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Abstract

In this work, we present the first asymptotically optimal oblivious priority queue, which
matches the lower bound of Jacob, Larsen, and Nielsen (SODA’19). Our construction is con-
ceptually simple, statistically secure, and has small hidden constants. We illustrate the power
of our optimal oblivious priority queue by presenting a conceptually equally simple construction
of statistically secure offline ORAMs with O(log n) bandwidth overhead.

1 Introduction

Oblivious RAM (ORAM) is a cryptographic primitive, which allows a client to outsource its private
data from an untrusted storage provider while maintaining strong privacy guarantees. The client
can perform read and write operations on this outsourced data set without revealing the data, the
operation that was performed, or the location that was accessed. ORAM was first introduced by
Goldreich and Ostrovsky [Gol87, Ost90, GO96] and has since then be the topic of a long line of
research works [OS97, GMOT11, SCSL11, DMN11, SSS12, SvS+13, BN16, LN18, CNS18, PPRY18,
AKL+18]. The main measure of efficiency for ORAM schemes is the bandwidth cost per access,
meaning how many data blocks the client has to access in order to perform the desired operation
and maintain its privacy. The bandwidth costs can be measured in either the worst-case or the
amortized sense. The worst-case bandwidth cost is the maximum amount of data blocks that the
client has to retrieve from the storage provider in any access from a sequence of accesses. The
amortized bandwidth cost is the average amount of data blocks that the client has to retrieve per
access. In the following discussion as well as the remainder of the paper, we always assume that n
is the number of data elements, m is the client-side memory in bits, w is the server-side block size
in bits, and r is the size of a single data element in bits. Furthermore we assume that m ≥ w ≥ r,
and unless otherwise stated, we also assume m,w, r = Θ(log n).

In their seminal work, Goldreich and Ostrovsky [GO96] proved that any ORAM scheme that
behaves in a “balls-and-bins” fashion and is statistically secure has to have an amortized bandwidth
cost of Ω(logm/r n) data blocks. Their lower bound even holds for so called offline ORAMs, which
are given the access pattern of the access sequence that will be executed upfront. Boyle and
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Naor [BN16] show that a lower bound proof for offline ORAM1 without the balls-and-bins restriction
would imply a solution to a long standing open problem in circuit complexity. As a way around
this barrier, the authors suggest to prove a lower bound for a stronger notion called online ORAM,
where the access pattern is not known upfront. Larsen and Nielsen [LN18] prove a lower bound of
Ω(log(nr/m)) blocks on the amortized bandwidth cost of any computationally secure online ORAM
scheme without the balls-and-bins restriction.

Apart from their lower bound, Goldreich and Ostrovsky [GO96] also provided the first upper
bound by presenting a hierarchical ORAM construction with amortized bandwidth cost of O(log3 n)
blocks and computational security. Their hierarchical approach was the basis for many follow-up
works [GMOT11, DMN11, GM11, CNS18], which recently led to the first computationally secure
ORAMs with O(log n log log n) bandwidth costs in the offline [MZ14] and the online [PPRY18]
setting. An asymptotically optimal online ORAM was presented by Asharov et al. [AKL+18]. The
construction of Asharov et al. matches the lower bound of Larsen and Nielsen, but is conceptually
quite complex relying on advanced building blocks like multi-array oblivious shuffles, oblivious
cuckoo hashing, and expander graphs. The construction does also not provide a matching upper
bound to the lower bound of Goldreich and Ostrovsky, since it is only computationally secure. A
very different and conceptually simple approach to constructing ORAM was introduced by Stefanov
et al. [SCSL11, SvS+13], who present a tree-based statistically secure construction with O(log2 n)
worst-case bandwidth cost. The authors of that work also show that their construction has an
asymptotically optimal bandwidth overhead of O(log n) blocks if one assumes large data elements
of r = Ω(log2 n) bits, but small server blocks of w = O(log n) bits.

Oblivious Priority Queues. Several works [Tof11, MZ14, WNL+14, KS14] focus on construct-
ing special-purpose oblivious data structures aiming for concrete efficiency instead of generality.
The data structures that we are particularly interested in, in this work, are oblivious priority
queues (OPQs). A priority queue stores data elements along with associated priorities in a “sorted
order” and supports efficient insertion of new data priority pairs and efficient extraction of the data
element with the smallest priority. In the following we refer to these two procedures as Insert and
ExtractMin. In addition, some priority queues support a so called DecreaseKey operation, which
allows one to decrease the priority of an element that is already stored in the queue. Priority queues
are some of the most fundamental and well studied data structures.

Before examining existing OPQs, let us first recall what is known about non-oblivious coun-
terparts. The classic Fibonacci heap [FT87] can support the Insert operation in worst case O(1)
time, ExtractMin in amortized O(log n) time and DecreaseKey in amortized O(1) time. When
the priorities are only comparable, this time complexity is optimal because a priority queue can
be used to implement comparison-based sorting which has a lower bound of Ω(n log n). If we as-
sume priorities are w-bit integers, where w is the machine word size, then a priority queue that
uses the reduction to integer sorting [Tho07] can support each operation in deterministic amor-
tized O(log log n) time [Han02] or expected amortized O(

√
log logn) time [HT02]. A different line

of works considers priority queues in the external memory setting. In this setting, we have a
small internal memory of size m bits and an external memory consisting of blocks/words of w
bits each (similar to the oblivious setting). If we assume that each element inserted in a priority
queue can be stored in r bits, then Kumar and Schwabe [KS96] proposed an external memory

1To be precise, the authors actually consider a even stronger notion of offline ORAM, where not only the access
pattern, but also the operations that will be performed are given upfront.
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tournament tree that supports the Insert, Delete, ExtractMin and DecreaseKey operations of a
priority queue in amortized O((r/w) log(nr/w)) memory accesses. This was recently improved to
O((r/w) log(nr/w)/ log logn) [JL19] which is known to be almost optimal due to a lower bound
of Ω((r/w) log(w)/ log logn) proved in [ELY17]. It is also known that if DecreaseKeys do not
need to be supported, then there exist more efficient priority queues that make an amortized
O((r/w) log(nr/w)/ log(m/w)) memory accesses [FJKT99, Arg03]

The first OPQ is due to Toft [Tof11], who presents a construction with a bandwidth cost of
O(log2 n) blocks. However, his construction reveals the type of operation that is performed and
it does not support DecreaseKey operations, which are used by popular algorithms like Dijkstra’s
shortest path algorithm. Wang et al. [WNL+14] propose an OPQ with the same bandwidth cost,
which does hide the operation that is performed, but does not support DecreaseKey operations.
Concurrently, Keller and Scholl [KS14] present a construction similar to the one of Wang et al.
that is tailored to secure multiparty computation and supports DecreaseKey operations while also
having a bandwidth cost of O(log2 n) blocks. Mitchell and Zimmerman [MZ14] also independently
propose an oblivious priority with bandwidth costs O(log2 n). Jacob, Larsen, and Nielsen [JLN19]
proved that any OPQ has to have a bandwidth cost of Ω((r/w) log(nr/m)) blocks, even if it is
allowed to return an incorrect result on any ExtractMin operation with constant probability. To
date, no matching upper bound was known.

Oblivious Sorting and Shuffling. A different line of works [AKS83, LP98, Bat68, Goo10,
Goo14, OGTU14, PPY18] focuses on obliviously sorting and shuffling a remote data array. A
sorting algorithm is said to be oblivious if the memory access pattern is independent of the memory
contents that it sorts or shuffles. Oblivious sorting algorithms fall in two categories. Deterministic
algorithms [AKS83, Bat68, Goo14] that always output a correctly sorted sequence and randomized
algorithms [Goo10] that correctly sort a given input with high probability. In a celebrated result
due to Ajtai, Komlós, and Szemerédi [AKS83], the authors propose a deterministic asymptotically
optimal oblivious sorting algorithm with bandwidth cost O(n log n), which when executed in parallel
only requires O(log n) steps. Unfortunately, the algorithm is merely of theoretical interest, since
the hidden constant behind the big-O notation is currently at least 6100 [Pat90]. Goodrich [Goo14]
proposes Zig-Zag sort, which is also deterministic and asymptotically optimal, but still has a hidden
constant of around 2700 and is not parallelizable. The most popular algorithm in practice is
Batcher’s bitonic sort [Bat68], which is deterministic and has a bandwidth cost of O(n log2 n)
with a hidden constant of approximately 1/2 [PR10]. The first asymptotically optimal randomized
oblivious sorting algorithm with better hidden constants is due to Leighton and Plaxton [LP98].
In a subsequent work, Goodrich [Goo10] proposes a simpler oblivious sorting algorithm with even
better hidden constants. Lin, Shi, and Xie [LSX19] prove, roughly speaking, that any (randomized)
oblivious sorting algorithm that behaves in a balls-and-bins fashion and uses constant client memory
has to have a bandwidth cost of Ω(n log n).

Any comparison based oblivious sorting algorithm can also be used as an oblivious shuffling
algorithm. The first oblivious shuffling algorithm not based on sorting was proposed by Ohrimenko
et al. [OGTU14], who present a randomized construction, which requires O(

√
n) clients-side storage

and has a total bandwidth cost of O(n). The constants in their construction were improved upon
by Patel et al. [PPY18], who present a construction that uses 4 times less bandwidth.
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1.1 Our Contribution

In this work, we present the first statistically-secure construction of OPQs with asymptotically opti-
mal amortized bandwidth costs, which matches the lower bound of Jacob, Larsen, and Nielsen [JLN19]
for virtually all parameter ranges. More concretely, we show

Theorem 1 (Informal). There exists an OPQ with an amortized bandwidth cost of O((r/w) log(nr/m))
blocks for any m = Ω(w + r log n) and w ≥ r = Ω(log n).

From a conceptual point of view our construction can be seen as a hybrid between the hier-
archical ORAM construction of Goldreich and Ostrovsky [GO96] and the tree-based approach of
Stefanov et al. [SCSL11, SvS+13]. Apart from being asymptotically optimal, our construction is
conceptually simple, has small hidden constants, and supports DecreaseKey operations. For the
natural setting of parameters r, w = Θ(log n), our priority queue achieves a bandwidth cost of
O(log n) which is a log n improvement over previous constructions. Moreover, our priority queue
demonstrates that obliviousness comes for free for comparison based priority queues!

We illustrate the power of our asymptotically optimal OPQ by using it to construct other
popular oblivious primitives. We present a conceptually simple offline ORAM with bandwidth cost
O(log n) for memory size m = O(log2 n) bits and r, w = Θ(log n), matching the Ω(logm/r n) =
Ω(log n/ log logn) lower bound by Goldreich and Ostrovsky up to a log log n factor. That is, we
present the first statistically secure construction of offline ORAM, which behaves in a balls-and-bins
fashion, with an amortized bandwidth cost of O(log n) and a client memory of O(log n) blocks.

Theorem 2 (Informal). There exists a statistically secure offline ORAM with an amortized band-
width cost of O(log n) blocks using O(log n) client memory blocks.

Lastly, we use our OPQ to construct simple, yet optimal, randomized oblivious sorting and
shuffling algorithms. Our constructions, are essentially as efficient as the underlying OPQ and we
believe that our sorting and shuffling algorithms could be competitive with existing solutions.

Subsequent Work. After this manuscript appeared online, Shi [Shi19] presented an alternative
construction of oblivious priority queues. Her construction is only for the setting of r = w =
Θ(log n). It achieves an amortized bandwidth cost of O(log n) and uses O(1) client memory blocks.
Her solution is thus better for small client memory (m = o(log2 n)), but it cannot handle blocks
of w = ω(r) bits cheaper than O(log n) block accesses per operation. If one can afford a client
memory of a couple of megabytes in practice, i.e. w � r, then we believe our solution performs
much better, as the number of times the server needs to be accessed for our solution grows as
O(r/w) · log n. Thus even though the two priority queues transfer the same number of bits, ours
transfers data in much larger chunks at a time and avoids the many expensive requests back and
forth between client and server. In fact, if w = ω(r log n), then our solution makes o(1) accesses
to the server amortized, i.e. on most operations, the data needed is already in client memory and
incur no network traffic.

2 Oblivious Priority Queue

A priority queue stores elements that consist of a (key,priority)-pair. It supports the following
operations:

4



• Insert(k, p): Insert an element with key k and priority p. If there is already an element present
with key k and priority p′, then update the priority of that element to min{p, p′}.

• DecreaseKey(k, p): Same as Insert(k, p).

• ExtractMin: Return the element with smallest priority among all elements in the priority
queue.

• Delete(k): Delete the element with key k.

Throughout the paper, we assume that r is an upper bound on the number of bits needed to store
an element. We assume that the priorities are comparable and that the keys are integers from a
universe [U ] with U < 2r and r = Ω(log n).

2.1 Simple Solution

In this section, we describe a simple version of our optimal priority queue, which supports only the
Insert(k, p) and ExtractMin operations. Furthermore, this solution assumes that we never perform
an Insert with a key k that is already present in the priority queue. For simplicity, we also assume
that the server block size w satisfies w = Θ(r) = Θ(log n). The solution will also use Θ(n) space
where n is the number of operations performed on the priority queue, not the maximum number
of elements stored in it. We show how to remove all these assumption in Section 2.2.

Our priority queue is a perfect binary tree T with initial height 1, i.e. it consists of a single root
node. We say that the depth of the root is 0. After sufficiently many operations on the priority
queue, we append another layer to T (by allocating more storage). We will describe later precisely
how often we append a new layer.

Each node of T has a buffer for storing elements. The buffer can store up to B elements. We
require B ≥ c lnn where n is an upper bound on the number of operations to be performed on the
priority queue and c > 1 is a sufficiently large constant. We will furthermore assume that B is a
multiple of 4. This can always be ensured by a constant factor increase in c.

The high level idea in our solution is that the buffers will move elements up towards the root as
they get closer to being the smallest elements in the priority queue. Newly inserted elements start
at the root’s buffer and initially move down the tree until they reach a level where their priority is
small compared to the other elements. They will then start ascending towards the root again.

We will argue that most of the time, we only need to work on data in the root: Elements that
need to be returned by ExtractMin will have moved up through the buffers, and thus are stored
in the root when needed. Similarly, when we insert new elements, we simply insert them in the
root’s buffer. Of course the buffers in the tree might become either full or empty. Therefore, we
occasionally visit all the top i levels of T and move elements up and down to avoid overflowing
or underflowing buffers. To avoid overflowing buffers, we need that the elements are distributed
evenly down the tree. This is done using randomness: when an element (k, p) is inserted into the
priority queue, we generate a uniform random bit string h(k, p) in {0, 1}logn and store it together
with the element. The element (k, p) will be stored somewhere along the root-to-leaf path obtained
as follows: Start at the root and descend down the tree as follows: When at an internal node v of
depth i, if the i’th bit of h(k, p) is 0, descend into v’s left child, otherwise descend into its right
child. The element will always be stored in a buffer along this path.

We will always keep the root in client memory, while other nodes of T will be stored at the
server. We handle the two procedures as follows:

5



Insert(k, p): Sample a random h(k, p) ∈ {0, 1}logn and store it together with the element (k, p)
in the root’s buffer.

ExtractMin: Return and remove the element (k, p) with smallest p among all elements in the
root’s buffer.

In addition to the above very simple procedures for handling Insert and ExtractMin, we need
a procedure for clearing and filling the buffers, as otherwise the root buffer would quickly overflow
or underflow. This is handled via two procedures PushDown(i) and PullUp(i). These procedures
are invoked as follows: Maintain a counter C that keeps track of the number of operations performed
on the priority queue. After every operation, we increment C and check whether C is a multiple
of B/4. If it is, we compute the largest integer i such that C is also a multiple of 2iB/4. We then
invoke PushDown(0), PushDown(1), . . . , PushDown(i), PullUp(i),PullUp(i − 1),. . . ,PullUp(0) in
that order. We now describe the two procedures:

PushDown(i): If this is the first time PushDown(i) is called, we start by adding a new layer to
T at depth i+ 1 (by allocating more storage). We now examine the nodes at depth i one by one,
from left to right. When examining a node v, we load v and its two children into client memory.
We take all elements in v’s buffer and distribute them to the buffers of v’s children. Each element
(k, p) is placed in the child consistent with h(k, p).

PullUp(i): This operation assumes all buffers at depth i are empty. We examine the nodes at
depth i one by one, from left to right. When examining a node v, we load v and its two children into
client memory. We take the B/2 elements with smallest priority amongst all elements in both chil-
drens’ buffers and put them in v’s buffer. We leave the remaining where they are. If there are less
than B/2 elements in total in all the buffers of v’s children, we simply move all of them to v’s buffer.

Observe that the memory access pattern of the priority queue is completely fixed and depends
only on the number of operations performed. Hence the priority queue is oblivious. The only thing
that could go wrong, is that the priority queue returns an incorrect element or that a buffer needs
to store more than B elements. In the latter case, we will simply delete the extra elements in a
buffer. This guarantees that the access pattern remains the same, but of course means that the
priority queue will return incorrect results. The remainder of this section proves that this happens
very rarely and that the priority queue makes few memory accesses:

Theorem 3. The simple priority queue processes a sequence of n operations with an amortized
bandwidth cost of O(log n) blocks and is correct with probability at least 1 − n2/eB/12. It uses
m = O(B log n) bits of client memory and assumes that r, w = Θ(log n).

To prove correctness of the above priority queue, we need to show two things: 1) The element
with smallest priority is always in the root’s buffer and 2) No buffer ever stores more than B
elements. The first property ensures that ExtractMin always returns the correct element and the
second property simply ensures that there is enough space in the buffers to hold the elements to
be stored there.

We prove that the priority queue satisfies both 1) and 2) as long as the randomness h(k, p)
distributes the elements sufficiently evenly down the tree. We define this formally in the following:
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Definition 1. Let S := op1, . . . , opN be a sequence of operations on a priority queue. For each
t = 1, . . . , N , define L(S, t) as the set of elements (k, p) such that the key k has priority p after
operations op1, . . . , opt. For notational convenience, we define L(S, t) = ∅ for t ≤ 0.

The set L(S, t) thus denotes the set of elements that should be present in the priority queue
after operations op1, . . . , opt (on a correct execution). We also need a set describing the elements
involved in a subsequence of operations:

Definition 2. Let S := op1, . . . , opN be a sequence of operations and let opi, . . . , opj be a sub-
sequence. Define the set K∫(S, i, j) containing all elements (k, p) such that at least one of the
operations opi, . . . , opj is either an Insert(k, p) or an ExtractMin where the correct answer is (k, p).
For notational convenience, we define K∫(S, i, j) = K∫(S, 1, j) if i ≤ 0.

With the above two definitions, we can define what we mean by distributing keys evenly:

Definition 3. For a node u ∈ T of depth d and a sequence of operations S := op1, . . . , opN , we
say for every t = 1, . . . , N , that u is s-overloaded at opt if there are B/2 or more elements (k, p),
such that (k, p) ∈ K∫(t− 2dB/4 + 1, t) and h(k, p) describes a path into u’s subtree.

Here we used the s- in s-overloaded just to distinguish the definition of overloaded from the one
we give in the full solution (Section 2.2). s- should be thought of as refering to the simple solution.

We prove that as long as no node becomes s-overloaded, then the simple priority queue is
correct:

Lemma 1. For a sequence S of up to n operations on the priority queue, if there is no node u
that is s-overloaded after opt for any t, then the priority queue returns the correct element on every
ExtractMin and never stores more than B elements in a buffer.

Proof. We prove the lemma by induction on the operations. Let S = op1, . . . , opN for an N ≤ n.
The lemma clearly holds prior to the first operation being performed. Assume that there are no
nodes that are s-overloaded after opi for any i. Assume also that the priority queue returns the
correct element on every ExtractMin during op1, . . . , opt−1 and that no buffer stores more than B
elements during op1, . . . , opt−1. We prove that the same holds for opt.

We start by proving that opt returns the correct element if it is an ExtractMin. By induction,
the priority queue contained exactly the elements L(S, t−1) after opt−1. Hence the smallest element
in T is the correct smallest element to return. We thus need to argue that the smallest element (k, p)
is stored in the root when opt begins (as this causes our ExtractMin procedure to return the correct
result). To see this, assume for the sake of contradiction that (k, p) is stored in some node u of
depth d ≥ 1 when opt−1 ends. Let t′ < t be the last time a PullUp(d−1) operation was performed.
We must have t′ ≥ t − 2d−1B/4. It must have been the case that when PullUp(d − 1) visited
u’s parent v during opt′ , the element (k, p) remained in u. This must hold since all operations
after that PullUp(d − 1) and until the end of opt−1 access only nodes of depth at most d − 1.
Since PullUp(d − 1) failed to move (k, p) to v, there must have been at least B/2 other elements
(k′, p′) with p′ < p in v’s subtree. Since the priority queue was correct after opt′ (by induction),
all these elements must be in L(S, t′). Since (k, p) is the smallest element after opt−1 and the
priority queue was correct up to opt−1, these elements must all be extracted by ExtractMins during
opt′+1, . . . , opt−1 which puts the elements in K∫(S, t′+ 1, t) ⊆ K∫(S, t− 2d−1B/4 + 1, t). Moreover,
K∫(S, t − 2d−1B/4 + 1, t) also contains (k, p) since (k, p) is the correct result of the ExtractMin
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during opt. This means that there are more than B/2 elements (k′, p′) in K∫(S, t− 2d−1B/4 + 1, t)
that all have h(k′, p′) describing a path into v’s subtree. This contradicts that v is not s-overloaded
at opt.

We now prove that no buffer stores more than B elements. Observe that a buffer can only
overflow either during an Insert at the root’s buffer, or when a PushDown visits the node’s parent.
For the root node, notice that we do a PushDown(0) every B/4 operations. This empties the root’s
buffer. The following PullUp(0) brings at most B/2 elements into the root’s buffer. Hence the root
never stores more than B/4+B/2 < B elements. Now let u be a node of depth d ≥ 1 and assume its
buffer stores more than B elements during a PushDown(d− 1) in some operation opt. Let t′ < t be
the last time a PushDown(d) was performed prior to opt (or let t′ = 0 if no such PushDown(d) has
been performed yet). We have t′ ≥ t− 2dB/4. When the PushDown operations during opt′ ended,
all buffers in levels 0, . . . , d were empty. The following PullUp(d) operation brings at most B/2
elements into u’s buffer and these are the only elements where h describes a path into u’s subtree
that are stored in depth 0, . . . , d at the end of opt′ . Hence for u’s buffer to overflow during opt, there
must be more than B/2 new elements inserted during opt′+1, . . . , opt that all have h describing a
path into u’s subtree. All these elements are in K∫(S, t′ + 1, t) ⊆ K∫(S, t − 2dB/4 + 1, t). This
contradicts that the number of elements (k, p) from K∫(S, t− 2dB/4 + 1, t) with h(k, p) describing
a path into u’s subtree is bounded by B/2 when u is not s-overloaded.

Thus all we need to show is that there is a small probability that a node is s-overloaded after
opt:

Lemma 2. For a sequence S of up to n operations on the priority queue, it holds with probability
at least 1− n2/eB/12 that there are no nodes u that are s-overloaded at opt for any t.

Proof. Define the event Eu,t that happens if node u is s-overloaded at opt. Let d be the depth of u.
Since all elements (k, p) in K∫(S, t− 2dB/4 + 1, t) are assigned uniform random and independently
chosen bit strings h(k, p), it follows that h(k, p) describes a path into u’s subtree with probability
2−d. Moreover, there are only 2dB/4 elements involved in the operations opt−2dB/4+1, . . . , opt, thus

|K∫(S, t − 2dB/4 + 1, t)| ≤ 2dB/4. The expected number of elements that are distributed to u’s
subtree is thus µ ≤ B/4. By a Chernoff bound (Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3 for δ ≥ 1), we get that
the probability that there are at least B/2 elements that are distributed to u’s subtree is no more
than e−(B/(2µ)−1)µ/3 = e−(B/6−µ/3) ≤ e−B/12. A union bound over all nodes u and all operations
opt concludes the proof.

What remains is to analyse the number of server blocks accessed while processing a sequence
of N ≤ n operations. Since the root is stored in client memory, the operations on it cause no
accesses of server blocks. For a node u of depth d ≥ 1, we read its B elements into client memory
when we access the node. It is accessed during PushDown(d−1), PullUp(d−1), PushDown(d) and
PullUp(d), hence u causes us to access O(B) server blocks for every O(2dB) operations. There are
2d nodes at depth d. Summing over all nodes (max depth is log n) gives:

logn∑
i=1

(N/2dB) · 2d ·O(B) = O(N log n).

Thus the amortized cost is O(log n).
We have thus proved Theorem 3.
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2.2 Full Solution

In this section, we extend the simple solution from Section 2.1 such that it supports all four
priority queue operations Insert(k, p), ExtractMin, DecreaseKey(k, p) and Delete(k). Moreover, we
generalize it such that it works for any w ≥ r = Ω(log n), and such that the space usage is O(nr)
bits where n is the maximum number of elements to be simultaneously stored in the priority queue.
This is linear space since each element takes r bits to store. We show that the amortized running
time per operation is O(log n) and that the amortized bandwidth cost is O((r/w) log(nr/m)) blocks.
These bounds hold if the number of operations performed on the priority queue is N ≤ poly(n).

As in the simple solution, our priority queue consists of a perfect binary tree T , where nodes
store buffers that can hold up to B elements. Here we set B := cm/r for any constant c > 0 small
enough that a constant number of buffers fit in client memory (which is enough to support the
operations below). We assume B is a multiple of 8. This can always be ensured by constant factor
changes in c. The height of T is set to dlog(16n/B)e and thus the total number of elements that
can be stored in the buffers of T is O(2log(16n/B)B) = O(n). Hence T uses linear space. We always
keep the root of T in client memory.

Each internal node of T has two buffers, an element buffer and a delete buffer. The element
buffers store elements (k, p) and the delete buffer stores just keys k. The intuition to have in mind
is that an element (k, p) stored in the element list of a node u should be deleted if the key k occurs
in a delete buffer of a proper ancestor of u. All buffers can hold up to B elements/keys. The leaves
of T only have an element buffer. We maintain the invariant that any element buffer stores at most
one element with any given key k, and there are no duplicates in the delete buffers.

As in the simple solution, we will distribute elements down the tree based on randomly chosen
values. However, in this full solution, we need to handle multiple insertions of the same key,
DecreaseKeys and Delete operations. This means that multiple occurrences of the same element
should “meet” in T such that the one with minimum priority can “remove” the other occurrences.
For this reason, we distribute the elements based on a truly random hash of their keys h : {0, 1}r →
{0, 1}dlog(16n/B)e−1. That is, each element (k, p) in an element buffer, and any key k in a delete
buffer, will be stored somewhere along the root-to-leaf path specified by h(k) as follows: The path
starts at the root, and at the i’th level, it descends into the left child if the i’th bit of h(k) is 0
and into the right child otherwise. We will argue later that h need not be truly random, but only
a q-wise independent hash function for a q ≤ B/2 = O(m/r). Such hash functions can be stored in
O(q(r + log n)) = O(qr) bits and will fit in the client memory (using e.g. the standard polynomial
hash function h(x) = (((

∑q
i=0 αqx

q) mod p) mod 2dlog(16n/B)e−1) for uniform random coefficients
αi ∈ {0, . . . , p− 1}, where p > 2dlog(16n/B)e−1 is a prime). Thus elements with the same key are on
the same root-to-leaf path.

In the description of our priority queue, we assume all priorities are distinct. This can be ensured
e.g. by breaking ties via a comparison on keys. Moreover, our priority queue implementation will
never need to break ties on identical copies of the same element (k, p) as we always remove one of
the identical copies if they “meet” in T .

We handle operations as follows:

Insert(k, p): Call DecreaseKey(k, p).

DecreaseKey(k, p): Check if the root’s element buffer already has an element (k, p′) with key k.
If so, update p′ to min{p, p′} and return. Otherwise, compute h(k) and store it together with the
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element (k, p) in the root’s element buffer.

Delete(k): Remove any elements (k, p) with key k from the root’s element buffer. If the root’s
delete buffer does not already have the key k, then add k to the delete buffer.

ExtractMin: Return and remove the element (k, p) with smallest p among all elements in the
root’s element buffer. We then add the key k to the root’s delete buffer if it is not already there.
If there is no element in the root, then return “Empty”.

As in the simple solution, we also have PushDown and PullUp operations for avoiding buffer
underflows and overflows. We use these as follows: When the priority queue is initialized, we set
a counter C to 0. We increment C after every Insert, DecreaseKey, Delete and ExtractMin op-
eration on the priority queue. If C becomes an integer multiple of B/8, we compute the largest
integer i such that C is a multiple of 2iB/8. We then let i∗ = min{i, dlog(16n/B)e−1} and execute
PushDown(0),. . . ,PushDown(i∗),PullUp(i∗),. . . ,PullUp(0) in that order. We implement PushDown
and PullUp as follows:

PushDown(i): Examine the nodes at depth i one by one, from left to right. When examining
a node v, we load v and its two children into client memory. We first take all keys in v’s delete
buffer and distribute them to the delete buffers of v’s children. A key k is distributed to the child
consistent with h(k). When inserting a key k into a child w’s delete buffer, we remove any element
(k, p) from w’s element buffer. If the key k is already stored in w’s delete buffer, we do not add
an additional copy. Next, we distribute all elements from v’s element buffer to the element buffers
of v’s children. Each element (k, p) is placed in the child consistent with h(k). When adding the
element (k, p) to the element buffer of a child w, we first check whether there is already an element
(k, p′) stored in w’s element buffer. If so, we update p′ to min{p, p′} instead of inserting (k, p) in
the buffer.

If the children of v are leaves, we do not place the keys from v’s delete buffer into the children’s
delete buffers (they don’t have any). Thus we simply remove each such key k from the priority
queue after having removed elements (k, p) from the child’s element buffer.

PullUp(i): This operation assumes that all buffers at level i are empty. We examine the nodes
at depth i one by one, from left to right. When examining a node v, we load v and its two children
into client memory. We take the B/2 elements with smallest priority amongst all elements in the
element buffers of v’s children and put them into v’s element buffer. We leave the remaining where
they are. If there are less than B/2 elements in total in the childrens’ element buffers, we simply
move all of them to v’s element buffer.

The above priority queue has a deterministic server memory access pattern that depends only
on the number of operations N performed and the maximum number of elements n that can be
stored in the priority queue. Hence it is oblivious. If a buffer ever stores more than B elements,
we simply remove the extra elements to ensure that the memory access pattern remains the same.
This of course causes the priority queue to return incorrect results. We will show in the remainder
of this section that the priority queue has the following guarantees:
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Theorem 4. For any q ≤ B/2 = O(m/r), we can implement the priority queue such that it
processes a sequence of N operations with amortized bandwidth cost O((r/w) log(nr/m)) blocks,
has an amortized running time of O(q + log n) and is correct with probability at least 1−Nn/eq/4.
It works for any number of client bits of memory m ≥ w satisfying m = Ω(r log n).

2.2.1 Correctness

We will prove that the above implementation of the priority queue is correct, provided that the
hash function h distributes the keys evenly enough down the tree T . We will then argue that this
happens with good probability. Putting it all together, we obtain the following result:

Lemma 3. For a sequence of operations S := op1, . . . , opN , if we use a q-wise independent hash
function h for any q ≤ B/2, then it holds with probability at least 1 − Nn/eq/4 that the priority
queue answers every ExtractMin in S correctly and no buffer ever stores more than B elements.

To prove Lemma 3, we need to argue that the delayed removal of elements (k, p) and duplicate
occurrences of a key k does not lead to problems for our priority queue. For this, we start by
introducing some terminology. Consider a sequence of operations S := op1, . . . , opn. Let (k, p) be
an element stored in an element buffer of a node u in the priority queue. We say that there is a
pending delete for (k, p) if the key k is stored in a delete buffer of a proper ancestor of u (proper
meaning not including u itself). We will prove the following:

Lemma 4. Let S := op1, . . . , opt be a sequence of operations on a priority queue and assume the
priority queue returns the correct smallest element on every ExtractMin during op1, . . . , opt and
that no buffer stores more than B elements during op1, . . . , opt. Then after operation opt, it holds
that:

1. For all elements (k, p) ∈ L(S, t) we have all of the following:

(a) (k, p) is stored in the priority queue.

(b) There is no pending delete for (k, p).

(c) There is no element (k, p′) with p′ < p that is stored in the priority queue without a
pending delete for it.

2. For all elements (k, p) /∈ L(S, t), we have at least one of the following:

(a) (k, p) is not stored in the priority queue.

(b) There is a pending delete for (k, p).

(c) There is an element (k, p′) ∈ L(S, t) with p′ < p.

Proof. We prove the lemma by induction on t. The lemma clearly holds before the first operation.
So consider some operation opt and assume the lemma is true after every operation op1, . . . , opt−1.

First let (k, p) ∈ L(S, t). We show that 1.a-c holds for (k, p) after opt. Let opi with i ≤ t
be the operation where (k, p) ∈ L(S, j) for all i ≤ j ≤ t and (k, p) /∈ L(S, i − 1). By definition
of L(S, i), the operation opi is either Insert(k, p) or DecreaseKey(k, p) and there is no (k, p′) with
p′ < p in L(S, i−1). Moreover, no Insert(k, p′) or DecreaseKey(k, p′) with p′ < p is executed during
opi+1, . . . , opt (as otherwise there would be a j with i < j ≤ t such that (k, p) /∈ L(S, j)) and no
Delete(k) is executed during opi+1, . . . , opt (again, this would give an index j with i < j ≤ t for
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which (k, p) /∈ L(S, j)). During opi, we insert (k, p) in the root’s element list. Any delete k already
stored in the priority queue cannot remove (k, p) during operations opi, . . . , opt and cannot become
a pending delete for (k, p) (an element never “overtakes” a delete in our PushDown procedure). Any
(k, p′) with p′ < p that was stored in the priority queue after opi−1 must have had a pending delete
by induction (since (k, p′′) /∈ L(S, i − 1) for any p′′ < p and p′ < p, such a (k, p′) could not have
satisfied 2.c after opi−1, and if (k, p′) was stored in the priority queue, it also did not satisfy 2.a.
Hence it must have satisfied 2.b). Thus such an element (k, p′) cannot cause (k, p) to be removed
(the PushDown procedure will remove the element due to the k in a delete buffer, before it can
cause (k, p) to be removed). Since the priority queue returns the correct smallest element on every
ExtractMin during opi, . . . , opt by assumption, we conclude that no element (k, p′) is returned.
Since only Delete and ExtractMin can cause the key k to enter the root’s delete buffer, we conclude
that (k, p) is still stored in the priority queue after opt and there is no pending delete for it, i.e. 1.a
and 1.b holds. For 1.c, we already argued that all (k, p′) with p′ < p that were present at opi had
a pending delete. Furthermore, no (k, p′) with p′ < p is inserted after opi, thus 1.c also holds.

Next, let (k, p) /∈ L(S, t). We assume (k, p) is stored in the priority queue after opt and prove
that this implies that either 2.b or 2.c is satisfied. Since (k, p) is in the priority queue, there must
be some (last) operation opi with i ≤ t that was either an Insert(k, p) or DecreaseKey(k, p) which
caused (k, p) to be inserted into the root’s element list. We split the proof in two cases:

• If (k, p) ∈ L(S, i), then since (k, p) /∈ L(S, t), (k, p) must either 1) be the correct small-
est element to return on an ExtractMin during opi+1, . . . , opt, 2) there is be a Delete(k)
during opi+1, . . . , opt or 3) there is an Insert(k, p′) or DecreaseKey(k, p′) with p′ < p dur-
ing opi+1, . . . , opt. Since the priority queue returns the correct smallest element on every
operation, we conclude that either 2.b or 2.c holds after opt.

• If (k, p) /∈ L(S, i), then there must have been another element (k, p′) ∈ L(S, i) with p′ < p.
There are three cases: Either 1) there is an ExtractMin during opi+1, . . . , opt which returns
an element (k, p′′) with p′′ ≤ p′ < p, 2) there is a Delete(k) during opi+1, . . . , opt, or 3),
(k, p′′) ∈ L(S, t) for some p′′ ≤ p′ < p. In the first case, a delete k is inserted in the root’s
delete buffer during the ExtractMin and becomes a pending delete for (k, p), i.e. 2.b holds.
In the second case, k is inserted into the root’s delete buffer during the Delete(k) operation
and 2.b holds. In the third case, 2.c holds.

We are now ready to prove that when keys are distributed evenly, the priority queue behaves
as intended. For this, we formally define what we mean by distributing keys evenly. We re-use
the definition of L(S, t) from Section 2.1 (Definition 1) that gives the set of elements (k, p) that
should be stored in the priority queue after operations op1, . . . , opt in the sequence of operations
S := op1, . . . , opN . We also need the following definition:

Definition 4. Let S := op1, . . . , opN be a sequence of operations and let opi, . . . , opj be a sub-
sequence. Define the set K(S, i, j) containing all keys k such that at least one of the operations
opi, . . . , opj is either an Insert(k, p), DecreaseKey(k, p), Delete(k) or an ExtractMin where the cor-
rect answer is an element (k, p). For notational convenience, we define K(S, i, j) = K(S, 1, j) if
i ≤ 0.

With the above definition, we can define what we mean by distributing keys evenly:
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Definition 5. For a node u ∈ T of depth d and a sequence of operations S := op1, . . . , opN , we
say for every t = 1, . . . , N , that u is overloaded at opt if:

• u is an internal node and there are B/2 or more keys k such that k is in K(t− 2dB/8 + 1, t)
and h(k) describes a path into u’s subtree.

• u is a leaf and there are B/2 or more keys k such that k is in K(t−2dB/8+1, t)∪L(S, t−2dB/8)
and h(k) describes a path into u’s subtree.

We will show that our priority queue is correct if no node ever becomes overloaded:

Lemma 5. Let S := op1, . . . , opN be a sequence of operations on a priority queue and assume
|L(S, t)| ≤ n for all t. If it holds for all operations opt that no node u is overloaded at opt, then the
priority queue returns the correct smallest element on every ExtractMin and no buffer ever stores
more than B elements.

Proof. We prove the lemma by induction on t. The lemma clearly holds before the first operation.
So consider some operation opt and assume the lemma is true after every operation op1, . . . , opt−1.
The properties in Lemma 4 hold after opt−1 by induction.

First we prove that if opt is an ExtractMin, then it returns the correct smallest element. Observe
that the correct element to return, is the element (k, p) with smallest p among all elements (k′, p′) ∈
L(S, t− 1). We need to show that (k, p) is stored in the root’s element buffer after opt−1 and that
no element (k′, p′) with p′ < p is stored in the root’s element buffer. We start with the second
part as it is easiest to prove. Assume for the sake of contradiction that an element (k′, p′) with
p′ < p was stored in the root’s element buffer. By definition, there is no pending delete for (k′, p′)
(a pending delete requires the key k′ to be stored in a proper ancestor’s delete buffer). Moreover,
(k′, p′) /∈ L(S, t − 1) since (k, p) was the element with smallest priority in L(S, t − 1). Hence by
Lemma 4, (k′, p′) must satisfy 2.c, i.e. it must be the case that (k′, p′′) ∈ L(S, t − 1) for some
p′′ < p′. This contradicts that (k, p) has the smallest priority among elements in L(S, t− 1). Thus
such an element (k′, p′) cannot exist. We now turn to proving that (k, p) is stored in the root’s
element buffer after opt−1. First, Lemma 4 1.a gives us that (k, p) is stored somewhere in the
priority queue. So assume for the sake of contradiction that it is stored in a node u of depth
d ≥ 1 after opt−1. Let t′ ≤ t − 1 be the last time a PullUp(d − 1) was performed. We have
t′ > t − 1 − 2d−1B/8 ⇒ t′ ≥ t − 2d−1B/8. It must have been the case that (k, p) remained in u’s
element buffer when PullUp(d − 1) visited u’s parent v. This has to be the case as all operations
performed after the PullUp(d− 1) and until the end of opt−1 only visit nodes of depth < d. Since
(k, p) remained in u, there must have been at least B/2 elements (k′, p′) in v’s subtree that have
p′ < p. These must all have distinct keys since we never have two elements with the same key in a
node’s element buffer. Notice that for all these element (k′, p′), there was no k′ in a delete buffer in
v or an ancestor of v since all delete buffers in levels 0, . . . , d− 1 were empty due to the preceding
PushDowns executed during opt′ . Hence there was no pending delete for any such (k′, p′) at the
end of opt′ . By Lemma 4, it must hold for each such (k′, p′) that either (k′, p′) ∈ L(S, t′) or 2.c
gives us that (k′, p′′) ∈ L(S, t′) for some p′′ < p′. We thus conclude that we have at least B/2
distinct keys k′ such that (k′, p′) ∈ L(S, t′) and p′ < p. But (k, p) is the element with smallest
priority in L(S, t−1), hence each such (k′, p′) must either 1) be the result of an ExtractMin during
opt′+1, . . . , opt−1, 2) there is a Delete(k′) during opt′+1, . . . , opt−1, or 3), there is an Insert(k′, p′′)
or DecreaseKey(k′, p′′) with a p′′ < p′ during opt′+1, . . . , opt−1. Any of these conditions puts k′ in
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K(S, t − 2d−1B/8, t − 1) by definition. Thus |K(S, t − 2d−1B/8, t − 1)| ≥ B/2 which contradicts
that v is not overloaded at opt−1.

Next we prove that no buffer stores more than B elements during opt. For the root, notice
that its buffers are both emptied after every PushDown(0) and the following PullUp(0) moves
at most B/2 elements into the root’s element buffer. Since PushDown(0) is executed every B/8
operations, the root’s buffers never store more than B/2 + B/8 < B elements. For an internal
node u of depth d with 1 ≤ d < dlog(16n/B)e, observe that u’s element buffer can overflow only
during a PushDown(d− 1) when visiting u’s parent v. Let t′ < t be the last time a PushDown(d)
was performed (let t′ = 0 if no such PushDown has been performed yet) prior to opt. We have
t′ ≥ t − 2dB/8. After the PushDown operations during opt′ , it held that both of u’s buffers were
empty. The following PullUp operations during opt′ moves at most B/2 elements (k, p), with h(k)
describing a path into u’s subtree, into buffers of levels 0, . . . , d. Thus for u’s element buffer to
overflow, there must be at least B/2 new elements (k, p) inserted during opt′+1, . . . , opt such that
h(k) describes a path into u’s subtree (B/2 elements with distinct keys as we never have two
elements with the same key in a node’s element buffer). This puts the key k of all these elements
into K(S, t′ + 1, t) ⊆ K(S, t − 2dB/8 + 1, t), contradicting that u is not overloaded at opt. For
u’s delete buffer to overflow, we similarly observe that there must have been more than B distinct
keys k that enter the root’s delete buffer during opt′+1, . . . , opt and have h(k) describing a path
into u’s subtree. By induction, all ExtractMins were answered correctly, thus any key k entering
the root’s delete buffer must correspond either to a Delete(k) or an ExtractMin returning a correct
element (k, p). Both put k in K(S, t′ + 1, t) ⊆ K(S, t − 2dB/8 + 1, t) contradicting that u is not
overloaded at opt. Finally, for a leaf node u of depth d = dlog(16n/B)e, let t′ ≥ t − 2d−1B/8 be
the last time prior to opt that a PushDown(d− 1) was performed. After the PushDown operations
during opt′ , all buffers above the leaves were empty, hence there were no keys in any delete buffers
(the leaves have no delete buffers). Since only the element buffers in the leaves had elements,
it follows by induction and Lemma 4 that the set of elements (k, p) in the priority queue was
precisely the set of elements in L(S, t′) (we have no two elements with the same key since we
always remove one of the elements if they meet in a buffer). Thus the only elements that can
enter u’s element buffer during opt are elements (k, p) that were in L(S, t′) or where an Insert(k, p)
or DecreaseKey(k, p) was performed during opt′+1, . . . , opt. Thus for u’s buffer to overflow, we
must have at least B elements in L(S, t′) ∪ K(S, t′ + 1, t). Since (L(S, t′) ∪ K(S, t′ + 1, t)) ⊆
(L(S, t− 2dB/8 + 1, t)∪K(S, t− 2dB/8 + 1, t)) this contradicts that u is not overloaded at opt.

Finally, what remains to be proved is that no node becomes overloaded with good probability:

Lemma 6. Let S := op1, . . . , opN be a sequence of operations on a priority queue, satisfying that
there are at most n elements in L(S, t) for any opt. If we use a q-wise independent hash function h
for any q ≤ B/2, then it holds with probability at least 1−Nn/eq/4 that no node u ∈ T is overloaded
at any operation opt.

Proof. Define an event Eu,t that happens if u is overloaded at opt. Assume first u is an internal
node. The set K(t− 2dB/8 + 1, t) has size at most 2dB/8. Each key k ∈ K(t− 2dB/8 + 1, t) hashes
to u’s subtree independently with probability 2−d. Thus the expected number of keys k where h(k)
describes a path into u’s subtree is µ ≤ B/8. By a Chernoff bound (Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3

for δ ≥ 1), we get that the probability that there are at least B/2 elements that are distributed
to v’s subtree is no more than e−(B/(2µ)−1)µ/3 = e−(B/6−µ/3) ≤ e−B/12. If u is a leaf, then d =
dlog(16n/B)e and we have |K(t−2dB/8+1, t)∪L(S, t−2dB/8)| ≤ 2dB/8+n ≤ 2dB/8+2dB/16 =
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(3/16)2dB. Each key k ∈ K(t−2dB/8+1, t)∪L(S, t−2dB/8) hashes to u’s subtree with probability
2−d and we get that the expected number of keys with h(k) describing a path into u’s subtree is
at most µ ≤ (3/16)B. A Chernoff bound again gives Pr[Eu,t] ≤ e−(B/6−µ/3) ≤ e−B/12. A union
bound over all ≤ n nodes u ∈ T and all N operations gives the claimed result.

If we use a q-wise independent hash function h instead of a truly random hash function,
then using a Chernoff bound with q-wise independent random variables, we can still conclude
that Pr[Eu,t] ≤ e−q/4. To see this, note that for q-wise independent indicator random variables
X1, . . . , Xn with X =

∑
iXi and p = Pr[Xi = 1] for all i, if ` ≥ 2q, then Pr[X > `] ≤ (2E[X]/`)q.

Setting ` = B/2 and using that E[X] ≤ (3/16)B, we get that Pr[X > B/2] ≤ (3/4)q = e−q ln(4/3) <
e−q/4 provided that B ≥ 2q.

2.2.2 Performance

Here we analyse the performance of the priority queue. First we analyse the number of server blocks
that are accessed while processing a sequence of N operations. We observe that all operations on
the root incur no accesses at the server (since the root is stored in client memory). We note that it
is important that the root remains in client memory between operations and isn’t fetched during
every operation as this would require reading O(m/w) blocks for each operation. We thus focus on
bounding the number of accesses to nodes u of depth d ≥ 1. A node of depth d is accessed during
PushDown(d− 1), PullUp(d− 1), PushDown(d) and PullUp(d). Each of these causes us to read u
into client memory. Since u stores two buffers that can hold B elements of r bits each, this accesses
O(Br/w) server blocks. There are 2d nodes at depth d and they are accessed O(1) times for every
2d−1B/8 operations. The height of T is dlog(16n/B)e, hence the total number of blocks accessed
at the server is

dlog(16n/B)e∑
i=1

N

2d−1B/8
· 2d ·O(Br/w) =

dlog(16n/B)e∑
i=1

O(Nr/w) =

O(log(16n/B) ·Nr/w) =

O((Nr/w) · log(nr/m)).

That is, the amortized bandwidth cost is O((r/w) log(nr/m)) blocks.

Running Time. We also argue about the running time, which is different from the number of
server blocks accessed. In particular, the running time includes the work performed on data in
client memory. To obtain fast O(log n) amortized time per operation, we need to choose concrete
representations of the buffers. These are: In the root node, we store the elements of the element
buffer in a standard comparison based priority queue (e.g. a binary heap) with O(logB) time per
operation, where B is the number of elements stored in it. The root also stores a hash table on
the priority queue, mapping keys to the positions of the elements in the queue (this is necessary to
support Delete and DecreaseKey in O(logB) time when one is not given a pointer to an element’s
position in the queue but only the element’s key k). All nodes of the tree, including the root, store
the set of keys in the delete buffer in a hash table. For all the hash tables, we use a standard linear
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space solution with O(1) expected time operations, like e.g. a linear probing hash table. For nodes
other than the root, we always store the element buffer in sorted order of priority.

We argue that we can maintain the above representations efficiently during our procedures
above.

• The Insert and DecreaseKey procedures need a look-up in the hash tables on the set of keys
in the element buffer of the root. It might also need to perform a DecreaseKey on the heap
representing the element buffer. Finally, it may also need to perform an Insert in the heap.
All in all, this costs O(logB) expected time since the root’s buffers can hold B elements.

• The Delete procedure needs a look-up in the hash tables on the set of keys in the root’s
element buffer. It might also need to perform a Delete on the heap representing the buffer and
potentially an Insert into the hash table representing the delete buffer. This costs O(logB)
expected time.

• The ExtractMin procedure needs to make an ExtractMin on the heap representing the element
buffer. It also needs to insert a key into the hash table storing the delete buffer. This costs
O(logB) expected time in total.

• When PushDown(i) visits a node v, it takes O(Br/w) time to load v and its children into
client memory. When distributing keys to the children, we scan the element buffers of the
children, and for each element (k, p) we ask the hash-table on v’s delete-buffer whether k is
there. In this way, we can remove all elements that need to be deleted from the childrens’
element buffers in O(B) time. Inserting the keys from v’s delete buffer into the hash tables
representing the childrens’ delete buffers also takes expected O(B) time. When distributing
elements from v’s element buffer to the children, we start by sorting the elements in v’s element
buffer by priority in case v is the root. This takes O(B logB) time using a comparison-based
sorting algorithm. If v is not the root, they are already sorted and we don’t need to perform
this extra work. We then create a hash table H mapping the keys k of the elements (k, p) in
v’s element buffer to the element (k, p). We then scan the element buffers of the children, and
for each element (k′, p′), we query the hash table H to see if (k′, p) is stored in v’s element
buffer for some p. If it is, we compare p and p′. If p < p′, we remove (k′, p′) from the child’s
element buffer. Otherwise, we remove (k, p) from H. By moving elements to the front of
the child’s element buffer during the scan, we can do this in O(B) time while maintaining
the sorted order. Finally, we can compute the new sorted list of elements in the childrens’
element buffers by doing a standard merge of the sorted list representing v’s element buffer
and the sorted lists representing the childrens’ element buffers. While doing so, we check for
each element (k, p) in v’s element buffer whether k is still in H. If not, we simply remove
(k, p). The distribution of the elements in the element buffers thus takes O(B) time.

• When PullUp(i) visits a node v, it takes O(Br/w) time to load v and its children into client
memory. Since the elements in v’s childrens’ element buffers are stored in sorted order, we
can do a merge to find the B/2 smallest elements in O(B) time. Removing them from the
childrens’ element buffers and inserting them in v’s element buffer also takes O(B) time.

In addition to the above work, we need to evaluate the q-wise independent hash function h once per
Insert, Delete and DecreaseKey. Using a standard degree q − 1 polynomial allows this to be done
in O(q) time. We now analyse the total amount of work done. For the root node, each operation
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costs O(logB+q) time, and for every B/8 operations, we do an additional O(B logB) work, giving
an amortized cost at the root of O(logB+ q) per operation. For each node at depth d, we do O(B)
work once for every 2dB/8 operations. There are 2d nodes of depth d, hence the total work over

a sequence of N operations is
∑dlog(16n/B)e

d=1 (8N/2dB) · 2d · O(B) = O(N log(16n/B)). Hence the
amortized cost per operation is O(q + logB + log(16n/B)) = O(q + log n). We can set q as large
as B/2 = Θ(m/r) while still storing the hash function in client memory, which reduces the failure
probability to 1−Nn/eq/4.

3 Offline Oblivious RAM

We construct an efficient offline oblivious RAM from oblivious priority queues that only support
the operations ExtractMin and Insert. The resulting ORAM construction has the same asymp-
totic bandwidth overhead as the underlying oblivious priority queue and thus by instantiating our
construction here with our oblivious priority queue construction from Section 2.1, we obtain an
asymptotically optimal offline ORAM.

Notation Following the notation of [PPRY18], we use Addrs [Alg] to denote the memory access
pattern of an algorithm that uses external memory, which consist of all the accessed addresses in
the external memory.

Definition 6 (Offline Oblivious RAM). An Offline Oblivious RAM scheme ORAM = (Init,Access)
consists of the following algorithms:

• (D̃, st)← Init(1λ, D,P): The initialization algorithm takes the database D and access pattern
P = (addr1, . . . , addrn) as input and outputs a state st and a memory data structure D̃.

• (v, st′)← Access(st, D̃, I): The access algorithm takes as input the memory data structure D̃,
the current state st, and an instruction I = (op, addr, data), where op ∈ {read,write}. If
op = read, then data = ⊥ and the algorithm sets v to be the data block stored in D̃ at position
addr. If op = write, then the algorithm writes data into the memory D̃ at location addr and
sets v = ⊥. The algorithm returns v and a updated state st′.

An offline ORAM is correct if for every i ∈ [|P |], vi = v′i where vi and v′i are the values returned

by the i-th access operation of the Offline ORAM (on D̃) and RAM (on D) respectively.
An offline ORAM is secure if there exists a simulator Sim such that for every PPT adversary A,
and any n = poly(λ),∣∣∣Pr

[
ExpReal

A (n, λ) = 1
]
− Pr

[
ExpSim

A (n, λ) = 1
]∣∣∣ ≤ negl(λ)

where ExpReal
A and ExpSim

A are defined below.

Notice that the goal of an oblivious RAM is to hide any information revealed by the access
pattern during a RAM execution. Therefore it’s natural to assume that the memory is already
encrypted and that every cell accessed, is re-encrypted and rewritten in the memory (in RAM),
otherwise hiding the addresses accessed is the least of anyone’s worries! Consequently the simulator
uses the same distribution to sample the content of the simulated D̃; what is the focus of our
attention here is that the outputs of Addrs[·] produced in the two experiments are indistinguishable
from each other.
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ExpReal
A (n, λ)

(D,P )← A(1λ)

X ← Addrs
[
(D̃, st)← Init(1λ, D, P )

]
for j = 1 to n

Ij ← A(D̃,X )

If addrj 6= P [j] return 0.

X ∗ ← Addrs
[
(v, st)← Access(st, D̃, Ij)

]
X ← X ∗ ∪ X

return b← A(D̃,X ).

ExpSim
A (n, λ)

(D,P )← A(1λ)

X ← Addrs
[
(D̃, st)← Sim(1λ, |D| , |P |)

]
for j = 1 to n

Ij ← A(D̃,X )

If addrj 6= P [j] return 0.

X ∗ ← Addrs
[
(v, st)← Sim(st, D̃, acc)

]
X ← X ∗ ∪ X

return b← A(D̃,X ).

Figure 1: Real and Simulated Experiments for defining the security of the Offline ORAM

3.1 Construction of Offline ORAM
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Figure 2: P is a arbitrary, but fixed access pattern represented by an ordered sequence of addresses,
D is the initial RAM state, and the initial state of the priority queue representing the encoded
oblivious RAM is D̃. For the priority queue D̃, the keys are written inside the box and the
priorities are written below. The last two rows represent the state of the encoded memory after
two read operations have been performed.

In an offline ORAM, the access pattern P = (addr1, . . . , addrn) is fixed a-priori and known
during the initialization of the ORAM data structure D̃. Knowing this, it is possible to create an
ordered list for each memory cell addr, which consists of the time-steps when that cell is accessed,
in other words AcTiaddr = {i ∈ {1, . . . , n} s.t. P [i] = addr}. Let saddr = |AcTiaddr|. Now imagine
we create a priority queue and store every memory cell addr by inserting (D[addr],AcTiaddr[j]) for
all j ∈ {1, . . . , saddr} in the priority queue. Then cell addr is extracted from the priority queue at
time AcTiaddr[1] and then at time AcTiaddr[2] and so on and so forth for all addr ∈ P . However we
do not know what the memory cell addr contains at all times during preprocessing. We only know
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their initial values2. Therefore we cannot actually save the memory cell’s content for all future
time-steps when creating the priority queue. What we can do is to separate the two components
“data” and“access time” that were saved together in our previous approach and save them into the
queue with two consecutive priorities p and p+ 1. And make sure that each operation extracts two
elements from the priority queue. As a result, the priority for the operation i is no longer i but
2i3. If the ith operation is the jth time addr is accessed (i.e P [i] = addr and AcTiaddr[j] = i), then
we add (2AcTiaddr[j + 1], p) to the queue which saves the next “access time” for addr; this can be
done during the initialization for all operations in P . And we would like to add (D[addr], p + 1)
to save the correct content for the ith access operation. If the ith access is the first time addr is
accessed then the correct value for D[addr] is known during the initialization and can be added
to the queue. If j > 1, we need to make sure that at time AcTiaddr[j − 1] the updated value of
D[addr] is inserted into the queue with priority p+ 1 = 2AcTiaddr[j] + 1. Consequently, each RAM
operation is translated into 2 ExtractMin and one Insert operation on the priority queue. Finally
using an oblivious priority queue will ensure that no information about the priorities and operations
performed on the queue is revealed. We now provide a formal description of our construction and
illustrate how it works in Figure 2.

Notation We index lists and arrays starting from 1. Let P = (addr1, . . . , addrn) be the ordered
sequence of memory cells that will be accessed and let D be the initial memory content. Let A be
the set of all addresses accessed in P . Let saddr be the number of times addr is repeated in P . Finally
let AcTiaddr be as defined above. We define our offline oblivious RAM scheme Π = (Init,Access) as
follows

Init(1λ, D,P):

1. Create AcTiaddr for each addr ∈ D. Then add one more auxiliary element to AcTiaddr :=
AcTiaddr ∪ {n+ addr}. // this is a dummy element added to list of time-steps.

2. Initialize an empty oblivious priority queue Q.

3. For each addr ∈ D insert (D[addr], 2AcTiaddr[1] + 1) to Q.

4. For each addr ∈ A and for j = 1, . . . , saddr, insert (2AcTiaddr[j + 1], 2AcTiaddr[j]) to Q.

5. Return Q as the encoded memory D̃.

Access(st, D̃, I = (op, addr, data)):

1. ExtractMin to obtain the lowest priority element in D̃ and call it p.

2. ExtractMin again and call the returned value v.

3. If op = write, then set v := data.

4. (Irrespective of which operation is performed,) insert (v, p+ 1) into the priority queue

5. If op = read, then we return v else return ⊥.
2We assume all memory cells have some initial value, without loss of generality.
3for simplicity we consider p = 2i for the ith operation and therefore the smallest priority in the queue is 2.
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Theorem 5. Assume the simple oblivious priority queue processes a sequence of n∗ = 4n + d
operations using amortized x memory accesses at the server and uses m bits of client memory, with
element size r and server block size w and is correct with probability p and is statistically secure.
Then Offline Oblivious RAM Π described above is correct with the same correctness and security
and efficiency parameters as the oblivious priority queue if the offline RAM processes n = poly(d)
operations and has memory D of size |D| = d and the same element size and server block size as
the OPQ.

Corollary 1. For any m = Ω(log2 n), there exists an offline oblivious RAM which can process
n operations with amortized bandwidth cost O(log n) blocks and using m bits of client memory,
with element size Θ(log n) and server block size Θ(log n) which is correct with probability at least
1− e−Ω(m/ logn) and is statistically secure.

Proof of Security. Consider a simulator that is given |D| and |P |. Then the simulator initializes
an oblivious priority queue and inserts |D|+ |P | elements (of correct size) in it and returns it as D̃
then every time the simulator is called to access D̃ it will perform two ExtractMin operations and
one insert operation. Therefore by the security of Oblivious Priority Queue the two experiments
are indistinguishable.

Proof of Correctness. We show that the following statement is true, from which follows that
the Offline ORAM is correct assuming the OPQ is correct.

For i ∈ {1, . . . , n}, at time i (when the i-th RAM operation is performed),

a) the two elements in the OPQ with the smallest priorities are the following, assuming i is the
jth operation accessing address r, or in other words AcTir[j] = i :

(2AcTirj + 1], 2AcTir[j] = 2i), (D[r, j − 1], 2AcTir[j] + 1 = 2i+ 1)

where D[r, j] represents the value of D[r] after the jth accesses to cell r.

b) and element (D[r, j], 2AcTir[j + 1] + 1) is added to the queue.

Proof. First notice that at the initialization stage |D|+ n elements are inserted in an empty OPQ;
Of which, n have even number priorities 2i (one for each access operation) and |D| have odd number
priorities, and only for addresses accessed in P these odd priorities are of the form 2i+ 1 for some
i ∈ {1, . . . , n}, the rest are priorities too large to be ever extracted from the queue (we will show
this more formally shortly). Also note that the even number priorities (k, 2i) for i ∈ {1, . . . , n}
have a time-step as their keys, more specifically the next time step when the same address is going
to be accessed; while the odd number priorities have that cell’s content as their key.

Base Cases

1. At time 1, D[r, 0] = D[r] and j = 1. We can see immediately that the two elements
(2AcTir[2], 2) and (D[r, 0], 3) are indeed in the queue (added during the initialization) and
since 2 and 3 are the smallest priorities possible, they clearly satisfy Part a of the statement.
Therefore once operation Access(st, D̃, I1 = (op, r,data)) is performed, p = 2AcTir[2] and
v = D[r, 0]. If op = read then D[r, 1] := v is returned if op = write D[r, 1] := data and in
both cases (D[r, 1], 2AcTir[2] + 1) is inserted into the queue. Therefore the second part of the
statements holds too.
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2. At time i = 2

(a) if r = P [i] is accessed for the first time (i.e j = 1, and AcTir[1] = i), then we know
(according to the initialization phase) that (2AcTir[2], 2i = 4) and (D[r], 2i+ 1 = 5) are
in the priority queue. And since 4 and 5 are the next smallest numbers (after removal
of 2 and 3 at time step 1,) the first part of the statement holds and following the same
reasoning as before, the second part holds as well.

(b) if r is accessed for the second time, then AcTir[2] = 2 and therefore since (2AcTir[3], 2AcTir[2])
was added during the initialization and we added (v = D[r, 1], 2AcTir[2] + 1) at time
AcTir[1] = 1, both elements exists and have the smallest priorities. Thus they are re-
moved during the ith/second operation and we have p = 2AcTir[3] and v = D[r, 1]. If
the operation is read, D[r, 2] := v is returned, if op = write D[r, 2] := data and in both
cases (D[r, 2], 2AcTir[3] + 1) is inserted into the queue. Therefore the second part of the
statements holds too

Induction Step Assume that for any i ≤ ` < n − 1 and for r = P [i] and AcTir[j] = i it holds
that at time i, (2AcTir[j + 1], 2AcTir[j] = 2i) and (D[r, j − 1], 2AcTir[j] + 1 = 2i + 1) are in the
queue and have the two smallest priorities and that (D[r, j], 2AcTir[j+1]+1) is added to the queue
at the end of ith operation (induction hypothesis)

Since at every step i before `+1 the two elements removed from the queue have priorities 2i and
2i+1, if we show that two elements with priorities 2(`+1) and 2(`+1)+1 = 2`+3 exist in the queue,
it follows that they also have the smallest priorities (all smaller ones are removed in the previous
steps) and will be removed from it during the `+1st operation. Let P [`+1] = r′ and AcTir′ [j] = `+1
for some j ∈ {1, . . . , sr′}. We know that (2AcTir′ [j+1], 2AcTir′ [j] = 2`+2) was added to the queue
in the initialization phase. If j = 1 then, it is the first time that r′ is accessed and therefore
(D[r′, 0], 2AcTir′ [j] + 1 = 2` + 3) was also added during the initialization. If however j > 1 then
according to the induction hypothesis at time AcTir′ [j− 1] ≤ ` (D[r′, j− 1], 2AcTi′r[j] + 1 = 2`+ 3)
was added to the queue. Therefore the correct two elements with priorities 2`+ 2 and 2`+ 3 are in
the queue. Once operation Access(st, D̃, I`+1 = (op, r′, data)) is performed, p = 2AcTir′ [j + 1] and
v = D[r, j − 1]. If op = read then D[r, j] := v is returned, if op = write, v = D[r, j] := data and in
both cases (v, 2AcTir[j + 1] + 1) is inserted into the queue.

This shows that at every step the value returned by the offline oblivious RAM is the same as
the output of a RAM executing the same accesses P . Furthermore since only n = |P | operations
are performed and during those operations elements with priorities {2, 3, . . . , 2n+ 1} are removed,
none of the elements with higher priorities (p ≥ 2(n+1)) are removed from the queue. Therefore the
correctness of the scheme follows directly from the correctness of the oblivious priority queue.

4 Offline Oblivious RAM

Our construction of offline oblivious RAM is deferred to Appendix A.

5 Oblivious Sorting and Shuffling

In this section we outline how our OPQ leads to optimal oblivious sorting and shuffling algorithms.
Recall, that a sorting or shuffling algorithm is called oblivious, if the access pattern is independent
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of the memory cell’s contents that are being sorted or shuffled. Let X = x1, . . . , xN be the memory
contents that we want to sort or shuffle. For the sake of simplicity, we assume that both data
elements and priorities come from the same universe and that all memory cells contain distinct
entries. Let π be a function, which defines how the memory cells should be rearranged. For the
case of sorting, π maps each index i ∈ [N ] to xi. For the case of shuffling, π is a uniformly random
permutation on [N ]. For our algorithm here we only need the simple version of our OPQ from
Section 2.1.

Our algorithm works as follows. We initialize an empty priority queue. For each i ∈ [N ], we
read xi from X and then insert xi with priority π(i) into the oblivious priority queue Once all
N elements are inserted, we then use ExtractMin N times to obtain the permuted memory cells
X ′ = x′1, . . . , x

′
N , where each x′i is the output of the i-th ExtractMin call.

It is easy to see that the above algorithm is oblivious, since it performs one data-independent
iteration over X and only uses a fixed number of operations on the OPQ afterwards. The correctness
of our sorting/shuffling algorithm follows from the correctness of the underlying OPQ. For example,
for the case of sorting, the elements are inserted with their priorities being their actual values. Since
the OPQ returns the elements sorted according to their priorities, it follows that the elements are
sorted according to their values.

In terms of efficiency, we perform 2N OPQ accesses and N direct accesses to X , which means
that our amortized overhead is is a constant factor larger than the overhead of the underlying
OPQ.

6 Offline Oblivious RAM

We construct an efficient offline oblivious RAM from oblivious priority queues that only support
the operations ExtractMin and Insert. The resulting ORAM construction has the same asymp-
totic bandwidth overhead as the underlying oblivious priority queue and thus by instantiating our
construction here with our oblivious priority queue construction from Section 2.1, we obtain an
asymptotically optimal offline ORAM.

Notation Following the notation of [PPRY18], we use Addrs [Alg] to denote the memory access
pattern of an algorithm that uses external memory, which consist of all the accessed addresses in
the external memory.

Definition 7 (Offline Oblivious RAM). An Offline Oblivious RAM scheme ORAM = (Init,Access)
consists of the following algorithms:

• (D̃, st)← Init(1λ, D,P): The initialization algorithm takes the database D and access pattern
P = (addr1, . . . , addrn) as input and outputs a state st and a memory data structure D̃.

• (v, st′)← Access(st, D̃, I): The access algorithm takes as input the memory data structure D̃,
the current state st, and an instruction I = (op, addr, data), where op ∈ {read,write}. If
op = read, then data = ⊥ and the algorithm sets v to be the data block stored in D̃ at position
addr. If op = write, then the algorithm writes data into the memory D̃ at location addr and
sets v = ⊥. The algorithm returns v and a updated state st′.

An offline ORAM is correct if for every i ∈ [|P |], vi = v′i where vi and v′i are the values returned

by the i-th access operation of the Offline ORAM (on D̃) and RAM (on D) respectively.
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An offline ORAM is secure if there exists a simulator Sim such that for every PPT adversary A,
and any n = poly(λ),∣∣∣Pr

[
ExpReal

A (n, λ) = 1
]
− Pr

[
ExpSim

A (n, λ) = 1
]∣∣∣ ≤ negl(λ)

where ExpReal
A and ExpSim

A are defined below.

ExpReal
A (n, λ)

(D,P )← A(1λ)

X ← Addrs
[
(D̃, st)← Init(1λ, D, P )

]
for j = 1 to n

Ij ← A(D̃,X )

If addrj 6= P [j] return 0.

X ∗ ← Addrs
[
(v, st)← Access(st, D̃, Ij)

]
X ← X ∗ ∪ X

return b← A(D̃,X ).

ExpSim
A (n, λ)

(D,P )← A(1λ)

X ← Addrs
[
(D̃, st)← Sim(1λ, |D| , |P |)

]
for j = 1 to n

Ij ← A(D̃,X )

If addrj 6= P [j] return 0.

X ∗ ← Addrs
[
(v, st)← Sim(st, D̃, acc)

]
X ← X ∗ ∪ X

return b← A(D̃,X ).

Figure 3: Real and Simulated Experiments for defining the security of the Offline ORAM

Notice that the goal of an oblivious RAM is to hide any information revealed by the access
pattern during a RAM execution. Therefore it’s natural to assume that the memory is already
encrypted and that every cell accessed, is re-encrypted and rewritten in the memory (in RAM),
otherwise hiding the addresses accessed is the least of anyone’s worries! Consequently the simulator
uses the same distribution to sample the content of the simulated D̃; what is the focus of our
attention here is that the outputs of Addrs[·] produced in the two experiments are indistinguishable
from each other.

6.1 Construction of Offline ORAM

In an offline ORAM, the access pattern P = (addr1, . . . , addrn) is fixed a-priori and known during
the initialization of the ORAM data structure D̃. Knowing this, it is possible to create an ordered
list for each memory cell addr, which consists of the time-steps when that cell is accessed, in
other words AcTiaddr = {i ∈ {1, . . . , n} s.t. P [i] = addr}. Let saddr = |AcTiaddr|. Now imagine we
create a priority queue and store every memory cell addr by inserting (D[addr],AcTiaddr[j]) for all
j ∈ {1, . . . , saddr} in the priority queue. Then cell addr is extracted from the priority queue at time
AcTiaddr[1] and then at time AcTiaddr[2] and so on and so forth for all addr ∈ P . However we do
not know what the memory cell addr contains at all times during preprocessing. We only know
their initial values4. Therefore we cannot actually save the memory cell’s content for all future
time-steps when creating the priority queue. What we can do is to separate the two components
“data” and“access time” that were saved together in our previous approach and save them into the

4We assume all memory cells have some initial value, without loss of generality.
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Figure 4: P is a arbitrary, but fixed access pattern represented by an ordered sequence of addresses,
D is the initial RAM state, and the initial state of the priority queue representing the encoded
oblivious RAM is D̃. For the priority queue D̃, the keys are written inside the box and the
priorities are written below. The last two rows represent the state of the encoded memory after
two read operations have been performed.

queue with two consecutive priorities p and p+ 1. And make sure that each operation extracts two
elements from the priority queue. As a result, the priority for the operation i is no longer i but
2i5. If the ith operation is the jth time addr is accessed (i.e P [i] = addr and AcTiaddr[j] = i), then
we add (2AcTiaddr[j + 1], p) to the queue which saves the next “access time” for addr; this can be
done during the initialization for all operations in P . And we would like to add (D[addr], p + 1)
to save the correct content for the ith access operation. If the ith access is the first time addr is
accessed then the correct value for D[addr] is known during the initialization and can be added
to the queue. If j > 1, we need to make sure that at time AcTiaddr[j − 1] the updated value of
D[addr] is inserted into the queue with priority p+ 1 = 2AcTiaddr[j] + 1. Consequently, each RAM
operation is translated into 2 ExtractMin and one Insert operation on the priority queue. Finally
using an oblivious priority queue will ensure that no information about the priorities and operations
performed on the queue is revealed. We now provide a formal description of our construction and
illustrate how it works in Figure 2.

Notation We index lists and arrays starting from 1. Let P = (addr1, . . . , addrn) be the ordered
sequence of memory cells that will be accessed and let D be the initial memory content. Let A be
the set of all addresses accessed in P . Let saddr be the number of times addr is repeated in P . Finally
let AcTiaddr be as defined above. We define our offline oblivious RAM scheme Π = (Init,Access) as
follows

Init(1λ, D,P):

1. Create AcTiaddr for each addr ∈ D. Then add one more auxiliary element to AcTiaddr :=
AcTiaddr ∪ {n+ addr}. // this is a dummy element added to list of time-steps.

2. Initialize an empty oblivious priority queue Q.

5for simplicity we consider p = 2i for the ith operation and therefore the smallest priority in the queue is 2.
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3. For each addr ∈ D insert (D[addr], 2AcTiaddr[1] + 1) to Q.

4. For each addr ∈ A and for j = 1, . . . , saddr, insert (2AcTiaddr[j + 1], 2AcTiaddr[j]) to Q.

5. Return Q as the encoded memory D̃.

Access(st, D̃, I = (op, addr, data)):

1. ExtractMin to obtain the lowest priority element in D̃ and call it p.

2. ExtractMin again and call the returned value v.

3. If op = write, then set v := data.

4. (Irrespective of which operation is performed,) insert (v, p+ 1) into the priority queue

5. If op = read, then we return v else return ⊥.

Theorem 6. Assume the simple oblivious priority queue processes a sequence of n∗ = 4n + d
operations using amortized x memory accesses at the server and uses m bits of client memory, with
element size r and server block size w and is correct with probability p and is statistically secure.
Then Offline Oblivious RAM Π described above is correct with the same correctness and security
and efficiency parameters as the oblivious priority queue if the offline RAM processes n = poly(d)
operations and has memory D of size |D| = d and the same element size and server block size as
the OPQ.

Corollary 2. For any m = Ω(log2 n), there exists an offline oblivious RAM which can process
n operations with amortized bandwidth cost O(log n) blocks and using m bits of client memory,
with element size Θ(log n) and server block size Θ(log n) which is correct with probability at least
1− e−Ω(m/ logn) and is statistically secure.

Proof of Security. Consider a simulator that is given |D| and |P |. Then the simulator initializes
an oblivious priority queue and inserts |D|+ |P | elements (of correct size) in it and returns it as D̃
then every time the simulator is called to access D̃ it will perform two ExtractMin operations and
one insert operation. Therefore by the security of Oblivious Priority Queue the two experiments
are indistinguishable.

Proof of Correctness. We show that the following statement is true, from which follows that
the Offline ORAM is correct assuming the OPQ is correct.

For i ∈ {1, . . . , n}, at time i (when the i-th RAM operation is performed),

a) the two elements in the OPQ with the smallest priorities are the following, assuming i is the
jth operation accessing address r, or in other words AcTir[j] = i :

(2AcTirj + 1], 2AcTir[j] = 2i), (D[r, j − 1], 2AcTir[j] + 1 = 2i+ 1)

where D[r, j] represents the value of D[r] after the jth accesses to cell r.

b) and element (D[r, j], 2AcTir[j + 1] + 1) is added to the queue.
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Proof. First notice that at the initialization stage |D|+ n elements are inserted in an empty OPQ;
Of which, n have even number priorities 2i (one for each access operation) and |D| have odd number
priorities, and only for addresses accessed in P these odd priorities are of the form 2i+ 1 for some
i ∈ {1, . . . , n}, the rest are priorities too large to be ever extracted from the queue (we will show
this more formally shortly). Also note that the even number priorities (k, 2i) for i ∈ {1, . . . , n}
have a time-step as their keys, more specifically the next time step when the same address is going
to be accessed; while the odd number priorities have that cell’s content as their key.

Base Cases

1. At time 1, D[r, 0] = D[r] and j = 1. We can see immediately that the two elements
(2AcTir[2], 2) and (D[r, 0], 3) are indeed in the queue (added during the initialization) and
since 2 and 3 are the smallest priorities possible, they clearly satisfy Part a of the statement.
Therefore once operation Access(st, D̃, I1 = (op, r,data)) is performed, p = 2AcTir[2] and
v = D[r, 0]. If op = read then D[r, 1] := v is returned if op = write D[r, 1] := data and in
both cases (D[r, 1], 2AcTir[2] + 1) is inserted into the queue. Therefore the second part of the
statements holds too.

2. At time i = 2

(a) if r = P [i] is accessed for the first time (i.e j = 1, and AcTir[1] = i), then we know
(according to the initialization phase) that (2AcTir[2], 2i = 4) and (D[r], 2i+ 1 = 5) are
in the priority queue. And since 4 and 5 are the next smallest numbers (after removal
of 2 and 3 at time step 1,) the first part of the statement holds and following the same
reasoning as before, the second part holds as well.

(b) if r is accessed for the second time, then AcTir[2] = 2 and therefore since (2AcTir[3], 2AcTir[2])
was added during the initialization and we added (v = D[r, 1], 2AcTir[2] + 1) at time
AcTir[1] = 1, both elements exists and have the smallest priorities. Thus they are re-
moved during the ith/second operation and we have p = 2AcTir[3] and v = D[r, 1]. If
the operation is read, D[r, 2] := v is returned, if op = write D[r, 2] := data and in both
cases (D[r, 2], 2AcTir[3] + 1) is inserted into the queue. Therefore the second part of the
statements holds too

Induction Step Assume that for any i ≤ ` < n − 1 and for r = P [i] and AcTir[j] = i it holds
that at time i, (2AcTir[j + 1], 2AcTir[j] = 2i) and (D[r, j − 1], 2AcTir[j] + 1 = 2i + 1) are in the
queue and have the two smallest priorities and that (D[r, j], 2AcTir[j+1]+1) is added to the queue
at the end of ith operation (induction hypothesis)

Since at every step i before `+1 the two elements removed from the queue have priorities 2i and
2i+1, if we show that two elements with priorities 2(`+1) and 2(`+1)+1 = 2`+3 exist in the queue,
it follows that they also have the smallest priorities (all smaller ones are removed in the previous
steps) and will be removed from it during the `+1st operation. Let P [`+1] = r′ and AcTir′ [j] = `+1
for some j ∈ {1, . . . , sr′}. We know that (2AcTir′ [j+1], 2AcTir′ [j] = 2`+2) was added to the queue
in the initialization phase. If j = 1 then, it is the first time that r′ is accessed and therefore
(D[r′, 0], 2AcTir′ [j] + 1 = 2` + 3) was also added during the initialization. If however j > 1 then
according to the induction hypothesis at time AcTir′ [j− 1] ≤ ` (D[r′, j− 1], 2AcTi′r[j] + 1 = 2`+ 3)
was added to the queue. Therefore the correct two elements with priorities 2`+ 2 and 2`+ 3 are in
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the queue. Once operation Access(st, D̃, I`+1 = (op, r′, data)) is performed, p = 2AcTir′ [j + 1] and
v = D[r, j − 1]. If op = read then D[r, j] := v is returned, if op = write, v = D[r, j] := data and in
both cases (v, 2AcTir[j + 1] + 1) is inserted into the queue.

This shows that at every step the value returned by the offline oblivious RAM is the same as
the output of a RAM executing the same accesses P . Furthermore since only n = |P | operations
are performed and during those operations elements with priorities {2, 3, . . . , 2n+ 1} are removed,
none of the elements with higher priorities (p ≥ 2(n+1)) are removed from the queue. Therefore the
correctness of the scheme follows directly from the correctness of the oblivious priority queue.
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