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Abstract
We provide efficient replicable algorithms for the problem of learning large-margin halfspaces. Our

results improve upon the algorithms provided by Impagliazzo, Lei, Pitassi, and Sorrell [STOC, 2022]. We
design the first dimension-independent replicable algorithms for this task which runs in polynomial time,
is proper, and has strictly improved sample complexity compared to the one achieved by Impagliazzo et al.
[2022] with respect to all the relevant parameters. Moreover, our first algorithm has sample complexity
that is optimal with respect to the accuracy parameter 𝜖. We also design an SGD-based replicable
algorithm that, in some parameters’ regimes, achieves better sample and time complexity than our first
algorithm.

Departing from the requirement of polynomial time algorithms, using the DP-to-Replicability reduc-
tion of Bun, Gaboardi, Hopkins, Impagliazzo, Lei, Pitassi, Sorrell, and Sivakumar [STOC, 2023], we
show how to obtain a replicable algorithm for large-margin halfspaces with improved sample complexity
with respect to the margin parameter 𝜏 , but running time doubly exponential in 1/𝜏2 and worse sample
complexity dependence on 𝜖 than one of our previous algorithms. We then design an improved algorithm
with better sample complexity than all three of our previous algorithms and running time exponential
in 1/𝜏2.

1 Introduction
The replicability crisis is omnipresent in many scientific disciplines including biology, medicine, chemistry,
and, importantly, AI [Baker, 2016, Pineau et al., 2019]. A recent article that appeared in Nature [Ball, 2023]
explains how the reproducibility crisis in AI has a cascading effect across many other scientific areas due
to its widespread applications in other fields such as medicine. Thus, an urgent goal is to design a formal
framework through which we can argue about the replicability of experiments in ML. Such a theoretical
framework was proposed in a recent work by Impagliazzo et al. [2022] and has been studied extensively in
several learning settings [Esfandiari et al., 2023b,a, Bun et al., 2023, Kalavasis et al., 2023, Chase et al.,
2023b, Dixon et al., 2023, Chase et al., 2023a, Eaton et al., 2023, Karbasi et al., 2023].

Definition 1.1 (Replicability [Impagliazzo et al., 2022]). Let ℛ be a distribution over random binary strings.
A learning algorithm 𝒜 is 𝑛-sample 𝜌-replicable if for any distribution 𝒟 over inputs and two independent
datasets 𝑆, 𝑆′ ∼ 𝒟𝑛, it holds that Pr𝑆,𝑆′∼𝒟𝑛,𝑟∼ℛ[𝒜(𝑆, 𝑟) ̸= 𝒜(𝑆′, 𝑟)] ≤ 𝜌.
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In words, this definition requires that when an algorithm 𝒜 is executed twice on different i.i.d. datasets
𝑆, 𝑆′ but using shared internal randomness, then the output of the algorithm is exactly the same, with
high probability. We note that sharing the randomness across the executions is crucial in achieving this
replicability guarantee. Importantly, Dixon et al. [2023] showed that without sharing randomness, it is
impossible to achieve such a strong notion of replicability even for simple tasks such as mean estimation. In
practice, this can be achieved by simply publishing the random seed that the ML algorithms are executed
with. As we extensively discuss in Section 1.2, Definition 1.1 turns out to be connected with other notions
of stability such as differential privacy and perfect generalization [Ghazi et al., 2021, Bun et al., 2023].

In this work, we study the fundamental problem of learning large-margin halfspaces, which means that
no example is allowed to lie too close to the separating hyperplane. This task is related to foundational
ML techniques such as the Perceptron algorithm [Rosenblatt, 1958], SVMs [Cortes and Vapnik, 1995], and
AdaBoost [Freund and Schapire, 1997]. Let us recall the concept class of interest.

Definition 1.2 (Large-Margin Halfspaces). Let 𝒟 be a distribution over R𝑑 × {−1, 1} whose support does
not contain 𝑥 = 0. We say that 𝒟 has linear margin 𝜏 if there exists a unit vector 𝑤 ∈ R𝑑 such that for any
(𝑥, 𝑦) ∈ supp(𝒟) it holds that 𝑦(𝑤⊤𝑥/‖𝑥‖) ≥ 𝜏 .1

Following the PAC learning definition of Valiant [1984], we say that an algorithm learns with accuracy 𝜖
and confidence 𝛿 the class of 𝜏 -margin halfspaces in 𝑑 dimensions using 𝑛 = 𝑛(𝜖, 𝛿, 𝑑, 𝜏) samples and runtime
𝑇 = 𝑇 (𝜖, 𝛿, 𝑑, 𝜏) if, given 𝑛 i.i.d. samples from any distribution 𝒟 satisfying Definition 1.2, the algorithm
outputs, in time 𝑇 , a classifier ℎ : R𝑑 → {−1, 1} such that Pr(𝑥,𝑦)∼𝒟[ℎ(𝑥) ̸= 𝑦] ≤ 𝜖, with probability at least
1− 𝛿.

We are interested in replicably learning large-margin halfspaces, i.e., designing algorithms for large-margin
halfspaces that further satisfy Definition 1.1. We remark that when the feature domain is infinite, there is
no replicable learning algorithm for learning halfspaces in general. Thus making some assumptions like
the large-margin condition is necessary. In particular, Bun et al. [2023], Kalavasis et al. [2023] show that
finiteness of the Littlestone dimension is a necessary condition for learnability by replicable algorithms, and
it is known that even one-dimensional halfspaces over [0, 1] have infinite Littlestone dimension. See Table 1.1
for a comparison of prior work and our contributions.

The work of Impagliazzo et al. [2022] provided the first replicable algorithms for 𝜏 -margin halfspaces
over R𝑑. The first algorithm of Impagliazzo et al. [2022], which uses the “foams” discretization scheme
[Kindler et al., 2012], is 𝜌-replicable and returns a hypothesis ℎ that, with probability at least 1− 𝜌, satisfies
Pr(𝑥,𝑦)∼𝒟[ℎ(𝑥) ̸= 𝑦] ≤ 𝜖. The sample complexity of this algorithm is roughly ̃︀𝑂((𝑑𝜖−3𝜏−8𝜌−2)1.01) and the
runtime is exponential in 𝑑 and polynomial in 1/𝜖, 1/𝜌 and 1/𝜏 . The second algorithm of Impagliazzo et al.
[2022], which uses the “box” discretization scheme, is 𝜌-replicable and returns a hypothesis ℎ that, with
probability at least 1 − 𝜌, satisfies Pr(𝑥,𝑦)∼𝒟[ℎ(𝑥) ̸= 𝑦] ≤ 𝜖 with sample complexity ̃︀𝑂((𝑑3𝜖−4𝜏−10𝜌−2)1.01)
and runtime which is polynomial in 𝑑, 1/𝜖, 1/𝜌 and 1/𝜏 . These two algorithms appear in the first two rows
of Table 1.1.

Some remarks are in order. First, let us mention that the sample complexity of learning large-margin
halfspaces in the absence of the replicability requirement is ̃︀𝑂(1/𝜖𝜏2). Notice that the sample complexity of
both algorithms of Impagliazzo et al. [2022] depends on the dimension 𝑑 of the problem. This is unexpected
since the sample complexity of non-replicable algorithms for this task is dimension-independent. In the case
of the replicable algorithms of Impagliazzo et al. [2022], the dependence on the dimension appears due to
a rounding/discretization step, which is crucial in establishing the replicability guarantees. Second, both
algorithms of Impagliazzo et al. [2022] are improper in the sense that the hypothesis ℎ they output does not
correspond to a halfspace. This is due to the use of a replicable boosting routine that outputs the majority
vote over multiple halfspaces. As a general note, both of these algorithms are fairly complicated: they
require multiple discretization/rounding steps, and then they output a weak learner, which finally needs to
be boosted using multiple rounds of a replicable boosting scheme. As a result, the sample complexity of
their algorithms incurs a significant blow-up in the parameters 𝜖, 𝜏 compared to the non-replicable setting.

1When we do not specify the norm, we assume the ℓ2-norm.
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Table 1.1: A comparison of prior work and our work. We denote by 𝑑 the dimension, 𝜖 the accuracy, 𝜌 the
replicability, and 𝜏 the margin of the halfspace. We omit the logarithmic factors on the sample complexity
and the runtime.

Replicable Algorithms for Large-Margin Halfspaces

Algorithms Sample Complexity Running Time Proper

Prior Work

[ILPS22] with foams rounding
(𝑑𝜖−3𝜏−8𝜌−2)1.01 2𝑑 · poly(1/𝜖, 1/𝜌, 1/𝜏) No

[ILPS22] with box rounding
(𝑑3𝜖−4𝜏−10𝜌−2)1.01 poly(𝑑, 1/𝜖, 1/𝜌, 1/𝜏) No

Our Work

Algorithm 1 (Theorem 1.3) 𝜖−1𝜏−7𝜌−2 poly(𝑑, 1/𝜖, 1/𝜌, 1/𝜏) Yes

Algorithm 2 (Theorem 1.4) 𝜖−2𝜏−6𝜌−2 poly(𝑑, 1/𝜖, 1/𝜌, 1/𝜏) Yes

[LNUZ20] via DP-to-Replicability
reduction [BGH+23] (Proposi-
tion 1.5)

𝜖−2𝜏−4𝜌−2 poly(𝑑) · exp
(︁
(1/𝜏)

log(1/(𝜖𝜌𝛿))

𝜏2

)︁
Yes

Algorithm 3 (Theorem 1.6) 𝜖−1𝜏−4𝜌−2 poly(𝑑) · poly(1/𝜖, 1/𝜌, 1/𝜏, 1/𝛿)1/𝜏
2

Yes

1.1 Our Contribution
Impagliazzo et al. [2022] leave as an open question whether their bounds are tight. In this work, we show that
these bounds are sub-optimal. We provide new replicable algorithms for learning large-margin halfspaces
that improve upon the results of Impagliazzo et al. [2022] in various aspects. Our algorithms have no sample
dependence on 𝑑, strictly improve on the dependence on 1/𝜖, 1/𝜌 and 1/𝜏 , and are proper, meaning that
they output linear models. Moreover, our Algorithm 1 and Algorithm 2 are computationally efficient while
Algorithm 3 forsakes computational efficiency to achieve further improvements in sample complexity.

We now state our first algorithmic result, the proof of which can be found in Section 3.

Theorem 1.3 (Efficient Replicable Algorithm 1). Fix 𝜖, 𝜏𝜌, 𝛿 ∈ (0, 1). Let 𝒟 be a distribution over R𝑑 ×
{−1, 1} that has linear margin 𝜏 as in Definition 1.2. There is an algorithm that is 𝜌-replicable and, given
𝑚 = ̃︀𝑂(𝜖−1𝜏−7𝜌−2 log(1/𝛿)) i.i.d. samples (𝑥, 𝑦) ∼ 𝒟, computes in time poly(𝑑, 1/𝜖, 1/𝜏, 1/𝜌, log(1/𝛿)) a unit
vector 𝑤 ∈ R𝑑 such that Pr(𝑥,𝑦)∼𝒟[sgn(𝑤⊤𝑥) ̸= 𝑦] ≤ 𝜖 with probability at least 1− 𝛿.

Algorithm 1 improves on the sample complexity of the two algorithms appearing in Impagliazzo et al.
[2022], runs in polynomial time, and is proper. Our techniques follow a different path from that of Impagliazzo
et al. [2022]. As we alluded to before, their approach is fairly complicated and is based on the design of
a replicable weak halfspace learning algorithm and then a replicable boosting algorithm that combines
multiple weak learners. Our approach is single-shot and significantly simpler : Consider 𝐵 independent
non-overlapping batches of training examples. From each batch 𝑖 ∈ [𝐵], we find a hyperplane with normal
vector 𝑤𝑖 ∈ R𝑑 that has Ω(𝜏) margin on the training data. This can be achieved by running the standard
Support Vector Machine (SVM) algorithm [Cortes and Vapnik, 1995, Vapnik, 2006]. We then aggregate
our vectors to a single average normal vector 𝑧 = (1/𝐵)

∑︀
𝑖∈[𝐵] 𝑤𝑖. Finally, we project the vector 𝑧 onto a

lower-dimensional space, whose dimension does not depend on 𝑑, and we replicably round 𝑧 using a rounding
scheme due to Alon and Klartag [2017] for which we perform a novel analysis in the shared randomness
setting. We emphasize that our algorithm gives a halfspace with the desired accuracy guarantee without the
need to use any boosting schemes.
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At a technical level, we avoid the dependence on the dimension 𝑑 thanks to data-oblivious dimensionality
reduction techniques (cf. Appendix A.3), a standard tool in the literature of large-margin halfspaces. Instead
of rounding our estimates in the 𝑑-dimensional space, we first project them to a lower-dimensional space,
whose dimension does not depend on 𝑑, and we perform the rounding in that space. The crucial idea is that
one can use the data-obliviousness of Johnson-Lindenstrauss (JL) matrices so that the projection matrices
in two distinct executions are the same since the internal randomness is shared. Another technical aspect
of our algorithm that differentiates it from prior works on the design of replicable algorithms is the use of a
different rounding scheme (cf. Section 2). Consider the simple case of 1-dimensional data. In the same spirit
as in Impagliazzo et al. [2022], we consider a random grid. But rather than rounding the point to a fixed
element of each cell of the grid (e.g., its center), we randomly round it to one of the two endpoints of the
cell using shared internal randomness so that, in expectation, the rounded point is the same as the original
one. This is helpful as it preserves inner products in expectation, and therefore gives better concentration
properties across multiple roundings. We believe that this rounding scheme can find more applications in
the replicable learning literature. The detailed proof of Theorem 1.3 can be found in Section 3.

Despite the simplicity of our algorithm, there are technical subtleties that complicate its analysis. For
instance, the projection to the low-dimensional space introduces a subtle complication we need to handle. In
particular, using ideas from Grønlund et al. [2020] we can show that the aggregated vector in the high-
dimensional space has the desired generalization properties. However, when we project it to the low-
dimensional space there are vectors that are now misclassified, due to the error introduced by the JL mapping.
Using the guarantees of the JL projection, we show that, uniformly over the data-generating distributions,
this happens for only a small fraction of the population.

We now proceed with our second algorithmic result, whose proof can be found in Section 4.

Theorem 1.4 (Efficient Replicable Algorithm 2). Fix 𝜖, 𝜏, 𝜌, 𝛿 ∈ (0, 1). Let 𝒟 be a distribution over R𝑑 ×
{−1, 1} that has linear margin 𝜏 as in Definition 1.2. There is an algorithm that is 𝜌-replicable and, given
𝑚 = ̃︀𝑂(𝜖−2𝜏−6𝜌−2 log(1/𝛿)) i.i.d. samples (𝑥, 𝑦) ∼ 𝒟, computes in time poly(𝑑, 1/𝜖, 1/𝜏, 1/𝜌, log(1/𝛿)) a unit
vector 𝑤 ∈ R𝑑 such that Pr(𝑥,𝑦)∼𝒟[sgn(𝑤⊤𝑥) ̸= 𝑦] ≤ 𝜖 with probability at least 1− 𝛿.

Compared to Algorithm 1, our Algorithm 2 achieves better dependence on 𝜏 by incurring an additional
1/𝜖 factor in the sample complexity. At a technical level, as in Lê Nguyen et al. [2020], we provide a convex
surrogate that upper bounds the loss 1{𝑦(𝑥⊤𝑤) ≤ 𝜏/2}. Running SGD on this convex surrogate provides a
unit vector 𝑤 that, in expectation over the data, achieves a margin of at least 𝜏/2 for an 𝑂(𝜖)-mass of the
population. We then apply a standard boosting trick to turn this guarantee into a high probability bound.
Next, we work as in Algorithm 1: we run the above procedure 𝐵 times to get 𝑤1, ..., 𝑤𝐵 and aggregate our
vectors into a single vector 𝑧 = (1/𝐵)

∑︀
𝑖∈[𝐵] 𝑤𝑖. Lastly, we perform a JL-projection on 𝑧 and then round

using the Alon-Klartag rounding scheme, as in Algorithm 1.

Computationally Inefficient Reductions from DP. It is a corollary of the works of Bun et al. [2023]
and Kalavasis et al. [2023] that one can use existing differentially private (DP) algorithms in order to obtain
replicable learners. In particular, following the reduction of Bun et al. [2023], one can obtain a replicable
algorithm for large-margin halfspaces with better sample complexity in terms of 𝜏 , but in a computationally
inefficient way. The idea is to take an off-the-shelf DP algorithm (recall Definition B.1) for this problem
(e.g. Lê Nguyen et al. [2020]) and transform it into a replicable one. We remark that this transformation
holds when the algorithm outputs finitely many different solutions and its running time is exponential in the
number of these solutions. Fortunately, the pure DP algorithm from Lê Nguyen et al. [2020] satisfies this
finite co-domain property. The formal statement of the result we get by combining these two algorithms is
presented below.

Proposition 1.5 (Inefficient Replicable Algorithm; follows from Lê Nguyen et al. [2020], Bun et al. [2023]).
Fix 𝜖, 𝜏, 𝜌, 𝛿 ∈ (0, 1). Let 𝒟 be a distribution over R𝑑×{−1, 1} that has linear margin 𝜏 as in Definition 1.2.
There is an algorithm that is 𝜌-replicable and, given 𝑚 = ̃︀𝑂(𝜖−2𝜏−4𝜌−2 log(1/𝛿)) i.i.d. samples (𝑥, 𝑦) ∼ 𝒟,
computes, in time exp

(︁
(1/𝜏)

log(1/(𝜖𝜌𝛿))

𝜏2

)︁
·poly(𝑑), a unit vector 𝑤 ∈ R𝑑 such that Pr(𝑥,𝑦)∼𝒟[sgn(𝑤⊤𝑥) ̸= 𝑦] ≤ 𝜖,

with probability at least 1− 𝛿.
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As mentioned above, the proof of this result follows by combining the DP-to-Replicability transformation
of Bun et al. [2023] (cf. Proposition B.3) with the pure DP algorithm for learning large-margin halfspaces
due to Lê Nguyen et al. [2020] (cf. Proposition B.2). We note that since the algorithm of Lê Nguyen et al.
[2020] is proper and the reduction of Bun et al. [2023] is based on sub-sampling, the output of Proposition 1.5
is also a linear classifier. The main issue with this approach is that, apart from not being a polynomial time
algorithm, the reduction requires a quadratic blow-up in the sample complexity of the provided DP algorithm.

To be more specific, the DP algorithm of Lê Nguyen et al. [2020] has sample complexity ̃︀𝑂(𝜖−1𝜏−2) for
accuracy 𝜖 and margin 𝜏 . This means that the replicable algorithm of Proposition 1.5 incurs a quadratic
blow-up in the sample complexity on the parameters 𝜖, 𝜏 . The cost of this transformation is tight under
standard cryptographic hardness assumptions [Bun et al., 2023]. Thus, it is unlikely that we can reduce the
dependence on the error parameter 𝜖 using such a generic transformation. We emphasize that our efficient
replicable algorithm (cf. Algorithm 1) has linear sample complexity dependence on 1/𝜖. The blow-up on the
running time of the algorithm is due to the use of correlated sampling in the transformation of Bun et al.
[2023] which requires exponential running time in the size of the output space. We remark that in the case
of the algorithm of Lê Nguyen et al. [2020], the size of the output space is already exponential in 1/𝜏2.

In our work, we also revisit this inefficient algorithm and improve on its sample complexity and runtime,
as follows:

Theorem 1.6 (Improved Inefficient Replicable Algorithm 3). Fix 𝜖, 𝜏, 𝜌, 𝛿 ∈ (0, 1). Let 𝒟 be a distribu-
tion over R𝑑 × {−1, 1} that has linear margin 𝜏 as in Definition 1.2. Then there is a 𝜌-replicable algo-
rithm such that given 𝑚 = ̃︀𝑂(𝜖−1𝜏−4𝜌−2 log(1/𝛿)) i.i.d. samples (𝑥, 𝑦) ∼ 𝒟, computes in time poly(𝑑) ·
poly(1/𝜖, 1/𝜏, 1/𝜌, 1/𝛿)1/𝜏

2

, a unit vector 𝑤 ∈ R𝑑 satisfying Pr(𝑥,𝑦)∼𝒟[sgn(𝑤⊤𝑥) ̸= 𝑦] ≤ 𝜖 with probability at
least 1− 𝛿.

Compared to the DP-to-Replicability reduction, Theorem 1.6 has better dependence on 1/𝜖 and better
running time. For the proof of this result, we refer to Section 5.

1.2 Related Work
Replicability. Pioneered by Impagliazzo et al. [2022], there has been a growing interest from the learning
theory community in studying replicability as an algorithmic property in various learning tasks. Among other
things, their work showed that the fundamental class of statistical queries, which appears in various settings
(see e.g., Blum et al. [2003], Gupta et al. [2011], Goel et al. [2020], Fotakis et al. [2021] and the references
therein) can be made replicable. Subsequently, Esfandiari et al. [2023a,b] studied replicable algorithms in
the context of multi-armed bandits and clustering. Later, Eaton et al. [2023], Karbasi et al. [2023] studied
replicability in the context of Reinforcement Learning. Recently, Bun et al. [2023], Kalavasis et al. [2023]
established equivalences between replicability and other notions of algorithmic stability such as differential
privacy (DP), and Moran et al. [2023] derived more fine-grained characterizations of these equivalences. It
is worth mentioning that Malliaris and Moran [2022] had already established equivalences between various
notions of algorithmic stability and finiteness of the Littlestone dimension of the underlying concept class.
Inspired by Impagliazzo et al. [2022], a related line of work [Chase et al., 2023b, Dixon et al., 2023, Chase
et al., 2023a] proposed and studied alternative notions of replicability such as list-replicability, where the
requirement is that when the algorithm is executed multiple times on i.i.d. datasets, then the number of
different solutions it will output across these executions is small.

Large-Margin Halfspaces. The problem of learning large-margin halfspaces has been extensively studied
and has inspired various fundamental algorithms [Rosenblatt, 1958, Vapnik, 1999, Freund and Schapire, 1997,
1998]. In the DP setting, Blum et al. [2005] gave a dimension-dependent construction based on a private
version of the perceptron algorithm. This was later improved by Lê Nguyen et al. [2020] who gave new
DP algorithms for this task with dimension-independent guarantees based on the Johnson-Lindenstrauss
transformation. Next, Bun et al. [2020] constructed noise-tolerant and private PAC learners for large-
margin halfspaces whose sample complexity also does not depend on the dimension. Beimel et al. [2019]
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and Kaplan et al. [2020] designed private algorithms for learning halfspaces without margin guarantees when
the domain is finite. Bassily et al. [2022b] stated an open problem of finding optimal DP algorithms for
learning large-margin halfspaces both with respect to their running time and their sample complexity. Bassily
et al. [2022a] studied DP algorithms for various learning tasks with margin, including halfspaces, kernels, and
neural networks. In the area of robust statistics, Diakonikolas et al. [2023] showed a statistical-computational
tradeoff in the problem of PAC learning large-margin halfspaces with random classification noise. For further
results on robustly learning large-margin halfspaces, we refer to Diakonikolas et al. [2019] and the references
therein.

2 The Main Tool: The Alon-Klartag Rounding Scheme
Inspired by Alon and Klartag [2017], we introduce and use the following rounding scheme AKround(𝑧, 𝛽) for
a point 𝑧 with parameter 𝛽: let 𝑜 = (𝑜1, . . . , 𝑜𝑘) ∼𝑖.𝑖.𝑑. 𝑈 [0, 𝛽] be uniformly random offsets and implicitly
discretize R𝑘 using a grid of side length 𝛽 centered at 𝑜. Let 𝑜(𝑧) ∈ R𝑘 denote the “bottom-left” corner of
the cube in which 𝑧 lies, i.e., the point obtained by rounding down all the coordinates of 𝑧. For a vector 𝑧,
we let 𝑧[𝑖] be its 𝑖-th coordinate. Define 𝑝(𝑧)[𝑖] ∈ [0, 1] to be such that

𝑝(𝑧)[𝑖] · 𝑜(𝑧)[𝑖] + (1− 𝑝(𝑧)[𝑖]) · (𝑜(𝑧)[𝑖] + 𝛽) = 𝑧[𝑖] .

Given offsets 𝑜 and thresholds 𝑢 = (𝑢1, . . . , 𝑢𝑘) with 𝑢𝑖 ∼ 𝑈 [0, 1], round a vector 𝑧 to 𝑓𝑜,𝑢(𝑧) where the
𝑖-th coordinate is equal to 𝑜(𝑧)[𝑖] if 𝑢𝑖 ≤ 𝑝(𝑧)[𝑖] and 𝑜(𝑧)[𝑖] + 𝛽 otherwise. Crucially, in expectation, the
rounded point 𝑓𝑜,𝑢(𝑧) coincides with 𝑧.

The next lemma is useful in order to derive the replicability guarantees of our rounding scheme.

Lemma 2.1 (Stability of Rounding). Let 𝑧, 𝑧′ ∈ R𝑘. Then for independent uniform offsets 𝑜1, . . . , 𝑜𝑘 ∈ [0, 𝛽]
and thresholds 𝑢1, . . . , 𝑢𝑘 ∈ [0, 1], we have

Pr
𝑜,𝑢

[𝑓𝑜,𝑢(𝑧) ̸= 𝑓𝑜,𝑢(𝑧
′)] ≤ 2𝛽−1‖𝑧 − 𝑧′‖1.

Our novel analysis of the stability of the rounding scheme under shared randomness (cf. Lemma 2.1)
demonstrates its useful properties for designing replicable algorithms. We believe these properties may be
of interest beyond the scope of this work and can find applications in designing replicable algorithms for
different problems.

Proof of Lemma 2.1. Fix a coordinate 𝑖 ∈ [𝑘]. The probability that 𝑜(𝑧)[𝑖] ̸= 𝑜(𝑧′)[𝑖] is at most |𝑧[𝑖] −
𝑧′[𝑖]|𝛽−1. Assume 𝑜(𝑧)[𝑖] = 𝑜(𝑧′)[𝑖]. Then, by the definition of 𝑝(𝑧), 𝑝(𝑧′) we have that

|𝑧[𝑖]− 𝑧′[𝑖]| = |(𝑝(𝑧)[𝑖]− 𝑝(𝑧′)[𝑖])𝑜(𝑧)[𝑖]

+ (𝑝(𝑧′)[𝑖]− 𝑝(𝑧)[𝑖])(𝑜(𝑧)[𝑖] + 𝛽)|
= |(𝑝(𝑧′)[𝑖]− 𝑝(𝑧)[𝑖])𝛽|.

Note then the probability of 𝑓𝑜,𝑢(𝑧)[𝑖] ̸= 𝑓𝑜,𝑢(𝑧
′)[𝑖] is |𝑝(𝑧′)[𝑖]− 𝑝(𝑧)[𝑖]| = |𝑧[𝑖]− 𝑧′[𝑖]|𝛽−1.

By the uniform choice of 𝑢𝑖, we thus conclude that Pr𝑜,𝑢[𝑓𝑜,𝑢(𝑧)[𝑖] ̸= 𝑓𝑜,𝑢(𝑧
′)[𝑖]] ≤ 2𝛽−1|𝑧[𝑖] − 𝑧′[𝑖]|. A

union bound over all 𝑘 coordinates implies Pr𝑜,𝑢[𝑓𝑜,𝑢(𝑧) ̸= 𝑓𝑜,𝑢(𝑧
′)] ≤ 2𝛽−1‖𝑧 − 𝑧′‖1.

Next, we show that the Alon-Klartag rounding scheme additively preserves inner products with high
probability. This is formalized below.

Lemma 2.2 (Rounding preserves Inner Products). Let 𝑧, 𝑥 ∈ R𝑘 be such that ‖𝑥‖ ≤ 1. For uni-
form offsets 𝑜1, . . . , 𝑜𝑘 ∈ [0, 𝛽] and thresholds 𝑢1, . . . , 𝑢𝑘 ∈ [0, 1], we have Pr𝑜,𝑢

[︀
|𝑓𝑜,𝑢(𝑧)⊤𝑥− 𝑧⊤𝑥| > 𝛼

]︀
≤

2 exp
(︀
−2𝛼2𝛽−2

)︀
.
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Proof of Lemma 2.2. Each of the random variables 𝑓𝑜,𝑢(𝑧)[𝑖] lies in an interval of length 𝛽, are independent,
and have expectation 𝑧[𝑖]. By linearity, 𝑓𝑜,𝑢(𝑧)

⊤𝑥 − 𝑧⊤𝑥 = (𝑓𝑜,𝑢(𝑧) − 𝑧)⊤𝑥. Let 𝑣 = 𝑓𝑜,𝑢(𝑧) − 𝑧. Then
E[𝑥[𝑖] · 𝑣[𝑖]] = 0 and 𝑥[𝑖] · 𝑣[𝑖] lies in a range of length 𝛽𝑥[𝑖]. By Hoeffding’s inequality, we have Pr[|𝑣⊤𝑥| >
𝛼] < 2 exp

(︀
−2𝛼2/(

∑︀
𝑖 𝛽

2𝑥[𝑖]2)
)︀
≤ 2 exp

(︀
−2𝛼2𝛽−2

)︀
.

It is worth mentioning that the Alon-Klartag rounding scheme, along with dimensionality reduction
techniques, was also used by Grønlund et al. [2020] in order to prove generalization bounds for SVMs.

3 Replicably Learning Large-Margin Halfspaces: Algorithm 1
In this section, we describe our first algorithm and prove its guarantees as stated in Theorem 1.3. Let 𝒟 be a
distribution over R𝑑 × {−1, 1} with linear margin 𝜏 ∈ (0, 1) (cf. Definition 1.2). Thus, there is a unit vector
𝑤⋆ ∈ R𝑑 such that for all (𝑥, 𝑦) ∈ supp(𝐷), 𝑥 ̸= 0, we have 𝑦(𝑥⊤𝑤⋆/‖𝑥‖) ≥ 𝜏 . Given 𝜖, 𝜌, 𝛿 ∈ (0, 1), our goal
is to design a 𝜌-replicable learning algorithm that draws 𝑚 = 𝑚(𝜖, 𝜏, 𝜌, 𝛿) i.i.d. samples from 𝒟 and outputs
�̂� ∈ R𝑑 such that, with probability at least 1− 𝛿 over the randomness of the samples and (potentially) the
internal randomness of the algorithm, it holds that Pr(𝑥,𝑦)∼𝒟[𝑦(�̂�

⊤𝑥) ≤ 0] ≤ 𝜖.

Description of Algorithm 1. We consider 𝐵 batches of 𝑛 samples each. Hence, in total, we draw 𝑛𝐵
i.i.d. samples from 𝒟. On each batch 𝑖 ∈ [𝐵], we run the standard SVM algorithm (cf. Lemma A.1) to find
a hyperplane with normal vector 𝑤𝑖 ∈ R𝑑 that has margin at least 𝜏/2 on all training data in the batch. We
then compute the average normal vector 𝑧 = (1/𝐵)

∑︀
𝑖∈[𝐵] 𝑤𝑖. Finally, we round 𝑧 as described in Section 2.

Algorithm 1 Replicable Large-Margin Halfspaces
1: 𝑘 ← 𝐶1𝜏

−2 log(1/𝜖𝜏𝜌𝛿)
2: 𝐵 ← 𝐶2𝜏

−4𝜌−2 log(1/𝜖𝜏𝜌𝛿)
3: 𝑛← 𝐶3𝜖

−1𝜏−3 log(1/𝜖𝜏𝜌𝛿)
4: 𝛽 ← 𝐶4𝜏/ log(1/𝜖𝜏𝜌𝛿)
5: for 𝑖 = 1, 2, ...𝐵 do
6: 𝑆𝑖 = batch of 𝑛 i.i.d. samples from 𝒟
7: 𝑤𝑖 ← SVM(𝑆𝑖, 𝜏/2)
8: end for
9: 𝑧 ← (1/𝐵)

∑︀
𝑖∈[𝐵] 𝑤𝑖

10: Draw 𝐴 ∈ R𝑘×𝑑 with 𝐴𝑖,𝑗 ∼ 𝒩 (0, 1/𝑘) using shared randomness
11: 𝑏← AKround(𝐴𝑧, 𝛽) (cf. Section 2)
12: return �̂� = 𝐴⊤𝑏/‖𝐴⊤𝑏‖

Correctness of Algorithm 1. A straightforward adaptation of the results of Grønlund et al. [2020] (cf.
Lemma A.1) shows that, with probability 1− 𝛿/(10𝐵) over the samples, the classifier 𝑤𝑖 has margin at least
𝜏/4 in a

(︁
1−𝑂

(︁
log𝑛+log(𝐵/𝛿)

𝜏2𝑛

)︁)︁
fraction of the population, i.e.,

Pr
(𝑥,𝑦)∼𝒟

[𝑦(𝑤⊤
𝑖 𝑥)/‖𝑥‖ < 𝜏/4] ≤ 𝑂

(︂
log 𝑛+ log(𝐵/𝛿)

𝜏2𝑛

)︂
.

We denote the complement of this event as 𝐸𝑖 and condition on not observing ∪𝑖∈[𝐵]𝐸𝑖.
Now under this event, for all the vectors 𝑤𝑖, 𝑖 ∈ [𝐵] and all points (𝑥, 𝑦) ∈ R𝑑 × {−1, 1}, it holds that

𝑦(𝑤⊤
𝑖 𝑥)/‖𝑥‖ ≥ −1, since 𝑤𝑖 is a unit vector. Furthermore, for a (1− ̃︀𝑂(1/𝜏2𝑛))-fraction of the population, the

margin is at least 𝜏/4, i.e., 𝑦(𝑤⊤
𝑖 𝑥)/‖𝑥‖ ≥ 𝜏/4. Intuitively, this means that the vector 𝑧 = 1

𝐵

∑︀
𝑖∈[𝐵] 𝑤𝑖 should

have margin at least 𝜏/8, except for an ̃︀𝑂(1/(𝜏3𝑛)) fraction of the population. Formally, for (𝑥, 𝑦) ∼ 𝒟, let
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𝑍𝑖 be the indicator variable such that 𝑦 · (𝑤⊤
𝑖 𝑥)/‖𝑥‖ < 𝜏/4 and 𝑍 :=

∑︀
𝑖∈[𝐵] 𝑍𝑖. Then

𝑦(𝑧⊤𝑥)/‖𝑥‖ = 𝑦

⎛⎝ 1

𝐵

∑︁
𝑖∈[𝐵]

𝑤𝑖

⎞⎠⊤

(𝑥/‖𝑥‖)

=
1

𝐵

∑︁
𝑖∈[𝐵]

𝑦 · 𝑤⊤
𝑖 (𝑥/‖𝑥‖)

≥ 1

𝐵
(−𝑍 + (𝐵 − 𝑍)𝜏/4)

= 𝜏/4− 𝑍

𝐵
(1 + 𝜏/4) .

This means that if 𝑦(𝑧⊤𝑥)/‖𝑥‖ < 𝜏/8, then

𝜏/4− 𝑍

𝐵
(1 + 𝜏/4) < 𝜏/8 =⇒ 𝑍 >

𝜏

16
·𝐵 .

It suffices to bound the probability of the event that 𝑍 > Ω(𝜏𝐵) to bound the population error of 𝑧.
Notice that the summation of the fractions of the population where the 𝑤𝑖 have margin less than 𝜏/4 is

at most 𝑂(𝐵(log 𝑛+ log(𝐵/𝛿))/(𝜏2𝑛)). As noted above, at least Ω(𝜏𝐵) of the classifiers must simultaneously
have margin less than 𝜏/4 for 𝑧 to misclassify 𝑥. Thus the fraction of the population where 𝑧 has margin
smaller than 𝜏/8 is at most

𝑂

(︂
𝐵(log 𝑛+ log(𝐵/𝛿))/(𝜏2𝑛)

𝜏 ·𝐵

)︂
= 𝑂

(︂
log 𝑛+ log(𝐵/𝛿)

𝜏3𝑛

)︂
.

Thus, choosing 𝑛 ≥ ̃︀Ω(log(𝐵/𝛿)/(𝜏3𝜖)) ensures that the intermediary normal vector 𝑧 = (1/𝐵)
∑︀𝐵

𝑖=1 𝑤𝑖

satisfies Pr(𝑥,𝑦)∼𝒟[𝑦(𝑧
⊤𝑥/‖𝑥‖) < 𝜏/8] ≤ 𝜖/10 with probability at least 1− 𝛿/10.

The following lemma ensures that projecting and rounding in the lower dimension approximately preserves
the performance of 𝑧 with respect to the 0-1 loss (as opposed to the 𝜏/8-loss).

Lemma 3.1. Fix 𝜖, 𝜏, 𝛿 ∈ (0, 1) and let 𝒟 be a distribution over R𝑑 × {±1} that admits a linear classifier
with 𝜏 -margin. Suppose 𝑧 is a random unit vector satisfying

Pr
(𝑥,𝑦)∼𝒟

[𝑦(𝑧⊤𝑥/‖𝑥‖) < 𝜏/2] ≤ 𝜖

with probability at least 1 − 𝛿 over the draw of 𝑧. Define 𝑘 = Ω(𝜏−2 log(1/𝜖𝛿)) and 𝛽 = 𝑂(𝜏/ log(1/𝜖𝛿)). If
𝐴 ∈ R𝑘×𝑑 is a JL-matrix (cf. Appendix A.3) and 𝑏 = AKround(𝐴𝑧, 𝛽) (cf. Section 2), then �̂� = 𝐴⊤𝑏/‖𝐴⊤𝑏‖
satisfies

Pr
(𝑥,𝑦)∼𝒟

[𝑦(�̂�⊤𝑥/‖𝑥‖) ≤ 0] ≤ 2𝜖

with probability at least 1− 2𝛿.

Before we prove Lemma 3.1, we note that an application of it with 𝜏 ′ = 𝜏/4, 𝜖′ = 𝜖/10, and 𝛿′ = 𝛿/10
yields that the final output �̂� of Algorithm 1 has 0-1 population error of at most 𝜖/5 with probability at
least 1− 𝛿/5 as desired.

Proof. Let 𝒟𝑧 := 𝒟 | {𝑦(𝑧⊤𝑥/‖𝑥‖) ≥ 𝜏/2} be the distribution obtained from 𝒟 by conditioning on 𝑧 having
large margin and let 𝒟𝑏 denote the distribution 𝒟 conditioned on the complement. We can decompose
𝒟 = (1 − 𝑝𝑏) · 𝒟𝑧 + 𝑝𝑏 · 𝒟𝑏 for 𝑝𝑏 ≤ 𝜖. To complete the correctness argument, we need to show that
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with high probability, the projection step of 𝑧, 𝑥 onto the low-dimensional space 𝐴𝑧,𝐴𝑥 and the round-
ing 𝑏 = AKround(𝐴𝑧, 𝛽) approximately preserves the inner product 𝑦(𝑏⊤𝐴𝑥/‖𝑥‖) for a 1 − 𝜖 fraction of
𝒟𝑧. Then the final classifier 𝐴⊤𝑏 still has low population error. In particular, it suffices to show that
Pr(𝑥,𝑦)∼𝒟𝑧

[𝑦(𝑏⊤𝐴𝑥/‖𝑥‖) < 𝜏/4] ≤ 𝜖 with probability at least 1 − 𝛿 over the random choice of 𝐴, 𝑏. Then,
the total population error is at most 𝜖+ 𝑝𝑏 ≤ 2𝜖 with probability at least 1− 2𝛿.

Fix (𝑥, 𝑦) ∈ supp(𝒟𝑧) and remark that

𝑦 · 𝑏⊤ 𝐴𝑥

‖𝑥‖

= 𝑦 · (𝐴𝑧)⊤𝐴

(︂
𝑥

‖𝑥‖

)︂
− 𝑦 · (𝐴𝑥− 𝑏)⊤

𝐴𝑥

‖𝐴𝑥‖
.

By the choices of

𝑘 ≥ Ω(𝜏−2 log(1/𝜖𝛿)), 𝛽 ≤ 𝑂(𝜏/ log(1/𝜖𝛿)),

the JL lemma (cf. Corollary A.5) and Alon-Kartag rounding scheme (cf. Lemma 2.2) ensures that

E
𝐴,𝑏

[︂
Pr

(𝑥,𝑦)∼𝒟𝑧

[𝑦(𝑏⊤𝐴𝑥/‖𝑥‖) < 𝜏/4]

]︂
≤ 𝜖𝛿.

An application of Markov’s inequality yields

Pr
𝐴,𝑏

[︂
Pr

(𝑥,𝑦)∼𝒟𝑧

[𝑦(𝑏⊤𝐴𝑥/‖𝑥‖) < 𝜏/4] > 𝜖

]︂
≤ 𝛿.

All in all, with probability at least 1− 𝛿 over 𝐴, 𝑏, the population error is at most

Pr
(𝑥,𝑦)∼𝒟

[𝑦(𝐴⊤𝑏)⊤𝑥 ≤ 0]

≤ Pr
(𝑥,𝑦)∼𝒟

[𝑦(𝑏⊤𝐴𝑥/‖𝑥‖) < Θ(𝜏)] < 2𝜖,

concluding the correctness argument of our algorithm.

Replicability of Algorithm 1. We now prove the replicability guarantees of our algorithm.

Lemma 3.2. Fix 𝜖, 𝜏, 𝜌, 𝛿 ∈ (0, 1). Suppose 𝑤1, . . . , 𝑤𝐵 and 𝑤′
1, . . . , 𝑤

′
𝐵 are i.i.d. random unit vectors

for 𝐵 = Ω(𝜏−4𝜌−2 log(1/𝜖𝜏𝜌𝛿)) and 𝑧 = (1/𝐵)
∑︀

𝑖∈[𝐵] 𝑤𝑖, 𝑧′ = (1/𝐵)
∑︀

𝑖∈[𝐵] 𝑤
′
𝑖 are their averages. Define

𝑘 = Θ(𝜏−2 log(1/𝜖𝜏𝜌𝛿)) and 𝛽 = Θ(𝜏/ log(1/𝜖𝜏𝜌𝛿). If 𝐴 ∈ R𝑘×𝑑 is a JL-matrix (cf. Appendix A.3) and
𝑏 = AKround(𝐴𝑧, 𝛽), 𝑏′ = AKround(𝐴𝑧′, 𝛽) (cf. Section 2), then 𝑏 = 𝑏′ with probability at least 1− 𝜌 over the
draw of the 𝑤′

𝑖, 𝑤𝑖’s, 𝐴, and AKround.

Before proving Lemma 3.2, note that the 𝑤𝑖’s are i.i.d. unit vectors across all batches and two independent
executions since the samples in the 2𝐵 batches in the two executions are drawn from the same distribution 𝒟
and the output of the SVM algorithm depends only on its input sample. Hence an application of Lemma 3.2
ensures that Algorithm 1 is indeed 𝜌-replicable.

Proof. An application of the vector Bernstein concentration inequality (cf. Lemma A.2) yields the following:
let 𝑆1 =

{︁
𝑤

(1)
𝑖

}︁
𝑖∈[𝐵]

and 𝑆2 =
{︁
𝑤

(2)
𝑖

}︁
𝑖∈[𝐵]

be two sets of independent and identically distributed random

vectors in R𝑑 with
⃦⃦⃦
𝑤

(𝑗)
𝑖

⃦⃦⃦
≤ 1 for all 𝑖 ∈ [𝐵], 𝑗 ∈ {1, 2}. Then we can set 𝑋𝑖 = 𝑤

(1)
𝑖 − E𝑤. Notice that

‖𝑋𝑖‖ ≤ 2 and ‖𝑋𝑖‖2 ≤ 4. Hence, an application of Lemma A.2 yields for any 𝑡 ∈ (0, 2)

Pr
𝑆1

[︂⃦⃦⃦⃦
1

𝐵

∑︁
𝑤

(1)
𝑖 −E[𝑤]

⃦⃦⃦⃦
≥ 𝑡

]︂
≤ exp

(︂
− 𝑡2𝐵

32
+

1

4

)︂
= exp

(︀
Ω(−𝑡2𝐵)

)︀
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Let 𝑧 = 1
𝐵

∑︀
𝑖∈[𝐵] 𝑤

(1)
𝑖 , 𝑧′ = 1

𝐵

∑︀
𝑖∈[𝐵] 𝑤

(2)
𝑖 . Choosing 𝐵 ≥ Ω(𝑡−2 log(1/𝜌)) ensures that

Pr𝑆1,𝑆2 [‖𝑧 − 𝑧′‖ ≥ 𝑡] ≤ 𝜌/10.
We condition on the event that ‖𝑧 − 𝑧′‖ ≤ 𝑡. Since we are sharing the randomness across the two

executions, we use the same JL projection matrix 𝐴. Thus our choice of 𝑘 ≥ Ω(𝜏−2 log(1/𝜌)) gives that
‖𝐴𝑧 −𝐴𝑧′‖ ≤ (1 + 𝜏)𝑡 ≤ 2𝑡, with probability at least 1 − 𝜌/10 (cf. Lemma A.4). It remains to show that
after the rounding step, with probability at least 1 − 𝜌/10, the two rounded vectors will be the same. The
size of our rounding grid is 𝛽 = Θ̃(𝜏) and the target dimension of our JL-matrix is 𝑘 = Θ̃(𝜏−2). Thus
by Lemma 2.1, the probability that the two points round to different vectors is Θ(𝛽−1)‖𝐴𝑧 − 𝐴𝑧′‖1 ≤
Θ(𝛽−1

√
𝑘)‖𝐴𝑧 −𝐴𝑧′‖2 = Θ(𝑡

√
𝑘/𝛽) (cf. Lemma 2.1). Thus, if we pick

𝑡 ≤ 𝜌𝛽/
√
𝑘

𝐵 ≥ Ω̃(𝑘/(𝛽2𝜌2)) = Ω(log(1/𝜖𝜏𝜌𝛿)/(𝜏4𝜌2)), (3.1)

we complete the argument.

Sample Complexity & Running Time of Algorithm 1. The sample complexity is 𝑛𝐵 =
�̃�(𝜖−1𝜏−7𝜌−2 log(1/𝛿)). By inspection, we see that the total running time of Algorithm 1 is poly(𝑑, 𝑛) =
poly(𝑑, 1/𝜖, 1/𝜏, 1/𝜌, log(1/𝛿)).

4 Replicably Learning Large-Margin Halfspaces: Algorithm 2
Let 𝐵𝑑

1 denote the unit ℓ2-ball in 𝑑-dimensions. Our approach is inspired by the work of Lê Nguyen et al.
[2020] that designed a similar SGD approach for learning large-margin halfspaces under differential privacy
constraints. Consider the following surrogate loss ℎ : 𝐵𝑑

1 ×𝐵𝑑
1 × {−1,+1} → R≥0

ℎ(𝑤;𝑥, 𝑦) := max

(︂
0, 2− 2

𝜏
𝑦(𝑥⊤𝑤)

)︂
≥ 1{𝑦(𝑥⊤𝑤) < 𝜏/2}.

We remark that ℎ(𝑤;𝑥, 𝑦) ≥ 1 when 𝑦(𝑥⊤𝑤) ≤ 𝜏/2 and ℎ(𝑤;𝑥, 𝑦) = 0 when 𝑦(𝑥⊤𝑤) ≥ 𝜏 . Also, since
𝑥,𝑤 ∈ 𝐵𝑑

1 , an application of the Cauchy-Schwartz inequality reveals that ℎ(𝑤;𝑥, 𝑦) ∈ [0, 2 + 2/𝜏 ]. Finally, ℎ
is piecewise linear with each piece being 2/𝜏 -Lipschitz. Hence, ℎ is 𝑂(1/𝜏)-Lipschitz.

Description of Algorithm 2. Fix 𝜖 ∈ (0, 1). We seek to minimize the following loss function over the
ball 𝐵𝑑

1 :
𝑓𝒟(𝑤) := E

(𝑥,𝑦)∼𝒟
[ℎ(𝑤;𝑥, 𝑦)] +

𝜖

10
‖𝑤‖2.

By construction, the co-domain of 𝑓𝒟 lies within [0, 2 + 2/𝜏 + 𝜖/10] ⊆ [0, 𝑂(1/𝜏)]. Note also that 𝑓𝒟 is an
upper bound on the 𝜏/2-population loss, i.e.,

Pr
(𝑥,𝑦)∼𝒟

[𝑦(𝑥⊤𝑤) < 𝜏/2] ≤ 𝑓(𝑤) .

First, regarding the minima of 𝑓𝒟, note that any vector 𝑤 ∈ 𝐵𝑑
1 achieving a margin of 𝜏 satisfies 𝑓𝒟(𝑤) ≤

𝜖/10. This is because ℎ(𝑤;𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ supp(𝒟). As a result, min𝑤∈𝐵𝑑
1
𝑓𝒟(𝑤) ≤ 𝜖/10. Second,

let us consider an 𝜖/10-optimal solution 𝑤′ with respect to 𝑓𝒟, i.e.,

𝑓𝒟(𝑤
′)− min

𝑤∈𝐵𝑑
1

𝑓 ≤ 𝜖/10 .

The above discussion implies that 𝑓𝒟(𝑤′) ≤ 𝜖/5 and is thus a 𝜏/2-margin classifier for an 𝜖/5-fraction of the
population, i.e., 𝑤′ satisfies

Pr
(𝑥,𝑦)∼𝒟

[𝑦(𝑥⊤𝑤′) < 𝜏/2] ≤ 𝜖/5 .
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Note that we may assume without loss of generality that the marginal of 𝒟 over features is supported
over 𝐵𝑑

1 since we normalize the input 𝑥 ↦→ 𝑥/‖𝑥‖ before applying a classifier 𝑤.
Since 𝑓 is 𝑂(𝜖+1/𝜏) = 𝑂(1/𝜏)-Lipschitz and Ω(𝜖)-strongly convex, we can apply the following standard

result:

Theorem 4.1 (Theorem 6.2 in Bubeck et al. [2015]). Let 𝑓 be 𝜇-strongly convex with minimizer 𝑤* and
assume that the (sub)gradient oracle 𝑔(𝑤) satisfies E[‖𝑔(𝑤)‖2] ≤ 𝐺2. Then after 𝑇 iterations, projected
stochastic gradient descent SGD(𝒟, 𝑓, 𝑇 ) with step size 𝜂𝑡 = 2/𝜇(𝑡+1) satisfies

E

[︃
𝑓

(︃
𝑇∑︁

𝑡=1

2𝑡

𝑇 (𝑇 + 1)
𝑤𝑡

)︃]︃
− 𝑓(𝑤*) ≤

2𝐺2

𝜇(𝑇 + 1)
.

Since 𝐺2 = 𝑂(1/𝜏2), 𝜇 = Ω(𝜖) and 𝑓(𝑤*) ≤ 𝜖/10, choosing 𝑇 ≥ Ω(𝜖−2𝜏−2) yields an 𝜖/10-optimal
solution in expectation. Repeating this process independently for a small number of times and outputting
the one with the lowest objective yields an 𝜖/5-optimal solution with high probability.

Lemma 4.2. Let 𝐵𝑑
1 be the unit ℓ2-ball in 𝑑 dimensions. Fix 𝜖, 𝜏, 𝛿 ∈ (0, 1) and let 𝒟 be a distribution over

𝐵𝑑
1 ×{±1} that admits a linear 𝜏 -margin classifier. There is an algorithm boostSGD(𝒟, 𝜖, 𝜏, 𝛿) that outputs a

unit vector �̃� ∈ R𝑑 such that 𝑓𝒟(�̃�) ≤ min𝑤∈𝐵𝑑
1
𝑓𝒟(𝑤)+𝜖 with probability at least 1−𝛿. Moreover, boostSGD

has sample complexity �̃�(𝜖−2𝜏−2 log(1/𝛿)) and running time poly(1/𝜖, 1/𝜏, log(1/𝛿), 𝑑).

Proof. Let 𝑇 = Ω(𝜏−2𝜖−2). Run SGD(𝒟, 𝑇 ) for 𝑛 = 𝑂(log(1/𝛿)) times to obtain solutions 𝑤1, . . . , 𝑤𝑛. The-
orem 4.1 ensures that we attain an 𝜖/10-optimal solution in expectation for each 𝑤𝑖, 𝑖 ∈ [𝑛]. Markov’s
inequality then guarantees that we attain an 𝜖/5-optimal solution with probability at least 1/2 in each
repetition. But then with probability at least 1− 𝛿/10, at least one of the 𝑛 solutions is 𝜖/5-optimal.

By a Hoeffding bound, we can estimate each 𝑓𝒟(𝑤𝑖) ∈ [0, 𝑂(1/𝜏)] up to an additive 𝜖/10 error with
probability at least 1 − 𝛿/10 using 𝑂(𝑛𝜖−2𝜏−2 log(𝑛/𝛿)) samples. Outputting the classifier with the lowest
estimated objective yields a 3𝜖/10-optimal solution with probability at least 1− 𝛿/5.

Normalizing the selected classifier to a unit vector can only decrease ℎ since the feasible region is 𝐵𝑑
1

and incurs an additional loss of 𝜖/10 due to the regularizer. Thus we have a 4𝜖/10-optimal solution with
probability at least 1− 𝛿/5.

The total sample complexity is 𝑂(𝑛𝑇 ) +𝑂(𝑛𝜖−2𝜏−2 log(𝑛/𝛿)) = �̃�(𝜖−2𝜏−2 log(1/𝛿)).

Next, we repeat boostSGD and take an average to ensure concentration before proceeding as in Algorithm 1
with the random projection and rounding in the lower dimensional space. Compared to Algorithm 1, we
obtain an improved sample dependence on 𝜏 for Algorithm 2 since taking an average of 𝜖-optimal solutions
to a convex objective function yields an 𝜖-optimal solution. However, we pay an extra factor of 𝜖 in order to
run SGD as a subroutine.

Algorithm 2 Replicable Large-Margin Halfspaces
1: 𝑛 = 𝐶1𝜖

−2𝜏−2 log(1/𝜖𝜏𝜌𝛿)
2: 𝐵 ← 𝐶2𝜏

−4𝜌−2 log(1/𝜖𝜏𝜌𝛿)
3: 𝑘 ← 𝐶3𝜏

−2 log(1/𝜖𝜏𝜌𝛿)
4: 𝛽 ← 𝐶4𝜏/ log(1/𝜖𝜏𝜌𝛿)
5: for 𝑖← 1, . . . , 𝐵 do
6: 𝑆𝑖 ← 𝑛 samples from 𝒟
7: 𝑆𝑖 ← {(𝑥/‖𝑥‖, 𝑦) : (𝑥, 𝑦) ∈ 𝑆𝑖}
8: 𝑤𝑖 ← boostSGD(𝑆𝑖, 𝜖/10, 𝜏, 𝛿/𝐵) (cf. Lemma 4.2)
9: end for

10: 𝑧 ← (1/𝐵)
∑︀

𝑖∈[𝐵] 𝑤𝑖

11: Draw 𝐴 ∈ R𝑘×𝑑 with 𝐴𝑖,𝑗 ∼ 𝒩 (0, 1/𝑘) using shared randomness
12: 𝑏← AKround(𝐴𝑧, 𝛽) (cf. Section 2)
13: return �̂� = 𝐴⊤𝑏/‖𝐴⊤𝑏‖
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Correctness of Algorithm 2. From the choice of 𝑛 ≥ Ω(𝜖−2𝜏−2 log(𝐵/𝛿)), Lemma 4.2 ensures that
each unit vector 𝑤𝑖 produced in Algorithm 2 is 𝜖/10-optimal with probability at least 1 − 𝛿/(10𝐵). Hence
with probability at least 1 − 𝛿/10, every 𝑤𝑖 is 𝜖/10-optimal with respect to 𝑓𝒟. By Jensen’s inequality,
𝑧 = (1/𝐵)

∑︀𝐵
𝑖=1 𝑤𝑖 is 𝜖/10-optimal with probability at least 1−𝛿/10. But then by the choice of 𝑓𝒟 as a convex

surrogate loss for 1{𝑦(𝑥⊤𝑤) < 𝜏/2}, 𝑧 satisfies Pr(𝑥,𝑦)∼𝒟[𝑦(𝑧
⊤𝑥/‖𝑥‖) < 𝜏/2] ≤ 2𝜖/10 with probability at

least 1− 𝛿/10. In other words, the unit vector 𝑧 has a population 𝜏/2-loss of at most 2𝜖/10 with probability
at least 1− 𝛿/10. But then similar to the correctness of Algorithm 1, an application of Lemma 3.1 concludes
the proof of correctness.

Replicability of Algorithm 2. Similar to the correctness of Algorithm 1, we note that the output 𝑤𝑖 of
each execution of boostSGD is an i.i.d. unit vector. Thus an application of Lemma 3.2 yields the replicability
guarantees of Algorithm 2.

Sample Complexity & Running Time of Algorithm 2. The sample complexity is 𝑛𝐵 =
�̃�(𝜖−2𝜏−6𝜌−2 log(1/𝛿)) as required. Once again, we see that Algorithm 2 terminates in
poly(𝑑, 1/𝜖, 1/𝜏, 1/𝜌, log(1/𝛿)) by inspection.

5 Replicably Learning Large-Margin Halfspaces: Algorithm 3

In this section, we provide an algorithm whose sample complexity scales as ̃︀𝑂(𝜖−1𝜏−4𝜌−2 log(1/𝛿)) and has
running time poly(𝑑)·(poly(1/𝜖, 1/𝜌, 1/𝜏, 1/𝛿))1/𝜏

2

. We remark that the sample complexity is better than the
one obtained from the DP transformation in Proposition 1.5. Moreover, the running time is exponentially
better than that obtained through the DP transformation.

Before this, we state a very useful result due to Bun et al. [2023] related to the sample complexity of
replicably learning finite hypothesis classes, which is used in the proof of Theorem 1.6.

Proposition 5.1 (Theorem 5.13 in Bun et al. [2023]). Consider a finite concept class ℋ. There is a
𝜌-replicable agnostic PAC learner rLearnerFinite with accuracy 𝜖 and confidence 𝛿 for ℋ with sample
complexity 𝑛 = 𝑂

(︁
log2 |𝐻|+log(1/𝜌𝛿)

𝜖2𝜌2 log3(1/𝜌)
)︁
. Moreover, if 𝒟 is realizable then the sample complexity drops

to ̃︀𝑂(𝜖−1𝜌−2 log2 |𝐻|). Finally, the algorithm terminates in time poly(|ℋ|, 𝑛).

Description of Algorithm 3 Let us first provide the algorithm’s pseudo-code.

Algorithm 3 Replicable Large-Margin Halfspaces
1: 𝑘 ← 𝐶𝜏−2 log(1/𝜖𝜏𝜌𝛿)
2: 𝑛← 𝐶 ′𝜖−1𝜏−4𝜌−2 log(1/𝜖𝜌𝜏𝛿)
3: 𝑆 ← batch of 𝑛 i.i.d. samples from 𝒟
4: Draw 𝐴 ∈ R𝑘×𝑑 with 𝐴𝑖,𝑗 ∼ 𝒩 (0, 1/𝑘) using the shared randomness
5: 𝑆𝐴 ← (𝐴𝑥1, 𝑦1), . . . , (𝐴𝑥𝑛, 𝑦𝑛)
6: ℋ𝜏 ← a (𝜏/20)-net over vectors of length at most 1 in R𝑘

7: 𝑏← output of rLearnerFinite from Proposition 5.1 with input 𝑆𝐴,ℋ𝜏

8: �̂� ← 𝐴⊤𝑏/‖𝐴⊤𝑏‖

Similar to the other algorithm, we first start by using a JL matrix to project the training set to a
𝑘-dimensional space, for 𝑘 = ̃︀Θ(𝜏−2). Then, we use a (𝜏/20)-net to cover all the unit vectors of this 𝑘-
dimensional space, so the size of the net is (𝐶

′′
/𝜏)

̃︀𝑂(𝜏−2), for some absolute constant 𝐶 ′′ > 0. We think of
these points of the net as our hypothesis class ℋ𝜏 . By the properties of the JL transform, we can show
that with high probability 1 − 𝛿/10, there exists a vector in this class that classifies the entire training set
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correctly. Moreover, we can show that this classifier has small generalization error. This is formalized in the
following result, which is essentially a high-probability version of Lemma A.6 from Lê Nguyen et al. [2020].

Lemma 5.2. Fix 𝜖′, 𝛿𝐽𝐿 ∈ (0, 1). Let 𝒟 satisfy Definition 1.2 with margin 𝜏 and suppose 𝑤⋆ satisfies
𝑦(𝑤⋆)⊤𝑥 ≥ 𝜏 for every (𝑥, 𝑦) ∈ supp(𝒟). For a JL-matrix 𝐴 ∈ R𝑘×𝑑, as stated in Lemma A.3 with
𝑘 = Ω(𝜏−2 log(1/𝛿𝐽𝐿)), let 𝐺𝐴 ⊆ R𝑑 × {−1, 1} be the set of points (𝑥, 𝑦) of supp(𝒟) that satisfy

•
⃒⃒
‖𝐴𝑥‖2 − ‖𝑥‖2

⃒⃒
≤ 𝜏‖𝑥‖2/100, and,

• 𝑦(𝐴𝑤⋆/‖𝐴𝑤⋆‖)⊤(𝐴𝑥/‖𝐴𝑥‖) ≥ 96𝜏/100.

Let 𝐸1 be the event (over 𝐴) that Pr(𝑥,𝑦)∼𝒟[(𝑥, 𝑦) ∈ 𝐺𝐴] ≥ 1 − 𝜖′ and 𝐸2 be the event (over 𝐴) that⃒⃒
‖𝐴𝑤⋆‖2 − ‖𝑤⋆‖2

⃒⃒
≤ 𝜏‖𝑤⋆‖2/100. Then it holds that Pr𝐴[𝐸1 ∩ 𝐸2] ≥ 1− 𝛿𝐽𝐿/𝜖

′.

The proof of Lemma 5.2 appears in Appendix A.3.1. One way to view Lemma 5.2 is that, with probability
1−𝛿𝐽𝐿/𝜖′ over the random choice of 𝐴, the classifier 𝐴𝑤⋆/‖𝐴𝑤⋆‖ will have 96𝜏/100 margin on a 1−𝜖′ fraction
of 𝒟, where the choice of 𝜖′ will be specified later according to Lemma 5.2. Let us condition on this event
for the rest of the proof, which we call 𝐸𝑟. Let �̃�⋆ be the point of the net that 𝐴𝑤⋆/‖𝐴𝑤⋆‖ is rounded to.
Recall that we round to the closest point on a 𝜏/20-net of the unit ball with respect to the ℓ2-norm, so that
�̃�⋆ is 𝜏/20 close to the normalized version of 𝐴𝑤⋆. Notice that under the event 𝐸𝑟, for all points (𝑥, 𝑦) ∈ 𝐺𝐴

we have that

(�̃�⋆)⊤
𝐴𝑥

‖𝐴𝑥‖

=
(𝐴𝑤⋆)⊤

‖𝐴𝑤⋆‖
𝐴𝑥

‖𝐴𝑥‖
−
(︂

𝐴𝑤⋆

‖𝐴𝑤⋆‖
− �̃�⋆

)︂⊤
𝐴𝑥

‖𝐴𝑥‖

≥ (𝐴𝑤⋆)⊤

‖𝐴𝑤⋆‖
𝐴𝑥

‖𝐴𝑥‖
−
⃦⃦⃦⃦

𝐴𝑤⋆

‖𝐴𝑤⋆‖
− �̃�⋆

⃦⃦⃦⃦
· ‖𝐴𝑥‖
‖𝐴𝑥‖

≥ 96𝜏/100− 𝜏/20 > 9/(10𝜏) ,

where the first inequality follows from Cauchy-Schwartz and the second inequality from the definition of the
net. Since the hypothesis class ℋ𝜏 has finite size, we can use Proposition 5.1 from Bun et al. [2023] which
states that ̃︀𝑂(𝜖−1𝜌−2 log(1/𝛿) log2 |ℋ|) samples are sufficient to 𝜌-replicably learn a hypothesis class ℋ in
the realizable setting with error at most 𝜖. One technical complication we need to handle is that 𝒟 is not
necessarily realizable with respect to ℋ𝜏 . Nevertheless, under 𝐸𝑟, we have shown that for �̃�⋆ ∈ ℋ𝜏 it holds
that Pr(𝑥,𝑦)∼𝒟[𝑦((�̃�

⋆)⊤𝐴𝑥/‖𝐴𝑥‖) < 9𝜏/10] ≤ 𝜖′. Let us denote by 𝒟𝑟 the distribution 𝒟 conditioned on the
event that 𝑦((�̃�⋆)⊤𝐴𝑥/‖𝐴𝑥‖) ≥ 9𝜏/10 and 𝒟𝑏 its complement, i.e., 𝒟 conditioned on 𝑦((�̃�⋆)⊤𝐴𝑥/‖𝐴𝑥‖) <
9𝜏/10. Then, we can express 𝒟 = (1− 𝑝𝑏) · 𝒟𝑟 + 𝑝𝑏 · 𝒟𝑏, where 𝑝𝑏 ≤ 𝜖′. Hence, in a sample of size 𝑛 from 𝒟,
with probability at least 1 − 𝑛 · 𝜖′ we only see samples drawn i.i.d. from 𝒟𝑟. Let us call this event 𝐸′

𝑟 and
condition on it. Let us choose 𝜖′ = 𝛿/(10𝑛), 𝛿𝐽𝐿 = 𝜖′2/10 = 𝛿2/1000𝑛 so that Pr[𝐸𝑟 ∩ 𝐸′

𝑟] ≥ 1− 𝛿.
Under the events 𝐸𝑟, 𝐸

′
𝑟, we can use the replicable learner from Bun et al. [2023] to learn the realizable

distribution 𝒟𝑟. Run the algorithm from Proposition 5.1 with parameters 𝛿/10, 𝜖/10, 𝜌/10.2 Since |ℋ| =
(𝐶/𝜏)

𝜏−2

for some absolute constant 𝐶, we see that we need 𝑛 = ̃︀𝑂 (︀𝜖−1𝜏−4𝜌−2 log(1/𝛿)
)︀

samples.

Replicability of Algorithm 3. Let us condition on the events 𝐸𝑟, 𝐸
′
𝑟 across two executions of the algo-

rithm. Since, the matrix 𝐴 is the same, due to shared randomness, under these events the samples that the
learner of Bun et al. [2023] receives are i.i.d. from the same realizable distribution. Then, the replicability
guarantee follows immediately from the guarantees of Proposition 5.1 and the fact that all the events we
have conditioned on occur with probability at least 1− 𝜌/2.

2We assume that 𝛿 < 𝜌, 𝜖, otherwise we normalize 𝛿 to get the bound.
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Correctness of Algorithm 3. Here we examine the population error of the output of Proposition 5.1.
Note that this error is analyzed with respect to the original distribution 𝒟, which is not necessarily realizable,
rather than 𝒟𝑟, which is the distribution on which we run the learning algorithm.

Let us again condition on the events 𝐸𝑟, 𝐸
′
𝑟, and the event that the output of Proposition 5.1 satisfies

the generalization bound it states. We assume without loss of generality that 𝛿 ≤ 𝜖/2, otherwise we set
𝛿 = 𝜖/2 without affecting the overall sample complexity of our algorithm. Notice that these events occur
with probability at least 1− 𝛿. Let 𝑏 be the output of the algorithm. Then we have

Pr
(𝑥,𝑦)∼𝒟

[𝑦(𝑏⊤𝑥) < 0] = (1− 𝑝𝑏) Pr
(𝑥,𝑦)∼𝒟𝑟

[𝑦(𝑏⊤𝑥) < 0]

+ 𝑝𝑏 Pr
(𝑥,𝑦)∼𝒟𝑏

[𝑦(𝑏⊤𝑥) < 0]

≤ (1− 𝑝𝑏)𝜖/10 + 𝑝𝑏 < 𝜖.

This concludes the proof.

Sample Complexity & Running Time of Algorithm 3. As noted before, we need 𝑛 =̃︀𝑂 (︀𝜖−1𝜏−4𝜌−2 log(1/𝛿)
)︀

samples. Since we apply Proposition 5.1, we incur a running time of poly(𝑑) ·
poly(1/𝜖, 1/𝜌, 1/𝜏, 1/𝛿)1/𝜏

2

.

6 Conclusion
In this work, we have developed new algorithms for replicably learning large-margin halfspaces. Our results
vastly improve upon prior work on this problem. We believe that many immediate questions for future
research arise from our work. First, it is natural to ask whether there are efficient algorithms that can
achieve the ̃︀𝑂(𝜖−1𝜏−4𝜌−2 log(1/𝛿)) sample complexity bound of Algorithm 3. Also, it would be interesting
to see if there are any (not necessarily efficient) replicable algorithms whose sample complexity scales as̃︀𝑂(𝜖−1𝜏−2𝜌−2) or if there is some inherent barrier to pushing the dependence on 𝜏 below 𝜏−4. Finally, our
analysis of Algorithm 1 is pessimistic in the sense that it uses a pigeonhole principle argument to establish
that the fraction of the population where the aggregate vector does not have margin Ω(𝜏) is ̃︀𝑂(1/𝜏3𝑛). It
would be interesting to see whether this bound can be improved to ̃︀𝑂(1/𝜏2𝑛) using a different analysis, which
would reduce the overall sample complexity dependence of the algorithm on 𝜏.
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A Deferred Tools

A.1 SVM guarantees
The following result is a restatement of Theorem 2 from Grønlund et al. [2020]

Lemma A.1 (SVM Generalization Guarantee [Grønlund et al., 2020]). Let 𝒟 be a distribution over R𝑑 ×
{−1, 1}. Let 𝑛 ∈ N, 𝑆 = (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) ∼ 𝒟𝑛, and 𝑤 ∈ R𝑑 be a unit vector such that 𝑦𝑖

(︁
𝑤⊤ 𝑥𝑖

‖𝑥𝑖‖

)︁
≥

𝜏,∀𝑖 ∈ [𝑛] Then, for every 𝛿 > 0 with probability at least 1− 𝛿 over the random draw of 𝑆, it holds that

Pr
(𝑥,𝑦)∼𝒟

[𝑦 · (𝑤⊤𝑥/‖𝑥‖) < 𝜏/2] ≤ 𝑂

(︂
log 𝑛+ log(1/𝛿)

𝜏2𝑛

)︂
.

We remark that even though the result of Grønlund et al. [2020] is stated for the generalization error with
respect to the misclassification probability, i.e., Pr(𝑥,𝑦)∼𝒟[𝑦 · (𝑤⊤𝑥/‖𝑥‖) ≤ 0], their argument also applies
to the 𝜏/2-margin loss, i.e., Pr(𝑥,𝑦)∼𝒟[𝑦 · (𝑤⊤𝑥/‖𝑥‖) < 𝜏/2], via a straightforward modification of some
constants. In more detail, the only needed change is in the proof of part 1 of Claim 10 in Grønlund et al.
[2020]. Here the first condition says 𝑦 · (𝑥⊤𝑤) ≤ 0 and could be made e.g. 𝑦 · (𝑥⊤𝑤) ≤ 𝜏/4. Their result
then holds with 𝜏/4 instead of 𝜏/2.

A.2 Vector-Valued Bernstein Concentration Inequality
We will use the following concentration inequality for the norm of random vectors.

Lemma A.2 (Vector Bernstein; [Kohler and Lucchi, 2017]). Let 𝑋1, . . . , 𝑋𝐵 be independent random vectors
with common dimension 𝑑 satisfying the following for all 𝑖 ∈ [𝐵]:

(i) E[𝑋𝑖] = 0

(ii) ‖𝑋𝑖‖ ≤ 𝜇

(iii) E[‖𝑋𝑖‖2] ≤ 𝜎2

Let 𝑍 := 1
𝐵

∑︀𝐵
𝑖=1 𝑋𝑖. Then for any 𝑡 ∈ (0, 𝜎

2
/𝜇),

Pr[‖𝑍‖ ≥ 𝑡] ≤ exp

(︂
− 𝑡2𝐵

8𝜎2
+

1

4

)︂
.

A.3 Johnson-Lindenstrauss Lemma
The remarkable result of Johnson [1984] states that an appropriately scaled random orthogonal projection
matrix preserves the norm of a unit vector with high probability. Indyk and Motwani [1998] showed that it
suffices to independently sample each entry of the matrix from the standard normal distribution. Achliop-
tas [2001] further simplified the construction to independently sample each entry from the Rademacher
distribution. See Freksen [2021] for a detailed survey of the development.

From hereonforth, we say that a random matrix 𝐴 ∈ R𝑘×𝑑 is a JL-matrix if either 𝐴𝑖𝑗 ∼𝑖.𝑖.𝑑. 𝒩 (0, 1/𝑘)

or 𝐴𝑖𝑗 ∼𝑖.𝑖.𝑑. 𝑈{−1/
√
𝑘,+1/

√
𝑘}.

We first state the standard distributional formulation of JL.
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Lemma A.3 (Distributional JL; [Johnson, 1984, Indyk and Motwani, 1998, Achlioptas, 2001]). Fix 𝜖, 𝛿𝐽𝐿 ∈
(0, 1). Let 𝐴 ∈ R𝑘×𝑑 be a JL-matrix for 𝑘 = Ω(𝜖−2 log(1/𝛿𝐽𝐿)). Then for any 𝑥 ∈ R𝑑,

Pr
𝐴
[
⃒⃒
‖𝐴𝑥‖2 − ‖𝑥‖2

⃒⃒
> 𝜖‖𝑥‖2] ≤ 𝛿𝐽𝐿 .

Let 𝑇 be a set of vectors. By applying Lemma A.3 to the 𝑂(|𝑇 |2) vectors 𝑢− 𝑣 for 𝑢, 𝑣 ∈ 𝑇 and taking
a union bound, we immediately deduce the following result.

Lemma A.4 (JL Projection; [Johnson, 1984, Indyk and Motwani, 1998, Achlioptas, 2001]). Fix 𝜖, 𝛿𝐽𝐿 ∈
(0, 1). Consider a set 𝑇 of 𝑑-dimensional vectors and a JL-matrix 𝐴 ∈ R𝑘×𝑑 for 𝑘 = Ω(𝜖−2 log(|𝑇 |/𝛿𝐽𝐿)).
Then,

Pr
𝐴

[︀
∃ 𝑢, 𝑣 ∈ 𝑇 :

⃒⃒
‖𝐴(𝑢− 𝑣)‖2 − ‖𝑢− 𝑣‖2

⃒⃒
> 𝜖‖𝑢− 𝑣‖2

]︀
≤ 𝛿𝐽𝐿 .

An application of Lemma A.4 towards the polarization identity for 𝑧, 𝑥 ∈ R𝑑

4𝑧⊤𝑥 = ‖𝑧 + 𝑥‖2 − ‖𝑧 − 𝑥‖2

yields the following inner product preservation guarantee.

Corollary A.5 (JL Inner Product Preservation). Fix 𝜖, 𝛿𝐽𝐿 ∈ (0, 1). Let 𝐴 ∈ R𝑘×𝑑 be a JL-matrix for
𝑘 = Ω(𝜖−2 log(1/𝛿𝐽𝐿)). Then, for any 𝑥, 𝑧 ∈ R𝑑,

Pr
𝐴
[|𝑧⊤𝑥− (𝐴𝑧)⊤𝐴𝑥| > 𝜖‖𝑧‖ · ‖𝑥‖] ≤ 𝛿𝐽𝐿 .

The next lemma is another simple implication of the distributional JL.

Lemma A.6 (Lemma 5 in Lê Nguyen et al. [2020]). Let 𝒟 satisfy Definition 1.2 with margin 𝜏 . For a
JL-matrix 𝐴 as stated in Lemma A.3, let 𝐺𝐴 ⊆ R𝑑×{−1, 1} be the set of points (𝑥, 𝑦) of the population that
satisfy

•
⃒⃒
‖𝐴𝑥‖2 − ‖𝑥‖2

⃒⃒
≤ 𝜏‖𝑥‖2/100 and

• 𝑦(𝐴𝑤⋆/‖𝐴𝑤⋆‖)⊤(𝐴𝑥/‖𝐴𝑥‖) ≥ 96𝜏/100.

Then it holds that Pr𝐴,(𝑥,𝑦)∼𝒟[(𝑥, 𝑦) ∈ 𝐺𝐴] ≥ 1− 𝛿𝐽𝐿.

A.3.1 The Proof of Lemma 5.2

We finally prove Lemma 5.2, whose statement we repeat below for convenience.

Lemma 5.2. Fix 𝜖′, 𝛿𝐽𝐿 ∈ (0, 1). Let 𝒟 satisfy Definition 1.2 with margin 𝜏 and suppose 𝑤⋆ satisfies
𝑦(𝑤⋆)⊤𝑥 ≥ 𝜏 for every (𝑥, 𝑦) ∈ supp(𝒟). For a JL-matrix 𝐴 ∈ R𝑘×𝑑, as stated in Lemma A.3 with
𝑘 = Ω(𝜏−2 log(1/𝛿𝐽𝐿)), let 𝐺𝐴 ⊆ R𝑑 × {−1, 1} be the set of points (𝑥, 𝑦) of supp(𝒟) that satisfy

•
⃒⃒
‖𝐴𝑥‖2 − ‖𝑥‖2

⃒⃒
≤ 𝜏‖𝑥‖2/100, and,

• 𝑦(𝐴𝑤⋆/‖𝐴𝑤⋆‖)⊤(𝐴𝑥/‖𝐴𝑥‖) ≥ 96𝜏/100.

Let 𝐸1 be the event (over 𝐴) that Pr(𝑥,𝑦)∼𝒟[(𝑥, 𝑦) ∈ 𝐺𝐴] ≥ 1 − 𝜖′ and 𝐸2 be the event (over 𝐴) that⃒⃒
‖𝐴𝑤⋆‖2 − ‖𝑤⋆‖2

⃒⃒
≤ 𝜏‖𝑤⋆‖2/100. Then it holds that Pr𝐴[𝐸1 ∩ 𝐸2] ≥ 1− 𝛿𝐽𝐿/𝜖

′.

Proof of Lemma 5.2. We know from Lemma A.6 that

E
𝐴

[︂
Pr

(𝑥,𝑦)∼𝒟
[(𝑥, 𝑦) /∈ 𝐺𝐴]

]︂
≤ 𝛿𝐽𝐿 ,
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so Markov’s inequality gives that

Pr
𝐴

[︂
Pr

(𝑥,𝑦)∼𝒟
[(𝑥, 𝑦) /∈ 𝐺𝐴] ≥ 𝜖′

]︂
≤

E𝐴

[︀
Pr(𝑥,𝑦)∼𝒟[(𝑥, 𝑦) /∈ 𝐺𝐴]

]︀
𝜖′

≤ 𝛿𝐽𝐿
𝜖′

.

Similarly, the guarantees of the JL projection immediately yields

Pr
𝐴

[︀⃒⃒
‖𝐴𝑤⋆‖2 − ‖𝑤⋆‖2

⃒⃒
≤ 𝜏‖𝑤⋆‖2/100

]︀
≤ 𝛿𝐽𝐿.

B Details for Proposition 1.5

B.1 Differential Privacy
For 𝑎, 𝑏, 𝛼, 𝛽 ∈ [0, 1], let 𝑎 ≈𝛼,𝛽 𝑏 denote the statement 𝑎 ≤ 𝑒𝛼𝑏 + 𝛽 and 𝑏 ≤ 𝑒𝛼𝑎 + 𝛽. We say that two
probability distributions 𝑃,𝑄 are (𝛼, 𝛽)-indistinguishable if 𝑃 (𝐸) ≈𝛼,𝛽 𝑄(𝐸) for any measurable event 𝐸.3

Definition B.1 (Approximate Differential Privacy). A learning rule 𝐴 is an 𝑛-sample (𝛼, 𝛽)-differentially
private if for any pair of datasets 𝑆, 𝑆′ ∈ (𝒳 ×{0, 1})𝑛 that differ on a single example, the induced posterior
distributions 𝐴(𝑆) and 𝐴(𝑆′) are (𝛼, 𝛽)-indistinguishable.

B.2 The Results of Lê Nguyen et al. [2020] and Bun et al. [2023]
Proposition 1.5 is based on combining the following two results. The first is a differentially private learner
for large-margin halfspaces from Lê Nguyen et al. [2020].

Proposition B.2 (Theorem 6 in Lê Nguyen et al. [2020]). Let 𝛼, 𝜏, 𝜖, 𝛿 > 0. Let 𝒟 be a distribu-
tion over R𝑑 × {−1, 1} that has linear margin 𝜏 as in Definition 1.2. There is an algorithm that is
(𝛼, 0)-differentially private and, given 𝑚 = ̃︀𝑂(𝛼−1𝜖−1𝜏−2) i.i.d. samples (𝑥, 𝑦) ∼ 𝒟, computes in time
exp
(︀
1/𝜏2

)︀
poly(𝑑, 1/𝛼, 1/𝜖, log(1/𝛿)) a normal vector 𝑤 ∈ R𝑑 such that Pr(𝑥,𝑦)∼𝒟[sgn(𝑤⊤𝑥) ̸= 𝑦] ≤ 𝜖, with

probability at least 1− 𝛿.

We also use the DP-to-Replicability reduction appearing in Bun et al. [2023].

Proposition B.3 (Corollary 3.18 in Bun et al. [2023]). Fix 𝑛 ∈ N, sufficiently small 𝜌 ∈ (0, 1), 𝜖, 𝛿 ∈ (0, 1)
and 𝛼, 𝛽 > 0. Let 𝒜 : 𝒳𝑛 → 𝒴 be an 𝑛-sample (𝛼, 𝛽)-differentially private algorithm with finite output
space solving a statistical task with accuracy 𝜖 and failure probability 𝛿. Then there is an algorithm 𝒜′ :
𝒳𝑚 → 𝒴 that is 𝜌-replicable and solves the same statistical task with 𝑚 = 𝑂(𝜌−2𝑛2) samples with accuracy
𝜖 and failure probability 𝛿.

3We use the notation (𝛼, 𝛽)−DP instead of the more common (𝜖, 𝛿)−DP to be consistent with the notation of the rest of
the paper regarding the accuracy, probability of failure of the learning algorithms.

19


	Introduction
	Our Contribution
	Related Work

	The Main Tool: The Alon-Klartag Rounding Scheme
	Replicably Learning Large-Margin Halfspaces: alg:algo2
	Replicably Learning Large-Margin Halfspaces: alg:algo4
	Replicably Learning Large-Margin Halfspaces: alg:algo3-inefficient
	Conclusion
	Deferred Tools
	SVM guarantees
	Vector-Valued Bernstein Concentration Inequality
	Johnson-Lindenstrauss Lemma
	The Proof of lem:whp-good-choice-JL-mapping


	Details for prop:dp-reduction-sample-complexity
	Differential Privacy
	The Results of le2020efficient and bun2023stability


