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Abstract

Support Vector Machines (SVMs) are among the most fundamental tools for binary classification. In
its simplest formulation, an SVM produces a hyperplane separating two classes of data using the largest
possible margin to the data. The focus on maximizing the margin has been well motivated through
numerous generalization bounds. In this paper, we revisit and improve the classic generalization bounds
in terms of margins. Furthermore, we complement our new generalization bound by a nearly matching
lower bound, thus almost settling the generalization performance of SVMs in terms of margins.

1 Introduction

Since their introduction [Vap82, CV95] Support Vector Machines (SVMs) have continued to be among the
most popular classification algorithms. In the most basic setup an SVM produces, upon receiving a training
data set, a classifier by finding a maximum margin hyperplane separating the data. More formally, given a
training data set S = {x1, . . . , xm} of m samples in Rd, each with a label yi ∈ {−1,+1}, an SVM finds a unit
vector w ∈ Rd such that yi〈xi, w〉 ≥ θ for all i, with the largest possible value of the margin θ. Note that one
often includes a bias parameter b such that one instead requires yi(〈xi, w〉 + b) ≥ θ. As b has no relevance
on this work we ignore it for notational simplicity. The predicted label on a new data data point x ∈ Rd, is
simply sign(〈x,w〉). When the data is linearly separable, that is there exists a vector w with yi〈xi, w〉 > 0 for
all i, then the maximum margin hyperplane w is the solution to the following convex optimization problem,
which is often referred to as the hard margin SVM.

min
w
‖w‖22

s.t. yi〈xi, w〉 ≥ 1 ∀i.
(1)

Note that the maximum margin hyperplane is not necessarily a vector w of unit norm. If we however let
w∗ = w/‖w‖2, then by linearity, we get a unit vector w∗ such that yi〈xi, w∗〉 ≥ 1/‖w‖2 for all i. That is,
the margin becomes at least 1/‖w‖2 for all (xi, yi).

As data is typically not linearly separable, one often considers a relaxed variant of the above optimization
problem, known as soft margin SVM [CV95].

min
w,ξ
‖w‖22 + λ

∑
i
ξi

s.t. yi〈xi, w〉 ≥ 1− ξi ∀i.
ξi ≥ 0 ∀i.

(2)
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Here λ ≥ 0 is a hyper parameter which, roughly speaking, controls the tradeoff between the magnitude
of the margin θ = 1/‖w‖2 and the number of data points with margin significantly less than θ. The soft
margin optimization problem is also convex and can be solved efficiently.

A key reason for the success of SVMs is the extensive study and ubiquitousness of kernels (see e.g.
[BGV92]). By allowing efficient calculation of inner products in high (or even infinite) dimensional spaces,
kernels make it possible to apply SVMs in these spaces through feature transforms without actually having
to compute the feature transform, neither during training or prediction. Predictions are efficient since they
only need to consider the support vectors. These are the sample data points (x, y) that are not strictly on
the correct side of the margin of the hyperplane, meaning that y 〈x,w〉 ≤ θ.

Feature transforms, like the application of a kernel, often drastically increase the dimensionality of the
input domain, directly increasing the the VC-dimension of the hypothesis set (the set of hyperplanes) the
same way. Thus one might worry about overfitting. However, SVMs, even with the Gaussian kernel that
maps to an infinite dimensional space, often generalize well to new data points in practice. Explaining this
phenomenon has been the focus of much theoretical work, see e.g. [Vap82, BST99, BM02], with probably the
most prominent and simplest explanations being based on generalization bounds involving margins. These
margin generalization bounds show that, as long as a hypothesis vector has large margins on most training
data, then the hypothesis generalizes well to new data, independent of the dimension of the data. Further
strengthening these generalization bounds and our understanding of the influence of margins is the focus of
this paper. We start by reviewing some of the previous margin-based generalization bounds for SVMs.

1.1 Previous Generalization Bounds

In what follows we review previous generalization bounds for SVMs. We have focused on the most classic
bounds, taking only the margin θ, the radius R of the input space, and the number of data samples m
into account. We have rephrased the previous theorems to put them all into the same form, allowing
for easier comparison between them. Throughout X denotes the input space, D a distribution over X ×
{−1, 1}, and LD(w) the out-of-sample error for a vector w. That is LD(w) = Pr(x,y)∼D [sign(〈x,w〉) 6= y] =

Pr(x,y)∼D [y 〈x,w〉 ≤ 0]. Given a training set S and a margin θ, LθS(w) denotes the in-sample margin error

for a vector w, i.e. LθS(w) = Pr(x,y)∼S [y 〈x,w〉 ≤ θ], where (x, y) ∼ S means that (x, y) is sampled from S
uniformly at random.

The first work trying to explain the generalization performance of SVMs through margins is due to
Bartlett and Shawe-Taylor [BST99]. They first consider the linearly separable case/hard margin SVM and
prove the following generalization if all samples have margins at least θ:

Theorem 1. [Bartlett and Shawe-Taylor [BST99]] Let d ∈ N+ and let R > 0. Denote by X the ball of
radius R in Rd and let D be any distribution over X × {−1, 1}. For every δ > 0, it holds with probability at
least 1− δ over a set of m samples S ∼ Dm, that for every w ∈ Rd with ‖w‖2 ≤ 1, if all samples (x, y) ∈ S
have margin (i.e. y〈x,w〉) at least θ > 0, then:

LD(w) ≤ O
(

(R/θ)2 ln2m+ ln(1/δ)

m

)
.

They complemented their bound with a generalization bound for the soft margin SVM setting, showing
that in addition for all θ > 0,

LD(w) ≤ LθS(w) +O

√ (R/θ)2 ln2m+ ln(1/δ)

m

 .

Notice how the generalization error in the soft margin case is larger as
√
x ≥ x for x ∈ [0, 1]. This

fits well with classic VC-dimension generalization bounds for the realizable and non-realizable setting, see
e.g. [VC15, EHKV89, AB09].

2



This bound was later improved by Bartlett and Mendelson [BM02], who showed, using Rademacher
complexity, that for all θ > 0,

LD(w) ≤ LθS(w) +O

(√
(R/θ)2 + ln(1/δ)

m

)
. (3)

Ignoring logarithmic factors and the dependency on δ, both bounds show similar dependencies on the radius
of the point set R, the margin θ and the number of samples m. The dependency on R/θ also fits well with
the intuition that scaling the data distribution should not change the generalization performance. Finally
notice how the soft margin bounds allow one to consider any margin θ, not just the smallest over all samples,
and then pay an additive term proportional to the fraction of points in the sample with margin less than θ
(i.e. LθS(w) = Pr(x,y)∈RS [y 〈x,w〉 ≤ θ]).

Finally, the work by McAllester [McA03], uses a PAC-Bayes argument to give a bound that attempts to
interpolate between the hard margin and soft margin case. His bound shows that for all θ > 0, we have:

LD(w) ≤ LθS(w) +O

(
(R/θ)2 lnm

m
+

√
(R/θ)2 lnm

m
· LθS(w)

)
+O

(√
lnm+ ln(1/δ)

m

)
. (4)

Notice that in the hard margin case, we have LθS(w) = 0 and thus the above simplifies toO((R/θ)2 ln(m)/m)+

O(
√

(lnm+ ln(1/δ))/m). The first term is an lnm factor better than the hard margin bound by Bartlett

and Shawe-Taylor (Theorem 1), but unfortunately it is dominated by the
√

(lnm+ ln(1/δ))/m term for all
but very small margins (θ must be less than R(ln(m)/m)1/4).

These classic bounds have not seen any improvements for almost two decades, even though we have no
generalization lower bounds that rule out further improvements. Generalization bounds for SVMs that are
independent of the dimensionality of the space has also been proved based on the (expected) number of
support vectors [Vap82].

1.2 Our Contributions

Our first main contribution is an improvement over the known margin-based generalization bounds for a
large range of parameters. Our new generalization bound is as follows:

Theorem 2. Let d ∈ N+ and let R > 0. Denote by X the ball of radius R in Rd and let D be any distribution
over X × {−1, 1}. For every δ > 0, it holds with probability at least 1− δ over a set of m samples S ∼ Dm,
that for every w ∈ Rd with ‖w‖2 ≤ 1 and every margin θ > 0, we have

LD(w) ≤ LθS(w) +O

(
(R/θ)2 lnm+ ln(1/δ)

m
+

√
(R/θ)2 lnm+ ln(1/δ)

m
· LθS(w)

)
.

When comparing our new bound to the previous hard margin bound, i.e. every margin is at least θ, note
that the previous strongest results were Theorem 1 and the bound in (4) (setting LθS(w) = 0). Theorem 2

improves the former by a logarithmic factor and improves the additive O
(√

(lnm+ ln(1/δ))/m
)

term in

the latter to O(ln(1/δ)/m). For soft margin the best known bounds are (3) and (4). We improve over the
former (3) for any choice of margin θ with LθS(w) < 1/ lnm and we improve over (4) once again by replacing

the additive O
(√

(lnm+ ln(1/δ))/m
)

term by O(ln(1/δ)/m).

A natural question to ask is whether this new bound is close to optimal. In particular, for δ = Ω(1), our
new generalization bound simplifies to:

LD(w) ≤ LθS(w) +O

(
R2 lnm

θ2m
+

√
R2 lnm · LθS(w)

θ2m

)
.
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and the generalization bound in (3) becomes:

LD(w) ≤ LθS(w) +O

(√
R2

θ2m

)
.

Summarizing the two, we get:

Corollary 3. Let d ∈ N+ and let R > 0. Denote by X the ball of radius R in Rd and let D be any distribution
over X × {−1, 1}. Then it holds with constant probability over a set of m samples S ∼ Dm, that for every
w ∈ Rd with ‖w‖2 ≤ 1 and every margin θ > 0, we have

LD(w) ≤ LθS(w) +O

(
R2 lnm

θ2m
+

√
R2

θ2m
·min{lnm · LθS(w), 1}

)
.

At first glance the bound presented in Corollary 3 might seem odd. The first expression inside the O-
notation, which intuitively stands for the hard-margin bound, incorporates a lnm factor, while the second
term, which intuitively stands for the soft-margin bound does not. Our second main result, however, demon-
strates that Corollary 3 is in fact tight for most ranges of parameters. Specifically, one cannot remove the
extra lnm factor for the hard-margin case.

Theorem 4. There exists a universal constant C > 0 such that for every R ≥ Cθ, every m ≥ (R2/θ2)1.001

and every 0 ≤ τ ≤ 1, there exists a distribution D over X × {−1,+1}, where X is the ball of radius R in
Ru for some u, such that with constant probability over a set of m samples S ∼ Dm, there exists a vector w
with ‖w‖2 ≤ 1 and LθS(w) ≤ τ satisfying:

LD(w) ≥ LθS(w) + Ω

(
R2 lnm

θ2m
+

√
R2 ln(τ−1)τ

θ2m

)
≥ LθS(w) + Ω

(
R2 lnm

θ2m
+

√
R2 ln(LθS(w)−1)LθS(w)

θ2m

)
.

Together with Theorem 4, Corollary 3 gives the first completely tight generalization bounds in the hard
margin case (by setting τ = 0 in Theorem 4, and defining 0 ln(0−1) = 0). For the soft margin SVM case, the
bounds are only off from one another by a factor√

lnm/ ln(LθS(w)−1)

i.e. they asymptotically match when LθS(w) ≤ m−ε for an arbitrarily small constant ε > 0. Our generalization
lower bound also shows that the previous generalization bound in (3) is tight when LθS(w) ≥ ε for any constant
ε > 0. Thus our main results settle the generalization performance of Support Vector Machines in terms of
the classic margin-based parameters for all ranges of LθS(w) not including m−o(1) ≤ LθS(w) ≤ o(1).

We remark that our upper bound generalize to infinite dimension as it only depends on the ability for
performing Johnson Lindenstrauss transforms of the data which works for Hilbert spaces in general [JL84].

We complement our existential lower bound with an algorithmic lower bound demonstrating limitations
on the performance of any SVM learning algorithm. More specifically we show that for every algorithm, there
exists a reasonable distribution for which the performance of the algorithm in terms of out of sample error
are limited. We draw the reader’s attention to the fact that the lower bound presented in Theorem 4, while
precisely fitting the phrasing of classic upper bounds, as well as the upper bound presented in Theorem 2,
is purely existential, and does not rule out the existence of an algorithm that performs better than the
’adversarial’ worst case. The next result thus gives a lower bound that employs a somewhat broader view.
Formally, given a learning algorithm A, denote by wA,S the hyperplane produced by A upon receiving sample
set S. In these notations we show the following.

Theorem 5. For every large enough integer N , every R ≥ 1, θ ∈ (1/N, 1/40) and τ ∈ [0, 49/100] there
exists an integer k such that for every m = Ω

(
R2/θ2

)
, for every (randomized) learning algorithm A, there

exist a distribution D over the radius R ball in Rk and w ∈ Rk such that ‖w‖2 = 1 and with probability at
least 1/100 over the choice of (x1, y1), . . . , (xm, ym) ∼ Dm and the random choices of A
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1. LθS(w) < τ .

2. LD(wA,S) ≥ τ + Ω

(
R2

mθ2 +
√
τ · R2

mθ2

)
.

In order to get a better grasp of the theorem statement, we first turn to carefully analyze the two parts
of the theorem, starting with the second, perhaps clearer out of sample error bound. Considering the second
part of the theorem, it states that for any algorithm A, there is a distribution D for which the out-of-sample
error of the voting classifier produced by A is at least the given bound. The first part of the theorem ensures
that at the same time, there exists a hyperplane w obtaining a margin of at least θ on at least a 1−τ fraction
of the sample points. Our proof of Theorem 5 not only shows that such w exists, but also provides a specific
construction. Loosely speaking, the first part of the theorem reflects on the nature of the distribution D.
Loosely speaking, the bound means that the distribution is not too hard, namely, it is possible to output
a hyperplane w with good margins. As the theorem gives a bound that holds for every algorithm, we
cannot hope to prove that the first bound holds for wA,S , as we assume nothing on the performance of
A. Specifically, we cannot assume A attempts to optimize margins. The second part of the theorem thus
guarantees that regardless of which vector wA,S the algorithm A produces, it still has large out-of-sample
error. Specifically (but not limited to) every algorithm that minimizes the empirical risk, must have a large
error. Finally, comparing Theorem 5 to Corollary 3, if we associate τ with LθS(wA,S). The magnitude of
the out-of-sample error in the second point in Theorem 5 thus matches that of Corollary 3, except for a

factor lnm in the first term inside the Ω(·) and a
√

min{lnm, 1/LθS(wA,S)} factor in the second term. In

conclusion, even when considering generalization bounds for specific SVM learning algorithms, there is not
much room for improvement over our generalization upper bound given in Corollary 3.

2 Margin-Based Generalization Upper Bound

This section is devoted to the proof of Theorem 2, and we start by recollecting some notation. To this end,
let d ∈ N+ and let R, δ > 0. Let D be some distribution over X × {−1, 1}, where X is the R-radius ball
around the origin in Rd, and let H denote the unit ball in Rd. Finally, let E = E(d,R,m, δ) ⊆ (X×{−1, 1})m
include all sequences S ∈ (X × {−1, 1})m such that for every w ∈ H and θ > 0,

LD(w) ≤ LθS(w) +O

(
π +

√
πLθS(w)

)
,

where π = π(δ) = (R/θ)2 lnm+ln(1/δ)
m . In these notations the theorem states that PrS∼Dm [E ] ≥ 1− δ.

Key Tools and Techniques. One known method to prove such bounds (see, e.g. [SFBL98, GZ13])
is to discretize the set of classifiers (or hyperplanes) and then union bound over the discrete set. When
considering hyperplanes in Rd, however, the discretization results in too large a set, which in turn means
that the resulting union bound gives too large a probability bound. More specifically, the size of the set
depends on the dimension d. In order to overcome this difficulty, and give generalization upper bound for a
general d-dimensional distribution D we first reduce the dimension of the data set to a small dimension while
approximately maintaining the geometric structure of the data set. That is, the dot products of a set points
x ∈ X with hyperplanes w ∈ H are maintained by the projection with high probability. More specifically, we
randomly project both balls X and H onto a small dimension k, while approximately preserving the inner
products. The random linear projection we use is simply a matrix whose every entry is sampled independently
from a standard normal distribution. While this projection matrix has been studied in previous applications
of dimensionality reduction such as the Johnson-Lindenstrauss transform [JL84, DG03], we present some
new analysis and give tight bounds that show that inner product values in X × H are well-preserved with
high probability by the projection. We next discretize the set of hyperplanes in Rk, using techniques inspired
by [AK17], and show that it is enough to union bound over the resulting small grid.
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We now turn to prove the theorem. Note first that if θ > R then the bound is trivial, since for every
S, Pr(x,y)∼S [y 〈x,w〉 ≤ θ] = 1. We may therefore assume hereafter that θ ∈ (0, R]. Similarly we assume
that m ≥ (R/θ)2 lnm + ln(1/δ). To show that E occurs with high probability, we next define a sequence
{Ek}k∈N+ of events whose intersection is contained in E and has probability at least 1 − δ. In order to
define the sequence {Ek}k∈N+ we start by defining, for every w ∈ H and every positive integer k ∈ N+, a
distribution Qk(w) over Rd → R. Loosely speaking, every function g ∈ supp(Qk(w)) takes a vector x ∈ Rd,
projects it into Rk and then takes its inner product with a vector w̃ ∈ Rk. The vector w̃ is the projection of w
into Rk rounded to a predefined grid in Rk. Formally, we next describe the process that samples g ∼ Qk(w).
First sample a projection matrix A ∈ Rk×d from Rd to Rk. Every entry of A is independently sampled from
a normal distribution N (0, 1/k) with mean 0 and variance 1/k. Next, we define the vector w̃, which is a
randomized rounding of Aw to the grid of vectors in Rk whose every entry is a whole multiple of 1/

√
k. For

every j ∈ [k], let ` be the unique integer such that ` ≤
√
k[Aw]j < ` + 1. Set w̃j = `/

√
k with probability

(`+ 1)−
√
k[Aw]j and w̃j = (`+ 1)/

√
k otherwise, independently for every j ∈ [k] and independently of the

choice of A. Finally, define g : Rd → R by g(x) = 〈Ax, w̃〉 for every x ∈ Rd. For every w ∈ H and every
g ∈ supp(Qk(w)) denote by Ag ∈ Rk×d the matrix associated with g. Note that the choice of Ag does not
depend on w. If w is clear from context we simply write Qk instead of Qk(w).

Finally, for every k ∈ N+, let ∆k be the set of all vectors v ∈ Rk satisfying that ‖v‖22 ≤ 6 and for every
j ∈ [k], vj

√
k is an integer. We are now ready to define the sequence {Ek}k∈N+ of events.

Definition 1. Let k ∈ N+. For every A ∈ Rk×d and S ∈ supp(Dm), we say that A and S are compatible if
for all v ∈ ∆k and ` ∈ [10k],

Pr
(x,y)∼D

[y 〈Ax, v〉 ≤ `R/(10k)] ≤ Pr
(x,y)∼S

[y 〈Ax, v〉 ≤ `R/(10k)]

+
8 ln(29k/δ)

m
+ 4

√
Pr

(x,y)∼S
[y 〈Ax, v〉 ≤ `R/(10k)] · ln(29k/δ)

m
.

(5)

Let C denote the set of all compatible pairs (A,S). Finally, let Ek be the set of all S ∈ supp(Dm) such
that for all w ∈ H, Prg∼Qk [(Ag, S) ∈ C] ≥ 1− 6 · 2−k/2.

The next lemma implies Theorem 2 by simply applying a union bound, since
∑
k

1
k(k+1) = 1.

Lemma 6. For every k ∈ N+, PrS∼Dm [Ek] ≥ 1− δ
k(k+1) , and moreover

⋂
k∈N+ Ek ⊆ E.

We start by proving that for every k, with high probability over S ∼ Dm, S ∈ Ek. The first step is
to prove that for every fixed matrix A, a random sample S ∼ Dm is compatible with A with very high
probability. Using Markov’s inequality we then conclude that a random sample S ∼ Dm is, with very high
probability, compatible with most projection matrices {Ag}g∈supp(Qk(w) for every w ∈ H. Formally, we prove
the following.

Claim 7. For every A ∈ Rd×k, PrS∼Dm [(A,S) ∈ C] ≥ 1− δ/2k.

Proof. Let A ∈ Rd×k, and fix some v ∈ ∆k and ` ∈ [10k]. First note that if Pr(x,y)∼D[y 〈Ax, v〉 ≤ `R/(10k)] ≤
8 ln(29k/δ)

m then (5) holds for all S ∈ supp(Dm). We can therefore assume that Pr(x,y)∼D[y 〈Ax, v〉 ≤
`R/(10k)] > 8 ln(29k/δ)

m . Let γ =
√

2 ln(29k/δ)
mPr(x,y)∼D[y〈Ax,v〉≤`R/(10k)] , then γ ∈ (0, 1/2), and therefore a Cher-

noff bound then gives the following two inequalities.

Pr
S∼Dm

[
Pr

(x,y)∼S
[y 〈Ax, v〉 ≤ `R/(10k)] < (1− γ) Pr

(x,y)∼D
[y 〈Ax, v〉 ≤ `R/(10k)]

]
≤ e−(mγ2/2) Pr(x,y)∼D[y〈Ax,v〉≤`R/(10k)] =

δ

29k

(6)
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Pr
S∼Dm

[
Pr

(x,y)∼S
[y 〈Ax, v〉 ≤ `R/(10k)] > 2 Pr

(x,y)∼D
[y 〈Ax, v〉 ≤ `R/(10k)]

]
≤ e−(m/2) Pr(x,y)∼D[y〈Ax,v〉≤`R/(10k)] ≤ δ

29k
,

(7)

where the last inequality is due to the fact that (m/2) Pr(x,y)∼D [y 〈Ax, v〉 ≤ `R/(10k)] ≥ ln(29k/δ).

Hence with probability at least 1− 2δ/29k over the choice of S we have that

Pr
(x,y)∼D

[y 〈Ax, v〉 ≤ `R/(10k)] ≤ (1− γ)−1 Pr
(x,y)∼S

[y 〈Ax, v〉 ≤ `R/(10k)]

≤ (1 + 2γ) Pr
(x,y)∼S

[y 〈Ax, v〉 ≤ `R/(10k)] ,
(8)

and moreover,

γ =

√
2 ln(29k/δ)

mPr(x,y)∼D[y 〈Ax, v〉 ≤ `R/(10k)]
≤

√
4 ln(29k/δ)

mPr(x,y)∼S [y 〈Ax, v〉 ≤ `R/(10k)]
(9)

Plugging (9) into (8) and summing up we get that for every v ∈ ∆k and ` ∈ [10k], with probability at least
1− 2δ/29k over the choice of S we have

Pr
(x,y)∼D

[y 〈Ax, v〉 ≤ `R/(10k)] ≤ Pr
(x,y)∼S

[y 〈Ax, v〉 ≤ `R/(10k)] +
8 ln(29k/δ)

m

+ 4

√
ln(29k/δ)

m
Pr

(x,y)∼S
[y 〈Ax, v〉 ≤ `R/(10k)]

(10)

Union bounding over all v ∈ ∆k and ` ∈ [10k] we get that PrS∼Dm [(A,S) ∈ C] ≥ 1 − 10k|∆k|δ/29k. To
finish the proof of the claim, we show that |∆k| ≤ 26k. Let v ∈ ∆k, then as |vj

√
k| ∈ N for all j ∈ [k] then∑

j∈[k] |vj
√
k| ≤

∑
j∈[k] |vj

√
k|2 ≤ 6k. Therefore the number of possible ways to construct |v1

√
k|, . . . , |vk

√
k|

is the number of possible solutions to the equation
∑
j∈[k+1] xj = 6k in natural numbers, which is

(
7k
6k

)
≤

24.5k. Taking all possible signs into account gives |∆k| ≤ 25.5k. We conclude that PrS∼Dm [(A,S) ∈ C] ≥
1− δ/2k.

Corollary 8. PrS∼Dm [Ek] ≥ 1− δ/(k(k + 1)).

Proof. Fix some w0 ∈ H. Note that for every S ∈ supp(Dm), if it holds that Prg∼Qk(w0)[(Ag, S) ∈ C] ≥
1− 6 · 2−k/2, then it is true that for all w ∈ H, Prg∼Qk(w0)[(Ag, S) ∈ C] ≥ 1− 6 · 2−k/2, as the choice of Ag
does not depend on w. From Claim 7 we conclude that

ES∼Dm
[

Pr
g∼Qk(w0)

[(Ag, S) ∈ C]
]

= Eg∼Qk(w0)

[
Pr

S∼Dm
[(Ag, S) ∈ C]

]
≥ 1− δ/2k .

From Markov’s inequality, and since for every k ∈ N+, k(k + 1) ≤ 6 · 2k/2 we conclude that

Pr
S∼Dm

[Ek] ≥ Pr
S∼Dm

[
Pr

g∼Qk(w0)
[(Ag, S) ∈ C] ≥ 1− k(k + 1)

2k

]
≥ 1− δ/((k(k + 1)) .

We next prove the second part of Lemma 6, namely that
⋂
k∈N+ Ek ⊆ E . We start by introducing some

concentration bounds on sums of products of Gaussian random variables.
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Lemma 9. Let A ∈ Rd×k be a matrix whose every entry is independently N (0, 1/k) distributed. Then for
every u, v ∈ Rd and t ∈ [0, 1/4) we have

1. PrA[|‖Au‖22 − ‖u‖22| > t‖u‖22] ≤ 2e−0.21kt2 ; and

2. PrA[| 〈Au,Av〉 − 〈u, v〉 | > t] ≤ 4e
−kt2

7‖u‖22‖v‖
2
2 .

The proof of the lemma is quite technically involved, and its proof is thus deferred to Appendix A. The
next claim shows that with very high probability over the choice of a pair (x, y), either sampled from D or
uniformly at random from a sample S, and the choice of g ∼ Qk(w), the values 〈x,w〉 and g(x) cannot be
too far apart.

Claim 10. For all w ∈ H, θ ∈ (0, R] and k ∈ N+,

1. Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) ≥ 49θ/100] ≤ 7e−( k
120 )( θR )

2

; and

2. For every S ∈ supp(Dm),

Pr
(x,y)∼S,g∼Qk

[y 〈x,w〉 ≥ θ ∧ yg(x) ≤ θ/2] ≤ 7e−( k
120 )( θR )

2

.

Proof. Let w ∈ H, θ > 0 and k ∈ N+. Then

Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) ≥ 49θ/100] ≤ Pr
(x,y)∼D,g∼Qk

[|y 〈x,w〉 − yg(x)| > 49θ/100]

Recall that for every x ∈ Rd, g(x) = 〈Ax, w̃〉, where every entry of A ∈ Rd×k is sampled independently from
a Gaussian distribution with mean 0 and variance 1/k, and w̃ ∈ Rk is constructed by randomly rounding
each entry of Aw independently to a multiple of 1/

√
k. By the triangle inequality, the linearity of the dot

product, and since y ∈ {−1, 1},

|y 〈x,w〉 − yg(x)| ≤ | 〈x,w〉 − 〈Ax,Aw〉 |+ | 〈Ax,Aw − w̃〉 | .

Therefore

Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) > 49θ/100] ≤ Pr
(x,y)∼D,g∼Qk

[|y 〈x,w〉 − yg(x)| > 49θ/100]

≤ Pr
(x,y)∼D,g∼Qk

[| 〈x,w〉 − 〈Ax,Aw〉 | > 49θ/200] + Pr
(x,y)∼D,g∼Qk

[| 〈Ax,Aw − w̃〉 | > 49θ/200]
(11)

To bound the first probability term observe that

Pr
(x,y)∼D,g∼Qk

[
|〈x,w〉 − 〈Ax,Aw〉| > 49θ

200

]
≤ E(x,y)∼D

[
Pr

g∼Qk

[∣∣∣∣ 〈x,w〉‖x‖2‖w‖2
− 〈Ax,Aw〉
‖x‖2‖w‖2

∣∣∣∣ > 49θ

200R

]]
≤ 4e−

k
7 ( 49θ

200R )
2

,

(12)

where the inequality before last follows from the fact that ‖w‖2 ≤ 1 and Pr(x,y)∼D[‖x‖2 ≤ R] = 1, and the
last inequality is an application of Lemma 9.

To bound the second term in (11), fix (x, y) ∈ supp(D) and A ∈ Rk×d, and denote Aw = ŵ. Then

for every j ∈ [k] independently w̃j =
b√kŵjc√

k
with probability

⌊√
kŵj

⌋
+ 1 −

√
kŵj , and w̃j =

b√kŵjc+1
√
k

otherwise. Therefore for every j ∈ [k],

E[w̃j ] =

⌊√
kŵj

⌋
√
k

(
⌊√

kŵj

⌋
+ 1−

√
kŵj) +

⌊√
kŵj

⌋
+ 1

√
k

(
√
kŵj −

⌊√
kŵj

⌋
) = ŵj ,
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and thus E[〈Ax,Aw − w̃〉] = 0. A Hoeffding bound then yields

Pr
g∼Qk

[| 〈Ax,Aw − w̃〉 | > 49θ/200 | Ag = A] ≤ 2e
−2(49θ/200)2∑

j∈[k] [Ax]
2
j
(ŵj−w̃j)2 ≤ 2e

−2k
(

49θ
200‖Ax‖2

)2

.

In addition,

Pr
(x,y)∼D,g∼Qk

[‖Ax‖2 >
√

1.25R] ≤ Pr
(x,y)∼D,g∼Qk

[‖Ax‖22 − ‖x‖22 > 0.25‖x‖22] ≤ e−0.21·0.252·k ≤ e−k/80

Finally, we get that

Pr
(x,y)∼D,g∼Qk

[
|〈Ax,Aw − w̃〉| > 49θ

200

]
≤ Pr

(x,y)∼D,g∼Qk

[
|〈Ax,Aw − w̃〉| > 49θ

200

∣∣∣‖Agx‖2 ≤ √1.25R

]
+ Pr

(x,y)∼D,g∼Qk
[‖Ax‖2 >

√
1.25R]

≤ 2e
−2k

(
49θ

200
√

1.25R

)2

+ e−k/80

(13)

Plugging (12) and (13) into (11) we get that

Pr
(x,y)∼D
g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) > θ/2] ≤ 7e−( k
120 )( θR )

2

,

which concludes the first part of the lemma. The proof of the second part is identical, as we did not use any
property of the distribution D other than the fact that Pr(x,y)∼D[‖x‖2 ≤ R] = 1. For every S ∈ supp(Dm),
it holds that Pr(x,y)∼S [‖x‖2 ≤ R] = 1, and the result follows.

The next claim essentially shows that restricting the definition of compatibility of a sample S and a
matrix A only to grid points in ∆k was indeed enough. Intuitively this is due to the fact that with very
high probability over the choice of q ∼ Qk(w), the rounding of Agw is in the grid. Formally, we show the
following.

Claim 11. For every S ∈
⋂
k∈N Ek, for all w ∈ H, θ ∈ (0, R] and k ∈ N+,

Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100] ≤ Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2] + 7e−( k
120 )( θR )

2

+ 30e−k/24

+O

(
k + ln(1/δ)

m
+

√
k + ln(1/δ)

m
· Pr

(x,y)∼S,g∼Qk
[yg(x) ≤ θ/2]

)
;

(14)

Proof. Fix S ∈
⋂
k∈N Ek, w ∈ H, θ ∈ (0, R] and k ∈ N+. Clearly, if θ ≤ 10R/k then 7e−( k

120 )( θR )
2

≥ 1 and
therefore (14) holds. Otherwise, let ` be the smallest integer such that 49θ/100 ≤ `R/(10k). As θ ≤ R,
` ∈ [10k]. In addition, 49θ/100 ≤ `R/(10k) ≤ 49θ/100 + R/(10k) ≤ θ/2. Denote by F the event that
(Ag, S) ∈ C and w̃ ∈ ∆k (recall that w̃ is the vector Aw, where each entry is rounded to the nearest multiple

of 1/
√
k). Hence

Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100] ≤ Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ `R/(10k)]

≤ Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ `R/(10k) | F ] + Pr
g∼Qk

[F̄ ]

≤ Eg∼Qk
[

Pr
(x,y)∼D

[yg(x) ≤ `R/(10k)]

∣∣∣∣F]+ Pr
g∼Qk

[F̄ ] ,

(15)

9



By the definition of compatible pairs and linearity of expectation we get that

Eg∼Qk
[

Pr
(x,y)∼D

[yg(x) ≤ `R/(10k)]

∣∣∣∣F] ≤ Eg∼Qk
[

Pr
(x,y)∼S

[yg(x) ≤ `R/(10k)]

∣∣∣∣F]
+

8 ln(29k/δ)

m
+ 4Eg∼Qk

[√
Pr

(x,y)∼S
[yg(x) ≤ `R/(10k)] · ln(29k/δ)

m

∣∣∣∣∣F
]
.

Note that for every non-negative random variable Y and event E, E[Y |E] ≤ E[Y ]/Pr[E]. We therefore turn
to bound the probability of F . By a simple union bound,

Pr
g∼Qk

[F̄ ] ≤ Pr
g∼Qk

[(Ag, S) /∈ C] + Pr
g∼Qk

[w̃ /∈ ∆k] .

Since S ∈ Ek, Prg∼Qk [(Ag, S) /∈ C] ≤ 6 · 2−k/2. Next, for every j ∈ [k], |w̃j | ≤ |[Agw]j | + 1/
√
k. Therefore

‖w̃‖22 ≤ ‖Agw‖22+1+2 max{‖Agw‖22, 1}, and hence if ‖Aw‖22 ≤ 1.5, then ‖w̃‖22 ≤ 6, and therefore w̃ ∈ ∆k. We
conclude that Prg∼Qk [w̃ /∈ ∆k] ≤ Prg∼Qk [‖Agw‖22 > 1.5] ≤ e−k/24 , and hence Prg∼Qk [F ] ≥ 1 − 7e−k/24 ≥
(1 + 15e−k/24)−1. Since, in addition, `R/(10k) ≤ θ/2 we get

Eg∼Qk
[

Pr
(x,y)∼D

[yg(x) ≤ `R/(10k)]

∣∣∣∣F] ≤ (1 + 15e−k/24)Eg∼Qk
[

Pr
(x,y)∼S

[yg(x) ≤ θ/2]

]
+

8 ln(29k/δ)

m
+ 4(1 + 15e−k/24)Eg∼Qk

[√
Pr

(x,y)∼S
[yg(x) ≤ θ/2] · ln(29k/δ)

m

]
.

Finally, by Jensen’s inequality we get

Eg∼Qk
[

Pr
(x,y)∼D

[yg(x) ≤ `R/(10k)]

∣∣∣∣ (Ag, S) ∈ C
]
≤ Eg∼Qk

[
Pr

(x,y)∼S
[yg(x) ≤ θ/2]

]
+

8 ln(29k/δ)

m
+ 4

√
Eg∼Qk

[
Pr

(x,y)∼S
[yg(x) ≤ θ/2]

]
· ln(29k/δ)

m
+ 30e−k/24 .

Plugging into (15) we get (14).

To finish the proof of Lemma 6, let S = 〈(xj , yj)〉j∈[m] ∈
⋂
k∈N+ Ek, fix some w ∈ H and θ > 0, and let

k =
⌈
240

(
R
θ

)2
lnm

⌉
. We will show that S ∈ E .

Pr
(x,y)∼D

[y 〈x,w〉 ≤ 0] = Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0]

≤ Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100] + Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) > 49θ/100]

≤ Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100] +
1

m

(16)

Where the last inequality is due to Claim 10, and since 7e−( k
120 )( θR )

2

≤ 7/m2 ≤ 1/m . From Claim 11 we
get

Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100] ≤ Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2]

+O

(
k + ln(1/δ)

m
+

√
k + ln(1/δ)

m
· Pr

(x,y)∼S,g∼Qk
[yg(x) ≤ θ/2]

)
;

(17)
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Similarly to (16) we get that

Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2]

≤ Pr
(x,y)∼S,g∼Qk

[y 〈x,w〉 < θ] + Pr
(x,y)∼S,g∼Qk

[y 〈x,w〉 ≥ θ ∧ yg(x) ≤ θ/2]

≤ Pr
(x,y)∼S

[y 〈x,w〉 < θ] +
1

m2
.

(18)

Where the last inequality follows from Claim 10 and the fact that y 〈x,w〉 ≤ θ is independent of g. Finally,
plugging (18) into (17) and then into (16), and assuming that k + ln(1/δ) ≤ m we get that

Pr
(x,y)∼D

[y 〈x,w〉 ≤ 0] ≤ Pr
(x,y)∼S

[y 〈x,w〉 < θ] +
1

m

+O

(
k + ln(1/δ)

m
+

√
k + ln(1/δ)

m
·
(

Pr
(x,y)∼S

[y 〈x,w〉 < θ] +
1

m2

))

≤ Pr
(x,y)∼S

[y 〈x,w〉 < θ] +O

(
π +

√
π · Pr

(x,y)∼S
[y 〈x,w〉 < θ]

)
,

where π = (R/θ)2 lnm+ln(1/δ)
m , and therefore S ∈ E , and the proof of Lemma 6, and thus of Theorem 2, is now

complete.

3 Existential Lower Bound

The goal of this section is to prove the generalization lower bound in Theorem 4. Our proof is split into two
cases, depending on the magnitude of τ . The results we prove are as follows:

Lemma 12. There is a universal constant C > 0 such that for every R ≥ Cθ and every m ≥ (R2/θ2)1.001,
there exists a distribution D over X × {−1,+1}, where X is the ball of radius R in Ru for some u, such
that with constant probability over a set of m samples S ∼ Dm, there exists a vector w with ‖w‖2 ≤ 1 and

LθS = 0 satisfying LD ≥ Ω
(
R2 lnm
θ2m

)
.

Lemma 13. There is a universal constant C > 0 such that for every R ≥ Cθ, every m ≥ (R2/θ2)1.001 and
every R2 ln(m)/(θ2m) < τ ≤ 1, there exists a distribution D over X × {−1,+1}, where X is the ball of
radius R in Ru for some u, such that with constant probability over a set of m samples S ∼ Dm, there exists
a vector w with ‖w‖2 ≤ 1 and LθS ≤ τ satisfying

LD ≥ LθS + Ω

(√
R2τ ln (τ−1)

θ2m

)
.

We will first show how to combine Lemma 12 and Lemma 13 to obtain Theorem 4. For any 0 ≤ τ ≤ 1,
every R ≥ Cθ for a large constant C > 0 and every m ≥ (R2/θ2)1.001, we can invoke Lemma 12 or Lemma 13
to conclude the existence of a distribution D, such that with constant probability over a choice of m samples
S ∼ Dm, there is a vector w with ‖w‖2 ≤ 1 and either:

1. LθS(w) = 0 < τ and
LD(w) ≥ LθS(w) + Ω(R2 lnm/(θ2m)).

2. LθS(w) ≤ τ and

LD(w) ≥ LθS(w) + Ω(
√

(R2/θ2) ln(τ−1)τ/m).
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Note that Lemma 13 strictly speaking cannot be invoked for τ ≤ R2 ln(m)/(θ2m), but for such small values
of τ , the expression

√
(R2/θ2) ln(τ−1)τ/m becomes less than R2 lnm/(θ2m) and the bound follows from

Lemma 12 instead. Thus for any 0 ≤ τ ≤ 1, with constant probability over S, we may find a w with
LθS(w) ≤ τ and

LD(w) ≤ LθS(w) + Ω
(

max
{
R2 lnm/(θ2m),

√
(R2/θ2) ln(τ−1)τ/m

})
,

and therefore
LD(w) ≤ LθS(w) + Ω

(
R2 lnm/(θ2m) +

√
(R2/θ2) ln(τ−1)τ/m

)
.

This concludes the proof of Theorem 4. The following two sections prove the two lemmas.

3.1 Small τ

In this section, we prove Lemma 12. Let m be the number of samples and assume m ≥ (R2/θ2)1+ε where
ε = 0.001. Assume furthermore that R ≥ Cθ for a sufficiently large constant C > 0. We construct a
distribution D over Ru+1×{−1,+1}, where u = 4eε−1m/ lnm. The distribution D gives a uniform random
point among {x1, . . . , xu} where xi has its (u+ 1)’st and i’th coordinate equal to R/

√
2 and the rest 0. The

label is always 1.
Inspired by ideas by Grønlund et al. [GKL+19], we will show by a coupon-collector argument that with

high probability, no more than u − R2/θ2 elements of {x1, . . . , xu} are included in the sample S. Consider
repeatedly sampling elements i.i.d. uniformly at random from {x1, . . . , xu}. For every k ∈ {1, . . . , u}, let Xk

be the number of samples between the time the (k− 1)’th distinct element is sampled and the time the k’th
distinct element is sampled. Then Xk ∼ Geom(pk), where pk = (u − k + 1)/u. Denote X :=

∑u−t
k=1Xk for

t = R2/θ2. Then:

E[X] =

u−t∑
k=1

u

u− k + 1

= u

(
u∑
k=1

1

u− k + 1
−

u∑
k=u−t+1

1

u− k + 1

)

= u

(
u∑
k=1

1

k
−

t∑
k=1

1

k

)
= u(Hu −Ht)

≥ u(ln(u)− ln(t)− 1) = u(ln(u/t)− 1).

For a large enough constant C such that R > Cθ, we have E[X] ≥ em. To see why this is true, recall that
u = 4eε−1m/ lnm, and m ≥ (R2/θ2)1+ε, and therefore

u ln
( u
et

)
= 4eε−1 · m

lnm
· ln

(
4eε−1 · m

lnm

e
(
R2

θ2

) )

≥ 4eε−1 · m

lnm
· ln
(

4eε−1mε/(1+ε)

e lnm

)
≥ 4eε−1 · ε

2(1 + ε)

m

lnm
· lnm ≥ em ,

where the inequality before last is due to the fact that for large enough C > 0, lnm < mε/(2(1+ε)). Denote
next p∗ = mink∈[u−t] pk = (t+ 1)/u, and λ = m/E[X], then 0 < λ ≤ e−1, and following known tail bounds
on the sum of geometrically-distributed random variables (e.g. [Jan18, Theorem 3.1]) we get:

Pr[X ≤ m] ≤ Pr[X ≤ λE[X]] ≤ e−p∗E[X](λ−1−lnλ) .
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As λ ≤ e−1 we get that 1 + lnλ < 0, and therefore

Pr[X ≤ m] ≤ e−
t+1
u ·E[X]·λ ≤ e−(t+1)mu ≤ e ε lnm

4e .

For large enough C > 0 we have e−(4e)−1ε lnm < 1/2. Therefore with constant probability over S ∼ Dm,
there are at least t elements from {x1, . . . , xu} that are not included in S. Assume we are given such
an S. Let xi1 , . . . , xit/16 denote some t/16 elements that are not in S and consider the vector w having

its (u + 1)’st coordinate set to θ
√

2/R, coordinates ij = −2
√

2θ/R and remaining coordinates 0. Then

‖w‖2 =
√
θ22/R2 + (t/16)8θ2/R2 ≤

√
1/8 + 1/2 < 1. Notice that for all xi ∈ S, we have 〈w, xi〉 =

(θ
√

2/R) · R/
√

2 = θ. For an xij we have 〈w, xij 〉 = (θ
√

2/R) · R/
√

2 + (−2
√

2θ/R) · R/
√

2 = θ − 2θ = −θ.
Thus LθS(w) = 0 while LD(w) = t/(16u) = Ω(R2 lnm/(θ2m)).

3.2 Large τ

In this section, we prove Lemma 13. Let m ≥ (R2/θ2)1+ε be the number of samples with ε = 0.001, and
let R2 ln(m)/(θ2m) < τ ≤ 1. We construct a distribution D over Ru+1 × {−1,+1}, where u = R2/(16θ2τ).
The distribution D gives a uniform random point among {x1, . . . , xu} where xi has its (u + 1)’st and i’th
coordinate equal to R/

√
2 and the rest to 0. The label is always 1.

In our lower bound proof, we will find a vector w of the following form. Let k = e−28τu, and for
every subset T ⊆ {1, . . . , u} with |T | = k, let wT be the vector where each coordinate i with i ∈ T is set
to −1/

√
2k, its (u + 1)’st coordinate is set to θ

√
2/R and all remaining coordinates are set to 0. Then

‖wT ‖2 =
√

1/2 + 2θ2/R2 ≤ 1, as R > Cθ for some sufficiently large C > 0. In addition, for every i /∈ T ,

〈xi, wT 〉 = θ and for every i ∈ T we have 〈xi, wT 〉 = θ − R/(2
√
k) ≤ −θ < 0 if i ∈ T . Clearly for every

such subset T , LD(wT ) = k/u = τ/e28. What remains is to argue that with constant probability over S,
there exists T where LθS(wT ) is significantly smaller than k/u, i.e. there is a large gap between LD(wT ) and
LθS(wT ).

Fix some set S of m samples from D, let bi denote the number of times xi is in the sample. Then for every
T we have LθS(wT ) = (

∑
i∈T bi)/m. Let T ∗ ⊆ {1, . . . , u} be the set containing the k indices with smallest

bi. We will show that with good probability over the choice of S the k smallest values among b1, . . . , bu are
small, and thus (

∑
i∈T∗ bi)/m is small.

Consider first a fixed index i. For every j ∈ [m] let cj be the indicator for the event that the j’th element
in the sample is xi. Then c1, . . . , cm are independent indicators with success probability p = 1/u, and
moreover, bi =

∑
j∈[m] ci. We will use the following reverse Chernoff bound to show that bi is significantly

smaller than its expectation m/u with reasonable probability.

Lemma 14. [Klein and Young [KY15]] For every
√

3/(mp) < δ < 1/2,

Pr

∑
j

cj ≤ (1− δ)mp

 ≥ e−9mpδ2 .

Now set
δ =

√
ln(u/(2k))/(9m/u).

Since u/(2k) = e28τ−1/2 > e27 it follows that δ >
√

ln(e27)/9(m/u) =
√

3/(m/u). We have assumed

τ > R2 ln(m)/(θ2m), and thus u = R2/(16θ2τ) < m/(16 lnm). Therefore δ =
√

ln(u/(2k))/(9m/u) ≤√
ln(e28τ−1)/(9 · 16 lnm) ≤ 1/2 for a large enough constant C > 0 such that R > Cθ. Hence we may use

Lemma 14 to conclude that Pr[bi ≤ (1− δ)m/u] ≥ e− ln(u/(2k)) = 2k/u.
We will next show that with constant probability there are at least k indices i for which bi ≤ (1− δ)m/u.

Let Bi denote the indicator for the event bi ≤ (1− δ)m/u. We will show that with probability at least 1/8,
B :=

∑
iBi ≥ k. Note first that E[B] = E[

∑
iBi] = uE[B1] ≥ 2k. By the Paley-Zygmund inequality it

follows that

Pr [B ≥ k] ≥ Pr [B ≥ (1/2)E [B]] ≥ E[B]2

4E[B2]
(19)
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Consider now E[B2] =
∑
i,j E[BiBj ]. For i 6= j, we have that the events Bi and Bj are negatively

correlated and thus E[BiBj ] ≤ E[Bi]
2 = E[B1]2. For i = j we have E[BiBi] = E[Bi] = E[B1]. Therefore

we may bound E[B2] ≤ (u2 − u)E[B1]2 + uE[B1] ≤ E[B]2 + E[B]. Note that for a large enough C > 0,
E[B] ≥ 2k ≥ 1 and thus E[B] ≤ E[B]2 and we get that E[B2] ≤ 2E[B]2. Plugging in (19), we conclude
that Pr[B ≥ k] ≥ 1/8, and hence with probability at least 1/8 over the random set of samples S, it holds
that (

∑
i∈T∗ bi)/m ≤ (k(1− δ)m/u)/m = k(1− δ)/u. In this case, we have LD(wT∗)− LθS(wT∗) ≥ kδ/u =

Ω((R2/θ2)
√

ln(u/k)/(m/u)) = Ω(
√

(R2/θ2) ln(τ−1)τ/m). Since τ = e28k/u = e28LD(wT∗) ≥ e28LθS(wT∗)
we have that LθS(wT∗) ≤ τ/e28 ≤ τ which concludes the proof of Lemma 13.

4 Algorithmic Lower Bound

This section is devoted to the proof of Theorem 5. To this end, fix some integer N , and fix θ ∈ (1/N, 1/40).
Let k = b(R/θ)2c, and let X = {Re1, . . . , Rek}, where e1, . . . , ek are the standard basis elements in Rk. Let
A be a learning algorithm that, upon receiving as input a sample set S ∼ Dm produces a hyperplane wA,S .
With every ` ∈ {−1, 1}u we associate a distribution D` over X × {−1, 1} and a unit vector w`. We show

that for some labeling ˆ̀, with constant probability over the choice of a sample S of m points sampled from
Dˆ̀, a large fraction of sample points attain large margins with respect to wˆ̀, while the hyperplane wA,S
constructed by the algorithm has a high out-of-sample error probability (with respect to Dˆ̀).

We first turn to define D` for ` ∈ {−1, 1}k. We define D` separately for the first k/2 points and the last
k/2 points of X . Intuitively, every point in {Rei}i∈[k/2] has a fixed label determined by `, however all points
but one have a very small probability of being sampled according to D`. Every point in {Rei}i∈[k/2+1,k], on
the other hand, has an equal probability of being sampled, however its label is not fixed by ` rather than
slightly biased towards `. Formally, let α, β, ε ∈ [0, 1] be constants to be fixed later. For (x, y) ∼ D`, the
probability that x ∈ {Rei}i∈[k/2] is 1 − β. Next, conditioned on x ∈ {Rei}i∈[k/2], (Re1, `1) is assigned high
probability (1− ε) and the rest of the measure is distributed uniformly over {(Rei, `i)}i∈[2,k/2]. That is

Pr
D`

[(Re1, `1)] = (1− β)(1− ε) , and ∀j ∈ [2, k/2]. Pr
D`

[(Rej , `j)] =
(1− β)ε

k/2− 1
.

Finally, conditioned on x ∈ {Rei}i∈[k/2+1,k], x distributes uniformly over {Rei}i∈[k/2+1,k], and conditioned

on x = Rei, we have y = `i with probability 1+α
2 . That is

∀j ∈ [k/2 + 1, k]. Pr
D`

[(ξj , `j)] =
(1 + α)β

k
, and Pr

D`
[(ξj ,−`j)] =

(1− α)β

k
.

We additionally associate with ` the unit vector w` := 1√
k
`, and draw the reader’s attention to the fact

that for every i ∈ [k], `i 〈w`, Rei〉 = (R/
√
k)`2i = θ. Therefore for every (x, y) ∈ supp(D`), we have that

y 〈w`, x〉 < θ if and only if there exists i ∈ [k/2 + 1, k] such that x = Rei and y = −`i. Therefore for every
` ∈ {−1, 1}k we have

Pr
(x,y)∼D`

[y 〈w`, x〉 < θ] =
∑

i∈[k/2+1,k]

Pr
(x,y)∼D`

[x = Rei and y = −`i] =
∑

i∈[k/2+1,k]

(1− α)β

k
=

(1− α)β

2
. (20)

We will show that for some labeling ˆ̀, with constant probability over the sample S ∼ Dmˆ̀ and the choices
of A, the hyperplane wA,S returned by A has a high out-of-sample error. Formally, we show the following.

Claim 15. If α ≤
√

k
40βm and ε ≤ k

10m , then there exists ˆ̀ ∈ {−1, 1}k such that with probability at least

1/11 over S ∼ Dmˆ̀ and the choices of A we have

Pr
(x,y)∼Dˆ̀

[y 〈wA,S , x〉 < 0] ≥ (1− α)β

2
+

1

12
((1− β)ε+ αβ) .
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Before proving the claim, we show that it implies Theorem 5.

Proof of Theorem 5. Fix some τ ∈ [0, 49/100], and let ε = u
10m . Assume first that τ ≤ k

300m , and let
β = α = 0. Then for every sample S ∼ Dmˆ̀ , Pr(x,y)∼S [y

〈
wˆ̀, x

〉
< θ] = 0 ≤ τ , and moreover by Claim 15

with probability at least 1/11 over S and the randomness of A

Pr
(x,y)∼Dˆ̀

[y 〈wA,S , x〉 < 0] ≥ (1− β)ε

12
≥ τ + Ω

(
k

m

)
= τ + Ω

(
R2

mθ2
+

√
τR2

mθ2

)
.

where the last transition is due to the fact that k = R2θ−2 and τ = O(k/m).

Otherwise, assume τ > k
300m , and let ε = 0, α =

√
k

2560τm and β = 64τ
32−31α . Since τ ≥ k

300m , then

α ∈ [0, 1]. Moreover, if m > Ck for large enough but universal constant C > 0, then 32−31α ≥ 64· 49
100 ≥ 64τ ,

and hence β ∈ [0, 1]. Moreover, since α ≤ 1 then β ≤ 64τ , and therefore α =
√

k
2560τm ≤

√
k

40βm . Let

〈(x1, y1), . . . , (xm, ym)〉 ∼ Dmŷ be a sample of m points drawn independently according to Dˆ̀. For every

j ∈ [m], by (20) we have E[1yj〈wˆ̀,xj〉<θ] = (1−α)β
2 . Therefore by Chernoff we get that for large enough N ,

Pr
S∼Dmˆ̀

[
Pr

(x,y)∼S

[
y
〈
wˆ̀, x

〉
< θ
]
≥ τ

]
= Pr
S∼Dmˆ̀

 1

m

∑
j∈[m]

1yj〈wˆ̀,xj〉<θ ≥
(1− 31α/32)β

2


≤ e−Θ(α2βm) ≤ e−Θ(k) ≤ 10−3 ,

where the inequality before last is due to the fact that α2βm = kβ
2560τ = Ω(k), since β ≥ 2τ . Moreover, with

probability at least 1/11 over S and A we get that

Pr
(x,y)∼Dˆ̀

[y 〈wA,S , x〉 < 0] ≥ (1− α)β

2
+
αβ

12
=

(1− 31α/32)β

2
+
αβ

24
= τ + Ω

(√
τk

m

)

≥ τ + Ω

(
R2

mθ2
+

√
τR2

mθ2

)
,

where the last transition is due to the fact that τ = Ω(k/m). This completes the proof of Theorem 5.

For the rest of the section we therefore prove Claim 15. We first show that if α and ε are small enough,
then there exists a labeling ˆ̀ for which the expected out-of-sample error of wA,S is large. We will then use
Markov’s inequality to show that the out-of-sample error of wA,S is large with constant probability. More
precisely, note that

Pr
(x,y)∼D`

[y 〈w, x〉 < 0] =

=
∑

i∈[k/2],y∈{−1,1}

1y〈w,Rei〉<0 Pr
D`

[(Rei, y)] +
∑

i∈[k.2+1,k],y∈{−1,1}

1y〈w,Rei〉<0 Pr
D`

[(Rei, y)] ,
(21)

and denote Ψ = Ψ(w, `) := Pr(x,y)∼D` [y 〈w, x〉 < 0] − 1y〈w,Re1〉<0 PrD` [(Re1, y)]. We will first lower bound
the expected value of Ψ.

Claim 16. If α ≤
√

k
40βm and ε ≤ k

10m , then there exists ˆ̀∈ {−1, 1}k such that

EA,S
[
Ψ(wA,S , ˆ̀)]

]
≥ (1− α)β

2
+

1

6
((1− β)ε+ αβ) .
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Proof. To show existence of a labeling ˆ̀ it is enough to show that

E`∈{−1,1}k [EA,S [Ψ(wA,S , `)]] ≥
(1− α)β

2
+

1

6
((1− β)ε+ αβ) .

From (21) we get that

E`∈{−1,1}k [ EA,S [Ψ(wA,S , `)] ] =

= E`

EA,S
 ∑
i∈[2,k/2],y∈{−1,1}

1y〈wA,S ,Rei〉<0 Pr
D`

[(Rei, y)] +
∑

i∈[k/2+1,k],y∈{−1,1}

1y〈wA,S ,Rei〉<0 Pr
D`

[(Rei, y)]


(22)

In order to lower bound the expected value of Ψ(wA,S , `) over `,A, S, we will bound the expected value of
each of the two sums in (22) separately, starting with the first.

For every i ∈ [2, k/2] and y ∈ {−1, 1}, if y 6= `i then PrD` [(Rei, y)] = 0, and if y = `i then PrDy [(Rei, y)] =
(1−β)ε
k/2−1 . Therefore for every `,A, S∑

j∈[2,k/2],y∈{−1,1}

1y〈wA,S ,Rej〉<0 Pr
Dy

[(Rej , y)] ≥ (1− β)ε

k/2− 1

∑
j∈[2,k/2]

1y〈wA,S ,Rej〉<0 . (23)

For every i ∈ [2, k/2], if Rei /∈ S then A has no information regarding `i, and therefore `i and 〈wA,S , Rei〉
are independent. Hence E`∼{−1,1}k [1`i〈wA,S ,Rei〉<0] = 1

2 . Let S be the set of all samples for which |S ∩
{Re2, . . . , Rek/2}| ≤ k/2−1

2 , then for every S ∈ S and every set of random choices of A,

E`

 ∑
i∈[2,k/2−1]

1`i〈wA,S ,Rei〉<0

 ≥ k/2− 1− |S ∩ {Re2, . . . , Rek/2}|
2

≥ k/2− 1

4
,

As this holds for every S ∈ S, and every set of random choices made by A we conclude that

EA,S

E`
 (1− β)ε

k/2− 1

∑
j∈[2,k/2]

1y〈wA,S ,Rej〉<0

 ∣∣∣∣∣∣S ∈ S
 ≥ (1− β)ε

k/2− 1
· k/2− 1

4
=

(1− β)ε

4
.

A Chernoff bound gives PrS∼Dm [S] ≥ 1− e−Θ(k) ≥ 2/3, and by Fubini’s theorem we get that

E`

EA,S
 (1− β)ε

k/2− 1

∑
j∈[2,k/2]

1y〈wA,S ,Rej〉<0

  = EA,S

E`
 (1− β)ε

k/2− 1

∑
j∈[2,k/2]

1y〈wA,S ,Rej〉<0

 
≥ EA,S

E`
 (1− β)ε

k/2− 1

∑
j∈[2,k/2]

1y〈wA,S ,Rej〉<0

∣∣∣∣∣∣S ∈ S
 · Pr[S ∈ S] ≥ (1− β)ε

6

(24)

Next, for every i ∈ [k/2 + 1, k] we have that∑
y∈{−1,1}

1y〈w,Rei〉<0 Pr
D`

[(Rei, y)] = 1`i〈w,Rei〉<0 Pr
D`

[(Rei, `i)] + 1`i〈w,Rei〉>0 Pr
D`

[(Rei,−`i)]

=
(1− α)β

k
+ 1`i〈w,Rei〉<0

αβ

k/2
,

and therefore∑
i∈[k/2+1,k],y∈{−1,1}

1y〈w,Rei〉<0 Pr
D`

[(Rei, y)] =
(1− α)β

2
+
αβ

k/2

∑
i∈[k/2+1,k]

1`i〈w,Rei〉<0 . (25)
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Next, let i ∈ [k/2 + 1, k]. Denote by σi ∈ [m] the number of times Rei was sampled into S. Then

E`
[
EA,S

[
1`i〈wA,S ,Rei〉<0

]]
=

m∑
n=0

E`
[
EA,S

[
1`i〈wA,S ,Rei〉<0

∣∣σi = n
]]
· Pr[σi = n] (26)

For every a > 0 and b ∈ (0, 1), let Φ(a, b) = 1
4

(
1−

√
1− exp

(
−ab2
1−b2

))
, then a result by Anthony and

Bartlett [AB09, Lemma 5.1] shows that

E`
[
EA,S

[
1`i〈wA,S ,Rei〉<0

∣∣σi = n
]]
≥ Φ(n+ 2, α)

Plugging this into (26), by the convexity of Φ(·, α) and Jensen’s inequality we get that

E`
[
EA,S

[
1`i〈wA,S ,Rei〉<0

]]
≥

m∑
n=0

Φ(n+ 2, α) · Pr[σi = n] ≥ Φ(E[σi] + 2, α) .

Since E[σi] = 2βm
k , and Since Φ(·, α) is monotonically decreasing we get that

E`
[
EA,S

[
1`i〈wA,S ,Rei〉

]]
≥ Φ

(
4βm

k
, α

)
.

As for α ≤
√

k
40βm we have Φ( 8βm

k , α) ≥ 1
6 , summing over all i ∈ [k/2 + 1, k] we get that

E`

EA,S
 ∑
i∈[k/2+1,k],y∈{−1,1}

1y〈wA,S ,Rei〉<0 Pr
D`

[(Rei, y)]

 ≥ (1− α)β

2
+
αβ

6
(27)

Plugging (24) and (27) into (22) we conclude the claim.

To finish the proof of Claim 15, assume α ≤
√

u
40βm and ε ≤ k

10m , and let ˆ̀ be the labeling whose

existence is guaranteed by the previous claim. Note first that by substituting every indicator in (21) with

1, we get that Ψ(wA,S , ˆ̀) ≤ (1− β)ε+ αβ for every set of random choices made by A and every sample S.

Denote a = (1−β)ε+αβ. In these notations we have that a−Ψ(wA,S , ˆ̀) is a non-negative random variable,

and moreover, Claim 15 states that EA,S [a − Ψ(wA,S , ˆ̀)] ≤ 5a/6. Therefore from Markov’s inequality we
get that

Pr
A,S

[Ψ(wA,S , ˆ̀) ≤ a/12] = Pr
A,S

[a−Ψ(wA,S , ˆ̀) ≥ 11a/12] ≤ Pr
A,S

[a−Ψ(wA,S , ˆ̀) ≥ 1.1E[a−Ψ(wA,S , ˆ̀)]] ≤ 10/11

and therefore

Pr
A,S

[
Pr

(x,y)∼Dˆ̀

[y 〈wA,S , x〉 < 0] ≥ 1

12
((1− β)ε+ αβ)

]
≥ Pr
A,S

[
Ψ(wA,S , ˆ̀) ≥ 1

12
((1− β)ε+ αβ)

]
≥ 1/11 .
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Claim 17. Let X,Y ∼ N (0, 1) be independent. Then

1. For every α < 1/2, E
[
eαX

2
]

= 1√
1−2α

; and

2. For every α ∈ (−1, 1), E
[
eαXY

]
= 1√

1−α2
.

Proof. To prove the first part let α < 1/2, then

E
[
eαX

2
]

=
1√
2π

∞∫
−∞

eαx
2

e
−x2
2 dx =

1√
1− 2α

·
√

1− 2α

2π

∞∫
−∞

e
−(1−2α)x2

2 dx =
1√

1− 2α

Let α ∈ (−1, 1), then

E
[
eαXY

]
=

1

2π

∞∫
−∞

∞∫
−∞

eαxye
−x2
2 e

−y2
2 dydx =

1

2π

∞∫
−∞

∞∫
−∞

e
−x2
2 e

−y2+2αxy−α2x2

2 e
α2x2

2 dydx

=
1

2π

∞∫
−∞

e
−x2+α2x2

2

∞∫
−∞

e
−(y−αx)2

2 dydx =
1√
2π

∞∫
−∞

e
−x2+α2x2

2 dx

=
1√
2π

∞∫
−∞

e
−x2(1−α2)

2 dx =
1√

1− α2

Claim 18. Let X1, . . . , Xk, Y1, . . . , Yk ∼ N (0, 1) be independent, then for all t ∈ [0, 1/4),

1. Pr
[∣∣∣ 1k∑i∈[k]X

2
i − 1

∣∣∣ ≥ t] ≤ 2e−0.21kt2 ; and

2. Pr
[∣∣∣ 1k∑i∈[k]XiYi

∣∣∣ ≥ t] ≤ 2e−0.48kt2 .

Proof. To prove the first part, denote Z =
∑
i∈[k]X

2
i and let t ∈ [0, 1/4). For every α ∈ (0, 1/2), we have

that

Pr[Z/k−1 > t] = Pr[eαZ > eαk(1+t)] ≤ e−αk(t+1)E[eαZ ] = e−αk(t+1)(1−2α)−k/2 = e
−k
2 (2α(t+1)+ln(1−2α)) .

By setting α = t
2(t+1) we get that

Pr[Z/k − 1 > t] ≤ e
−k
2 (t−ln(1+t)) ≤ e−0.21kt2 ,

where the last inequality is due to the fact that for every t ∈ [0, 1/4), ln(1 + t) ≤ t − 0.42t2. Similarly, for
α < 0 we get that

Pr[Z/k−1 < −t] = Pr[eαZ > eαk(1−t)] ≤ e−αk(1−t)E[eαZ ] = e−αk(1−t)(1−2α)−k/2 = e
−k
2 (2α(1−t)+ln(1−2α)) .

By setting α = −t
2(1−t) we get that

Pr[Z/k − 1 < −t] ≤ e
−k
2 (−t−ln(1−t)) ≤ e−0.25kt2 ,

where the last inequality is due to the fact that for every t ∈ [0, 1/4), ln(1− t) ≤ −t− 0.5t2.
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To prove the second part of the claim, let t ∈ [0, 1/4), then for every α ∈ (−1, 1), we have that

Pr[Z > kt] = Pr[eαZ > eαkt] ≤ e−αktE[eαZ ] = e−αkt(1− α2)−k/2 = e
−k
2 (2αt+ln(1−α2)) .

By setting α = −1+
√

1+4t2

2t we get that

Pr[Z > kt] ≤ e
−k
2

(
−1+

√
1+4t2+ln

(
−1+
√

1+4t2

2t2

))
= e

−k
2

(
−1+

√
1+4t2+ln

(
2

1+
√

1+4t2

))
.

For every x > 0, let
f(x) = −1 + x+ ln(2/(x+ 1))− 0.24(x2 − 1) .

Since for every x ∈ [1,
√

5/2] we have that f(x) ≥ 0, then for every t ∈ [0, 1/4), f(
√

1 + 4t2) ≥ 0. That is

−1 +
√

1 + 4t2 + ln

(
2

1 +
√

1 + 4t2

)
− 0.24 · 4t2 ≥ 0 .

We conclude that

Pr[Z > kt] ≤ e
−k
2

(
−1+

√
1+4t2+ln

(
2

1+
√

1+4t2

))
≤ e

−k
2 ·0.96t2 = e−0.48kt2 .

From symmetry we get that Pr[Z < −kt] ≤ e−0.48kt2 .

Proof of Lemma 9. The first part is follows from the standard proof of the Johnson-Lindenstrauss lemma.

Every entry of Au is independently N (0, ‖u‖22/k) distributed. Hence X :=
k‖Au‖22
‖u‖22

is distributed as a chi-

squared distribution with k degrees of freedom. From Claim 18, we get that Pr[|‖Au‖22 − ‖u‖22| ≥ t‖u‖22] =

Pr[|X/k − 1| ≥ t] ≤ 2e−0.21kt2 .
To prove the second part, let u, v ∈ Rd. Assume first that ‖u‖2 = ‖v‖2 = 1. Denote w = v − 〈u, v〉u and

let ŵ = w/‖w‖2. Note that u⊥w, and therefore ‖w‖2 =
√
‖v‖22 − 〈u, v〉

2 ‖u‖22 =

√
1− 〈u, v〉2. For every

i ∈ [k], let ai be the ith row of A and let Xi := 〈ai, u〉 and Yi := 〈ai, ŵ〉. By the rotational invariance of
Gaussians and orthonormality of u and ŵ we get that X1, . . . , Xk, Y1, . . . , Yk ∼ N (0, 1/k) are independent.
Next, observe that

〈Au,Av〉 = 〈Au,A(〈u, v〉u)〉+ 〈Au,A(v − 〈u, v〉u)〉 = 〈u, v〉 ‖Au‖22 + ‖w‖2 〈Au,Aŵ〉 ,

and moreover, 〈Au,Aŵ〉 =
∑
i∈[k]XiYi. Therefore

| 〈Au,Av〉 − 〈u, v〉 | ≤ | 〈u, v〉 | · |‖Au‖22 − 1|+ ‖w‖2 · | 〈Au,Aŵ〉 | (28)

Next, let t ∈ [0, 1/4), and let α ∈ [0, 1] then

Pr [| 〈Au,Av〉 − 〈u, v〉 | > t]

≤ Pr
[
| 〈u, v〉 | · |‖Au‖22 − 1| > αt

]
+ Pr

‖w‖2 ·∑
i∈[k]

XiYi ≥ (1− α)t

 (29)

From the first part of the lemma we get that

Pr
[
| 〈u, v〉 | · |‖Au‖22 − 1| > αt

]
≤ 2e

−0.21kα2t2

〈u,v〉2 ,
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and from Claim 18 we get that

Pr

‖w‖2 ·∑
i∈[k]

XiYi ≥ (1− α)t

 ≤ 2e
−0.48k(1−α)2t2

‖w‖22 = 2e
−0.48k(1−α)2t2

1−〈u,v〉2 .

Setting α =
√

0.48〈u,v〉
√

0.48〈u,v〉+
√

0.21(1−〈u,v〉2)
and plugging into (29) we get that

Pr [| 〈Au,Av〉 − 〈u, v〉 | > t] ≤ 4e
−0.48·0.21kt2

(
√

0.48〈u,v〉+
√

0.21(1−〈u,v〉2))2 ≤ 4e
−0.48·0.21kt2

0.69 = 4e−kt
2/7 ,

where the inequality before last is due to the fact that
√

0.48x+
√

0.21(1− x2) ≤
√

0.69 for all x ∈ [−1, 1].
Finally, for general u, v ∈ Rd we get that since u′ = u/‖u‖2 and v′ = v/‖v‖2 are unit vectors then

Pr
A

[| 〈Au,Av〉 − 〈u, v〉 | > t] = Pr
A

[
|〈Au′, Av′〉 − 〈u′, v′〉| > t

‖u‖2‖v‖2

]
≤ 4e

− kt2

7‖u‖22‖v‖
2
2

21


	Introduction
	Previous Generalization Bounds
	Our Contributions

	Margin-Based Generalization Upper Bound
	Existential Lower Bound
	Small t
	Large t

	Algorithmic Lower Bound
	Technical Lemmas

