
The Fast Johnson-Lindenstrauss Transform is Even Faster

Ora Nova Fandina Mikael Møller Høgsgaard Kasper Green Larsen

Abstract

The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP’09)
embeds a set of n points in d-dimensional Euclidean space into optimal k = O(ε−2 lnn) dimensions, while
preserving all pairwise distances to within a factor (1± ε). The Fast JL transform supports computing
the embedding of a data point in O(d ln d+k ln2 n) time, where the d ln d term comes from multiplication
with a d×d Hadamard matrix and the k ln2 n term comes from multiplication with a sparse k×d matrix.
Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality
reduction techniques for many tradeoffs between ε, d and n.

In this work, we give a surprising new analysis of the Fast JL transform, showing that the k ln2 n
term in the embedding time can be improved to (k ln2 n)/α for an α = Ω(min{ε−1 ln(1/ε), lnn}). The
improvement follows by using an even sparser matrix. We also complement our improved analysis with
a lower bound showing that our new analysis is in fact tight.



1 Introduction
Dimensionality reduction is a central technique for speeding up algorithms and reducing the memory footprint
of large data sets. The basic idea is to map a set X ⊂ Rd of n high-dimensional points to a lower dimensional
representation, while approximately preserving similarities between the points. The most fundamental result
in dimensionality reduction, is the Johnson-Lindenstrauss transform [13], which for any precision 0 < ε < 1,
gives a mapping f : X → Rk with k = O(ε−2 lnn) such that

∀x, y ∈ X : ‖f(x)− f(y)‖2 ∈ (1± ε)‖x− y‖2. (1)

That is, the pairwise Euclidean distance between the embeddings of any two points x, y ∈ X is within
a factor (1 ± ε) of the original distance. The target dimensionality of k = O(ε−2 lnn) is known to be
optimal [17, 3]. For algorithmic applications where one can tolerate a small loss of precision, one can apply
a Johnson-Lindenstrauss transform as a preprocessing step to reduce the dimensionality of the input. Since
the running time of most algorithms depend on the dimensionality of the input, this typically speeds up the
analysis while also reducing memory consumption.

A simple construction of a mapping f satisfying eq. (1) is to let f(x) = k−1/2Ax, where A is a random
k × d matrix, having each entry i.i.d. N (0, 1) distributed [10]. This results in an embedding time of O(kd)
to compute the matrix-vector product Ax. For some applications, this embedding time may dominate the
running time of the algorithms applied to the embedded data, hence dimensionality reducing maps with a
faster embedding time has been the focus of much research. The line of research on faster dimensionality
reducing maps splits roughly into two categories: 1) maps based on sparse matrices, and 2), maps based on
structured matrices with fast matrix-vector multiplication algorithms.

Sparse JL. A sparse JL transform is obtained by replacing the dense matrix A above with a matrix
having only t non-zero entries per column. Computing the product Ax now takes only O(td) time instead
of O(kd). Perhaps even more importantly, if the input vectors x ∈ X are themselves sparse vectors, then
the embedding time is further reduced to O(t‖x‖0), where ‖x‖0 denotes the number of non-zero entries in
x. This is particularly useful when applying JL on e.g. bag-of-words, n-gram or tf-idf representations of
text documents [18], which are often very sparse. The fastest (sparsest) known construction, due to Kane
and Nelson [15], achieves t = O(ε−1 lnn), which nearly matches a sparsity lower bound by Nelson and
Nguyen [20], stating that any Sparse JL must have t = Ω(ε−1 lnn/ ln(1/ε)). Sparse JL thus improves over
classic JL by an ε−1 factor.

While the lower bound by Nelson and Nguyen rules out significant further improvements, the Feature
Hashing technique by Weinberger et al. [24] study the extreme case of t = 1. Since this is below the
sparsity lower bound, they have to assume that the ratio ν = ‖z‖∞/‖z‖2 is small for all pairwise difference
vectors z = y − x for x, y ∈ X to ensure eq. (1) holds. Determining the exact ratio ν for which eq. (1)
holds was subsequently done by Freksen et al. [7] and generalized to t-sparse embeddings for all t ≥ 1 by
Jagadeesan [11].

Fast JL. Ailon and Chazelle [1] initiated the study of JL transforms that exploit dense matrices with
fast matrix-vector multiplication algorithms. Concretely, they defined the Fast JL transform where the
embedding of a vector x is computed as PHDx, such that D is a diagonal matrix with random signs on
the diagonal, H is a d × d standardized Hadamard matrix and P is a sparse k × d matrix. Computing Dx
takes only O(d) time, and multiplication with the Hadamard matrix can be done in O(d ln d) time. The
key observation that permits a very sparse matrix P , is that with high probability, the vector y = HDx
has a small ratio ν = ‖y‖∞/‖y‖2, i.e. no single entry contributes most of the "mass". As was the case for
Feature Hashing, such a bound allows for an even sparser random projection matrix P than what a Sparse
JL transform could achieve. Ailon and Chazelle proved that a matrix P in which each entry is non-zero
only with probability q = O((ln2 n)/d) suffices for eq. (1). Thus the expected number of non-zeroes in P is
kdq = O(k ln2 n) (also with high probability) and the product Py can be computed in O(k ln2 n) time. This
yields a total embedding time of O(d ln d+ k ln2 n).
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Numerous follow-up works have attempted to improve over the Fast JL construction of Ailon and Chazelle,
in particular attempting to shave off the k ln2 n additive term to obtain a clean O(d ln d) time embedding.
These approaches naturally divide into a couple of categories. First, a number of constructions sacrifice the
optimal target dimensionality of k = O(ε−2 lnn) for faster embedding time. This includes e.g. five solutions
with O(d ln d) embedding time, but different sub-optimal k = O(ε−2 lnn ln4 d) [16], k = O(ε−2 ln3 n) [6], k =

O(ε−1 ln3/2 n ln3/2 d + ε−2 lnn ln4 d) [16], k = O(ε−2 ln2 n) [9, 23, 8] and k = O(ε−2 lnn ln2(lnn) ln3 d) [12],
respectively. The second category is solutions where one assumes that k is significantly smaller than d.
Here there are two solutions that both achieve O(d ln k) embedding time under the assumption that k =
o(d1/2) [2, 4]. Among solutions that insist on optimal k = O(ε−2 lnn) and that make no assumption about
the relationship between k and d (other than the obvious k ≤ d), only the recent analysis [12] of the Kac JL
transform [14] improves over the classic Fast JL solution by Ailon and Chazelle for some tradeoffs between
ε, d and n. The Kac JL transform works by repeatedly picking two coordinates and doing a random unitary
rotation on the two coordinates. After a sufficient number of steps, one projects on to the first k = O(ε−2 lnn)
coordinates and scales the coordinates appropriately. Since each rotation takes O(1) time, the running time
is proportional to the number of steps needed. Jain et al. [12] showed that

O(d ln d+ min{d lnn, k lnn ln2(lnn) ln3 d}) (2)

rotations suffice. Compared to the O(d ln d+ k ln2 n) embedding time of Fast JL, Kac JL is an improvement
unless ln3 d > lnn/ ln2(lnn). Despite these numerous approaches to Fast JL, we still lack a clean O(d ln d)
or O(d ln k) time solution.

Our Contributions. While Fast JL has been the focus of a considerable amount of research, we give
a surprising new analysis of the classic Fast JL transform by Ailon and Chazelle [1]. Our analysis shows
that the sparsity parameter q in the matrix P can be lowered by a factor Ω(min{ε−1 ln(1/ε), lnn}), thereby
yielding a similar improvement in embedding time. Concretely, we show that Fast JL can embed a vector x
in time:

O

(
d ln d+ min

{
ε−1d lnn, k lnn ·max

{
1,

ε lnn

ln(1/ε)

}})
. (3)

While this rather complicated expression might seem like an artifact of our proof, we complement our
improved upper bound by showing the existence of a vector requiring precisely this embedding time using
the PHDx Fast JL construction. In later sections, we also give an intuitive description of where the different
terms originate from.

Before giving more details on our results, let us thoroughly compare the bound to previous work. Com-
pared to the classic O(d ln d+k ln2 n) Fast JL bound, we observe that eq. (3) is always bounded by O(d ln d+
k lnnmax{1, ε lnn/ ln(1/ε)}), i.e. the term O(k ln2 n) is improved by a factor Ω(min{ε−1 ln(1/ε), lnn}).
Also, if we consider the case of ε = O(ln(lnn)/ lnn), then 1 takes the maximum value in the max-expression
and the bound simplifies to O(d ln d+ k lnn). Comparing this clean bound to the Kac JL bound in eq. (2),
this is a strict improvement (for ε < ln(lnn)/ lnn).

In the next section, we give a detailed description of the Fast JL transform and formally state our new
results.

2 The Fast Johnson-Lindenstrauss Transform
In the spirit of [1] we now introduce the notation for the Fast JL transform. Here we let d denote the input
dimension and k the output dimension. We assume d is a power of two, which can always be ensured by
padding with 0’s. The Fast JL transform is the composition of three matrices P ∈ Rk×d and H,D ∈ Rd×d.
Here D is a random diagonal matrix with independent Rademacher variables (Di,i is 1 or −1 with equal
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probability) on its diagonal, H is the normalized d× d Hadamard matrix (denoted Hd in the following):

H2 =
1√
2

(
1 1
1 −1

)
,

Hd =
1√
2

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
and P is a random matrix with the (i, j)’th entry being

√
1/q bi,jNi,j where bi,j is a Bernoulli random

variable with success probability/sparsity parameter q and Ni,j a standard normal random variable, where
all the bi,j ’s, Ni,j ’s and Di,i’s are independent of each other. The final embedding of a vector x is then
computed as k−1/2PHDx.

Analysis Sketch. As is standard in the analysis of JL transforms, we observe that k−1/2PHD is a linear
transformation. Hence for k−1/2PHD to satisfy eq. (1) for a set of points X, it suffices that k−1/2PHD
preserves the norm of every vector z = x− y with x, y ∈ X to within a factor (1± ε). Also by linearity, we
guarantee this by arguing that k−1/2PHD preserves the norm of a fixed unit vector x to within (1± ε) with
probability 1 − δ when k = O(ε−2 lg(1/δ)). Setting δ = 1/n3 and doing a union bound over all normalized
difference vectors z/‖z‖ with z = x − y for x, y ∈ X ensures eq. (1) holds with probability 1 − 1/n. For
shorthand, we from here on use ‖ · ‖ to denote the norm ‖ · ‖2.

To build some intuition for the key ideas used to show that the PHD construction approximately preserves
the norm of a unit vector with high probability, we first observe that H and D are both unitary matrices,
hence HDx preserves the norm of any vector x. Moreover, if we examine a single coordinate (HDx)i, then
it is distributed as d−1/2

∑
j σjxj for independent Rademachers σj = sign(Hi,j)Dj,j . Standard tail bounds

show that (HDx)i is bounded by
√

ln(d/δ)/d in absolute value with probability 1 − δ/d when x has unit
norm. A union bound over all d coordinates gives that they are all bounded by

√
ln(d/δ)/d with probability

1 − δ. Now that HDx has only small coordinates (recall x has unit norm), it suffices to use a very sparse
matrix P , precisely as in the analysis of Feature Hashing. Recall that we will set δ ≤ 1/n3 and thus the d
term in ln(d/δ) is irrelevant for d ≤ n. For simplicity, we will thus assume d ≤ n, which is also consistent
with previous work (it was assumed both for Fast JL [1] and Kac JL [12]).

Upper Bounds. In their seminal work, Ailon and Chazelle [1] showed that it suffices to set

q = O(ln2(n)/d)

to guarantee eq. (1) for a set X of n points (with probability 1 − 1/n by setting δ = 1/n3). Their proof
follows the template above, union bounding over preserving the norm of all normalized pairwise difference
vectors. This results in an expected kdq = O(k ln2 n) number of non-zero entries in P . Our main upper
bound result is an improved analysis, showing that an even sparser P suffice:

Theorem 1. Let X be a set of n vectors in Rd and let k = Θ(ε−2 lnn). Let further 0 < ε ≤ C where C is
some universal constant. Then for

q = O

(
min

{
ε,

lnn

d
·max

{
1,

ε lnn

ln(1/ε)

}})
,

we have that k−1/2PHD guarantees eq. (1) with probability at least 1− 1/n.

Compared to [1] which uses q = O(ln2(n)/d), we notice that even if we ignore the first term in the
min-expression, our guarantee on q is q = O(max{ln(n)/d, ε ln2(n)/(d ln(1/ε))), i.e. always at least a factor
Ω(min{lnn, ε−1 ln(1/ε)}) better. Also, for the case of ε = O(ln(lnn)/ lnn), the 1-term in the max dominates,
and the expression for q simplifies to a clean q = O(ln(n)/d). Plugging in the value of q from Theorem 1
(and recalling k = Θ(ε−2 lnn)), we get that the number of non-zeroes of P is

kdq = O

(
min

{
ε−1d lnn, k lnn ·max

{
1,

ε lnn

ln(1/ε)

}})
,
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in expectation. Moreover, since this number is larger than lnn, it follows from a Chernoff bound that the
number of non-zeroes is strongly concentrated around its mean.

Lower Bound. A natural question to ask now is whether the above q is optimal, or an even more refined
analysis can lead to further improvements. To answer this question, we show an example of a unit vector x,
such that for the mapping k−1/2PHDx to preserve the norm of x to within (1± ε) with probability 1− δ,
we cannot make P sparser than in Theorem 1:

Theorem 2. For 0 < δ, ε ≤ r where r is a universal constant and k = ε−2 ln(1/δ), there is a unit vector
x ∈ Rd for which we must have

q = Ω

(
min

{
ε,

ln(1/δ)

d
·max

{
1,
ε ln(1/δ)

ln(1/ε)

}})
,

for

1√
k
‖PHDx‖ ∈ (1± ε),

to hold with probability at least 1− δ.

For the reader concerned with assuming k = ε−2 ln(1/δ), we remark that Theorem 2 can also be shown
with k = c̃ε−2 ln(1/δ) for c̃ ≥ 1, and another universal constant r′.

Comparing Theorem 2 to Theorem 1, we observe that the bound on q match exactly when setting
δ = n−Θ(1). This means that the analysis of Fast JL cannot be improved if one attempts to show that
any fixed vector has its norm preserved except with probability n−Θ(1) and doing a union bound over all
pairwise difference vectors. It is however still conceivable that a more refined analysis could somehow argue
that there are only very few worst case vectors in any set X. However, such an improved analysis remains
to be seen for any JL transform (when focusing only on the type of guarantee in eq. (1), whereas net-based
arguments have been used e.g. for subspace embeddings [5]). In this light, Theorem 2 can be seen either as
a hard barrier for Fast JL, or as hinting at a way towards further improvements.

In the next section, we formally prove Theorem 1 and also discuss how our analysis differs from the
previous analysis by Ailon and Chazelle and conclude by giving more intuition on where the different terms
in the expression for q come from.

3 Upper Bound
In this section we give the proof of Theorem 1. We start by giving the high level ideas of our proof. As in
previous works, our analysis follows by arguing that for any fixed unit vector x, it holds with probability at
least 1− 1/n3 that ‖k−1/2PHDx‖ ∈ (1± ε).

First, we observe that HD is a unitary matrix and thus ‖HDx‖ = ‖x‖ = 1 for a unit vector x. Moreover,
any single coordinate (HDx)i equals d−1/2

∑d
j=1 σjxj , where the σj = Dj,j sign(Hi,j)’s are independent

Rademacher random variables. Thus in line with the analysis by Ailon and Chazelle [1], we get that any
coordinate (HDx)i is bounded by O(

√
ln(n)/d) in absolute value with probability 1− 1/n4. A union bound

over all d ≤ n coordinates (this assumption is also made in previous work) gives that all coordinates of HDx
are bounded by O(

√
ln(n)/d) with probability 1− 1/n3.

What remains now is to argue that k−1/2‖Pu‖ ∈ (1± ε) with high probability when u = HDx is a unit
vector with all coordinates bounded by O(

√
ln(n)/d).

To simplify the analysis, we will argue that k−1‖Pu‖2 ∈ (1±ε) with probability 1−1/n3. This is stronger
since

√
1± ε ⊂ (1±ε). To understand the distribution of ‖Pu‖2 for a fixed u, notice that the i’th coordinate

of Pu is given by
∑d
j=1 q

−1/2ujbi,jNi,j by definition of P . Let us assume that the Bernoulli random variables
bi,j have been fixed. In this case, (Pu)i is a sum of weighted and independent N (0, 1) random variables.
Hence (Pu)i is itself N (0, q−1

∑d
j=1 bi,ju

2
j ) distributed. Now define Zi =

∑d
j=1 bi,ju

2
j and let N1, . . . , Nk be
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independent N (0, 1) random variables. We see that, for fixed values of all Bernoullis, ‖Pu‖2 is distributed
as
∑k
i=1 q

−1(
√
ZiNi)

2, which is equal to
∑k
i=1 q

−1ZiN
2
i . Our proof now has two steps: 1.) Give a bound

on the Zi’s that holds with high probability over the random choice of the Bernoullis bi,j , and 2.), use the
bound on the Zi’s to argue that

∑k
i=1 q

−1ZiN
2
i behaves in a desirable manner.

In order to understand what type of bounds we need on the Zi’s, we start by examining step 2. For
this step, we need a tail bound on

∑k
i=1 q

−1ZiN
2
i . When the Zi’s are fixed, this is a weighted sum of sub-

exponential random variables. To analyse it, we use Proposition 5.16 from [22], which gives upper bounds
on the tails of centered sub-exponential random variables:

Lemma 3 ([22]). Let Y1, . . . , Yk be independent centred sub-exponential random variables in the sense that
there exist a constant C > 0 such that E[exp (CYi)] ≤ e. Then for every a1, . . . , ak ∈ R and R = a1Y1 +
· · ·+ akYk we have

P [|R| ≥ x] ≤ 2 exp
(
− cx2

‖a‖22

)
, ∀0 ≤ x ≤ ‖a‖22

‖a‖∞

P[|R| ≥ x] ≤ 2 exp
(
− cx
‖a‖∞

)
, ∀x ≥ ‖a‖22

‖a‖∞ .

where c > 0 is an absolute constant.

Note that for a random variable N ∼ N (0, 1), we have that the centred square (i.e. N2 − 1) is a
sub-exponential random variable in the spirit of Lemma 3. This can be seen by |t| ≤ 0.3 we have that

E
[
exp

(
t(N2 − 1)

)]
≤ E

[
exp(tN2)

]
= (1− 2t)

− 1
2 = exp

(
− ln(1− 2t)

2

)
≤ exp

(
(−2t) + (−2t)2

2

)
≤ e,

where the first equality follows by the χ2-distribution’s moment generating function and the second to last
inequality follows by − ln(1 + x) ≤ x + x2 for x > −0.68. So for C = 0.3 we can apply Lemma 3 to∑k
i=1 q

−1ZiN
2
i by rewriting as

∑k
i=1 q

−1Zi(N
2
i − 1) +

∑k
i=1 q

−1Zi. The latter term is constant when the
Bernouillis have been fixed and thus we may use Lemma 3.

Examining Lemma 3, we see that we need two bounds on the Zi’s, one on
∑
i Z

2
i and one on maxi |Zi|.

Thus for step 1., we focus on giving bounds on these two quantities. For this, we will use that u = HDx
has all coordinates bounded in absolute value by O(

√
ln(n)/d) as observed earlier. We then argue that the

hardest such vector u, is one in which precisely m coordinates all take the value m−1/2 = O(
√

ln(n)/d) and
the remaining coordinates of u are all 0. This is also the hard vector analysed by Ailon and Chazelle. In
their analysis, they simply bound

∑k
i=1 Z

2
i by k(maxi |Zi|)2 and this is where we improve over their work.

Giving a tight analysis of
∑
i Z

2
i is far from trivial and takes up the majority of Section 5.1.

For now, we merely state the concentration inequalities we need and return to proving them in Section 5.1.
For bounding maxi Zi, we prove the following lemma:

Lemma 4. For i = 1, . . . , k let Zi =
∑d
j=1 u

2
jbi,j where the bi,j’s are independent Bernoulli random variables

with success probability q and the u2
j ’s are positive real numbers bounded by 1/m and summing to 1. We then

have for α ≤ 1/4 that

P
[

max
i=1,...,k

Zi >
q

2α

]
≤ k exp

(
−mq ln(1/α)

32α

)
.

And to bound
∑
i Z

2
i , we show the following:

Lemma 5. Let Z1, . . . , Zk be i.i.d. random variables distributed as the Zi’s in Lemma 4. Then for any
t ≥ 64 · 24e3q2k and q ≥ 8/(em), we have:

P

[
k∑
i=1

Z2
i > t

]
< 14 exp

(
−
m
√
t ln(

√
t/23/(eq))

200 · 44 · 2 5
2

)
.
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Before continuing, let us briefly argue that Lemma 5 is tighter than using the approach of Ailon and
Chazelle where

∑
i Z

2
i is merely bounded as k(maxi Zi)

2. For large enough t, Lemma 5 roughly gives that
P[
∑
i Z

2
i > t] < exp(−m

√
t ln(
√
t/q)). If we instead bounded

∑
i Z

2
i by k(maxi Zi)

2, then for any t, their
approach would need maxi Zi ≤

√
t/k. Choosing α such that

√
t/k = q/(2α) and examining Lemma 4, we

would roughly get P[
∑
i Z

2
i > t] < k exp(−(m(

√
t/k) ln((

√
t/k)/q))). We would thus lose almost a factor√

k in the exponent. This is basically where our improvement comes from.
Unfortunately, Lemma 5 does not capture all tradeoffs between ε, d and n that we need. Thus we also

need the following alternative to Lemma 5:

Lemma 6. Let Z1, . . . , Zk be i.i.d. random variables distributed as the Zi’s in Lemma 4, with m = c2d/ lnn
and the embedding dimension k = c1ε

−2 lnn and q = c1ε, where c1 ≥ 1/c2. For ε ≤ c−1
1 /(e4) and t ≥

2c31e
8 lnn, we have that

P

[
k∑
i=1

Z2
i > t

]
≤ 3n−4c1 .

With the central lemmas laid out, we now give the full proof details by following the above proof outline.
The proofs of Lemma 4, Lemma 5 and Lemma 6 can be found in Section 5.1.

Proof of Theorem 1.

Proof. Let furtherm = c2d/ lnn for a small enough constant c2. Let the embedding dimension k = c1ε
−2 lnn,

with c1 ≥ 1/c2. Let the success probabilities of the binomial random variables bi,j in P be

q = max {c1/m, c1εmin {1, ln (n) / (m ln (1/ε))}} .

Assume for now that u is a vector in Rd such that u2
i ≤ 1/m for all i = 1, . . . , d and ‖u‖2 = 1. By construction

of P and the 2-stability of the standard normal distribution we have that

‖Pu‖2 =

k∑
i=1

 d∑
j=1

√
1/qujbi,jNi,j

2

d
=

k∑
i=1

1

q
ZiN

2
i ,

where Zi =
∑d
j=1 u

2
jbi,j and Ni’s are independent standard normal random variables. We first prove a bound

on
∑k
i=1 Zi. For this, notice that

∑k
i=1 Zi is a sum of independent random variables, where each Zi is a sum

of independent random variables with values between [0, 1/m]. Furthermore, we have E [Zi] = q, implying
that E[

∑k
i=1mZi] = qmk. We therefore get by a Chernoff bound that

P

[
k∑
i=1

Zi 6∈ (1± ε/4)qk

]
= P

[
k∑
i=1

mZi 6∈ (1± ε/4)qmk

]
≤ 2 exp

(
−qmkε

2

48

)
≤ 2n−c

2
1/48,

where the last inequality follows by q ≥ c1/m and k = c1ε
−2 lnn, so qmkε2 ≥ c21 lnn. Thus we have∑k

i=1 Zi ∈ (1± ε/4)qk with probability at least 1− 2n−c
2
1/48.

In the following we do a case analysis based on the value of q. Our goal is to show that ‖Pu‖2 =∑
i ZiN

2
i /q ∈ (1 ± ε/4)k with high probability (conditioned on u having bounded coordinates as remarked

earlier).

Cases q = c1/m and q = c1ε ln(n)/(m ln(1/ε)).

We treat the cases q = c1/m and q = c1ε ln(n)/(m ln(1/ε)) in a similar manner. In both these cases, we have
q ≥ c1ε ln(n)/(m ln(1/ε)) (due to the max in the definition of q). Thus Lemma 4, with α = ε now implies that
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‖Z‖∞ = maxi=1,...,k Zi ≤ q/(2ε) with probability at least 1 − k exp(−(mq ln(1/ε))/(32ε)) ≥ 1 − n−c1/32+1

(which follows by mq ln(1/ε)/ε ≥ c1 lnn and k ≤ n).
Using q ≥ c1/m we may invoke Lemma 5. Combining this with q ≥ c1ε ln(n)/(m ln(1/ε)) we conclude

that ‖Z‖2 =
∑k
i=1 Z

2
i ≤ 64 · 24 · e3q2k with probability at least

1− 14 exp

(
−
m
√

64 · 24 · e3q2k ln(
√

(64 · 24 · e3q2k)/(23)/(eq))

200 · 44 · 2 5
2

)

≥ 1− 14 exp

− (c1 ln(n))3/2 ln
(

22
√
k
)

300 ln (1/ε)


≥ 1− 14n−c

3/2
1 /300,

where in the first inequality we used that (
√

64 · 24e3)/(200 · 44 · 25/2) ≥ 1/300,
√

(64 · 24e)/23 ≥ 22

and mq
√
k ≥ (c1ε ln(n)/ ln(1/ε))

√
c1 ln(n)/ε2 = (c1 lnn)3/2/ ln (1/ε) and in the second inequality that

ln(22
√
k)/(ln (1/ε)) = ln(22

√
c1 ln(n)/ε2)/(ln (1/ε)) ≥ 1.

Hence in these cases we have that
∑k
i=1 Zi ∈ (1 ± ε/4)qk, ‖Z‖∞ = maxi=1,...,k Zi ≤ q

2ε and ‖Z‖2 =∑k
i=1 Z

2
i ≤ 64 · 24e3q2k with probability at least 1 − 17n−c1/300+1. We call such outcomes of the variables

Zi desirable.
We now notice that for desirable outcomes of the Zi’s, we have from Lemma 3 that if (ε/4)

∑k
i=1 Zi ≥

‖Z‖2/‖Z‖∞, then (with probability over the Ni’s)

P

[
k∑
i=1

1

q
N2
i Zi 6∈ (1± ε/4)

k∑
i=1

1

q
Zi

]
≤ 2 exp

(
−
c(ε/4)

∑k
i=1 Zi

‖Z‖∞

)
≤ 2 exp

(
−cεqk/8
q/(2ε)

)
= 2n−cc1/4,

where we used that k = c1ε
−2 lnn. On the other hand, if (ε/4)

∑k
i=1 Zi ≤ ‖Z‖2/‖Z‖∞, then by Lemma 3

(and using ε < 1):

P

[
k∑
i=1

1

q
N2
i Zi 6∈ (1± ε/4)

k∑
i=1

1

q
Zi

]
≤ 2 exp

(
−
c((ε/4)

∑k
i=1 Zi)

2

‖Z‖2

)

≤ 2 exp

(
− cε2q2k2

16 · 64 · 96e3q2k

)
= 2n−cc1/(16·64·96e3).

By this we conclude that for desirable outcomes of the Zi’s, for the constant r1 := c/(16 · 64 · 96e3), it holds
(with probability over the Ni’s):

1− 2n−r1c1 ≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε/4)

k∑
i=1

1

q
Zi

]
≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε)k

]
,

where in the last inequality we used that for desirable outcomes of the Zi’s it holds
∑k
i=1 Zi ∈ (1± ε/4)qk.

Since the Zi’s and Ni’s are independent, it follows from the above that with probability at least (1 −
2n−r1c1) · (1− 17n−c1/300+1) ≥ 1− 34n−min{r1,1/300}c1+1 it holds that

∑k
i=1N

2
i Zi/q ∈ (1± ε)k.

Case q = c1ε.

In the case that q = c1ε (we assume that ε < c−1
1 /(4e)), it follows from Lemma 6 with t = 2c31e

8 lnn that
‖Z‖2 =

∑k
i=1 Z

2
i ≤ 2c31e

8 lnn with probability at least 1− 3n−4c1 . Thus we conclude that with probability
at least 1 − 5n−c1/48 we have

∑k
i=1 Zi ∈ (1 ± ε/4)qk and ‖Z‖2 =

∑k
i=1 Z

2
i ≤ 2c31e

8 lnn. In this part of the
case analysis, we refer to such outcomes as desirable.
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Now for desirable outcomes of the Zi’s, we get again using Lemma 3 that if (ε/4)
∑k
i=1 Zi ≥ ‖Z‖2/‖Z‖∞,

then with probability over the Ni’s, and using the trivial bound that the Zi’s are at most 1, it follows that

P

[
k∑
i=1

1

q
N2
i Zi 6∈ (1± ε/4)

k∑
i=1

1

q
Zi

]
≤ 2 exp

(
−
c(ε/4)

∑k
i=1 Zi

‖Z‖∞

)
≤ 2 exp

(
−cεqk

8

)
= 2n−cc

2
1/8,

where the last inequality follows from
∑k
i=1 Zi ≥ (1 − ε/4)qk ≥ qk/2 and the equality follows from εqk =

c21 lnn. In the case of (ε/4)
∑k
i=1 Zi ≤ ‖Z‖2/‖Z‖∞, Lemma 3 yields:

P

[
k∑
i=1

1

q
N2
i Zi 6∈ (1± ε/4)

k∑
i=1

1

q
Zi

]
≤ 2 exp

(
−
c((ε/4)

∑k
i=1 Zi)

2

‖Z‖2

)

≤ 2 exp

(
− cε2q2k2

128c31e
8 lnn

)
≤ 2n−cc1/(128e8),

where the last inequality follows from ε2q2k2/ lnn = c41ε
4 ln2(n)/(ε4 lnn) ≥ c41 ln n.

Now, let r2 = c/(128e8). From the above, we conclude that for desirable outcomes of the Zi’s, with
probability (over the Ni’s):

1− 2nr2c1 ≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε/4)

k∑
i=1

1

q
Zi)

]
≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε)k

]
,

and again using the independence of the Zi’s and Ni’s, we get that
∑k
i=1N

2
i Zi/q ∈ (1 ± ε)k holds with

probability at least (1− 2n−r2c1)(1− 5n−c1/48) ≥ 1− 10n−min{r2,1/48}c1 .

Conclusion.

In the above we had assumed that the vector u had entries u2
i ≤ 1/m and had unit length. By a similar

argument to [1] equation (4) page 308, we get that with probability at least 1 − 1/(2n3), it holds that
u2
i = (HDx)2

i ≤ ln(n)/(c2d) = 1/m for all i = 1, . . . , d simultaneously, when c2 is small enough (assuming
d ≤ n such that ln d = O(lnn)), thus we have u2

i ≤ 1/m as required.
From the above, we see that in all cases, if we set c1 as a sufficiently large constant, then with probability

at least 1−1/(2n3), we have
∑k
i=1

1
qN

2
i Zi ∈ (1±ε)k. Since ‖Pu‖2 was equal in distribution to

∑k
i=1

1
qN

2
i Zi,

the same holds for ‖Pu‖2.
Since D is independent of P , we get that with probability at least (1− 1/(2n3))(1− 1/(2n3)) ≥ 1− 1/n3,

we have k−1‖PHDx‖2 ∈ (1± ε) as desired.
For a set of n vectors X, we finally union bound over all vectors z/‖z‖ where z = x − y with x, y ∈ X.

There are less than n2 such pairs and we conclude that with probability at least 1 − 1/n, we have that
k−1/2PHD guarantees (1).

We now claim that our choice of

q = max {c1/m, c1εmin {1, ln(n)/(m ln(1/ε))}} ,

is equivalent to that claimed in Theorem 1. Recalling that m = O(d/ lnn), we see that our choice of q
is O(max{(lnn)/d, εmin{1, ln2(n)/(d ln(1/ε))}}). Since (lnn)/d ≤ (lnn)/k = O(ε2) = O(ε), we can never
have (lnn)/d = ω(ε) and hence we can move the max into the min and get

q = O

(
min

{
ε,

lnn

d
·max

{
1,

ε lnn

ln(1/ε)

}})
.

This completes the proof of Theorem 1.
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Discussion of Expression.

Let us conclude by giving some more intuition on where the different terms in the expression for q originate
from. Recall from above that the hardest vector for k−1/2P is a unit vector u with m = O(d/ lnn) non-zero
entries, each of magnitude m−1/2. Also recall that each entry of P is the product of a Bernoulli bi,j with
success probability q and a normal distributed random variable with variance 1/q.

The term ln(n)/d in the expression for q intuitively comes from the following: There is a total of km
Bernoulli random variables bi,j that are each multiplied with the same non-zero value u2

j . This gives an
expected kmq of them that are non-zero. Intuitively, since they are all multiplied with the same coefficient,
we need the number of non-zero Bernouillis to be within εkmq of the expectation. A binomial distribution
with km trials and success probability q deviates from its expectation by Ω(

√
kmq lnn) with probability

n−1/2 and thus we require
√
kmq lnn < εkmq. This implies that we must set q > ln(n)/(ε2mk) = Ω(1/m) =

Ω(ln(n)/d).
The terms ε ln2 n/(d ln(1/ε)) and ε in the expression for q come from the event that the square of the

first coordinate, (k−1/2Pu)2
1 is larger than ε (which causes a distortion if the rest of the coordinates are

concentrated). Conditioned on the Bernoullis b1,j , the square of the first coordinate is the square of a
normal distributed random variable. Hence it is a factor Ω(lnn) larger than its variance with probability
n−1/2. There are now two cases: 1. m < c ln1/q n for a small constant c > 0, and 2., m ≥ c ln1/q n.

In the first case, m < c ln1/q n, it happens with probability at least n−1/2 that all Bernoullis b1,j that
are multiplied with a non-zero coefficient take the value 1. In that case, the first coordinate of k−1/2Pu is
normal distributed with mean zero and variance 1/(qk) (since

∑
j u

2
j = 1). We thus need lnn/(qk) < ε.

Using that k = Θ(ε−2 lnn), this means we have to set q = Ω(ε).
In the second case, m ≥ c ln1/q n, we expect to see qm non-zero Bernoullis b1,j that are each multiplied

with 1/m for the first coordinate of k−1/2Pu. However, by a "reverse" Chernoff bound, with probability
at least n−1/2, we see at least c ln1/q n non-zero Bernoullis. In that case, the first coordinate of k−1/2Pu
is normal distributed with mean zero and variance Θ((ln1/q n)/(mqk)) = Θ(ε2 ln1/q(n)/(dq)). Since the
square of the first coordinate was a factor lnn larger than its variance with probability n−1/2, we hence
need ε2 lnn ln1/q(n)/(dq) = O(ε). If we for simplicity approximate q by ε in ln1/q n, this gives precisely
q = Ω(ε ln2 n/(d ln(1/ε))).

4 Lower Bound
In this section, we prove the lower bound in Theorem 2. That is, we give an example of a unit vector x ∈ Rd,
such that one must have

q = Ω

(
min

{
ε,

ln(1/δ)

d
·max

{
1,
ε ln(1/δ)

ln(1/ε)

}})
,

to guarantee P[‖k−1/2PHDx‖ ∈ (1± ε)] ≥ 1− δ.
The proof of the lower bound goes in two steps. In the first step, we show that we must have q =

Ω(ln(1/δ)/d). In the second step, we use the result from step one to conclude that q must also be
Ω(εmin{1, ln2(1/δ)/(d ln(1/ε))}). Combining the two, we have:

q = Ω
(
max{ln(1/δ)/d, εmin{1, ln2(1/δ)/(d ln(1/ε))}}

)
.

Noticing that we always have ln(1/δ)/d = O(ln(1/δ)/k) = O(ε2) = O(ε), we can move the max inside the
min and obtain the bound claimed above.

In both steps, we use the same hard instance vector x. This hard vector x has the property that with
probability at least δc for a small constant c > 0, u = HDx has m = Θ(d/ ln(1/δ)) non-zero entries, each of
magnitude 1/

√
m. Conditioning on such a transformed vector u = HDx puts a lot of structure on u, which

simplifies the analysis of the product Pu. Indeed, if we consider a coordinate (Pu)i, then this coordinate
is N (0,

∑
j bi,ju

2
j/q) distributed if we condition on the Bernoullis bi,j . But u2

j is 1/m for precisely m values
of j and 0 for all others. Thus

∑
j bi,ju

2
j/q is distributed as 1/(qm) times a binomial distribution with m
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trials and success probability q. One part of the analysis is thus to study this distribution. Secondly, if we
consider ‖Pu‖2, then this is a linear combination of k independent χ2 random variables, with the i’th being
scaled by

∑
j bi,ju

2
j/q. Hence we also need to understand the tail of such a distribution.

For the first step, i.e. showing q = Ω(ln(1/δ)/d), we argue that the sum of the coefficients
∑
j bi,ju

2
j/q

deviates a lot from its expectation with reasonable probability. More precisely, notice that E[
∑
j bi,ju

2
j/q] =

(mq)/(mq) = 1 and thus E[
∑
i

∑
j bi,ju

2
j/q] = k. But the sum of these coefficients is itself distributed as

1/(mq) times a binomial distribution with mk trials and success probability q. The number of successes
in such a binomial distribution deviates by additive Ω(

√
ln(1/δ)(mkq)) from its expectation mkq with

probability at least δc for a small constant c > 0. Intuitively, we need this deviation to be less than εmkq
to preserve the norm of x (and thus u) to within (1 ± ε). This implies

√
ln(1/δ)(mkq) = O(εmkq) ⇒ q =

Ω(ln(1/δ)/(ε2mk)) = Ω(1/m) = Ω(ln(1/δ)/d).
In the second step, we now use the fact that we know that q is sufficiently large, such that coordinates

2, . . . , k of Pu are reasonably well concentrated around their mean. What establishes the second lower bound
on q, namely q = Ω(εmin{1, ln2(1/δ)/(d ln(1/ε))}), is the possibility that the first coordinate (Pu)1 may be
so large that it alone distorts the norm ‖k−1/2Pu‖2. In more detail, we show that with good probability,
we have

∑k
i=2 k

−1(Pu)2
i ∈ (1± ε)(k − 1)/k, i.e. on the last k − 1 coordinates, the embedding k−1/2PHDx

preserves the norm of x as it should (we work with k−1‖Pu‖2 instead of k−1/2‖Pu‖ to simplify the analysis
- and since the later is a weaker statement by

√
1± ε ⊂ (1 ± ε) it suffices to work with k−1‖Pu‖2). In

this case, we show that unless q is large enough, the single coordinate k−1(Pu)1 contributes more than ε to
k−1‖Pu‖2 with probability more than δ.

We now give the details of the proof outlined above. We first show the existence of the vector x for which
u = HDx often has m = O(d/ ln(1/δ)) coordinates of magnitude 1/

√
m.

Hard Instance. Let ε, δ > 0 and set l to be the integer such that l ≤ lg2

(
lg2(1/

√
2δ)
)
≤ l+ 1 and define

xi =

{√
1
2l if i ≤ 2l

0 else.
(4)

We now notice that Dx = x with probability 2−2l ≥
√

2δ. Since the unnormalized Hadamard matrix is
given recursively by

H2i =

[
H2i−1 H2i−1

H2i−1 −H2i−1

]
=

 H2l · · ·
...

. . .
H2l · · ·

 ,
for i ∈ N and x has 1’s in the first 2l places and zeros in the rest, we get Hx = [H2l1, . . . ,H2l1]T /

√
d, with

1 being the all-ones vector in R2l

. Now since we further know that for any i, the rows of the unnormalized
Hadamard matrix are orthogonal, and that the first row of the unnormalized Hadamard matrix is all-ones,
it follows that

(Hx)i =

{√
2l

d if i ≡ 0 mod (2l)

0 else.

Thus we conclude that u := Hx has d/2l non-zero entries, all of value
√

2l/d. This is the vector u we will
analyze throughout the remainder of the lower bound proof.

Using the definition of u we have that

‖Pu‖2 d
=

k∑
i=1

 d

2l∑
j=1

√
2l

dq
bi,jNi,j

2

=
2l

dq

k∑
i=1

 d

2l∑
j=1

bi,jNi,j

2

,
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where the bi,j ’s are Bernoulli random variables with success probability q and the Ni,j ’s are N (0, 1) dis-
tributed, all independent of each other. Conditioned on the outcome of the bi,j ’s it follows from linear
combinations of independent normal random variables that

k∑
i=1

 d

2l∑
j=1

bi,jNi,j

2

d
=

k∑
i=1



√√√√√ d

2l∑
j=1

bi,j

Ni


2

=

k∑
i=1

biN
2
i ,

where the bi’s are
∑d/2l

j=1 bi,j and the Ni’s are independent standard normal random variables. Hence we
conclude that the above is a weighted sum of χ2-variables.

What remains is the two steps described earlier where we analyze this distribution to derive the lower
bound. We give the steps in the following two sections.

4.1 First step q = Ω
(

ln 1
δ

d

)
As described in the proof sketch we need lower bounds on the tail probabilities for weighted sums of inde-
pendent χ2-distributions, thus we now restate Theorem 7 from [25] in a slightly weaker form.

Lemma 7 ([25]). Let g1, . . . , gd be independent N(0, 1) random variables and u1, . . . , ud be non-negative
numbers, then for constants 0 < c3 and C3 ≥ 1 we have that

c3 exp
(
−C3x

2/‖u‖22
)
≤ P

[
d∑
i=1

ui(g
2
i − 1) ≥ x

]
, ∀0 ≤ x.

We will also need the following reverse Chernoff bound from [19] which we restate in a multiplicative
version instead of an additive:

Lemma 8 ([19]). Let X be binomial distributed with r trials and success probability q ≤ 1/4. Then for any
0 ≤ αq ≤ 1/4 it holds that:

Pr [X ≥ (1 + α)qr] ≥ 1

4
exp

(
−2α2qr

)
With the above lemma stated we now present the first step in the proof of Theorem 2.

First step in proof of Theorem 2.

Proof. We condition on the randomness in HD resulting in the fixed vector u as argued earlier. In this
case, we start by showing that

∑
i bi is large with reasonable probability. Observe that

∑
i bi is binomial

distributed with r = kd/2l trials and success probability q. Hence for α =
√

ln(1/(44δ))/(8qr), it follows
from Lemma 8 that either αq > 1/4 or q > 1/4 or P[

∑
i bi ≥ qr +

√
ln(1/(44δ))qr/8] ≥ δ1/4.

If q ≥ 1/4 we are done. Likewise, if αq ≥ 1/4 then q ≥ 1/(4α) implying that q ≥
√
qr/(2 ln(1/(44δ))) ≥

Ω(ε−2) by assumptions on r = kd/2l, k = lg(1/δ)/ε2 and d/2l ≥ 1 and we are done again.
Thus what remains is the case P[

∑
i bi ≥ qr+

√
ln(1/(44δ))qr/8] ≥ δ1/4. Let us condition on

∑
i bi ≥ qr+√

ln(1/(44δ))qr/8. Then by Lemma 7 with x = 0 we get P[
∑
i bi(N

2
i −1) ≥ 0] ≥ c3. This implies

∑
i biN

2
i ≥∑

i bi ≥ qr +
√

ln(1/(44δ))qr/8 with probability at least c3δ1/4. But (2l/(dq))(qr +
√

ln(1/(44δ))qr/8) =

k +
√

ln(1/(44δ))22lr/(8d2q) = k + Ω(
√

ln(1/δ)2lk/(qd)). Thus with probability at least c3δ1/4, we have
(2l/(dq))

∑
i biN

2
i ≥ k + Ω(

√
ln(1/δ)2lk/(qd)). And since ‖Pu‖2 d

= (2l/(dq))
∑
i biN

2
i we also have that

‖Pu‖2 ≥ k+Ω(
√

ln(1/δ)2lk/(qd)) with probability c3δ1/4. Further since we noticed (below eq. (4)) that the
probability of HDx = u is at least

√
2δ it now follows what with probability at least c3δ3/4 we have that

1

k
‖PHDx‖2 > 1 + Ω(

√
ln(1/δ)2l/(kqd)).
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Thus for δ ≤ c43 it follows that we must have

Ω

(√
ln(1/δ)2l/(kqd)

)
≤ ε

for 1
k ‖PHDx‖

2 to satisfy eq. (1) (being a length preserving projection) with probability δ, which implies
q ≥ Ω(ln(1/δ)2l/(ε2kd)) = Ω(ln(1/δ)/d) where we have used that 2l is Θ(ln(1/δ)) by the choose of l, which
completes the proof of the first step.

4.2 Second step q = Ω
(
εmin

{
1, ln2 (1/δ) / (d ln (1/ε))

})
In this section we show the second step of the lower bound. Recall from the proof sketch that we use the
result from the first step, giving q = Ω(ln(1/δ)/d). The basic idea is to show that there is a reasonably large
probability that the first coordinate (Pu)1 is so large that it distorts the embedding of x by too much, even
when all other coordinates behave well.

We now make some preliminaries and present some lemmas we will need in the proof of the second step.
By the the first step, we already have our claimed lower bound in Theorem 2 whenever

Θ
(
max

{
ln(1/δ)/d, εmin

{
1, ln2(1/δ)/(d ln(1/ε))

}})
= Θ (ln(1/δ)/d) ,

so we now consider the cases where ε, δ, d are such that

Θ
(
max

{
ln(1/δ)/d, εmin

{
1, ln2(1/δ)/(d ln(1/ε))

}})
= Θ

(
εmin

{
1, ln2(1/δ)/(d ln(1/ε))

})
,

and then show that for

c4 ln(1/δ)/d ≤ q ≤ c5εmin
{

1, ln2 (1/δ) / (d ln (1/ε))
}
, (5)

where c4 is the constant from the lower bound q ≥ c4 ln(1/δ)/d and c5 is a constant to be fixed later (but
will be chosen less than 1), we have that the projection fails with at least δ probability.

We construct our hard instance as in step one, except we adjust l a bit (to deal with constants). We thus
set l to be the integer such that l ≤ lg2

(
lg2((1/δ)

min{1/50,c4/ lg2(e)}
)
)
≤ l + 1 and define

xi :=

{
1√
2l

if i ≤ 2l

0 else.

It thus follows that with probability 2−2l ≥ δmin{1/50,c4/ lg2(e)}, the first 2l signs in D are 1 , thus Dx = x
with at least probability δmin{1/50,c4/ lg2(e)}. We further notice that for the above x we have that

ui := (Hx)i =

{√
2l

d if i ≡ 0 mod (2l)

0 else.

We notice that the u has d/2l entries of size
√

2l/d and 0 else, we let m denote the number of non-zero
entries.

We further notice if ln(1/δ)/(qm) ≤ c6 then by the choose of l and m = d/2l we have that q is greater
than ln2(1/δ) min {1/50, c4/ lg2 (e)} /(c6d) and since Θ

(
max

{
ln(1/δ)/d, εmin{1, ln2(1/δ)/(d ln(1/ε))}

})
=

O(ln2(1/δ)/d) we are done. Hence we may assume in the following that

ln(1/δ)/(qm) ≥ c6, (6)

where c6 is at least 8, and will be chosen larger later.
Let now for i = 1, . . . , k, Zi denote a normalized sum of m independent Bernoulli random variables

Zi = (1/m)
∑m
j=1 bi,j and Ni denote a standard normal random variable, where all the Zi’s and the Ni’s are
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independent of each other. Then for the u described above, we have by linear combinations of independent
normal distributions that:

‖Pu‖2 d
=

k∑
i=1

 d

2l∑
j=1

√
2l

dq
bi,jNi,j

2

d
=

k∑
i=1

1

q
ZiN

2
i ,

where we in the following will work with the later variable.
With the above preliminaries we now present the lemmas, used in the second step in the proof of Theo-

rem 2. The proof of the lemmas can be found in Section 5.2.
In the spirit of the proof sketch of the second step, we now present Lemma 9, which state that with good

probability, the first coordinate of our projection vector, Z1N
2
1 /q, is large.

Lemma 9. For 0 < ε, δ ≤ 1/4, c5 sufficiently small (eq. (5)), and c6 sufficiently large (eq. (6)) we have with
probability at least δ1/50+1/2+1/π that

1

q
Z1N

2
1 ≥

5 ln(1/δ)

ε
.

As noted in the proof sketch, we also want to show that the sum of the coordinates except Z1N
2
1 /q have

a good concentration around its mean:

Lemma 10. For 0 < ε ≤ 1/4 and 0 < δ ≤ 1/8 we have with probability at least δ1/8 that

k∑
i=2

1

q
ZiN

2
i ≥ (1− 3ε)(k − 1).

We are now ready to put the above lemmas together and complete the proof of Theorem 2.

Second step in proof of Theorem 2.

Proof. Let 0 < ε ≤ 1/4 and 0 < δ ≤ 1/8. We now choose c5 and c6 accordingly to Lemma 9, thus we have
with probability at least δ1/50+1/2+1/π that Z1N

2
1 /q ≥ 5 ln(1/δ)ε−1. By Lemma 10 we have

∑k
i=2 ZiN

2
i /q ≥

(1− 3ε)(k − 1) with probability at least δ1/8.
Thus we conclude by independence of the Zi’s and the Ni’s that with probability δ1/50+1/2+1/π+1/8 we

have for the vector u that

‖Pu‖2 d
=

k∑
i=1

1

q
ZiN

2
i

=
1

q
Z1N

2
1 +

k∑
i=2

1

q
ZiN

2
i

≥ 5 ln(1/δ)ε−1 + (1− 3ε)(k − 1)

= 5εk + k − 3εk − 1 + 3ε

= (1 + ε)k + εk − 1 + 3ε

> (1 + ε)k,

where the last inequality follows by the assumptions on ε ≤ 1/4 implying that εk = ln(1/δ)ε−1 > 4 ≥ 1−3ε.
Now since we early notice that for the choose of l (l ≤ lg2

(
lg2((1/δ)

min{1/50,c4/ lg2(e)}
)
)
≤ l + 1 ) we

had u = HDx happining with probability at least δ1/50 independently of the outcomes of the bi,j ’s and
the Ni,j ’s in P . Thus we conclude by the law of conditional probability that with probability at least
δ1/50+1/2+1/π+1/8+1/50 ≥ δ we have ‖PHDx‖2 > (1 + ε)k. Thus we have shown that for δ, ε less than
sufficiently small constants, we must have q ≥ c5εmin {1, ln(1/δ)/(d ln(1/ε))} for the mapping PHD to be
a length preserving random projection with probability 1− δ.
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5 Concentration Inequalities

5.1 Inequalities for the Upper Bound
We now restate and present the proof of Lemma 4

Restatement of Lemma 4. For i = 1, . . . , k let Zi =
∑d
j=1 u

2
jbi,j where the bi,j’s are independent Bernoulli

random variables with success probability q and the u2
j ’s are positive real numbers bounded by 1/m and

summing to 1. We then have for α ≤ 1/4 that

P
[

max
i=1,...,k

Zi >
q

2α

]
≤ k exp

(
−mq ln(1/α)

32α

)
.

Proof. First notice that by a union bound and Markov’s inequality we have that

P
[

max
i=1,...,k

Zi > t

]
≤ kP [Z1 > t] ≤ kE [exp(cZ1)] exp(−ct), (7)

for c > 0.
Now since that

E[exp(cZ1)] =
∑

b′∈{0,1}d
exp

 d∑
j=1

u2
jb
′
i,j

P [b′] ,

where
∑d
j=1 u

2
jb
′
i,j is an convex function in (u2

1, . . . , u
2
d), implying that exp(

∑d
j=1 u

2
jb
′
i,j) is convex since it

is the composition of the convex function
∑d
j=1 u

2
jb
′
i,j and the increasing convex function exp(·). Since a

linear combination with positive scalars of convex functions is again a convex function, we conclude that
E[exp(cZ1)] =

∑
b′∈{0,1}d exp(

∑d
j=1 u

2
jb
′
i,j)P[b′] is a convex function in (u2

1, . . . , u
2
d). Now since we have

that (u2
1, . . . , u

2
d) lies in the set {x ∈ Rd|xi ∈ [0, 1/m]∀i ∈ 1, . . . , d and

∑d
i=1 xi = 1} (which is a convex

polytope), we must have that the function E[exp(cZ1)] obtains its maximum on a vertex. The choice of
vertex does not change the distribution of the random variable, so we can without loss of generality assume
that u2

1, . . . , u
2
m = 1/m and u2

m+1, . . . , u
2
d = 0.

Using that the maximum of E[exp(cZ1)] is attained in such a vertex, we obtain that

E [exp(cZ1)] ≤ E

[
exp(

c

m

m∑
i=1

b1,i)

]
=
(

exp
( c
m

)
q + (1− q)

)m
(8)

≤ exp
(
m
(

exp
( c
m

)
q − q

))
= exp

(
mq
(

exp
( c
m

)
− 1
))

,

where the first equality follows from the bernoulli trailes b1,i being independent and identically distributed.
The second inequality uses that 0 ≤ (1 + x) ≤ exp(x) for x ∈ R+. Now setting c = m ln(t/q) (for t > q) and
using eq. (7) and eq. (8)

P
[

max
i=1,...,k

Zi > t

]
≤ kE [exp (cZ1)] exp (−ct) ≤ k exp

(
mq

(
t

q
− 1

)
−mt ln

t

q

)
.

Now setting t = q/(2α) > q we get that

P
[

max
i=1,...,k

Zi > t

]
≤ k exp

(
mq

(
1

2α
− 1− 1

2α
ln

1

2α

))
=

k exp

(
mq

2α

(
1− 2α− ln

1

2α

))
≤ k exp

(
−mq ln (1/α)

32α

)
,

where we in the second inequality have used that α ≤ 1/4 so (1− 2α− ln(1/(2α)) ≤ − ln(1/α)/16.
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Next we give the proof of Lemma 5. For this, we need the following technical lemma about linear
combinations of independent Bernoulli random variables.

Lemma 11. Let Z =
∑d
j=1 u

2
jbj where bj are independent Bernoulli random variables with success probability

q and u2
j are positive real numbers bounded by 1/m and summing to 1. We then have for t > q:

P [Z > t] <

(
t

eq

)−mt
.

Proof. The proof follows the proof steps in Lemma 4. For any c ≥ 0, we have

E [exp (cZ)] ≤ exp
(
mq
(

exp
( c
m

)
− 1
))

.

Thus by Markov’s, we have for c > 0

P [Z > t] = P [exp (cZ) > exp (ct)] ≤ exp
(
mq
(

exp
( c
m

)
− 1
))

exp (−ct) ≤ exp
(
mq exp

( c
m

)
− ct

)
.

Setting c = m ln(t/q) gives

P [Z > t] < exp

(
mqt

q
−mt ln

t

q

)
= exp

(
mt−mt ln

t

q

)
= exp

(
−mt ln

t

eq

)
=

(
t

eq

)−mt
.

With Lemma 11 in place we now restate and prove Lemma 5.

Restatement of Lemma 5. Let Z1, . . . , Zk be i.i.d. random variables distributed as the Zi’s in Lemma 4.
Then for any t ≥ 64 · 24e3q2k and q ≥ 8/(em), we have:

P

[
k∑
i=1

Z2
i > t

]
< 14 exp

(
−
m
√
t ln(

√
t/23/(eq))

200 · 44 · 2 5
2

)
.

Proof. For simplicity we assume in the following that lg2 k is an integer. For j = 0, . . . , lg2(k)/2, let Ej
denote the event that there are at least 2j/(j + 1)2 indices i such that Z2

i ≥ t/(2j+3) and let E′j denote the
event that there are at least k/(2j(j + 1)2) indices i with Z2

i ≥ t2j−3/k. We claim that if
∑k
i=1 Z

2
i > t,

then one of the events Ej or E′j must occur for some j. Before we prove this, we briefly motivate why we
need the two separate events Ej and E′j . If we had only defined the events Ej , but let j range all the way
to lg2 k, then either the j = 0 or j = lg2 k term would dominate. The issue with this, is that the (j + 1)2

term is sub-optimal (i.e. non-constant) for j = lg2 k. One could simply try to remove the 1/(j + 1)2 term,
but this would not work as

∑
j 2j · t/2j+3 is ω(t). Including 1/(j + 1)2 is precisely used to guarantee that∑

j 2j/(j + 1)2 · t/2j+3 = O(t). For that reason, we define the events E′j that will handle the case of many
indices with small values.

To prove that at least one event must occur, assume for the sake of contradiction that none of the events
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occur. Then:

k∑
i=1

Z2
i ≤

k∑
i=1

∞∑
j=0

1{Z2
i≥

t

2j+3 }
t

2j+3
=

∞∑
j=0

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 } =

lg2 k∑
j=0

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 } +

∞∑
j=lg2 k+1

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 } ≤

lg2(k)/2∑
j=0

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 } +

lg2(k)/2∑
j=0

t

2lg2 k−j+3

k∑
i=1

1{Z2
i≥t/2lg2 k−j+3} +

∞∑
j=lg2 k+1

tk

2j+3
≤

lg2(k)/2∑
j=0

t2j

2j+3(j + 1)2
) +

lg2(k)/2∑
j=0

t2j−3

k

k∑
i=1

1{Z2
i≥

t2j−3

k } +
t

8
≤

t

8

lg2(k)/2∑
j=0

1

(j + 1)2
+

lg2(k)/2∑
j=0

kt2j−3

k(2j(j + 1)2)
+
t

8
≤

t

4

∞∑
j=0

1

(j + 1)2
+
t

8
=

tπ2

4 · 6
+
t

8
< t.

We thus have P[
∑k
i=1 Z

2
i > t] ≤

∑lg2(k)/2
j=0 P[Ej ] + P[E′j ]. To bound P[Ej ], let S be any subset of 2j/(j + 1)2

indices in [k] and define the event Ej,S which happens when all i ∈ S satisfy Z2
i ≥ t/(2j+3). Notice since

t ≥ 64 · 24e3q2k and j ≤ lg2(k)/2 we have t/2j+3 ≥ 64 · 24e3q2k/(8k1/2) ≥ 64 · 3e3q2k1/2 implying that the
ratio of

√
t/2j+3 with q is larger than 1, Lemma 11 is applicable with Z ≥

√
t/2j+3. Now using an union

bound over the events Ej,S for any such set S, and that the Zi’s on such sets are independent and identically
distributed, combined with Lemma 11 yields that,

P [Ej ] ≤
∑
S

P [Ej,S ] ≤
(

k

2j/(j + 1)2

)(√
t/2j+3/ (eq)

)−m√t/2j+32j/(j+1)2

,

and bounding
(

k
2j/(j+1)2

)
by k2j/(j+1)2 , we obtain

P [Ej ] ≤ exp

−2j
(
m
√
t/2j+3 ln

(√
t/2j+3/ (eq)

)
− ln k

)
(j + 1)

2

 .

For t ≥ 8e2kq2 and j ≤ lg2(k)/2, we have
√
t/2j+3/(eq) ≥

√
8e2kq2/(8

√
ke2q2)) ≥ k1/4 and thus it follows

that ln(
√
t/2j+3/(eq)) ≥ ln(k)/4. Using q ≥ 8/(em) we also have m

√
t/2j+3 ≥ m

√
8e2kq2/(8

√
k) ≥

meqk1/4 ≥ 8. By this we then obtain(
m
√
t/2j+3 ln

(√
t/2j+3/ (eq)

)
− ln k

)
≥ m

√
t/2j+3 ln

(√
t/2j+3/ (eq)

)
/2.
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Thus letting f(j) = 2
1
2 j−5/2m

√
t ln(

√
t/2j+3/(eq))/(j + 1)2 we get that

P [Ej ] ≤ exp

(
−

(
2j−1m

√
t/2j+3 ln(

√
t/2j+3/(eq))

(j + 1)2

))

= exp

−2
1
2 j−5/2m

√
t ln
(√

t/2j+3/ (eq)
)

(j + 1)
2

 = exp (−f (j)) .

Now using that ln(
√
t/2j+3/(eq)) ≥ ln(

√
64 · 24e3q2k/(8

√
k)/(eq)) ≥ ln (32 · 3e) /2 = ln (96e) /2 for

any j ∈ 0, . . . , lg2(k)/2 and t ≥ 64 · 24e3q2k we get that the ratio between f(j) and f(j + 1) for j ∈
0, . . . , lg2(k)/2− 1 is lower bounded by

f (j + 1)

f (j)
=

21/2
(

1− ln
(√

2
)
/ ln

(√
t/2j+3/ (eq)

))
(j + 1)

2

(j + 2)
2 ≥ 21/2 (1− ln (2) / ln (96e)) (j + 1)

2

(j + 2)
2 .

By iteratively applying the above inequality for the ratio of consecutive terms of f we get that for j′ ∈
1, . . . , lg2(k)/2 that

f (j′) ≥
(
21/2 (1− ln (2) / ln (96e))

)j′
f (0)

(j′ + 1)
2 ≥ j′f (0)

200
,

where we in the last inequality have used that ((1− 2 ln (2) / ln (96e))21/2)j
′
/ (j′ + 1)

2 ≥ j′/200 for j′ ≥ 0.
Now using the above inequality for f we get by a geometric series argument that,

lg2(k)/2∑
j=0

P [Ej ] ≤ exp (−f (0)) +

lg2(k)/2∑
j=1

exp

(
−jf (0)

200

)

≤ exp (−f (0)) +
exp

(
− f(0)

200

)
1− exp

(
− f(0)

200

) ≤ 3 exp
(
−2−5/2 ·m

√
t ln
(√

t/23/ (eq)
)
/200

)
,

where we in the last inequality have used that f(0) = 2−5/2 · m
√
t ln(

√
t/23/(eq)) ≥ 250, to say that

1/(1− exp(−f(0)/200)) ≤ 2.
Next we bound P[E′j ] . Again by a union bound over all sets of k/(2j(j+ 1)2) indices and Lemma 11, we

get:

P[E′j ] ≤
(

k

k/ (2j(j + 1)2)

)(√
t2j−3/k/ (eq)

)−m√t2j−3/k·k/(2j(j+1)2)
.

Bounding
(

k
k/(2j(j+1)2)

)
from above by (e2j(j + 1)2)k/(2

j(j+1)2) we get that

P
[
E′j
]
≤ exp

(
− k

2j(j + 1)2
·
(
m
√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
− ln

(
e2j (j + 1)

2
)))

.

For t ≥ 24e3kq2, we have
√
t2j−3/k/(eq) ≥

√
3e2j . Since (j + 1)2 ≤ 3 · 2j for all j ≥ 0,

√
3e2j is at least√

e2j/2(j + 1) ≥ (e2j(j + 1)2)1/4 and thus ln(
√
t2j−3/k/(eq)) ≥ ln(e2j(j + 1)2)/4. For q ≥ 8/(em), we also

have m
√
t2j−3/k ≥ m

√
3e3q2 ≥ 8 and hence:

m
√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
− ln

(
e2j (j + 1)

2
)
≥ m

√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
/2.
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Now let g(j) = m
√
tk ln(

√
t2j−3/k/(eq)/((j + 1)221/2j+5/2) then we have

P
[
E′j
]
≤ exp

−km
√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
(j + 1)

2
2j+1

 = exp (−g (j)) .

Now for any j ∈ 0, . . . , lg2(k)/2 and t ≥ 64 · 24e3q2k it holds that ln(
√
t2j−3/k/(eq)) is at least

ln(
√

32 · 24e3q2k/(8k)/(eq)) ≥ ln (192e) /2. This implies that the ratio between g(j + 1) and g(j) for
j ∈ 0, . . . , lg2(k)/2− 1 is

g (j + 1)

g (j)
=

2−1/2
(

1 + ln
(√

2
)
/ ln

(√
t2j−3/k/(eq)

))
(j + 1)2

(j + 2)2
≤ 2−1/2 (1 + ln (2) / ln (192e)) (j + 1)2

(j + 2)2
.

Now iteratively using the above relation on the ratio between g(j + 1) and g(j) and that g(lg2(k)/2) =

k1/4m
√
t ln
(
t/(8e2q2

√
k)
)
/(27/2(ln(k)/2 + 1)2) we get for j′ ∈ 0, . . . , lg2(k)/2− 1 that

g(j′) ≥ (lg2 (k) /2 + 1)
2
g (lg2 (k) /2)(

2−1/2 (1 + ln (2) / ln (192e))
)(lg2(k)/2−j′)

(j′ + 1)
2

≥
k1/4m

√
t ln
(
t/(8e2q2

√
k)
)

(
2−1/2 (1 + ln (2) / ln (192e))

)(lg2(k)/2−j′)
22k1/827/2

≥
k1/8m

√
t ln
(
t/(8e2q2

√
k)
)

(
2−1/2 (1 + ln (2) / ln (192e))

)(lg2(k)/2−j′)
22 · 27/2

(9)

≥
(lg2(k)/2− j′) k1/8m

√
t ln
(
t/(8e2q2

√
k)
)

200 · 22 · 27/2
,

where we in the second inequality have used that for j′ ≥ 0 we have (j′ + 1)2 ≤ 22 · 2j′/4 ≤ 22 · k1/8 and
where we in the last inequality have used that for j′ = 0, . . . , lg2(k)/2− 1 we have(

2−1/2 (1 + ln(2)/(ln(192e)))
)−(lg2(k)/2−j′)

≥ (lg2(k)/2− j′)/200.

Now using that eq. (9), also holds for j′ = lg2(k)/2, and a geometric series argument we get that,

lg2(k)/2∑
j=0

P
[
E′j
]

≤ exp

−k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

22 · 27/2

+

lg2(k)/2−1∑
j′=0

exp

− (lg2(k)/2− j′) k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

200 · 22 · 27/2


≤ exp

−k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

22 · 27/2

+
exp

(
−k1/8m

√
t ln
(
t/
(

8e2q2
√
k
))

/(200 · 22 · 27/2)
)

1− exp
(
−k1/8m

√
t ln
(
t/
(

8e2q2
√
k
))

/(200 · 22 · 27/2)
)

≤ 11 exp

−k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

200 · 22 · 27/2

 ,

where we in the last inequality have used that k1/8m
√
t ln(t/(8e2q2

√
k))/(200 · 22 · 27/2) ≥ 1/10 .
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By the above upper bounds on
∑lg2(k)/2
j=0 P[E′j ] and

∑lg2(k)/2
j=0 P[Ej ] we can conclude that

P

[
k∑
i=1

Z2
i ≥ t

]
≤ 14 exp

(
−min

{
k1/8m

√
t ln
(
t/
(

8e2q2
√
k
))

/
(

200 · 22 · 27/2
)
,m
√
t ln
(√

t/23/ (eq)
)
/
(

200 · 25/2
)})

≤ 14 exp
(
−m
√
t/
(

200 · 27/2
)

min
{
k1/8 ln

(
t/
(

8e2q2
√
k
))

/22, ln
(
t/
(
8e2q2

))})
≤ 14 exp

−m√t ln
(√

t/23/ (eq)
)

200 · 44 · 25/2

 ,

where we have used that the second term in the min is always smallest, when it is scaled by 1/44, this follows
from the assumption about t ≥ 64 · 24e3kq2 implying that for any such given t there exist c̃ ≥ 1 such that
t = c̃8e2kq2 and we get that the first term in the min is equal to k1/8 ln

(
c̃
√
k
)
/22 = k1/8(ln (c̃)+ln (k) /2)/22

and the second term in the min is equal to ln (c̃) + ln (k), where by the claim follows.

We now restate and present the proof of Lemma 6.

Restatement of Lemma 6. Let Z1, . . . , Zk be i.i.d. random variables distributed as the Zi’s in Lemma 4,
with m = c2d/ lnn and the embedding dimension k = c1ε

−2 lnn and q = c1ε, where c1 ≥ 1/c2. For
ε ≤ c−1

1 /(e4) and t ≥ 2c31e
8 lnn, we have that

P

[
k∑
i=1

Z2
i > t

]
≤ 3n−4c1 .

Proof. In the following we assume for simplicity that lg2(k) and lg2(t) are integers. We proceed in a somewhat
similar fashion as in the proof of Lemma 5. For j = lg2 t, . . . , lg2 k let Ej be the event that there are at least
2j−1/(j − lg2(t) + 1)2 indices such that Z2

i ≥ t/2j+1. Assume that none of the events Ej occurs, we then
have that

k∑
i=1

Z2
i

≤
k∑
i=1

∞∑
j=lg2(t)

1{Z2
i≥

t

2j+1 }
t

2j+1

=

∞∑
j=lg2(t)

t

2j+1

k∑
i=1

1{Z2
i≥

t

2j+1 }

=

lg2 k∑
j=lg2(t)

t

2j+1

k∑
i=1

1{Z2
i≥

t

2j+1 } +

∞∑
j=lg2 k+1

t

2j+1

k∑
i=1

1{Z2
i≥

t

2j+1 }

≤
lg2 k∑

j=lg2(t)

t2j−1

2j+1 (lg2(t)− j + 1)
2 +

∞∑
j=lg2 k+1

tk

2j+1

≤ t

4

∞∑
j=1

1

j2
+
t

4

∞∑
j=0

1

2j

≤ tπ2

24
+
t

2
< t,
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where the first inequality follows by Z2
i ≤ 1, so the sum of the terms 1{Z2

i≥t/2j+1}t/2
j+1 starting at j = lg2(t)

is always greater than Z2
i . Thus we conclude that one of the events Ej happens when

∑k
i=1 Z

2
i ≥ t. Now by

an union bound over the events Ej we have

P

[
k∑
i=1

Z2
i ≥ t

]
≤

lg2(k)∑
j=lg2(t)

P [Ej ] .

When Ej happens we know that there is a set S of 2j−1/(j− lg2(t) + 1)2 indices such that for i ∈ S we have
Z2
i ≥ t/2j+1. Thus the probability of each Ej can be bounded by using a union bound over all such possible

sets of indices (k choose 2j−1/(j − lg2(t) + 1)2). Now using that the Zi’s are independent and identically
distributed, the probability of each of the sets S splits into a product of probabilities P

[
Z2
i ≥ t/2j+1

]
, where

Lemma 11 can be used to bound each of these probabilities. We note that Lemma 11 with Z ≥
√
t/2j+1

is applicable since
√
t/2j+1/q ≥

√
2c31e

8 ln(n)/(2k)/(c1ε) =
√

2c31e
8/(2c31) ≥ e4, where we have used the

assumption that t ≥ 2c31e
8 ln(n). We now get that:

P [Ej ] ≤
(

k

2j−1/ (j − lg2(t) + 1)
2

)(√
t/2j+1/ (eq)

)√t/2j+1m2j−1/(j−lg2(t)+1)2

≤ exp

−2j−1
(√

t/2j+1m ln
(√

t/2j+1/(eq)
)
− ln

(
ek(j − lg2(t) + 1)2/2j−1

))
(j − lg2(t) + 1)2

 ,

where the last inequality follows by
(

k
2j−1/(j−lg2(t)+1)2

)
≤
(
ek(j − lg2(t) + 1)2/2j−1

)2j−1/(j−lg2(t)+1)2 .

To evaluate the term
√
t/2j+1m ln

(√
t/2j+1/(eq)

)
−ln

(
ek(j − lg2(t) + 1)2/2j−1

)
we notice the following

four relations for j = lg2(t), . . . , lg2(k)√
t/2j+1m ≥

√
2c31e

8 ln (n) / (2k)c2d/ ln (n) ≥
√

2c31e
8ε2/ (2c1)c2k/ ln (n) ≥

√
2c31e

8c1/2c2ε
−1 ≥ e4ε−1,

(√
t/2j+1/(eq)

)
≥
√

2c31e
8 ln (n) / (2k)/ (ec1ε) =

√
2c31e

8/ (2e2c31) ≥ e3,

ek

2j−1
≤ e2k/t ≤ e2c1/

(
2c31e

8ε2
)
≤ 1/

(
e7ε2

)
,

j − lg2(t) + 1 ≤ lg2(k/t) + 1 ≤ lg2

(
c1/
(
2c31e

8ε2
))

+ 1 = lg2

(
2c1/

(
2c31e

8ε2
))
≤ lg2

(
1/
(
e8ε2

))
,

where we have used that c1 ≥ 1/c2 t ≥ 2c31e
8 ln(n), k = c1ε

−2 ln(2) and d ≥ k. By the above relations we
conclude that for sufficiently small ε, we have that√

t/2j+1m ln
(√

t/2j+1/(eq)
)
− ln

(
ek(j − lg2(t) + 1)2/2j−1

)
≥
√
t/2j+1m ln

(√
t/2j+1/(eq)

)
/2.

Hence for such ε and f(j) = 2j/2−5/2
√
tm ln

(√
t/2j+1/(eq)

)
/(j − lg2(t) + 1)2 we have that

P [Ej ] ≤ exp

−2j−1
√
t/2j+1m ln

(√
t/2j+1/ (eq)

)
/2

(j − lg2(t) + 1)
2

 = exp (−f (j)) .
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Now using the assumptions that t ≥ 2c31e
8 ln(n) and q = c1ε we get that

√
t/2j+1/(eq) ≥

√
2c31e

8/2c31/e ≥
e3 such that for j = lg2 t, . . . , lg2(k)− 1

f (j + 1)

f (j)
≥ (j − lg2 (t) + 1)

2
(1− ln (2) /6)

√
2

(j + 1− lg2 (t) + 1)
2 ,

using this iteratively we get that for j′ ∈ 1, . . . , lg2(k)− lg2(t)

f(lg2(t) + j′) ≥
(
(1− ln (2) /6)

√
2
)j′

f(lg2 t)

(j′ + 1)2
≥ j′f(lg2 t)

150
,

where the last inequality follows by
(
(1− ln (2) /6)

√
2
)j′

/(j′ + 1)2 ≥ j′/150 for j′ > 1.
Now using a geometric series argument we get that

P

[
k∑
i=1

Z2
i ≥ t

]

≤
lg2(k)∑
j=lg2(t)

P [Ej ]

≤
lg2(k)∑
j=lg2(t)

exp (−f(j))

≤ exp (−f(lg2 t)/150) +

∞∑
j=1

exp (−jf(lg2 t)/150)

≤ 2
exp(−f(lg2 t)/150)

1− exp(−f(lg2 t)/150)

≤ 2
exp

(
−tm ln(1/(

√
2eq))/(600

√
2)
)

1− exp
(
−tm ln(1/(

√
2eq))/(600

√
2)
) .

Now using that t ≥ 2c31e
8 ln(n) and ε ≤ c−1

1 /(4e) so ln(1/(
√

2eq)) ≥ ln(2) we end up with the following
inequality t ln(1/(

√
2eq))/(600

√
2) ≥ c31e8 ln(2)/(300

√
2) ln(n) ≥ 4c31 and since m ≥ 1 we conclude that

P

[
k∑
i=1

Z2
i ≥ t

]
≤ 2

exp
(
−tm ln(1/(

√
2eq))/(600

√
2)
)

1− exp
(
−tm ln(1/(

√
2eq))/(600

√
2)
) ≤ 2

n−4c31

1− n−4c31
≤ 3n−4c1 ,

where we in the last inequality have assumed that n ≥ 2 and used that c1 ≥ 1, which completes the proof.

5.2 Inequalities for the Lower Bound
In this section we proof Lemma 9 and Lemma 10. Lemma 9 states that the first coordinate Z1N

2
1 /q is

Ω(εk) with good probability and Lemma 10 says that
∑k
i=2 ZiN

2
i /q is Ω(k) with good probability, which we

combined in (Section 4.2) (the second step in the lower bound proof) to say that the sum of them became
to large. To show Lemma 9 and Lemma 10 we first recall the preliminaries for the second step of the lower
bound (Section 4.2). After the preliminaries we proof Lemma 9 via 4 helping lemmas and lastly we proof
Lemma 10. Recall from Section 4.2:
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We consider the cases where ε, δ, d are such that

c4 ln(1/δ)/d ≤ q ≤ c5εmin{1, ln2(1/δ)/(d ln(1/ε)} (10)

where c4 is the constant from Theorem 2 and c5 is a constant to be fixed later and will be chosen less than
1.

We have m = d/2l where l ≤ lg2

(
lg2((1/δ)

min{1/50,c4/ lg2(e)}
)
)
≤ l + 1 implying that

m ≤ 2d/(min{1/50, c4/ lg2(e)} lg2(1/δ)) ≤ 2d/(min{1/50, c4/ lg2(e)} ln(1/δ)),

and
m ≥ d/(min{1/50, c4/ lg2(e)} lg2(1/δ)) ≥ d/(min{1/50, c4/ lg2(e)} lg2(e) ln(1/δ)).

We notice that for q’s as in eq. (10) and the above m we have that

min{1/50, c4/ lg2(e)} lg2(e) ln(1/δ)/c4 ≥ ln(1/δ)/qm ≥ min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε), (11)

especially that 1/(qm) ≤ 1.
We have that

ln(1/δ)/(qm) ≥ c6, (12)

where c6 is at least 8, and will be chosen larger later.
We consider the random variables Z1N

2
1 /q and

∑k
i=2 ZiN

2
i /q, where the Zi’s denotes normalized sums of

independent Bernoulli random variables Zi = (1/m)
∑m
j=1 bj and the Ni’s denotes standard normal random

variable, where all the Zi’s and the Ni’s are independent of each other.
We now present at technical lemma that we will need in the following proofs.

Lemma 12. For a, x ∈ R such that 0 ≤ x ≤ 1 and 0 ≤ ax ≤ 1 we have that

(1− x)
a ≤ (1− ax/2) .

Proof. Cases x = 0, 1 and ax = 0 can be realised by insertion, and the case ax = 1 corresponds to (1−x)1/x ≤
1/2 which holds. Now for the remainding cases we first note by Taylor expansion of ln(1−x) = −

∑∞
i=1 x

i/i
that (1 − x)a = exp(−a

∑∞
i=1 x

i/i) and (1 − ax/2) = exp(−
∑∞
i=1(ax/2)i/i). So it suffices to show that∑∞

i=1(ax/2)i/i ≤ a
∑∞
i=1 x

i/i. Now using that ax ≤ 1 and that a geometric series with common ratio
of 1/2 equals 2 we get that

∑∞
i=1(ax/2)i/i = (ax/2)

∑∞
i=1

(ax/2)i−1

i ≤ (ax/2)2 = ax. We also have that
ax ≤ a

∑∞
i=1 x

i/i. Hence we conclude that
∑∞
i=1(ax/2)i/i ≤ a

∑∞
i=1 x

i/i which proofs the claim.

We will now present and proof Lemma 13, Remark 14 and Lemma 15 which combined yield that with
good probability we have a lower bound of Θ(ε−1) on the scaled binomial Z1/q.

Lemma 13. Let 0 < ε, δ ≤ 1/4. Let further c7 ≤ 1 and L = c7 ln(1/δ)/ ln (ln(1/δ)/(qm)) if m/L ≥ 1,
qm/L ≤ 1 and c5 (eq. (10)) is chosen so small that min {1/50, c4/ lg2 (e)} /(2c5) is greater than 2. We then
have with probability at least δc7 that:

Z1

q
=

1

q

m∑
i=1

1

m
b1,i ≥

c8c7
ε
√
c5
,

with c8 = ln(2)
√

min {1/50, c4/ lg2 (e)}/(4
√

2).

Proof. The idea of the proof is to divide the m Bernoulli trails inside the sum Z1 =
∑m
i=1

1
mb1,i into L

disjoint buckets of size m/L(we choose c7 such that the bucket size is an integer), and then calculate the
probability that all the buckets have at least one success, and here by get the above lower bound on Z1/q.
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Using that the buckets are disjoint so the events of buckets having a success in it is independent of
each other the probability of having at least one success in every disjoint bucket is (1− (1− q)m/L)L. Now
using Lemma 12 with x = q and a = m/L we get that

(
1− (1− q)m/L

)L ≥ (1− (1− (qm)/(2L)))
L

=

((qm)/(2L))
L. Now plugging L into this expression we get that

(qm
2L

)L
=

(
ln (ln (1/δ) / (qm)) qm

2c7 ln(1/δ)

)c7 ln(1/δ)/ ln(ln(1/δ)/(qm))

=

(
ln (ln (1/δ) / (qm))

2c7

)c7 ln(1/δ)/ ln(ln(1/δ)/(qm))

δc7 ≥ δc7 ,

where the last inequality follows from the assumption that ln(1/δ)/(qm) ≥ 8 (eq. (12)) so the first term
in the second to last expression is lower bounded by 1. Hence with probability at least δc7 we have that
all the disjoint L buckets have at least one success and hence on this event Z1/q ≥ L/(qm). Plugging L
into the expression, using that x/ lnx is increasing for x ≥ 3 and that ln(1/δ)/(qm) is lower bounded by
min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε) (eq. (11)) which is at least 3 by assumptions on c5 and ε ≤ 1/4, it
follows that

1

q
Z1 ≥

c7 ln (1/δ)

qm ln (ln (1/δ) / (qm))
≥ c7 min {1/50, c4/ lg2 (e)} ln(1/ε)

2c5ε ln (min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε))
. (13)

Since min {1/50, c4/ lg2 (e)} /(2c5) ≥ 2 by assumption it holds that ln (min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε))
is less than or equal to ln

(
(min {1/50, c4/ lg2 (e)} /(2c5ε))2

)
, thus

ln(1/ε)

ln (min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε))
≥ ln(1/ε)

2 ln (min {1/50, c4/ lg2 (e)} /(2c5ε))
.

Now using that x/(x + a) with a, x > 0 is increasing in x, with a = ln (4/(c5 min {1/50, c4/ lg2 (e)})),
x = ln(1/ε) and ln(1/ε) ≥ ln 2 it follows that

ln(2)

2(ln (min {1/50, c4/ lg2 (e)} /(2c5)) + ln(2))
≥ ln(2)

4 ln (min {1/50, c4/ lg2 (e)} /(2c5))
.

Plugging this into eq. (13) it follows that

1

q
Z1 ≥

c7 min {1/50, c4/ lg2 (e)} ln(2)

8c5ε ln (min {1/50, c4/ lg2 (e)} /(2c5))
.

Now using that x/ ln(x) ≥
√
x for x ≥ 1 with x = min {1/50, c4/ lg2 (e)} /(2c5), which is greater than 2 by

assumptions, we get that

min {1/50, c4/ lg2 (e)}
2c5 ln (min {1/50, c4/ lg2 (e)} /(2c5))

≥
√

min {1/50, c4/ lg2 (e)} /(2c5).

Thus we get

1

q
Z1 ≥

c7 ln(2)
√

min {1/50, c4/ lg2 (e)}
4
√

2c5ε
=

c8c7
ε
√
c5
,

with c8 = ln(2)
√

min {1/50, c4/ lg2 (e)}/(4
√

2).

We now notice that the assumption of qm/L ≤ 1 in Lemma 13 for a fixed c7 maybe be removed.
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Remark 14. We may assume that qm/L ≤ 1 in lemma 13 for a fixed c7 holds by choosing c6 sufficiently
large.

Proof. To see this we notice that the assumption qm/L ≤ 1 is equivalent to

qm ln (ln (1/δ) / (qm))

c7 ln (1/δ)
≤ 1.

So if we can upper bound the left hand side by 1, we are done. To upper bound the left hand side we use
that ln (x) /x is decreasing for x ≥ 3 so using this fact with x = ln(1/δ)/(qm) and ln(1/δ)/(qm) being lower
bounded by c6 (eq. (12)) we get that

qm ln (ln(1/δ)/(qm))

c7 ln(1/δ)
≤ ln c6
c7c6

,

which is less than 1 for sufficiently large c6 hence the assumption of qm/L ≤ 1 for a fixed c7 may be removed.

Lemma 15. Let the setting be as in Lemma 13 other than m/L ≤ 1 then we have with probability δc7 that

1

q
Z1 ≥

1

q
≥ 1

c5ε
.

Proof. Now since 1/q ≥ Z1/q happens if and only if Z1 = (1/m)
∑m
j=1 b1,j = 1, hence all the Bernoulli trails

in the binomial being one, the above happens with probability qm. This probability is less than or equal to
(qm/L)

L since m/L ≤ 1 now the calculations in Lemma 13 for (qm/(2L))
L yields that qm ≥ δc7 . The later

lower bound on 1/q follows from q ≤ c5ε (eq. (10))

We now show that with good probability we have that N2
1 is Θ(ln(1/δ)).

Lemma 16. For x ≥ 0 we have with probability at least 1−
√

1− exp(−2x/π) that

N2 ≥ x.

Proof. For showing this we will us an upper bound on the error function and here by get at lower bound on the
two tails of the standard normal distributions. The error function is defined as erf(x) := (2/

√
π)
∫ x

0
e−x

2

dx

and has the property that Φ(x) = (1 + erf(x/
√

2))/2 where Φ denote the cdf of the standard normal
distribution. We will use the following upper bound erf(x) <

√
1− exp(−4x2/π) from [21]. Now using the

symmetry of the standard normal distribution around 0 we get

P
[
N2 ≥ x

]
= P

[
N ≤ −

√
x,N ≥

√
x
]

= 2
(
1− Φ

(√
x
))
.

Now using Φ(x) = (1 + erf(x/
√

2))/2 we get

P
[
N2 ≥ x

]
= 2

(
1−

(
1 + erf

(√
x/2
))

/2
)

= 1− erf
(√

x/2
)
.

Lastly using erf(x) <
√

1− exp(−4x2/π) we get

P
[
N2 ≥ x

]
≥ 1−

√
1− exp (−2x/π),

Which concludes the proof.

We will now combine Lemma 13, Remark 14, Lemma 15 and Lemma 16 to show Lemma 9, recall that
Lemma 9 is.
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Restatement of Lemma 9. For 0 < ε, δ ≤ 1/4, c5 sufficiently small (eq. (5)), and c6 sufficiently large
(eq. (6)) we have with probability at least δ1/50+1/2+1/π that

1

q
Z1N

2
1 ≥

5 ln(1/δ)

ε
.

Proof. Let c7 = 1/50 and now fix c6 large enough such that qm/L ≤ 1 as described in Remark 14 and such
that c6 is greater than 8. Then we have with probability δ1/50 by either Lemma 13 (and accordingly small
c5) or Lemma 15 that

1

q
Z1 ≥ min

(
1

c5ε
,

c8
50ε
√
c5

)
.

We now also choose c5 so small that the above is greater than 2 · 5ε−1.
Now using

√
1− x ≤ 1 − x/2 for x ≤ 1 and that δ ≤ 1/4 it follows by Lemma 16 that with probability

1−
√

1− exp(− ln(1/δ)/π) ≥ δ1/π/2 ≥ δ1/2+1/π, we have N2
1 ≥ ln(1/δ)/2.

Now since that Z1 and N2
1 are independent we conclude that with probability δ1/50+1/2+1/π we have that

1

q
Z1N

2
1 ≥

2 · 5 ln(1/δ)

2ε
=

5 ln(1/δ)

ε
,

which concludes the proof of Lemma 9

We now restate and prove Lemma 10.

Restatement of Lemma 10. For 0 < ε ≤ 1/4 and 0 < δ ≤ 1/8 we have with probability at least δ1/8 that

k∑
i=2

1

q
ZiN

2
i ≥ (1− 3ε)(k − 1).

Proof. Let X = (1/q)
∑k
i=2 ZiN

2
i
d
= (1/(mq))

∑k
i=2 biN

2
i , where the bi’s are binomial random variables with

m trails and success probability q, the Ni’s are standard normal random variables and the bi’s and the Ni’s
are all independent of each other. We now notice since the biN2

i ’s are independent and identically distributed
the variance of their sum i equal to k − 1 times the variance of b2N2

2 :

Var (X) =
1

(mq)
2

k∑
i=2

Var
(
biN

2
i

)
=

k − 1

(mq)
2 Var

(
b2N

2
2

)
.

Now using the independence of b2 and N2 and that the forth moment of a standard normal distribution is 3,
and that the first and second moment of a binomial random variable is respectivelymq and (mq)2 +mq(1−q)
we get that

Var
(
b2N

2
2

)
= E

[(
b2N

2
2

)2]− E [(b2N2
2

)]2
= E

[
b22
]
E
[
N4

2

]
−
(
E [b2]E

[
N2

2

])2
= 3

(
(mq)

2
+mq(1− q)

)
− (mq)

2
= (mq)

2
(2 + (1− q)/ (mq)) .

Now plugging Var(b2N
2
2 ) back into the expression of Var (X), yields that

Var (X) = (k − 1) (2 + (1− q)/ (mq)) .

Now using that E [X] = (k−1), the above calculation of the variance ofX and Chebyshev-Cantelli’s inequality
P [Y − E[Y ] ≤ −t] ≤ Var(Y )/

(
Var(Y ) + t2

)
which holds for t > 0, yields that
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P

[
k∑
i=2

1

q
ZiN

2
i ≤ (1− 3ε) (k − 1)

]
≤ (k − 1) (2 + (1− q) / (mq))

(k − 1) (2 + (1− q) / (mq)) + (3ε (k − 1))
2

≤ (2 + (1− q) / (mq))

(2 + (1− q) / (mq)) + (3ε)
2

(k − 1)
.

Since y → y/(y + a) is increasing in y for a, y > 0, it now follows using this with a = (3ε)3(k − 1) and
y = 2 + (1− q)/(mq) ≤ 2 + 1 = 3, where we have used that 1/(mq) ≤ 1 by the comment under eq. (11), we
get that

P

[
k∑
i=2

1

q
ZiN

2
i ≤ (1− 3ε) (k − 1)

]
≤ 3

3 + (3ε)
2

(k − 1)

Lastly using that k = ln(1/δ)/ε2, ε ≤ 1/4 and δ ≤ 1/8 we get ε2(k− 1) = ln(1/δ)− ε2 ≥ 2, and we conclude
that

P

[
k∑
i=2

1

q
ZiN

2
i ≤ (1− 3ε) (k − 1)

]
≤ 3

3 + 18
≤ 1− (1/8)

1/8 ≤ 1− δ1/8,

which ends the proof.
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