
Invertible Bloom Lookup Tables
with Less Memory and Randomness

Nils Fleischhacker1⋆ , Kasper Green Larsen2⋆⋆ , Maciej Obremski3⋆ ⋆ ⋆ , and Mark Simkin4†

1 Ruhr University Bochum
2 Aarhus University

3 National University of Singapore
4 Ethereum Foundation

Abstract. In this work we study Invertible Bloom Lookup Tables (IBLTs) with small failure prob-
abilities. IBLTs are highly versatile data structures that have found applications in set reconciliation
protocols, error-correcting codes, and even the design of advanced cryptographic primitives. For storing
n elements and ensuring correctness with probability at least 1−δ, existing IBLT constructions require
Ω(n(log(1/δ)

log(n)
+ 1)) space and they crucially rely on fully random hash functions.

We present new constructions of IBLTs that are simultaneously more space efficient and require less
randomness. For storing n elements with a failure probability of at most δ, our data structure only
requires O(n+ log(1/δ) log log(1/δ)) space and O(log(log(n)/δ))-wise independent hash functions.
As a key technical ingredient we show that hashing n keys with any k-wise independent hash function
h : U → [Cn] for some sufficiently large constant C guarantees with probability 1−2−Ω(k) that at least
n/2 keys will have a unique hash value. Proving this is highly non-trivial as k approaches n. We believe
that the techniques used to prove this statement may be of independent interest.

⋆ mail@nilsfleischhacker.de. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

⋆⋆ larsen@cs.au.dk. Supported by a DFF Sapere Aude Research Leader grant No 9064-00068B.
⋆ ⋆ ⋆ obremski.math@gmail.com. Funded by MOE2019-T2-1-145 Foundations of quantum-safe cryptography.

† mark.simkin@ethereum.org

https://orcid.org/0000-0002-2770-5444
https://orcid.org/0000-0001-8841-5929
https://orcid.org/0000-0003-4174-0438
https://orcid.org/0000-0002-7325-5261

1 Introduction

The Invertible Bloom Lookup Table (IBLT) is a very elegant data structure by Goodrich and
Mitzenmacher [GM11]. It functions much like a dictionary data structure, supporting insertions,
deletions and the retrieval of key-value pairs. What is special about the IBLT, is that upon initial-
ization, one decides on a threshold n. Now, regardless of how many key-value pairs are present in
the IBLT, the space usage will always remain proportional to n. Of course this comes at a cost,
namely that the retrieval operations will temporarily stop functioning, when the number of pairs
stored in the IBLT exceeds n. When the number of stored pairs falls below n again, the IBLT will
resume supporting retrieval queries.

The above functionality is extremely useful in many applications. Consider for instance the set
reconciliation problem [MTZ03, EGUV11]. Here two parties Alice and Bob hold sets SA and SB

of key-value pairs. Think of these sets as two replicas of a database storing key-value pairs. In
applications where insertions and deletions into the database must be supported quickly, we may
allow the two sets SA and SB to be slightly inconsistent, such that a client performing an operation
on the database will not have to wait for synchronization among the two replicas. Instead, Alice and
Bob will every now and then synchronize their two sets SA and SB. For this purpose, Alice maintains
an IBLT for her set SA, which she may send to Bob. Upon receiving the IBLT, Bob then deletes
every element from his set SB from Alice’s IBLT. If |SA \SB ∪SB \SA| is less than the threshold n,
Bob can retrieve the key-value pairs in SA \SB. Since the space usage of IBLTs is only proportional
to the threshold n, this allows for the communication between Alice and Bob to be proportional to
|SA\SB∪SB \SA| and not |SA| or |SB|. This may result in significant savings, when the sets SA and
SB are large, but very similar. IBLTs have also seen uses in numerous other applications, ranging
from distributed systems applications [OAB+17, MP17] over fast error-correcting codes [MV12] to
cryptography [AGL+17, FLS22, FLS23].

The surprising functionality of IBLTs is supported via hashing. In more detail, the original
IBLT construction by Goodrich and Mitzenmacher consists of an array A of m cells along with a
hash function h mapping keys to k distinct entries in A for a tuneable parameter k. Each cell of
A has three fields, a count, a keySum and a valueSum. When inserting a key-value pair (x, y), we
compute the k positions h(x) = (i1, . . . , ik), increment the count field in A[ij], add x to the keySum
of A[ij] and add y to the valueSum of A[ij] for each j = 1, . . . , k. A deletion of a key-value pair
is simply supported by reversing these operations, i.e. decrementing count and subtracting x from
keySum and y from valueSum. To support the retrieval of the value associated with a query key
x, we again compute h(x) = (i1, . . . , ik) and examine the entries A[ij]. If we find such an entry
where the count field is one, then we know that only one key-value pair hashed there. We can thus
compare the keySum to x, and if they are equal, we can return the valueSum. If the keySum is
different from x, or we find a cell with a count of zero, we may return that x is not in the IBLT.
Finally, if all k count fields are at least two, we return “Don’t know”. If the number of cells m is
2nk, then the chance that a key-value pair hashes to at least one unique entry (no collisions) is
around 1− 2−Ω(k) whenever the number of key-value pairs stored in the IBLT does not exceed the
threshold n.

Peeling. The simple functionality above supports Insertions, Deletions and Get operations, where
a Get operation retrieves the value associated with a query key x. Using space O(nk), the Get
operation succeeds with probability 1 − 2−Ω(k). However, in several applications, such as set rec-
onciliation, one is more interested in outputting the list of all key-value pairs present in the IBLT.

1

For this purpose, a ListEntries operation is also supported. To list all key-value pairs in the IBLT,
we repeatedly look for a cell in A with a count of one. When we find such a cell A[i], we output
(x, y) =(A[i].keySum, A[i].valueSum) and then delete (x, y) from the IBLT. This process of peeling
the key-value pairs reduces the count of other fields and thus increases the chance that we can
continue peeling key-value pairs. Concretely, the ListEntries operation can be shown to succeed
with probability 1 − Ω(n−k+2) when the number of key-value pairs present in the IBLT does not
exceed the threshold n. The peeling success probability thus far exceeds that of the simple Get
operation when hashing to at least k = 3 entries.

Supporting False Deletions. The attentive reader may have observed that the simple version of
the IBLT described above critically assumes that no deletions are performed on key-value pairs
that are not already present in the IBLT. In the set reconciliation example, this is insufficient as
there may be key-value pairs in SB that are not in SA, which will cause false deletions. A simple
extension to the IBLT ensures that it also functions if the total number of present key-value pairs
plus the number of false deletions does not exceed the threshold n. For set reconciliation, this is
equivalent to |SA \SB|+ |SB \SA| ≤ n. To support such false deletions, we add a hashSum field to
every cell and include another hash function g mapping keys to a sufficiently large output domain
[R]. When inserting key-value pairs, g(x) is added to the hashSum field of A[ij] and subtracted
during deletions. To retrieve the value associated with a key x, we proceed as before, but whenever
the count is either −1 or 1, we also perform a check that the hashSum is equal to g applied to
the keySum. If not, we treat the cell as if the count was at least 2. For ListEntries, a peeling
operation also includes such checks and furthermore, when a count is −1, we may instead insert
(x, y) =(-keySum,-valueSum) if g applied to -keySum equals -hashSum.

Memory Usage and Randomness. In this paper, we focus on the more interesting ListEntries
operation and ignore the Get operation. Requiring that ListEntries succeeds with probability 1−δ,
the classic IBLT uses space O(n(lg(1/δ)/ lg n+1)), since we must set k = O(1+ lgn(1/δ)) to make
n−k+1 ≤ δ, and the space usage is m = O(nk) cells. Notice here, and throughout the paper, that
space is measured in number of cells of the IBLT. In terms of bit complexity, the count field needs
O(lg n) bits, the keySum and valueSum fields need O(lg |U |+ lg n) bits when keys and values come
from a universe U . Finally, in both previous IBLTs and our new construction, the hashSum field
needs O(lg(1/δ) + lg n) bits. Thus each cell of the table costs O(lg(|U |n/δ)) bits.

The analysis of the classic IBLT critically assumes that the hash function h is truly fully random.
This is of course unrealistic in practice. But where many typical data structures can make due with
O(lg(1/δ)) or O(lg n)-wise independent hash functions, this is not known to be the case for the
IBLT. Concretely, the standard analysis of the peeling process of the IBLT requires a union bound
over exponentially many events (for every set of 2 ≤ j ≤ n keys S, for every set T of jk/2 entries
of A, we have a failure event saying that h(x) ∈ T for all x ∈ S). With exponentially many events
in the union bound, each of them must occur with probability at most exp(−Ω(n)) for the union
bound to be useful. This requires a seed length of Ω(n) bits for a hash function and thus cannot
be implemented with k-wise independence for k significantly less than n. It could be the case
that a more refined analysis could show that less randomness suffices, but this has not yet been
demonstrated. We remark that it is possible to show that tabulation hashing [DKRT15, Tho17]
may be used to support peeling, but this also requires a random seed of length proportional to n.

2

1.1 Our Contributions

Our main contribution is a new version of the IBLT that is both more space efficient and that can
be implemented with much less randomness. We call our new data structure a Stacked IBLT and
show the following:

Theorem 1. Given a threshold n, the Stacked IBLT supports Insertions, Deletions and ListEntries
operations, where ListEntries succeeds with probability 1 − δ when the number of key-value pairs
is no more than n. Furthermore, it uses space O(n + lg(1/δ) lglg(1/δ)) cells and requires only
O(lg(lg(n)/δ))-wise independent hashing.

Comparing this to the classic IBLT, our construction outperforms it for any δ = n−ω(1) and more
importantly, it can be implemented with a small random seed. Our Stacked IBLT also supports
false deletions like the classic IBLT and ListEntries succeeds with the claimed probability if the
number of key-value pairs plus the number of false deletions does not exceed n.

The overall idea in the Stacked IBLT is to construct arrays A1, . . . , Algn where Ai has Cn/2i

entries. Each of the arrays has its own hash function hi mapping keys to a single entry in Ai. To
support the ListEntries operation, we start by peeling all elements in A1 that hash uniquely. We
then proceed to A2 and so forth. The critical property we require is that each time we peel, we
successfully peel at least half of all remaining key-value pairs. In this way, the number of entries in
the next Ai to peel from, is always a constant factor larger than the number of remaining key-value
pairs. When we reach Algn, we finally peel the last key-value pair. In this way, all we need from the
hash functions hi, is that at least half the key-value pairs hash uniquely with probability 1−δ/ lg n.
We prove that this is the case if the hi’s are just O(lg(lg(n)/δ))-wise independent:

Theorem 2. Let x1, . . . , xn ∈ U be a set of n distinct keys from a universe U and let h : U → [Cn]
be a hash function drawn from a 2k-wise independent family of hash functions. If C ≥ 4e, then
with probability at least 1− 4 · (4e/C)min{k,n/C} it holds that there are no more than n/2 indices i
such that there exists a j ̸= i with h(xi) = h(xj).

In addition to allowing implementations with limited independence, the geometrically decreasing
sizes of the arrays Ai also result in the improved space usage compared to classic IBLTs.

While Theorem 2 might at first sight appear to follow from standard approaches for analyzing
hash functions with limited independence, there are in fact several difficult obstacles that we need
to overcome to prove it. In particular, as k approaches n, the obvious approaches fail miserably.
Furthermore, our Stacked IBLTs critically needs Theorem 2 to hold for k all the way up to n. We
believe the ideas we use to overcome this barrier are highly novel and may prove useful in future
work. We thus discuss these ideas and the barriers we overcome in Section 1.2.

Let us also comment on the constant 4e. It is not as small as one could hope (somewhere around
2 sounds realistic), but it is small enough that we have chosen to state it explicitly rather than hide
it in O-notation. Presumably our analysis could be tightened further to reduce it by a constant
factor, but we have focussed on a clean exposition of the proof.

Finally, let us also comment that when the number of remaining key-value pairs drop be-
low lg(1/δ), Theorem 2 is insufficient to guarantee a success probability of 1 − δ/ lg n due to the
min{k, n/c} in the exponent. For this reason, we change strategy and replace some of the arrays Ai

by matrices with multiple rows. We leave the details to later sections and mention here that this is
what causes the O(lg(1/δ) lglg(1/δ)) term in the space usage of the Stacked IBLT.

3

1.2 Technical Contributions

When analysing events involving hash functions of limited independence, one typically considers
higher moments of a sum of random variables that each depends only on a constant number of hash
values. For our Theorem 2, the natural random variables to consider would be the random variables
Xi,j taking the value 1 if h(xi) = h(xj). Clearly there are no more than n/2 indices i such that there
exists j ̸= i with h(xi) = h(xj) if

∑
i ̸=j Xi,j ≤ n/2. To upper bound Pr[

∑
i ̸=j Xi,j > n/2], we raise

both sides of the inequality to the k’th power and use that Pr[
∑

i ̸=j Xi,j > n/2] = Pr[(
∑

i ̸=j Xi,j)
k >

(n/2)k]. Using Markov’s inequality, this probability is at most E[(
∑

i ̸=j Xi,j)
k]/(n/2)k. Expanding

the k’th power of the sum into a sum of monomials and using linearity of expectation, we have
E[(
∑

i ̸=j Xi,j)
k] =

∑
T∈{(i,j):i ̸=j}k E[

∏
(i,j)∈T Xi,j]. Since each product depends on at most 2k hash

values, and h is 2k-wise independent, we can analyse each monomial as if h was truly random.

For the purpose of proving our theorem, this approach actually suffices to establish the theorem
for k <

√
n. However, for our application in IBLTs we need the theorem to hold for k up to

Ω(n). The problem is that as k approaches n, using that
∑

i ̸=j Xi,j is small as a proxy for having
many elements hash to a unique position is lossy. In essence, this is because ℓ elements hashing
to the same value contributes around ℓ2 to

∑
i ̸=j Xi,j whereas it actually only corresponds to ℓ

elements not hashing to a unique value. For this reason, E[(
∑

i ̸=j Xi,j)
k] is simply too large to give

a meaningful bound from Markov’s when k = Ω(
√
n). In fact, it is not only the higher-moments

method that is doomed, but any approach based on arguing that Pr[
∑

i ̸=j Xi,j > n/2] is small will
fail. Consider for instance the case where k is Θ(n). Our Theorem 2 shows that the probability that
less than n/2 keys hash uniquely is exp(−Ω(n)). If we consider

∑
i ̸=j Xi,j and even assume that h

is truly random, then the probability that the first n/ lg n keys all hash to the first n/ lg3 n entries
is (C lg3 n)−n/ lgn ≥ exp(−O(n lglg n/ lg n)) for constant C > 0. But when this happens, we have∑

i ̸=j Xi,j ≥ (n/ lg3 n)2
(
lg2 n
2

)
≈ n lg n. That is, Pr[

∑
i ̸=j Xi,j > n/2] ≥ exp(−O(n lglg n/ lg n)).

In light of this, it is not a priori clear which random variables that are sensible to analyse, keeping
in mind that they should depend on only few hash values (for the sake of limited independence) and
yet accurately capture the event that at least n/2 elements hash to a unique value. We elegantly
circumvent this barrier by first carefully defining random variables Yi,j that actually depend on all
hash values. We then consider the k’th moment of a sum involving these Yi,j ’s and argue that most
monomials are 0 due to the special definition of the Yi,j ’s. Now that there are only very few non-zero
monomials left, we upper bound our Yi,j ’s by the Xi,j ’s above, bringing us back into a setup with
monomials depending on at most 2k hash values. Compared to going directly from the Xi,j ’s, what
we win is that there are much fewer monomials left in the sum. The initial pruning of monomials
using the more involved Yi,j ’s is a key technical innovation that we have not seen before and believe
may be an inspiration in future work analysing random variables of limited independence.

2 Preliminaries

Let X,Y be sets, we denote by |X| the size of X and by X △ Y the symmetric set difference of X
and Y , i.e., X△Y = (X ∪Y)\ (X ∩Y) = (X \Y)∪ (Y \X). We write x← X to denote the process
of sampling a uniformly random element x ∈ X. Let v ∈ Xn be a vector. We write vi to denote its
i-th component. Let M ∈ Xn×m be a matrix. We write M [i, j] to denote the cell in the i-th row
and j-th column. We write [n] to denote the set {1, . . . , n}. We write lg without a specified base to
denote the logarithm to base two.

4

3 Hashing Uniquely with Limited Independence

In this section, we prove our main technical result, Theorem 2, which we restate here for convenience.

Theorem 2 (restated). Let x1, . . . , xn ∈ U be a set of n distinct keys from a universe U and let
h : U → [Cn] be a hash function drawn from a 2k-wise independent family of hash functions. If
C ≥ 4e, then with probability at least 1− 4 · (4e/C)min{k,n/C} it holds that there are no more than
n/2 indices i such that there exists a j ̸= i with h(xi) = h(xj).

Proof. As discussed in Section 1.2, the straight forward approach of analysing moments of a sum∑
i<j Xi,j with Xi,j being an indicator for h(xi) = h(xj) fails. In essence, this is because a collision

of ℓ elements contributes roughly ℓ2 to the sum. Our first step in the proof of Theorem 2 is thus to
make a far less obvious definition of random variables.

Define random variables Yi,j with i ̸= j taking the value 1 if h(xi) = h(xj) and furthermore,
for all a with min{i, j} < a < max{i, j} we have h(xi) ̸= h(xa). Otherwise, Yi,j takes the value 0.
Observe that if elements xi1 , . . . , xiℓ are all those that hash to a concrete value v, and i1 < i2 <
· · · < iℓ, then Yi1,i2 = Yi2,i1 = Yi2,i3 = · · · = Yiℓ,iℓ−1 = 1 and all other Yi,j ’s with i or j in {i1, . . . , iℓ}
are zero. The random variable Yi,j is thus 1 if xi and xj hash to the same v, and furthermore, i and
j are consecutive in the sorted order of all elements hashing to v. Critically, a collision of ℓ elements
contribute only 2ℓ−2 to

∑
i ̸=j Yi,j . On the negative side, these random variables Yi,j clearly depend

on more than two hash values unlike the Xi,j ’s.
Letting S = {x1, . . . , xn}, observe that if there more than n/2 keys x ∈ S such that there is a

y ∈ S \ {x} with h(x) = h(y), then
∑

i ̸=j Yi,j > n/2. Let r = min{k, n/C}. Using Markov’s, we get

Pr

∑
i ̸=j

Yi,j > n/2

 = Pr

∑
i ̸=j

Yi,j

r

> (n/2)r

 <
E
[(∑

i ̸=j Yi,j

)r]
(n/2)r

. (1)

We thus focus on bounding E[(
∑

i ̸=j Yi,j)
r]. Expand it into its monomials

E

∑
i ̸=j

Yi,j

r =
∑

(i1,j1),...,(ir,jr)

E

[
r∏

h=1

Yih,jh

]
.

Here the sum ranges over all lists of r pairs (ih, jh) with ih ̸= jh. Notice that the product is 1 if and
only if all the indicators involved are 1. For a monomial

∏r
h=1 Yih,jh , think of the pairs (ih, jh) as

edges of a graph with the elements x1, . . . , xn as nodes. The critical observation is that if any node
in this graph has at least three distinct neighbors, then

∏r
h=1 Yih,jh = 0. To see this, assume the

node xi has at least three distinct neighbors. If xi has two neighbors xj1 , xj2 with j1 < j2 < i, then
we cannot have both Yj1,i = Yi,j1 = 1 and Yj2,i = Yi,j2 = 1. This is because, by definition, Yj1,i can
only be 1 if there are no elements xa with h(xa) = h(xj1) and j1 < a < i. But a = j2 is an example
of such an element when we also require Yj2,i = Yi,j2 = 1. A similar argument applies to the case
that xi has two neighbors xj1 , xj2 with i < j1 < j2. Notice that this also implies that the monomial
is 0 if the corresponding graph has a cycle since the node of largest index on the cycle has an edge
to two distinct neighbors of lower index. In combination, the monomial can only be non-zero if the
corresponding edges form connected components corresponding to paths (possible with duplicate
edges).

5

Let Gr denote the set of all ordered lists L of r pairs L := (i1, j1), . . . , (ir, jr) (with ih ̸= jh for
all h) such that every connected component in the corresponding graph G(L) forms a path. Then

E

∑
i ̸=j

Yi,j

r =
∑
L∈Gr

E

 ∏
(i,j)∈L

Yi,j

 .

Now consider a monomial
∏

(i,j)∈L Yi,j for an L ∈ Gr. Define Xi,j as the random variable taking
the value 1 if h(xi) = h(xj) and 0 otherwise. Here we use that Yi,j ≤ Xi,j and thus

∏
(i,j)∈L Yi,j ≤∏

(i,j)∈LXi,j . Therefore

E

∑
i ̸=j

Yi,j

r ≤ ∑
L∈Gr

E

 ∏
(i,j)∈L

Xi,j

 .

What we have achieved is to upper bound E[(
∑

i<j Yi,j)
r] by the contribution from monomials

corresponding to graphs consisting of paths. Furthermore, for these monomials, we have replaced
the Yi,j variables by the simpler Xi,j variables that each only depend on two hash values. This
allows us to handle the limited independence of h.

Next, we bound E[
∏

(i,j)∈LXi,j] for an L ∈ Gr. With the graph interpretation G(L) of L in
mind, we observe that the product is 1 if and only if, for every connected component in G(L), all
nodes in the component hash to the same. Furthermore, the monomial depends on at most 2r ≤ 2k
hash values and thus the random variables behave as if h was truly random. For a connected
component with qi nodes, the probability all nodes hash to the same is precisely (Cn)−(qi−1). If the
total number of nodes in G(L) having at least one neighbor is q and the total number of connected
components in G(L) formed by these nodes and their edges is c, then

E

 ∏
(i,j)∈L

Xi,j

 = (Cn)−q+c.

For every q ≤ 2r and every c ≤ q/2, let Grq,c ⊆ Gr be the subset of lists L for which the corresponding
graph G(L) has c non-singleton connected components and those connected components together
have q nodes. Then

E

∑
i ̸=j

Yi,j

r ≤ 2r∑
q=2

q/2∑
c=1

∑
L∈Gr

q,c

E

 ∏
(i,j)∈L

Xi,j

 =

2r∑
q=2

q/2∑
c=1

|Grq,c|(Cn)−q+c.

We thus need to bound |Grq,c|. Here we show the following

Lemma 3. For all q ≤ 2r, c ≤ q/2 it holds that

|Grq,c| ≤
(
4er

q

)q−c

qrnqq−c.

Before we prove the lemma, let us use to finish our proof of Theorem 2. Continuing our calculations
above using Lemma 3, we have that

|Grq,c|(Cn)−q+c ≤
(

4er

qCn

)q−c

qrnqq−c

6

=

(
4er

qC

)q (4er

Cn

)−c

qr.

Since we set r = min{k, n/C} and require C ≥ 4e, we have (4er/(Cn)) ≤ 1/4 and thus exploiting
that the sum over c is a geometric series we get

q/2∑
c=1

|Grq,c|(Cn)−q+c ≤ 2

(
4er

qC

)q (4er

Cn

)−q/2

qr = 2

(
4ern

Cq2

)q/2

qr

Using again that n/C ≥ r and r ≥ q/2, we have 4ern/(Cq2) ≥ 4er2/q2 ≥ e and thus we may again
use a geometric series to conclude

E

∑
i ̸=j

Yi,j

r ≤ 2r∑
q=2

q/2∑
c=1

|Grq,c|(Cn)−q+c ≤ 4

(
4ern

C(2r)2

)r

(2r)r = 4

(
2en

C

)r

.

Plugging this back into the bound (1) we got from Markov’s inequality, we finally conclude

Pr

∑
i ̸=j

Yi,j > n/2

 ≤ 4 ·
(
4e

C

)r

.

Recalling that r = min{k, n/C} completes the proof. ⊓⊔

Counting Graphs (Proof of Lemma 3). To bound |Grq,c|, we first recall that every L ∈ Grq,c corre-
sponds to a graph consisting of c non-singleton connected components, each forming a path of qi
nodes with q =

∑
i qi. The set of (undirected) edges in G(L) thus has cardinality q − c ≤ r. We

now argue that any L ∈ Grq,c can be uniquely described by an element in

U :=

(
r

q − c

)
× ({0, 1} × [q − c])r−(q−c) ×

(
2(q − c)

q

)
× [n]q × [q]2(q−c)−q.

Here
(

r
q−c

)
is the set of all (q − c)-sized subsets of a universe of cardinality r. Notice that this

indirectly specifies a surjective function from U to Grq,c and thus

|Grq,c| ≤
(

r

q − c

)
(2(q − c))r−(q−c)

(
2(q − c)

q

)
nqqq−2c.

To describe an L ∈ Grq,c with an element from U , use an element in
(

r
q−c

)
to specify the first

occurence of each edge in L (where an edge (i, j) is first if neither (i, j) or (j, i) occurs earlier in
L). For each of the r− (q− c) remaining edges in order, use an element in {0, 1}× [q− c] to specify
it as a copy of one of the q − c first edges, where {0, 1} indicates whether to reverse the order of
the end points. Next observe that the q − c first edges have 2(q − c) end points of which precisely
q are unique. Specify the first occurence of each unique node on these edges using an element in(
2(q−c)

q

)
. Next use an element in [n] for each such node in order to specify it among the nodes

x1, . . . , xn. Finally, for the remaining 2(q − c) − q end points, specify them as an index into the q
first occurrences of unique nodes. This information uniquely describes L.

7

Using that
(
2(q−c)

q

)
≤ 22(q−c) and the general inequality

(
r

q−c

)
≤ (er/(q − c))q−c, we conclude

|Grq,c| ≤
(

er

q − c

)q−c

(2(q − c))r−(q−c)22(q−c)nqqq−2c

≤
(
2er

q

)q−c

(2q)r−(q−c)22(q−c)nqqq−2c

=

(
4er

q

)q−c

qrnqq−c.

⊓⊔

4 Smaller IBLTs with Limited Independence

In this section, we present a new construction of IBLTs, which we call stacked IBLTs, that is both
asymptotically smaller and requires less randomness (in Section 4.3 we also argue that the analysis
of the original IBLT cannot be strengthened to give bounds comparable to our stacked IBLT).

4.1 Stacked IBLTs

In this section we introduce our new Stacked IBLTs that are more space efficient and allow for a
lower randomness complexity. Essentially the construction consists of lgn stacked smaller IBLTs.
These IBLTs will be decoded in order and each is sized, such that we will be able to prove that it
allows decoding at least half the remaining entries. This means that after decoding all lg n IBLTs,
at most a single element is left to decode which can then be trivially decoded.

Init(h)

for 0 ≤ i < lg(n)− lg(τ)

Ti := BasicInit(1, ⌈Cn2−i⌉,hi)

for 0 ≤ i < lg(τ)

i′ := ⌊lg(n)− lg(τ)⌋+ i

Ti′ := BasicInit(2i, ⌈Cτ2−i⌉,hi′)

return (T0, . . . , T⌈lgn⌉−1)

Insert((T0, . . . , T⌈lgn⌉−1), S,h)

for 0 ≤ i < ⌈lgn⌉
Ti := BasicInsert(S,hi)

return (T0, . . . , T⌈lgn⌉−1)

Delete((T0, . . . , T⌈lgn⌉−1), S̃,h)

for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete(S̃,hi)

return (T0, . . . , T⌈lgn⌉−1)

ListEntries((T0, . . . , T⌈lgn⌉−1),h)

S′ := ∅
for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete(Ti, S
′)

S′ := S′ ∪ BasicListEntries(Ti)

return S′

Fig. 1. Our stacked IBLT construction using basic IBLTs as specified in Figure 2 as a building block. We have that
τ = C0 lg(1/δ) for a sufficiently large constant C0 > 0

Let n be the threshold for an IBLT and δ > 0 a desired failure probability. We can think of our
Stacked IBLT as consisting of multiple rows, with a k-wise independent hash function associated
with each row for k = Θ(lg(lg(n)/δ)). An element is hashed into one position in each row and
stored there, like in the classic IBLT. The key novelty of our solution is that the number of entries
per row varies. Moreover, while a classic IBLT focuses on peeling all elements, our analysis is based
on peeling a constant fraction of the elements from each row.

8

BasicInit(ρ, γ,h)

K := 0ρ×γ

V := 0ρ×γ

C := 0ρ×γ

return (K,V ,C)

BasicInsert((K,V ,C), S,h)

foreach (k, v) ∈ S

foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j] + k

V [i, j] := V [i, j] + v

C[i, j] := C[i, j] + 1

return (K,V ,C)

BasicDelete((K,V ,C), S̃,h)

foreach (k, v) ∈ S̃

foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j]− k

V [i, j] := V [i, j]− v

C[i, j] := C[i, j]− 1

return (K,V ,C,h)

BasicListEntries((K,V ,C),h)

S′ := ∅
for (i, j) ∈ [ρ]× [γ]

if C[i, j] = 1

(k, v) := (K[i, j],V [i, j])

S′ := S′ ∪ {(k, v)}
return S′

Fig. 2. A simplified version of a basic IBLT for key space K and universe U . Both ⟨K,+⟩ and ⟨U ,+⟩ need to
form groups. The basic IBLT requires a number of rows ρ, a number of columns γ and a vector of hash functions
h ∈ {h : K → [γ]}ρ to initialize.

More formally, let τ = C0 lg(1/δ) for a sufficiently large constant C0 > 0 and assume first
that n ≥ τ . For i = 0, . . . , lg(n/τ), our IBLT has one row Ri with Cn2−i entries. Here C > 0 is
a sufficiently large constant, where C = 8e is provably sufficient. Finally, for i = 0, . . . , lg(τ), it
has a group Gi consisting of 2i rows all with Cτ2−i entries. In case n < C0 lg(1/δ), our structure
has a group Gi of 2

i rows for every i = lg(τ/n), . . . , lg(τ). In the group Gi, every row has Cτ2−i

entries. The IBLT uses
∑lg(n/τ)

i=0 Cn2−i +
∑lg(τ)

i=0 Cτ = O(n+ lg(1/δ) lglg(1/δ)) space. In the formal
description of our Stacked IBLT construction, shown in Figure 1, we do not explicitly distinguish
between the rows Ri and groups Gi, but rather view them as smaller IBLTs that we call T1, . . . , Tlgn.
For the analysis, however, distinguishing the smaller IBLTs with one row and those with multiple
rows is helpful.

Theorem 1 (restated). Given a threshold n, the Stacked IBLT supports Insert, Delete, and
ListEntries operations, where ListEntries succeeds with probability 1 − δ if the number of key-value
pairs is no more than n. Furthermore, it uses space O(n + lg(1/δ) lglg(1/δ)) and requires only
O(lg(lg(n)/δ))-wise independent hashing.

Proof. To analyse the probability that peeling succeeds, we focus on the case of n ≥ τ . The other
case is just a special case.

To argue that peeling succeeds with high probability, we consider a very restrictive form of
peeling and argue that even this process succeeds. Concretely, for i = 0, . . . , lg(n/τ), consider
peeling all elements that land alone in Ri (after having peeled elements landing alone in Rj with
j < i). Then, for i = 0, . . . , lg(τ) in turn, select the row of Gi where most elements hash alone and
peel those elements. To prove that this process succeeds in peeling all elements with probability
at least 1− δ, we define the events Ei occuring if there are more than n2−(i+1) elements left after
peeling from R0, . . . , Ri. Similarly, define Fi as the event that more than τ2−(i+1) elements remain
after peeling from R0, . . . , Rlg(τ), G0, . . . , Gi. We observe that if Flg(τ) does not occur, then there
are no more than 1/2 elements left, i.e. peeling succeeded.

The key step in our proof is to argue the following two

Pr[Ei | ∩i−1
j=0Ej] ≤

δ

4(lg(n/τ)− i+ 1)2
. (2)

and

Pr[Fi | ∩lg(n/τ)j=0 Ej ∩i−1
j=0 Fj] ≤ δ2/2. (3)

9

Observe that these two are sufficient as

Pr[Flg(τ)] ≥ Pr[∩lg(n/τ)j=0 Ej ∩lg(τ)j=0 Fj]

=

lg(n/τ)∏
i=0

(1− Pr[Ei | ∩i−1
j=0Ej])

lg(τ)∏
i=0

(1− Pr[Fi | ∩lg(n/τ)j=0 Ej ∩i−1
j=0 Fj])

≥
lg(n/τ)∏
i=0

(
1− δ

4(lg(n/τ)− i+ 1)2

)(
1− δ2/2

)lg(τ)+1

≥ 1−
lg(n/τ)∑
i=0

δ

4(i+ 1)2
− (lg(τ) + 1)δ2

2

≥ 1− δπ2

24
− δ

2
≥ 1− δ.

We start by showing (2). Observe that conditioned on ∩i−1
j=0Ej , we know that no more than n2−i

elements remain after peeling from R0, . . . , Ri−1. We may condition on an arbitrary such set
as the hash functions across the rows are independent. So let S be a set of at most n2−i el-
ements. The probability that there are more than n2−(i+1) elements that do no hash alone in
Ri is clearly maximized when |S| is n2−i. Theorem 2 gives us that this probability is at most
4(4e/C)min{k/2,n2−i/C}. For C ≥ 8e, this is at most 4 · 2−min{k/2,n2−i/C}. Since k = Θ(lg(lg(n)/δ)),
we have 2−k/2 < δ/(4 lg22 n) ≤ δ/(4(lg(n/τ)− i+ 1)2) for a big enough constant in the Θ-notation.
We also have n2−i/C = τ2lg(n/τ)−i/C. For big enough constant C0 (in the definition of τ), this is
at least 2 lg(1/δ)(lg(n/τ)− i+ 1) + 2 ≥ lg(1/δ) + 2 lg(lg(n/τ)− i+ 1)) + 2 (and this is by a large
margin) and we conclude 2−n2−i/C ≤ (δ/4)/(lg(n/τ)− i+ 1))2.

To show (3), note again that conditioned on ∩lg(n/τ)j=0 Ej ∩i−1
j=0Fj , there are at most τ2−i elements

left after peeling from R0, . . . , Rlg(n/τ), G0, . . . , Gi−1. Again, condition on an arbitrary set S of
remaining elements. The probability of Fi is clearly maximized if |S| = τ2−i. We split the proof in
two cases. First, assume τ2−i ≥ 4C. Since each of the 2i rows of Gi have Cτ2−i entries, and the
rows have independent hash functions, it follows by Theorem 2 and C ≥ 8e, that

Pr[Fi | ∩lg(n/τ)j=0 Ej ∩i−1
j=0 Fj] ≤

(
4 · 2−min{k,τ2−i/C}

)2i
≤
(
2−min{k/2,τ2−i/(2C)}

)2i
.

Here the last inequality assumes k = Θ(lg(lg(n)/δ)) is at least a sufficiently large constant. We also
use τ2−i/C − 2 ≥ τ2−i/C − τ2−i/(2C). We clearly have 2−k/2 ≤ δ2/2 for a big enough constant
in the Θ-notation. We also have (2−τ2−i/(2C))2

i
= 2−τ/(2C). This is again smaller than δ2/2 for big

enough constant C0 in the definition of τ = C0 lg(1/δ). Finally, for the case where |S| = τ2−i < 4C,
we note that one row of Gi has C|S| entries and thus the expected number of elements that collide
with another is no more than |S|2/(C|S|) = |S|/C. By Markov’s inequality, the probability that
more than |S|/2 collide is no more than 2/C < 1/2. By independence of the rows, the chance that
peeling fails is at most 2−2i . Since τ2−i < 4C, we have 2i ≥ τ/(4C) = C0 lg(1/δ)/(4C). For C0 a
big enough constant, this implies 2−2i < δ2/2.

4.2 Supporting Subtraction

Most applications of IBLTs require that decoding is possible after computing the difference between
two different IBLTs. That is, given two IBLTs A,B, encoding sets SA and SB respectively, decoding

10

A−B should result in SA△SB as long as |SA△SB| ≤ n, even if the sets encoded in IBLTs A and
B are much larger than n individually. The IBLT A − B is obtained by subtracting the two data
structures cell by cell.

Our IBLT can be made to support such an operation in a manner similar to the original IBLT
construction. We modify the basic IBLT from Section 4.1 to have an additional hash sum matrix
H where the values g(k) for keys k for some appropriate hash function g are added up. During
peeling both cells with a count of one or minus one can be peeled, whenever the hash of the key
sum cell matches the hash stored in the hash sum cell. These modification are decribed in Figure 4
and Figure 3. If g is a fully random function, then it is straightforward to see that the modified
construction will be correct. Using a function g that requires little randomness is slightly more
challenging. We assume that K ⊆ Zp for some prime p and we use hash function ga(x) = ax mod q
for some sufficiently large prime q > p, which was already used by Mitzenmacher and Pagh [MP17]
in the context of IBLTs. Such hash functions are useful due to the following lemma.

Init′(h, g)

for 0 ≤ i < lg(n)− lg(τ)

Ti := BasicInit′(1, ⌈Cn2−i⌉,hi, g)

for 0 ≤ i < lg(τ))

i′ := ⌊lg(n)− lg(τ)⌋+ i

Ti′ := BasicInit′(2i, ⌈Cτ2−i⌉,hi′ , g)

return (T0, . . . , T⌈lgn⌉−1)

Insert′((T0, . . . , T⌈lgn⌉−1), S,h, g)

for 0 ≤ i < ⌈lgn⌉
Ti := BasicInsert′(S,hi, g)

return (T0, . . . , T⌈lgn⌉−1)

Delete((T0, . . . , T⌈lgn⌉−1), S̃,h, g)

for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete′(S̃,hi, g)

return (T0, . . . , T⌈lgn⌉−1)

ListEntries′(h, g, (T0, . . . , T⌈lgn⌉−1))

S+ := ∅, S− := ∅
for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete′(Ti, S+, S−,hi, g)

(S′
+, S

′
−) := BasicListEntries′(Fi,hi, g)

S+ := S+ ∪ S′
+, S− := S− ∪ S′

−

return S+ ∪ S−

Fig. 3. Modified stacked IBLT supporting subtraction. It makes use of the modified basic IBLT specified in Figure 4.

Lemma 4. For any ℓ ∈ N, any k1, . . . , kℓ ∈ Zp, any σ1, . . . , σℓ ∈ {1,−1}, it holds that

Pr

[
ga

(ℓ∑
i=1

σiki

)
=

ℓ∑
i=1

σiga (ki) mod q

]
≤ 2ℓp+ 1

q
,

where the probability is taken over the random choice of a ∈ Z∗
q.

Proof. Fix some arbitrary k1, . . . , kℓ ∈ Zp and σ1, . . . , σℓ ∈ {1,−1}. Observe that

ℓ∑
i=1

σiki ≥ −ℓp

⇐⇒ ℓp+
ℓ∑

i=1

σiki ≥ 0

Next we observe that

ga

(
ℓ∑

i=1

σiki

)
=

ℓ∑
i=1

σiga (ki) mod q

11

BasicInit′(ρ, γ,h, g)

K := 0ρ×γ

V := 0ρ×γ

C := 0ρ×γ

H := 0ρ×γ

return (K,V ,C,H)

BasicListEntries′((K,V ,C,H),h, g)

S+ := ∅, S− := ∅
for (i, j) ∈ [ρ]× [γ]

if C[i, j] ∈ {1,−1} and C[i, j] ·H[i, j] = g(C[i, j] ·K[i, j])

(k, v) := (C[i, j] ·K[i, j],C[i, j] · V [i, j])

if C[i, j] = 1

S+ := S+ ∪ {(k, v)}
else

S− := S− ∪ {(k, v)}
return (S+, S−)

BasicInsert′((K,V ,C,H), S,h, g)

foreach (k, v) ∈ S

foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j] + k

V [i, j] := V [i, j] + v

C[i, j] := C[i, j] + 1

H[i, j] := H[i, j] + g(k)

return (K,V ,C,H)

BasicDelete′((K,V ,C,H), S̃−, S̃+,h, g)

foreach (b, k, v) ∈ {(1, k, v)|(k, v) ∈ S̃+} ∪ {(−1, k, v)|(k, v) ∈ S̃−}
foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j]− b · k
V [i, j] := V [i, j]− b · v
C[i, j] := C[i, j]− b

H[i, j] := H[i, j]− b · g(k)
return (K,V ,C,H)

Fig. 4. The modified basic IBLT that supports subtraction of IBLTs. This modified IBLT additionally requires a
hash function g : K → Zq sampled from the family described above.

⇐⇒ a
∑ℓ

i=1 σiki =

ℓ∑
i=1

σia
ki mod q

⇐⇒ aℓp+
∑ℓ

i=1 σiki = aℓp
ℓ∑

i=1

σia
ki mod q.

On the left side of the equation we have a polynomial of degree at most 2ℓp with indeterminant a.
On the right hand side we have a different polynomial of degree at most ℓ(p+1) with indeterminant
a. These polynomials can agree on at most 2ℓp+ 1 points and thus the statement follows. ⊓⊔

Theorem 5. Let h be a vector of functions drawn from appropriate families of lg(lg(n)/δ)-wise
independent functions and let g : Zp → Zq be chosen uniformly at random as described above for

q ≥ 2Cn3 lg(1/δ) lglg(1/δ)p
δ for some sufficiently large constant C. Then for the modified IBLT described

in Figure 3, for any pair of sets S, S′ ⊆ U such that |S △ S′| < n, it holds that

Pr[ListEntries′(h, g, Insert′(h, g, S)− Insert′(h, g, S′)) = S △ S′] ≥ 1− 2δ.

Proof. Note that in our new decoding process, we may have counter entries of one or minus one for
cells that contain more than one key. To see this consider a cell with k1 + k2 − k3, where k1, k2, k3
are all distinct. The count is one, but the cell actually still contains three keys. Storing the sum
of hashes of the keys in a cell is intended to prevent mistakenly considering such a cell peelable.

12

This is the only new source of failure for the decoding algorithm. Mistaking a peelable cell as not
peelable is not possible.

Recall that an IBLT is a key-value datastructure and thus keys are unique. That is, every key
is inserted into one of the individual IBLTs that we will subtract from each other at most once.
Obviously, a key may still be inserted in both, one, or neither of the two IBLTs. First, consider an
inefficient hash function g̃ : K → {0, 1}|K| defined as mapping a key k to the bitstring of all zeroes
with a single one bit at position k. Note that for sets X and Y of keys, the value∑

x∈X
g̃(x)−

∑
y∈Y

g̃(y)

fully encodes the symmetric set difference between X and Y . Thus using this hash function we
ensure that no cell is ever peeled incorrectly and we thus obtain the correct output from the
decoding procedure.

Let us fix a vector of hash functions h and consider two different IBLT decoding runs. In the
first g̃ is used as the hash function. In the second one ga is used. As long as ga makes no mistakes,
the two peeling processes will behave identically. Thus to show that decoding works correctly, we
simply need to show that peeling using ga behaves identically to using g̃. Let Ei,c be the event that
a cell c is not peelable after i steps in the decoding process using g̃, but

ga

(∑
k∈ki,c

σkk
)
=
∑

k∈ki,c

σkga (k) mod q,

where ki,c are the remaining keys in cell c after i steps of peeling using g̃ and σk is the corresponding
sign of key k. Note that the events Ei,c do not depend on whether ga correctly identified other cells
in previous steps as peelable since we consider the peeling process according to g̃, not according to
ga. By Lemma 4 we know that

Pr[Ei,c] = Pr

ga(∑
k∈ki,c

σkk
)
=
∑

k∈ki,c

σkga (k) mod q

 ≤ δ(2|ki,c|p+ 1)

2Cn3 lg(1/δ) lglg(1/δ)p

≤ δnp

C · n3 lg(1/δ) lglg(1/δ)p

≤ δ

Cn2 lg(1/δ) lglg(1/δ)
,

where the randomness is taken over the choice of a. By union bounding over all n peeling steps
and all Cn lg(1/δ) lglg(1/δ) cells of the data structure we obtain an additional error of at most δ.
Adding this error to the error derived from Theorem 1 yields the theorem statement. ⊓⊔

4.3 Lower Bound on the Size of IBLTs

The original IBLT analysis by Goodrich and Mitzenmacher [GM11] shows that using truly random
hash functions and space O(nk) one can achieve a failure probability of O

(
n−k+2

)
. Stated in terms

of δ and n, the space usage of their solution is thus Ω(n lgn(1/δ)). One may wonder, whether their
analysis is tight or whether one could prove that IBLTs actually only require o(nk) space for a
similar failure probability.

13

It turns out their space bound is essentially tight and can not be improved by much. Assume
we have an IBLT of size m storing keys k1, . . . , kn. Furthermore assume h1, . . . , hk are perfectly
random hash functions, which map each key to exactly k distinct locations. For an IBLT to be
decodable, we must be able to find a cell with a count of one at each step of the peeling process. If
kn ≥ cm lgm for some sufficiently large constant c, then each cell will have at least c lgm elements
in expectation and thus by Chernoff bound with high probability all cells have a count strictly
larger than one. Thus it must hold that kn < cm lgm. Consider two distinct keys that are inserted
into the IBLT. The probability that both keys are hashed into exactly the same cells is(

m

k

)−1

≥
(em

k

)−k
≥
(

en

c lgm

)−cm lgm/n

≥ n−cm lgm/n.

If we want the IBLT to be correct with probability at least 1− δ, then it has to holds that

n−cm lgm/n ≤ δ

and thus

cm lgm lg n

n
> lg(1/δ)

⇐⇒ m lgm >
n lg(1/δ)

c lg n
.

For this to hold, it must also hold that

m lg(n lg(1/δ)) >
n lg(1/δ)

c lg n

⇐⇒ m >
n lg(1/δ)

c lg(n) lg(n lg(1/δ))

and thus it must be true that

m >
n lg(1/δ)

c lg2(n lg(1/δ))
≥ n lgn(1/δ)

c lg2(n lg(1/δ))

for any choice of n ≥ 2.

5 Applications

5.1 Set Reconciliation

In the set reconciliation problem [MTZ03, EGUV11] we have two parties Alice and Bob holding
sets SA and SB of key-value pairs, who would like to compute SA∪SB in a communication efficient
manner. IBLTs allow for solving this problem elegantly with a communication complexity that is
dependent on the size |SA △ SB| rather than the size of the input sets. Assuming that the sets of
Alice and Bob do not differ by more than n entries, they compute IBLTs of their respective sets
and send them to each other. Both parties locally subtract the IBLTs from each other and decode
the difference to obtain the elements that are in SA∪SB, but were not yet in their input set. IBLTs
also allow for solving the set reconciliation problem in the multiparty setting as was shown by
Mitzenmacher and Pagh [MP17]. In the two-party setting, our stacked IBLTs allow for protocols
that require less communication and less randomness. In the multiparty setting one can combine
our stacked IBLTs with the ideas of Mitzenmacher and Pagh in a straightforward manner to obtain
protocols with better communication complexity under the assumption that a fully random hash
function g is used.

14

5.2 Compression of Encrypted Data

In a recent work by Fleischhacker, Larsen, and Simkin [FLS23], it was shown how to use a variant
of the IBLT data structure of Mitzenmacher and Goodrich to compress sparse vectors that are
encrypted with an additively homomorphic encryption scheme. Their new approach for compressing
sparse encrypted vectors directly leads to asymptotic improvements in applications like oblivious
message retrieval [LT22], searchable encryption based on fully homomorphic encryption [CDG+21],
and batched private information retrieval [MR23].

Our new stacked IBLT data structure can be viewed as a sequence of IBLTs of different sizes
and for this reason it can directly be used in combination with the techniques developed by Fleis-
chhacker, Larsen, and Simkin for standard IBLTs. In their work, an encrypted vector of length N
with at most n non-zero entries could be compressed into O(n(1 + lg(1/δ)/ lg n)) ciphertexts. Using
stacked IBLTs, we can compress such vectors into O(n+ lg(1/δ) lglg(1/δ)) ciphertexts.

References

AGL+17. Giuseppe Ateniese, Michael T. Goodrich, Vassilios Lekakis, Charalampos Papamanthou, Evripidis
Paraskevas, and Roberto Tamassia. Accountable storage. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17: 15th International Conference on Applied Cryptography and Network Security,
volume 10355 of Lecture Notes in Computer Science, pages 623–644, Kanazawa, Japan, July 10–12, 2017.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-61204-1_31. 1

CDG+21. Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu, and Arkady Yerukhimovich. Com-
pressed oblivious encoding for homomorphically encrypted search. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021: 28th Conference on Computer and Communications Security, pages 2277–2291,
Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press. doi:10.1145/3460120.3484792.
5.2

DKRT15. Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. Hashing for statistics
over K-partitions. In Venkatesan Guruswami, editor, 56th Annual Symposium on Foundations of Computer
Science, pages 1292–1310, Berkeley, CA, USA, October 17–20, 2015. IEEE Computer Society Press. doi:
10.1109/FOCS.2015.83. 1

EGUV11. David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. What’s the difference? efficient
set reconciliation without prior context. ACM SIGCOMM Computer Communication Review, 41(4):218–
229, August 2011. doi:10.1145/2043164.2018462. 1, 5.1

FLS22. Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin. Property-preserving hash functions for
hamming distance from standard assumptions. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology – EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer
Science, pages 764–781, Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-07085-3_26. 1

FLS23. Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin. How to compress encrypted data. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part I, volume 14004 of
Lecture Notes in Computer Science, pages 551–577, Lyon, France, April 23–27, 2023. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-30545-0_19. 1, 5.2

GM11. Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. In 49th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), pages 792–799. IEEE Computer
Society Press, September 28–30, 2011. doi:10.1109/Allerton.2011.6120248. 1, 4.3

LT22. Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Yevgeniy Dodis and Thomas Shrimpton,
editors, Advances in Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer
Science, pages 753–783, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-15802-5_26. 5.2

MP17. Michael Mitzenmacher and Rasmus Pagh. Simple multi-party set reconciliation. Distributed Computing,
31:441–453, October 2017. doi:10.1007/s00446-017-0316-0. 1, 4.2, 5.1

15

https://doi.org/10.1007/978-3-319-61204-1_31
https://doi.org/10.1145/3460120.3484792
https://doi.org/10.1109/FOCS.2015.83
https://doi.org/10.1109/FOCS.2015.83
https://doi.org/10.1145/2043164.2018462
https://doi.org/10.1007/978-3-031-07085-3_26
https://doi.org/10.1007/978-3-031-30545-0_19
https://doi.org/10.1109/Allerton.2011.6120248
https://doi.org/10.1007/978-3-031-15802-5_26
https://doi.org/10.1007/s00446-017-0316-0

MR23. Muhammad Haris Mughees and Ling Ren. Vectorized batch private information retrieval. In Thomas
Ristenpart and Patrick Traynor, editors, 2023 IEEE Symposium on Security and Privacy, pages 1812–
1827, San Francisco, CA, USA, May 22–25 2023. IEEE Computer Society Press. doi:10.1109/SP46215.
2023.00104. 5.2

MTZ03. Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly optimal com-
munication complexity. IEEE Transactions on Information Theory, 49(9):2213–2218, September 2003.
doi:10.1109/TIT.2003.815784. 1, 5.1

MV12. Michael Mitzenmacher and George Varghese. Biff (bloom filter) codes: Fast error correction for large data
sets. In Giuseppe Caire, Michelle Effros, Hans-Andrea Loeliger, and Alexander Vardy, editors, 2012 IEEE
International Symposium on Information Theory, pages 483–487. IEEE Computer Society Press, July 1–6
2012. doi:10.1109/ISIT.2012.6284714. 1

OAB+17. A. Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and Brian Levine. Graphene: A
new protocol for block propagation using set reconciliation. In Joaquin Garcia-Alfaro, Guillermo Navarro-
Arribas, Hannes Hartenstein, and Jordi Herrera-Joancomart́ı, editors, Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, ESORICS 2017 International Workshops, DPM 2017 and CBT
2017, volume 10436 of Lecture Notes in Computer Science, pages 420–428, Oslo, Norway, 14–15 2017.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-67816-0_24. 1

Tho17. Mikkel Thorup. Fast and powerful hashing using tabulation. Communications of the Association for
Computing Machinery, 60(7):94–101, July 2017. doi:10.1145/3068772. 1

16

https://doi.org/10.1109/SP46215.2023.00104
https://doi.org/10.1109/SP46215.2023.00104
https://doi.org/10.1109/TIT.2003.815784
https://doi.org/10.1109/ISIT.2012.6284714
https://doi.org/10.1007/978-3-319-67816-0_24
https://doi.org/10.1145/3068772

	Invertible Bloom Lookup Tables with Less Memory and Randomness

