s, t) to be −(1− 2−b) if ψI(s, t) = 1 and define it to be 2−b otherwise. Now define

P(T, I) :=
∏

(s,t)∈T

ϕI(s, t)

Let us make a few observations about P. First, we always have |P(T, I)| ≥ 2−kb. Next, notice that if a data
structure can compute the answer

⊕
(s,t)∈T ψT (s, t) to the meta-query T on M(Q), it can also compute the

sign of P(T, I). This is because the sign of P(T, I) is equal to (−1)
∑

(s,t)∈T ψI(s,t) and this is determined from
the parity of

∑
(s,t)∈T ψI(s, t) which is equal to

⊕
(s,t)∈T ψI(s, t).

Let DM(Q) ×DI be the product distribution over M(Q)×I, giving a uniform random T ∈M(Q) and a
uniform random I in I. Observe that for every T ∈M(Q), it holds that EI[P(T, I)] = 0. This is because the
paths in T are disjoint and hence each of them XOR’s to the all-zero bit string 0̄ with probability precisely
2−b and this is independent across all of them. We thus have

E
I
[P(T, I)] = E

I

 ∏
(s,t)∈T

(
1ψI(s,t)=1 · (−(1− 2−b)) + 1ψI(s,t)=0 · 2−b

)
=

∏
(s,t)∈T

E
I

[
1ψI(s,t)=1 · (−(1− 2−b)) + 1ψI(s,t)=0 · 2−b

]
=

∏
(s,t)∈T

(
2−b · (−(1− 2−b)) + (1− 2−b) · 2−b

)
= 0.

Now observe that the data structure satisfying the assumptions in Lemma 6 can answer any meta-query T ∈
M(Q) in a expected total probes kttot with an expected ktq probes to updated cells, where the expectation
is over a random I ∼ DI . This is because each of the individual queries in T can be answered in expected
ttot total probes and tq probes into updated cells.

We now wish to invoke Theorem 2 to obtain a one-way protocol for GP . We see that we can choose
β = 2−kb. For any p ∈ (0, 1), Theorem 2 now gives a one-way protocol for GP under the product distribution
DM(Q) ×DI with

adv(GP ,DM(Q),DI , (8pS + Scac) · w) ≥ 2−O(
√
kttot(ktq lg 1/p+kb)·lg 1/p) − 2−Ω(pS)

= 2−O(k
√
ttot(tq lg 1/p+b)·lg 1/p) − 2−Ω(pS).

What remains is to prove that no protocol can have a large advantage. This is the contents of the following
lemma

Lemma 8. There is a universal constant c > 0, such that for B ≥ d7 and d at least a sufficiently large
constant, any protocol for GP must either send at least cnB1/6 bits or have advantage at most exp(−ck lg n)
under DM(Q) ×DI .

Before proving Lemma 8, let us use it to complete the proof of Lemma 6. We choose p = c′n/(Sw) for a
sufficiently large constant c′ > 0. In this case, the 8pSw communication is less than cn/2 and we conclude
that either Scac = Ω(nB1/6/w) or

k
√
ttot(tq lg(Sw/n) + b) · lg(Sw/n) = Ω(k lg n+ n/w) = Ω(k lg n).

This yields the lower bound

ttot(tq lg(Sw/n) + b) = Ω((lg n/ lg(Sw/n))2).

as claimed in Lemma 6.
What remains is thus to prove the communication lower bound.
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Proof of Lemma 8. Let Q ⊆ [n] × [n] have |Q| ≥ n2/4, let M(Q) be the corresponding meta-queries and
P :M(Q)×I → [−1, 1] be the data structure problem with weights, where I is the set of all assignments of
b-bit strings to the edges of a degree B and depth d Butterfly with n = Bd. Let DM(Q)×DI be the product
distribution over a uniform random T in M(Q) and a uniform random I ∈ I.

Assume there is a one-way protocol π : I → {0, 1}m for the communication game GP with advantage ε
and m bits of communication. For any message A that Alice may send, let χA ∈ {−1, 1}|M(Q)| be the vector
having one entry per T ∈ M(Q). The entry χA(T ) takes the value sign(EI[P(T, I) | π(I) = A]). Similarly,
define the vectors PI ∈ [−1, 1]|M(Q)| where the entry corresponding to a T ∈M(Q) takes the value P(T, I).

By definition of the advantage, we have

ε = |M(Q)|−1 E
I
[⟨PI, χπ(I)⟩].

We start by restricting our attention to a concrete message A and corresponding vector χA. We claim there
must be message A such that both of the following hold

• EI[⟨PI, χπ(I)⟩ | π(I) = A] ≥ (ε/2)|M(Q)|.

• PrI[π(I) = A] ≥ (ε/2)2−m.

To see this, assume for the sake of contradiction that no such message exists. Then we would have

|M(Q)|ε = E
I
[⟨PI, χπ(I)⟩]

=
∑

A∈{0,1}m

Pr
I
[π(I) = A]E

I
[⟨PI, χπ(I)⟩ | π(I) = A]

=
∑

A∈{0,1}m:PrI[π(I)=A]<(ε/2)2−m

Pr
I
[π(I) = A]E

I
[⟨PI, χπ(I)⟩ | π(I) = A]

+
∑

A∈{0,1}m:PrI[π(I)=A]≥(ε/2)2−m

Pr
I
[π(I) = A]E

I
[⟨PI, χπ(I)⟩ | π(I) = A]

<
∑

A∈{0,1}m:PrI[π(I)=A]<(ε/2)2−m

(ε/2)2−m E
I
[∥PI∥1 | π(I) = A]

+
∑

A∈{0,1}m:PrI[π(I)=A]≥(ε/2)2−m

Pr
I
[π(I) = A](ε/2)|M(Q)|

≤ 2m(ε/2)2−m|M(Q)|+ (ε/2)|M(Q)|,

i.e. a contradiction. So fix such a message A and let I ′ ⊆ I be the subset of inputs I for which π(I) = A.
Then |I ′| ≥ (ε/2)2−m|I| and for a uniform random I′ in I ′, we have EI′ [⟨PI′ , χA⟩] ≥ (ε/2)|M(Q)|.

We show that for any χ ∈ {−1, 1}|M(Q)|,

E
I′
[⟨PI′ , χ⟩]

must be small if I ′ is large. For this, consider the following r’th moment, for an even integer r ≥ 2 to be
determined. Here the expectation is over a uniform I from I:

E
I
[⟨PI, χ⟩r] =

∑
T1,...,Tr

t∏
i=1

χ(Ti) · E
I

[
r∏
i=1

PI(Ti)

]
≤

∑
T1,...,Tr

∣∣∣∣∣EI
[
r∏
i=1

PI(Ti)

]∣∣∣∣∣ =

∑
T1,...,Tr

∣∣∣∣∣∣EI
 r∏
i=1

∏
(s,t)∈Ti

ϕI(s, t)

∣∣∣∣∣∣ .
16



Now consider a term corresponding to some T1, . . . , Tr. Each of the queries (s, t) ∈ T1 ∪ · · · ∪ Tr specifies a
source-sink path. Assume that there is some edge e that occurs in exactly one of these paths and let (s⋆, t⋆)
be the corresponding query. Then ϕI(s

⋆, t⋆) is independent of all other ϕI(s, t) since even conditioned on the
bit strings assigned to all edges other than e, the XOR along the s-t path is still uniform random. Thus for
such T1, . . . , Tr we have

E
I

 r∏
i=1

∏
(s,t)∈Ti

ϕI(s, t)

 =

E
I
[ϕI(s

⋆, t⋆)]E
I

 r∏
i=1

∏
(s,t)∈Ti\{(s⋆,t⋆)}

ϕI(s, t)

 = 0.

If on the other hand it holds that every edge that occurs in an s-t path occurs at least twice, then∣∣∣∣∣∣EI
 r∏
i=1

∏
(s,t)∈Ti

ϕI(s, t)

∣∣∣∣∣∣ ≤ 1.

Thus if Γ denotes the number of lists T1, . . . , Tr ∈M(Q)r for which every edge e in Gi occurs in either zero
or at least two s-t query paths among all queries in the meta-queries T1, . . . , Tr, then

E
I
[⟨PI, χ⟩r] ≤ Γ.

Using that PrI[I ∈ I ′] = |I ′|/|I| and non-negativity of ⟨PI , χ⟩r, we further have for I′ uniform in I ′ that

E
I′
[⟨PI, χ⟩r] = E

I
[⟨PI, χ⟩r | I ∈ I ′] ≤ Γ|I|/|I ′|.

Hence it must be the case that

E
I′
[⟨PI′ , χ⟩] ≤ Γ1/r(|I|/|I ′|)1/r.

But we showed that there exists a χA with EI′ [⟨PI′ , χA⟩] ≥ (ε/2)|M(Q)| while |I ′| ≥ (ε/2)2−m|I|. Thus we
conclude that

(ε/2)|M(Q)| ≤ Γ1/r(ε−12m+1)1/r.

For r ≥ 8, this implies that

(ε/2)1+1/r ≤ |M(Q)|−1Γ1/r2m/r ⇒ ε ≤ 2|M(Q)|−8/9Γ1/r2m/r.

By Lemma 7, we have |M(Q)| ≥ nk/9 and thus

ε ≤ 18n−8k/9Γ1/r2m/r.

What remains is thus to choose r and to upper bound Γ. For this, notice that any T1, . . . , Tr where every
edge occurs either zero or at least two times along the query paths can be uniquely described as follows:
First, specify a set of edges E such that all query paths use only edges in E. Since there are rk query paths
of length d, and every edge occurs either zero or at least two times, there is a such a set E of cardinality
only rkd/2. With such an edge set specified, each Ti is uniquely determined by specifying its kd edges as
a subset of E. This is because all query paths in one meta-query share no nodes or edges. Thus knowing
the set of edges occurring in the paths uniquely determine the whole set of queries in Ti. This is where we
exploit that the meta-queries are well-spread. Recalling that k = n/ lg2 n and n = Bd, we have thus argued
that

Γ ≤
(
dBd+1

rkd/2

)(
rkd/2

kd

)r
≤
(
2eBd+1

rk

)rkd/2 (er
2

)rkd
=

(
e3rBd+1

2k

)rkd/2
=

(
e3rB lg2 n

2

)rkd/2
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Now fix r = B1/6 and assume B ≥ d7 and d at least a sufficiently large constant. For such B and d, it holds
that (e3 lg2 n) = (e3d lg2B) ≤ B1/3. We then have

Γ ≤ (B3/2)rkd/2 = B(3/4)rk lgB n = 2(3/4)rk lg2 n = n(3/4)rk.

Inserting this above, we conclude

ε ≤ 18n−8k/9n(3/4)k2m/r ≤ 18n−k/92m/r ≤ 18n−k/92m/B
1/6

.

Since k = n/ lg2 n, we conclude that there is a constant c > 0 such that either m ≥ cnB1/6 or ε ≤
exp(−ck lg n).

6 Deferred Proof of Simulation Theorem

In this section, we give the deferred proof of Theorem 2. In the proof, we make use of the Peak-to-Average
lemma by Larsen, Weinstein and Yu:

Lemma 9 (Peak-to-Average [10]). Let f : Σk → R be any real function on the length-k strings over alphabet
Σ, satisfying:

1.
∑
z∈Σk |f(z)| ≤ 1; and

2. maxz∈Σk |f(z)| ≥ ε

for some ε ∈ (0, 1]. Then there exists a subset Y of indices, |Y | ≤ O(
√
k · lg(1/ε)), such that

∑
y∈ΣY

∣∣∣∣∣∣
∑
z|Y =y

f(z)

∣∣∣∣∣∣ ≥ exp(−
√
k · lg(1/ε)).

Note that the lemma as stated in [10] requires ε ≥ 2−O(k). However, the statement trivially holds when
ε ≤ 2k, since we could simply let Y = [k] and we have

∑
y∈ΣY

∣∣∣∣∣∣
∑
z|Y =y

f(z)

∣∣∣∣∣∣ =
∑
z

|f(z)| ≥ ε.

We are ready to give the proof of Theorem 2

Proof of Theorem 2. By Markov’s inequality and union bound, with probability 1/2 over a random Q ∈ DQ,
we have

E
I
[ttot(Q, I)] ≤ 4ttot and E

I
[tq(Q, I)] ≤ 4tq.

Denote this set of queries by Q′. Since (1) is an expectation of a nonnegative term, it suffices to prove the
lower bound for Q ∈ Q′. Thus, we may assume without loss of generality for every Q, ttot and tq are upper
bounds on the expected times over a random input, and this only loses constant factors.

To construct a protocol with large advantage, we use a similar strategy to [10] to simulate data structure
D. We first let Alice simulate the preprocessing algorithm of D on I. Then Alice samples every updated cells
with probability p, and sends Bob the sampled cells, denoted by C0. Then Alice uses public randomness to
sample every cell with probability p, and sends Bob among the sampled cells, which ones are updated and
their contents. Denote this set of sampled cells by C1. Finally, Alice sends Bob all cells in cache, denoted
by C2. The triple (C0, C1, C2) forms the message. See Figure 5 for a formal description of the protocol.
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One-way protocol π for GP

By “sending a cell”, we mean sending the address and content of the cell. We use C ← z to denote that
memory cells C have content z.

1. Alice generates the memory state and cache of D by simulating the data structure on I.

2. Alice samples each updated cell independently with probability p. Let C0 be the set of sampled
cells. If |C0| ≥ 2pS, Alice sends a bit 0 and aborts. Otherwise, she sends a bit 1, followed by all
cells in C0.

3. Alice uses public randomness to sample every cell independently with probability p. Let C1 be the
set of sampled cells. If there are at least 2pS updated cells in C1 Alice sends a bit 0 and aborts.
Otherwise, she sends a bit 1, followed by all updated cells in C1.

4. Alice sends Bob all cells in cache. Denote this set of cells by C2.

(For the purpose of analysis only:)

5. Bob generates the pre-initialized memory M0 of D. Bob updates the contents of C0 in M0 and
updates the cache C2, obtain a memory state M ′, and then simulates the query algorithm of D on
query Q with memory state M ′. Let Csim be the set of (memory addresses of) cells probed by D
in this simulation.

6. Apply Lemma 9 with Σ := [2w], k := |Csim|, ε := β · p4tq/4, and

f(z) := Pr
I
[Csim ← z | C0, C2] · E

I
[P(Q, I) | Csim ← z, C0, C2] .

If the lemma premises are satisfied and k ≤ 4ttot, let Y ⊂ Csim be a subset of cells of size κ :=

|Y | ≤ O
(√

ttot(tq lg 1/p+ lg 1/β)
)
, which is guaranteed to exist by the lemma.

Figure 5: The one-way weak simulation protocol of data structure D.
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Communication cost. By the description of the algorithm, Alice only sends C0 if it has less than 2pS
cells, and only sends C1 if it has less than 2pS updated cells. Thus, sending C0 and C1 takes at most
(4pS − 2) · 2w bits (since sending the address or content takes w bits). On the other hand, sending C2 takes
at most Scac · w bits. Thus, the total communication takes at most

(4pS − 2) · 2w + 2 + Scac · w ≤ (8pS + Scac) · w

bits as claimed.
We also note that by Chernoff bound, the probability that |C0| ≥ 2pS is at most 2−Ω(pS), and the

probability that C1 has at least 2pS updated cells is also at most 2−Ω(pS). Since |P(Q, I)| ≤ 1, these two
events could only reduce the advantage by at most 2−Ω(pS). In the following, we will assume that Alice always
sends C0 and the updated cells in C1 regardless of their sizes, and prove the advantage of the protocol is at
least

2−O(
√
ttot(tq lg 1/p+lg 1/β)·lg 1/p),

which would imply the theorem.

Analysis of the advantage. Consider the sampled cells C0, for each query Q, let WQ denote the event
that C0 contains all updated cells that Q probes. Then we know that

Pr
C0,I

[WQ] ≥ p4tq · Pr
I
[tq(Q, I) ≤ 4tq] ≥ p4tq/4.

If Bob knew whether WQ happens (i.e., if WQ was a function of Q and Alice’s message C0, C2), then we
would be done: When WQ happens, Bob has enough information to simulate the query algorithm on query
Q, thus, Bob knows the query output, i.e., the sign of P(Q, I). That is, P(Q, I) has a fixed sign conditioned
on (C0, C2) and Q for which WQ happens, and we have∣∣∣∣E

I
[P(Q, I) | C0, C2]

∣∣∣∣ = E
I
[|P(Q, I)| | C0, C2] ≥ β.

In this case, we would have

E
Q,C0,C2

[∣∣∣∣E
I
[P(Q, I) | C0, C2]

∣∣∣∣] ≥ Pr[WQ] · E
Q,C0,C2|WQ

[∣∣∣∣E
I
[P(Q, I) | C0, C2]

∣∣∣∣] ≥ Ω(β · p4tq ),

where the first inequality uses the assumption that WQ is determined by Q and C0, C2. This is a much
better advantage than what we claim.

However, Bob does not have enough information to determine whether all updated cells probed by Q are
sampled in C0. This is because for the cells that are not in C0 (or C2), Bob cannot tell if they are updated
but not sampled, or they are not updated and still have the pre-initialized contents. What Bob can do is
to generate the pre-initialized memory and update all cells in C0 and C2, then simulate the query algorithm
on Q on this memory state (see Step 5 in Figure 5). This simulation can be incorrect, as Bob may not
have the correct contents of the necessary cells. The simulation may even probe incorrect cells, as the query
algorithm may be adaptive.

Nevertheless, let Csim be the set of cells probed in this simulation. Now fix addr(Csim), the address
of Csim, and let us consider the posterior distribution of the true contents of Csim in Bob’s view, i.e.,
cont(Csim) | C0, C2.

1 Since WQ does happen with a nontrivial probability, there is a nontrivial probability
that the simulation is in fact correct. Let z∗ be the content of Csim that Bob uses for the simulation. This
means that on average, z∗ is slightly more likely than most other contents in this posterior distribution.
Moreover, when the true content of Csim is z∗, the expectation of P(Q, I) conditioned on Csim ← z∗ is at
least β in the absolute value (the sign of P(Q, I) is determined in this case). We define function f , which
maps possible contents of Csim to R, to be the expectation of P(Q, I) (i.e., the advantage) conditioned on

1We use addr(C) to denote the addresses of cells C, and cont(C) to denote the contents of cells C.
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the content, weighted by the probability in the posterior distribution (Step 6). Then f takes a higher-than-
average (absolute) value at z∗. The Peak-to-Average Lemma (Lemma 9) ensures that there is a small subset
Y ⊆ Csim such that knowing the contents of Y gives a nontrivial advantage. We further let Alice send
another random set C1 (Step 3). The final lower bound on the advantage comes from the event that Y is
contained in C1. In this case, Bob can identify this event, since he can compute Y . Furthermore, it happens
with a nontrivial probability since Y is small, and once it happens, the advantage is nontrivial by Lemma 9.
The formal argument goes as follows.

Let us fix Q and consider a random I. The assumption on the query time of Q (as we only consider
Q ∈ Q′) guarantees that

E
I
[ttot(Q, I)] ≤ ttot and E

I
[tq(Q, I)] ≤ tq.

By Markov’s inequality and union bound, we have ttot(Q, I) ≤ 4ttot and tq(Q, I) ≤ 4tq with probability at
least 1/2 (over the randomness of I). In this case, the probability of WQ (C0 contains all updated cells that
Q probes) is

Pr
C0,I

[WQ | ttot(Q, I) ≤ 4ttot, tq(Q, I) ≤ 4tq] ≥ p4tq .

Therefore, we have

Pr
C0,I

[WQ ∧ ttot(Q, I) ≤ 4ttot] ≥ Pr
C0,I

[WQ ∧ ttot(Q, I) ≤ 4ttot ∧ tq(Q, I) ≤ 4tq] ≥ p4tq/2. (2)

Now we say a pair (C0, C2) is good for query Q, if the simulation gives |Csim| ≤ 4ttot, and the event
WQ is “not-too-unlikely” to happen conditioned on the pair: PrI [WQ | C0, C2] ≥ p4tq/4. By (2), Markov’s
inequality and the fact that C2 is determined by I, we have

Pr
C0,C2

[
Pr
I
[WQ ∧ ttot(Q, I) ≤ 4ttot | C0, C2] ≥ p4tq/4

]
≥ p4tq/4.

This implies that (C0, C2) is good for Q with probability at least p4tq/4, sinceWQ implies that the simulation
is correct, and we must have |Csim| = ttot(Q, I).

In the following, let us only focus good (C0, C2) pairs. Consider the posterior distribution over the
contents of Csim conditioned on a good pair (C0, C2). Let z be a possible content of Csim. Define f(z) to
be the probability of z, multiplied by the expected value of P(Q, I) conditioned on z in this distribution
(Step 6),

f(z) := Pr
I
[Csim ← z | C0, C2] · E

I
[P(Q, I) | Csim ← z, C0, C2] .

Intuitively, f(z) is the contribution to E[P(Q, I) | C0, C2] when Csim ← z. We have following claim about
good pairs.

Claim 10. When (C0, C2) is a good pair for Q, the lemma premises are satisfied and k ≤ 4ttot in Step 6.

To see this, by the definition of a good pair, we have |Csim| ≤ 4ttot, i.e., k ≤ 4ttot. For the premises
of Lemma 9, clearly, f is a function mapping Σk to R. The first condition on f is always satisfied: Since
|P(Q, I)| ≤ 1, we have

∑
z∈Σk

|f(z)| =

∣∣∣∣∣∣
∑
z∈Σk

Pr[Csim ← z | C0, C2] · E
I
[P(Q, I) | Csim ← z, C0, C2]

∣∣∣∣∣∣
≤
∑
z∈Σk

Pr[Csim ← z | C0, C2] · E
I
[|P(Q, I)| | Csim ← z, C0, C2]

≤
∑
z∈Σk

Pr[Csim ← z | C0, C2]

= 1.
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For the second condition on f , since (C0, C2) is good, PrI [WQ | C0, C2] ≥ p4tq/4 = ε/β. WhenWQ happens,
Bob will use the correct contents of Csim for the simulation. Let z∗ be the content Bob uses in Step 5. Hence,
a good pair implies PrI [Csim ← z∗ | C0, C2] ≥ ε/β. Moreover, conditioned on Csim ← z∗ and (C0, C2), the
query output of Q is determined (since the query algorithm is correctly simulated). That is, the sign of
P(Q, I) is determined. Therefore, we have

|f(z∗)| = Pr
I
[Csim ← z∗ | C0, C2] ·

∣∣∣∣E
I
[P(Q, I) | Csim ← z∗, C0, C2]

∣∣∣∣
= Pr

I
[Csim ← z∗ | C0, C2] · E

I
[|P(Q, I)| | Csim ← z∗, C0, C2]

≥ ε,

where the last inequality uses the fact that |P(Q, I)| ≥ β and PrI [Csim ← z∗ | C0, C2] ≥ ε/β.
Thus, Lemma 9 guarantees that there exists a set Y ⊆ Csim of size

κ ≤ O(
√
k · lg 1/ε) ≤ O(

√
ttot(tq lg 1/p+ lg 1/β)),

such that ∑
y∈ΣY

∣∣∣∣∣∣
∑
z|Y =y

f(z)

∣∣∣∣∣∣ ≥ 2−O(
√
ttot(tq lg 1/p+lg 1/β)). (3)

Note that Bob knows the set Y , since it is determined by the pair (C0, C2) (and Q). Note that the LHS of
the inequality is the expected advantage conditioned only on Y , i.e.,

∑
y∈ΣY

∣∣∣∣∣∣
∑
z|Y =y

f(z)

∣∣∣∣∣∣ =
∑
y∈ΣY

∣∣∣∣∣∣
∑
z|Y =y

Pr [Csim ← z | C0, C2] · E
I
[P(Q, I) | Csim ← z, C0, C2]

∣∣∣∣∣∣
=
∑
y∈ΣY

∣∣∣∣∣∣Pr[Y ← y | C0, C2] ·
∑
z|Y =y

Pr[Csim ← z | Y ← y, C0, C2] · E
I
[P(Q, I) | Csim ← z, C0, C2]

∣∣∣∣∣∣ .
=
∑
y∈ΣY

∣∣∣∣Pr[Y ← y | C0, C2] · E
I
[P(Q, I) | Y ← y, C0, C2]

∣∣∣∣ . (4)

Finally, Alice further samples every cell with probability p using public randomness, obtains C1, and
sends all updated cells to Bob (Step 3). Then with probability pκ, we have C1 ⊇ Y . Note that Bob gets
to know the contents of all cells in C1: If a cell is not updated, then it has the pre-initialized content.
Furthermore, for a good pair (C0, C2) and addr(C1) such that C1 ⊇ Y , the expected advantage is

E
cont(C1)|C0,C2

[∣∣∣∣E
I
[P(Q, I) | C0, C1, C2]

∣∣∣∣]
≥ E

cont(Y )|C0,C2

[∣∣∣∣E
I
[P(Q, I) | C0, cont(Y ), C2]

∣∣∣∣]
=
∑
y∈ΣY

Pr[Y ← y | C0, C2] ·
∣∣∣∣E
I
[P(Q, I) | C0, C2, Y ← y]

∣∣∣∣
≥ 2−O(

√
ttot(tq lg 1/p+lg 1/β)),

where the last inequality is by Equation (3) and (4).
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To prove that π has the claimed advantage, we have for every Q ∈ Q′,

E
MA

[∣∣∣∣E
I
[P(Q, I) |MA]

∣∣∣∣]
≥ Pr [(C0, C2) is good ∧ C1 ⊇ Y ] · E

MA

[∣∣∣∣E
I
[P(Q, I) |MA]

∣∣∣∣ | (C0, C2) is good ∧ C1 ⊇ Y
]

≥ Ω(p4tq · pκ) · E
C0,C2,addr(C1)

[
E

cont(C1)|C0,C2

[∣∣∣∣E
I
[P(Q, I) | C0, C1, C2]

∣∣∣∣] | (C0, C2) is good ∧ C1 ⊇ Y
]

≥ Ω(p4tq · pκ) · 2−O(
√
ttot(tq lg 1/p+lg 1/β))

= 2−O(
√
ttot(tq lg 1/p+lg 1/β)·lg 1/p).

This proves the theorem.
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