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Boosting Algorithms

 Construct strong classifiers out of weak 
ones.
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Accurate
Slightly better than 

guessing



Boosting Algorithms

 Construct strong classifiers out of weak 
ones.
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By combining them into a 
powerful “ensemble”



Boosting Algorithms

 Construct strong classifiers out of weak 
ones.

 Intuition: Train many weak classifiers, 
each “focusing” on a different part of the 
input space.
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Achieved by re-weighing 
the input sample



Example : Axis Aligned Lines
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Boosting Algorithms and Margins

 Surprising phenomenon : Even though 
the strong classifier gets more 
complicated, it does not overfit.
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Observed in experiments 
by Schapire et al.



Boosting Algorithms and Margins

 Surprising phenomenon : Even though 
the strong classifier gets more 
complicated, it does not overfit.
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That is, more weak 
classifiers are involved



Boosting Algorithms and Margins

 Surprising phenomenon : Even though 
the strong classifier gets more 
complicated, it does not overfit.

 Prominent explanation : Margin Theory
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Loosely speaking, the “confidence” 
of the classifier on a point.



Margin Theory

 Formally, let ℋ ⊆ 𝒳𝒳 → {−1,1} be the 
space of weak classifiers, and 
𝑆𝑆 = (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗)

𝑗𝑗=1
𝑚𝑚 is the sample used to 

train a strong classifier 𝑓𝑓 = ∑ℎ∈ℋ 𝛼𝛼ℎℎ.

 The margin of f on the jth sample point is 
defined as 𝜃𝜃𝑗𝑗 ≔ 𝑦𝑦𝑗𝑗𝑓𝑓(𝑥𝑥𝑗𝑗)
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A convex combination of 
weak classifiers.
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𝑓𝑓 is called a voting-classifier
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If 𝜃𝜃𝑗𝑗 is positive, then sign(𝑓𝑓)
classifies (𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗) correctly.



Margin Theory

 Formally, let ℋ ⊆ 𝒳𝒳 → {−1,1} be the 
space of weak classifiers, and 
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Intuitively, the closer 𝜃𝜃𝑗𝑗 is to 1, 
the more “confident” 𝑓𝑓 is.



Margin-Based Upper Bounds

 Schapire et al. (1998) showed the 
following bound on the error probability of 
voting classifiers. 
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≤ Pr
𝑥𝑥,𝑦𝑦 ∼𝑆𝑆

𝑦𝑦𝑓𝑓 𝑥𝑥 ≤ 𝜃𝜃 + 𝑂𝑂
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𝑦𝑦𝑓𝑓 𝑥𝑥 ≤ 0
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The error probability of 𝑓𝑓 with 
respect to the unknown 

distribution 𝒟𝒟 over 𝒳𝒳 × {−1,1}.



Margin-Based Upper Bounds

 Schapire et al. (1998) showed the 
following bound on the error probability of 
voting classifiers. 
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The fraction of sample points 

with margin at most 𝜃𝜃.



Margin-Based Upper Bounds

 Schapire et al. (1998) showed the 
following bound on the error probability of 
voting classifiers. 
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points
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≤ Pr
𝑥𝑥,𝑦𝑦 ∼𝑆𝑆

𝑦𝑦𝑓𝑓 𝑥𝑥 ≤ 𝜃𝜃 + 𝑂𝑂
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𝑥𝑥,𝑦𝑦 ∼𝒟𝒟

𝑦𝑦𝑓𝑓 𝑥𝑥 ≤ 0

The result gave rise to boosting 
algorithms that intentionally 

aim to optimize margins



Margin-Based Upper Bounds

 Breimann (1999) showed the following 
bound on the error probability of voting 
classifiers. 
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This holds with high probability 
over the choice of the 𝑚𝑚 sample 

points



Margin-Based Upper Bounds

 State-of-the-Art bounds were given by 
Gao and Zhou (2013)
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Margin-Based Lower Bounds?

 Despite being studied for over two 
decades, the tightness of margin-based 
generalization bounds was not settled.

 In fact, no margin-based lower bounds 
were known.
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Margin-Based Lower Bounds!

 Our main result shows that any algorithm 
𝒜𝒜 optimizing margins cannot do much 
better than the known upper bounds. 
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Margin-Based Lower Bounds

 Formally, ∀𝑁𝑁,𝜃𝜃, 𝜏𝜏 There exist a set 𝒳𝒳 and 
a hypothesis set ℋ such that for every 
large enough 𝑚𝑚 and algorithm 𝒜𝒜 that 
optimizes margins there exists a 
distribution 𝒟𝒟 for which
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Summary
 We show margin-based generalization lower 

bounds which almost match the best known 
upper bounds.

 These bounds essentially complete the theory 
of generalization bounds based ob margins 
alone.

 Open Question : Are there parameters other 
than margin that can be used to better explain 
the practical properties of voting classifiers?
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