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Abstract

In this paper, we revisit the classic CountSketch method, which is a sparse, random projection
that transforms a (high-dimensional) Euclidean vector v to a vector of dimension (2t− 1)s, where
t, s > 0 are integer parameters. It is known that even for t = 1, a CountSketch allows estimating
coordinates of v with variance bounded by ‖v‖22/s. For t > 1, the estimator takes the median of
2t− 1 independent estimates, and the probability that the estimate is off by more than 2‖v‖2/

√
s

is exponentially small in t. This suggests choosing t to be logarithmic in a desired inverse failure
probability. However, implementations of CountSketch often use a small, constant t. Previous work
only predicts a constant factor improvement in this setting.

Our main contribution is a new analysis of CountSketch, showing an improvement in variance
to O(min{‖v‖21/s2, ‖v‖22/s}) when t > 1. That is, the variance decreases proportionally to s−2,
asymptotically for large enough s. We also study the variance in the setting where an inner product
is to be estimated from two CountSketches. This finding suggests that the Feature Hashing method,
which is essentially identical to CountSketch but does not make use of the median estimator, can be
made more reliable at a small cost in settings where using a median estimator is possible.

We confirm our theoretical findings in experiments and thereby help justify why a small constant
number of estimates often suffice in practice. Our improved variance bounds are based on new general
theorems about the variance and higher moments of the median of i.i.d. random variables that may
be of independent interest.

1 Introduction

CountSketch [3] is a classic low-memory algorithm for processing a data stream in one pass. It supports
estimating the number of occurrences of different data items in the stream, and can also be used for
fast inner product estimation, or as a building block for finding heavy hitters (see e.g. [16]). Since
its introduction, CountSketch has proved to be a strong primitive for approximate computation on
high-dimensional vectors. Applications in machine learning include feature selection [1], neural network
compression [4], random feature mappings [13], compressed gradient optimizers [14], and multitask
learning [15] — see section 1.5 for more details.

1.1 Sketch description

CountSketch works in the turnstile streaming model, where one is to maintain a sketch of a vector v ∈ Rd
under updates to the entries. Concretely, the vector v is given in a streaming fashion as a sequence
of updates (i1,∆1), (i2,∆2), . . . , where an update (i,∆) has the effect of setting vi ← vi + ∆ for some
∆ ∈ R.
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Figure 1: Variance plot of frequency estimation (point queries) for CountSketch with t = 1 and t = 2,
run on a one-hot vector v with a single nonzero coordinate vi = 1. The first figure shows that the
variances behave linearly on a log-log plot, suggesting that the variances decrease polynomially with the
number of columns s. The second plot shows variance multiplied by s. CountSketch with t = 1 becomes
near-constant, suggesting that its variance grows as 1/s. The third plot shows variance multiplied by s2

and suggests that the variance for t = 2 grows roughly as 1/s2.

The sketch can be stored as a matrix A with 2t− 1 rows and s columns — alternatively viewed as
a vector of dimension (2t− 1)s. Updates to the sketch are defined by hash functions h1, . . . , h2t−1 and
g1, . . . , g2t−1. To initialize an empty CountSketch, we pick a 2-wise independent hash function hi : [d]→ [s]
mapping entries in v to columns of A, and a 2-wise independent hash function gi : [d]→ {−1, 1} mapping
entries in v to a random sign, each for row i ∈ [2t − 1].1. To process the update (j,∆) the update
algorithm sets Ai,hi(j) ← Ai,hi(j) + gi(j)∆ for i = 1, . . . , 2t− 1. Thus entry k of the ith row of A contains
the sum of all coordinates vj such that hi(j) = k, with each such coordinate vj multiplied by a random
sign gi(j).

1.2 Frequency estimation

A frequency estimation query (a.k.a. point query) asks to return an estimate of an entry vj . CountSketch
supports such queries by returning the median of {gi(j)Ai,hi(j)}

2t−1
i=1 . The classic analysis of CountSketch

shows that for each row i of A and entry vj , the estimate v̂ij = gi(j)Ai,hi(j) has expectation vj and

variance at most ‖v‖22/s. Using Chebyshev’s inequality, this implies that Pr[|v̂ij − vj | ≥ 2‖v‖2/
√
s] ≤ 1/4.

This is often boosted to a high probability bound by taking the median v̂j of the 2t− 1 row estimates
v̂1j , . . . , v̂

2t−1
j and using a Chernoff bound to conclude that Pr[|v̂j − vj | ≥ 2‖v‖2/

√
s] ≤ exp(−Ω(t)). A

similar, but less common, analysis based on Markov’s inequality can also be used to give a bound based
on the `1 norm of v. More concretely, it can be shown that E[|v̂ij − vj |] ≤ ‖v‖1/s. This can again be
combined with the Chernoff bound to conclude that Pr[|v̂j − vj | ≥ 4‖v‖1/s] ≤ exp(−Ω(t)). This latter
bound has a better dependency on the number of columns (and hence space usage) but potentially a
worse dependency on v as ‖v‖1 ≥ ‖v‖2 for all v (‖v‖1 and ‖v‖2 are close when v consists of a few large
non-zero entries).

Both of the above bounds suggest using a value of t that is logarithmic in the desired failure probability.
However, practitioners rarely use more than a small constant number of rows, such as 3 or 5 (t = 2, 3)
rows. Based on the classic analysis of CountSketch, this only changes the failure probability by a constant
factor and has no asymptotic benefits. Nonetheless, we show in experiments (in Section 4) that already 3
rows seems to have a profound impact on the variance of the estimates. The result of one experiment is
seen in Figure 1. Here the ratio between the variance with 1 and 3 rows is more than 200 when using
s = 512 columns.

We explain these observations through new theoretical insights about CountSketch. Concretely, we
prove:

Theorem 1. CountSketch with t = 2 (3 rows) satisfies E[(v̂j − vj)2] ≤ min{3‖v‖21/s2, ‖v‖22/s}.

The new contribution in Theorem 1 is the bound in terms of ‖v‖1. Quite interestingly, the bound
in terms of ‖v‖1 is not true if using just a single row. To see this, consider any vector v with a single
non-zero entry vi. The estimate for any other entry vj then equals 0 with probability 1−1/s (h(i) 6= h(j))
and it equals vig(i)g(j) with probability 1/s. One therefore has E[(v̂j − vj)2] = v2i /s = ‖v‖21/s. This
shows that using just three rows instead of a single row effectively reduces the variance of CountSketch
by a factor s in terms of ‖v‖1. We find this new insight into one of the most fundamental sketching

1A k-wise independent hash function has independent and uniform random hash values when restricted to any set of up
to k keys.
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techniques surprising. We also show that taking the median of three asymptotically reduces the fourth
moment of the error in terms of ‖v‖2:

Theorem 2. CountSketch with t = 2 (3 rows) satisfies E[(v̂j − vj)4] ≤ 3‖v‖42/s2.

Moreover, we show that this bound is asymptotically optimal. If we consider the same example as
above with a vector v with just a single non-zero entry vi, we again see that when estimating any vj with
j 6= i we have E[(v̂j − vj)4] = v4i /s = ‖v‖42/s. Thus using t = 2 (3 rows) rather than t = 1 (1 row) reduces
the fourth moment by a factor s in terms of ‖v‖2. We find it quite remarkable that a constant factor
increase in the number of rows increases the utilization of the number of columns by a linear factor both
in terms of the variance as a function of ‖v‖1 and the fourth moment as a function of ‖v‖2. Combined
with our experiments, this strongly suggest that one should always use at least 3 rows in practice. We
extend our results to any t and show:

Theorem 3. CountSketch with median of 2t− 1 rows satisfies E[|v̂j − vj |t] ≤ 22t−1‖v‖t1/st and E[(v̂j −
vj)

2t] ≤ 22t−1‖v‖2t2 /st.

Thus we can bound the tth moment optimally (up to the 22t−1 factor) in terms of ‖v‖1 and similarly
for the 2t-th moment in terms of ‖v‖2.

1.3 Inner product estimation

Another use case of CountSketch is in fast inner product estimation. Concretely, given two vectors
v, w ∈ Rd, if one builds a CountSketch on both vectors using the same random hash functions h1, . . . , h2t−1
and g1, . . . , g2t−1 (i.e. the same seeds), then one can quickly estimate 〈v, w〉 from the two sketches. More
precisely, let Av and Aw denote the matrices constructed for v and w, respectively. For any row i, the
inner product 〈Avi , Awi 〉 =

∑s
j=1A

v
i,jA

w
i,j is an unbiased estimator of 〈v, w〉. Moreover, one can show that

E[(〈Avi , Awi 〉 − 〈v, w〉)2] ≤ 2‖v‖22‖w‖22/s if we replace g by a 4-wise independent hash function (rather
than just 2-wise). Combining this with Chebyshev’s inequality yields

Pr[|〈Avi , Awi 〉 − 〈v, w〉| > (2
√

2)‖v‖2‖w‖2/
√
s] < 1/4.

Finally, as with frequency estimation (point queries), one can take the median over the 2t − 1 row
estimates and apply a Chernoff bound to guarantee that the final estimate, denote it X, satisfies

Pr[|X − 〈v, w〉| > (2
√

2)‖v‖2‖w‖2/
√
s] < exp(−Ω(t)).

CountSketch with just a single row, t = 1, is in fact identical to the popular feature hashing scheme [15].
Previous work has not shown any asymptotic benefits of taking the median of a small constant number of
rows, using e.g. t = 2 or t = 3. Our contribution is new bounds on the variance of such inner product
estimates:

Theorem 4. For two vectors v, w ∈ Rd, let Av and Aw denote the two matrices representing a CountSketch
of the two vectors when using the same random hash functions, where the gi are 4-wise independent. Let
X denote the median of 〈Avi , Awi 〉 over rows i = 1, . . . , 2t− 1. Then CountSketch with t = 2 satisfies

E[(X − 〈v, w〉)2] ≤ min{3‖v‖21‖w‖21/s2, 2‖v‖22‖w‖22/s},

and for t > 1:
E[|X − 〈v, w〉|t] ≤ 22t−1‖v‖t1‖w‖t1/st, and

E[(X − 〈v, w〉)2t] ≤ 42t−1‖v‖2t2 ‖w‖2t2 /st .

We note that the bounds in terms of ‖v‖21 and ‖w‖21 can be shown only assuming 2-wise independence
of the gi. As with frequency estimation queries, a simple example demonstrates that the variance bound
in terms of ‖v‖21‖w‖21 is false for t = 1. Concretely, let v have a single coordinate vi that is non-zero and
let w have a single coordinate wj with j 6= i that is non-zero. Then 〈v, w〉 = 0, yet the probability that vi
and wj hash to the same entry is 1/s. In that case, the estimate is either viwj = ‖v‖1‖w‖1 or −viwj .
This implies that E[(X − 〈v, w〉)2] = ‖v‖21‖w‖21/s, i.e. a factor s worse than the guarantees with three
rows.

We have also performed experiments estimating the variance on real-world data sets, see Section 4.
When s is large enough (so that ‖v‖21‖w‖21/s2 becomes the smallest term), these experiments support our
theoretical findings as with the frequency estimation queries.
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Discussion. Similarly to the frequency estimation queries, our new theoretical bounds and supporting
experiments strongly advocates taking the median of at least 3 rows when using CountSketch for inner
product estimation. Equivalently, when using feature hashing for inner product estimation, one should
take the median of at least 3 independent instantiations. This reduces the variance by a linear factor
in the number of columns/coordinates of the sketch. We remark that taking the median might not be
allowed in all applications. For instance, when using CountSketch/feature hashing as preprocessing for
Support Vector Machines, using one row corresponds to a kernel function, while this is not the case when
taking the median of multiple row estimates. The median of three can thus not be directly used in this
setting.

1.4 New bounds on moments of the median

We prove our new variance and moment bounds for CountSketch by showing general theorems relating
moments of the median of i.i.d. random variables to smaller moments of the individual random variables.
These new bounds are very natural and should have applications besides in CountSketch. Moreover, we
show that they are asymptotically optimal.

Theorem 5. Let X1, · · · , X2t−1 be 2t − 1 i.i.d. real valued random variables and let Y denote their
median. For all positive integers q it holds that

E[|Y − E[X1]|tq] ≤
(
2t−1
t

)
· E[|X1 − E[X1]|q]t .

In particular, E[|Y − E[X1]|tq] ≤ 22t−1 · E[|X1 − E[X1]|q]t.

In many data science applications, the Xi would be unbiased estimators of some desirable function
of a data set, such as e.g. the coordinate vi in a vector v. Theorem 5 thus gives a bound on the tq-th
moment of the estimation error of the median Y in terms of just the q-th moment of a single variable.
We remark that the median of 2t− 1 unbiased estimators is not necessarily itself an unbiased estimator,
thus the bound on E[(Y − E[X1])tq] is much more desirable than a bound on e.g. E[(Y − E[Y ])tq] as the
mean of Y might be tricky to prove an exact bound for. However, one can, in fact, derive a bound on the
variance of Y itself (on E[(Y − E[Y ])2) directly from Theorem 5:

Corollary 1. Let X1, X2, X3 be i.i.d. real valued random variables and let Y denote their median. Then

Var(Y ) ≤ E[(Y − E[X1])2] ≤ 3 · E[|X1 − E[X1]|]2 .

Proof. From Theorem 5 with q = 1 we have

E[(Y − E[X1])2] ≤ 3 · E[|X1 − E[X1]|]2.

Moreover, the minimizing value µ for the function µ 7→ E[(Y − µ)2] is the mean µ = E[Y ]. Therefore we
have Var(Y ) = E[(Y − E[Y ])2] ≤ E[(Y − E[X1])2] ≤ 3 · E[|X1 − E[X1]|]2.

In this paper, we mainly consider the case t = 2 with 3 rows — or equivalently 3 i.i.d. random
variables.

1.5 Related work

CountSketch was originally proposed in [3] as a method for finding heavy hitters (i.e., frequently occurring
elements) in a data stream. Though there are better methods for finding heavy hitters in insertion-only
data streams, CountSketch has the advantage that it is a linear sketch, meaning that sketches can be
subtracted to form a sketch of the difference of two vectors. It is known to be space-optimal for the
problem of finding approximate Lp heavy hitters in the turnstile streaming model, where both positive
and negative frequency updates are possible [10].

Analysis by Minton and Price. An improved analysis of the error distribution of CountSketch was
given in [12], building on work of [10]. The analysis gives non-trivial bounds only when t is a sufficiently
large (unspecified) constant, and the exposition focuses on the case t = Θ(log n), where n is the dimension
of the vector v. Their stated error bounds are incomparable to ours since they are expressed in terms of
(residual) L2 norm of v.
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The reader may wonder if it is possible to derive our results from the analysis in [12]. Their error bound
for CountSketch based on ‖v[k]‖2, where ‖v[k]‖2 is v with the largest k entries set to 0. More concretely,

it is shown that for a single row of CountSketch, it holds that Pr[(v̂ij − vj)2 > c0‖v[c1s]‖22/s] < 1/4 for
some constants c0, c1. The crucial observation is that all entries of v[c1s] are bounded by ‖v‖1/(c1s) and
therefore one has ‖v[c1s]‖22 = O(‖v‖1‖v‖1/s). Inserting this gives Pr[(v̂ij − vj)2 > c2‖v‖21/s2] < 1/4 and
this may be combined with Chernoff bounds to give high probability bounds for the median of multiple
rows in terms of ‖v‖1. Already with one row, this looks similar to our bound on the variance of the median
of 3 rows (Theorem 1) which stated that E[(v̂j − vj)2] ≤ 3‖v‖21/s2. However, as our counterexample
above suggests, there is no way of extending the ideas of [12] to prove E[(v̂ij − vj)2] = O(‖v‖21/s2) as it
is simply false for t = 1. Indeed the way [12] proves their bound is by analysing the c1s largest entries
separately from the remaining entries, bounding E[(v̂ij − vj)2] only for the small entries in v[c1s]. Thus
our new variance bounds do not follow from their work.

The experiments in [12] focus on the setting where t is relatively large, with 20 or 50 rows, i.e., about
an order of magnitude larger space usage that we have for t = 2.

Dimension reduction. CountSketch can be used as a dimensionality reduction technique that is
simpler and more computationally efficient than the classical Johnson-Lindenstrauss embedding [9].
In this setting there is no estimator, the sketch vector is simply considered a vector in ts dimensions.
Generalized versions of CountSketch have been shown to yield a time-accuracy trade-off [6, 11].

In machine learning, a variant of CountSketch, now known as feature hashing, was independently
introduced in [15], focusing on applications in multitask learning. Feature hashing reduces variance in a
slightly different way than CountSketch, by initially increasing the dimension of the input vector by a
factor t in a way that preserves L2 distances exactly but reduces the L∞ norm of vectors by a factor√
t. In [4], CountSketch/feature hashing was wired into the architecture of a neural network in order to

reduce the number of model parameters (without the use of medians). CountSketch has also been used in
the construction of random feature mappings [13, 2], which can be seen as dimension-reduced versions of
explicit feature maps.

Further machine learning applications. CountSketch, with the median estimator, has been used
in several machine learning applications. In [1], CountSketch was used with t = 2 (3 rows) for large-scale
feature selection. In [14], CountSketch was used for compressing gradient optimizers in stochastic gradient
descent. The related count-min sketch [5], which is the special case of CountSketch where we fix s(x) = 1,
is a popular choice in applications where vectors have non-negative entries. The count-min estimator
takes advantage of non-negativity by taking the minimum of t estimates, and the error distribution can
be analyzed in terms of the L1 norm of v. We note that a count-min sketch with a fully random hash
function can be used to simulate a CountSketch with s/2 entries computing the pairwise difference of
entries whose index differ in the last bit (effectively using the least significant bit as the hash function s).

2 Moments of the Median

In this section, we prove our new inequalities for moments of the median. We in fact prove a more general
theorem for the median of 2t− 1 i.i.d. random variables. We first state and proof an integral inequality
which the proof of the theorem relies on.

Lemma 1. Let f : R+ → R+ be a non-increasing function and let t be a positive integer. Then∫ ∞
0

f( t
√
x)tdx ≤

(∫ ∞
0

f(x)dx
)t

.

Proof. Since the function is non-increasing, it is measurable. Moreover, since it is non-negative, the
integrals are defined (possibly equal to +∞). We have:(∫ ∞

0

f(x)dx
)t

=

∫ ∞
0

· · ·
∫ ∞
0

t∏
i=1

f(xi)dx1 . . . dxt

= t!

∫ ∞
0

∫ xt

0

· · ·
∫ x2

0

t∏
i=1

f(xi)dx1 . . . dxt (1)
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≥ t!
∫ ∞
0

∫ xt

0

· · ·
∫ x2

0

f(xt)
tdx1 . . . dxt (2)

= t!

∫ ∞
0

f(xt)
t

∫ xt

0

· · ·
∫ x2

0

1dx1 . . . dxt

= t!

∫ ∞
0

f(xt)
t xt−1t

(t− 1)!
dxt (3)

=

∫ ∞
0

f(x)ttxt−1dx =

∫ ∞
0

f( t
√
x)tdx .

The integral in (1) is exactly over the set 0 ≤ x1 ≤ x2 ≤ · · · ≤ xt. There are t! such sets, each
determined by an ordering of the variables. Since

∏t
i=1 is a symmetric function (by comutativity) it

integrates to the same value over each of these sets. Moreover, these sets partition the set [0,∞)t (up to a
set of measure 0 corresponding to when two variables are equal). Since we have a partition into t! sets and
the integral over each set from the partition is the same, the integral over each set is a t!-fraction of the
integral over the whole space, and (1) holds. (2) holds because f is non-increasing and x1 ≤ x2, · · · , xt.
(3) holds because the inner integrals correspond to the volume of the t− 1-dimensional ordered simplex
scaled by a factor of xt and the volume of t − 1-dimensional ordered simplex is 1

(t−1)! (this holds by

symmetry, and can be argued the same way as (1)). The final equality holds by substituting x = xt.

Restatement of Theorem 5. Let X1, · · · , X2t−1 be 2t− 1 i.i.d. real valued random variables and let
Y denote their median. For all positive integers q it holds that

E[|Y − E[X1]|tq] ≤
(
2t−1
t

)
· E[|X1 − E[X1]|q]t .

In particular, E[|Y − E[X1]|tq] ≤ 22t−1 · E[|X1 − E[X1]|q]t.

Proof. Notice that since Y is the median of X1, . . . , X2t−1 and the Xi’s have the same mean, we can only
have |Y − E[X1]|tq ≥ x when at least t variables Xi have |Xi − E[Xi]|tq ≥ x. There are

(
2t−1
t

)
choices for

such t variables, so by the union bound, independence and identical distribution of the Xi’s, we have for
any x that:

Pr[|Y − E[X1]|tq ≥ x] ≤
(
2t−1
t

)
Pr[|X1 − E[X1]|tq ≥ x]t.

We can thus bound E[|Y − E[X1]|tq] as:

E[|Y − E[X1]|tq]

=

∫ ∞
0

Pr[|Y − E[X1]|tq ≥ x]dx

≤
(
2t−1
t

) ∫ ∞
0

Pr[|X1 − E[X1]|tq ≥ x]tdx

=
(
2t−1
t

) ∫ ∞
0

Pr[|X1 − E[X1]|q ≥ t
√
x]tdx

≤
(
2t−1
t

)( ∫ ∞
0

Pr[|X1 − E[X1]|q ≥ x]dx
)t

=
(
2t−1
t

)
· E[|X1 − E[X1]|q]t,

where the first and last equalities hold by a standard identity for non-negative random variables, and
the last inequality holds by Lemma 1 since Pr[|X1 − E[X1]|q ≥ x] is a non-increasing non-negative
function.

The bound shown in this section can easily be seen to be asymptotically optimal. Consider Xi’s which
take value k with probability 1/k and are zero otherwise. Then

E[|Y − E[X1]|qt]
=(k − 1)qt Pr[Y = k]

≥(k − 1)qt
(
2t−1
t

)
Pr[X1 = k]t(1− Pr[X1 = k])t−1

=
(k − 1)qt

kt
(
2t−1
t

)
(1− 1

k
)t−1

6



∼(k − 1)(q−1)t
(
2t−1
t

)
where the limit in ∼ is taken for k →∞. On the other hand, the bound given by our theorem is(

2t−1
t

)
E[|X1 − E[X1]|q]t

=
(
2t−1
t

)
(
1

k
(k − 1)q)t

∼(k − 1)(q−1)t
(
2t−1
t

)
3 CountSketch

In this section, we prove our new bounds on the variance (Theorem 1) and 4th moment (Theorem 2)
for CountSketch with 3 rows (t = 2) as well as our general theorem with the median of 2t− 1 estimates
(Theorem 5).

The bounds on frequency estimation are optimal up to 1 +o(1) factor. This can be seen by considering
input consisting of one item with frequency s and a sketch of size s. Querying an item with frequency
0 then reproduces the example from the last section for which our bounds are optimal up to 1 + o(1)
factor.

Frequency estimation. Recall that CountSketch with three rows computes an estimate v̂ij for each of
three rows i = 1, 2, 3 and returns the median v̂j as its estimate of vj . From Theorem 5, we see that to
obtain variance and 4th moment bounds for v̂j , we only need to bound E[|v̂1j − E[v̂1j ]|q] for q = 1, 2. Such
bounds essentially follow from previous work and are as follows:

Lemma 2. CountSketch satisfies E[v̂1j ] = vj, E[|v̂1j − vj |] ≤ ‖v‖1/s and E[(v̂1j − vj)2] ≤ ‖v‖22/s.

Theorem 1 follows by instantiating Theorem 5 with q = 1 and the facts E[v̂1j ] = vj , E[|v̂1j−vj |] ≤ ‖v‖1/s
from Lemma 2. Theorem 2 follows by instantiating Theorem 5 with q = 2 and the facts E[v̂1j ] = vj ,

E[(v̂1j − vj)2] ≤ ‖v‖22/s from Lemma 2. Finally, Theorem 3 also follows as an immediate corollary of
Theorem 5 and Lemma 2.

We give the proof of Lemma 2 in the following for completeness:

Proof of Lemma 2. For short, let X = v̂1j , g = g1 and h = h1. We then have:

E[X] = E[g(j)A1,h(j)]

= E[g(j)(g(j)vj +
∑
i 6=j

1h(i)=h(j)g(i)vi)]

= vj +
∑
i6=j

E[1h(i)=h(j)g(j)g(i)]vi.

By independence of h and g, and g being 2-wise independent, we have

E[1h(i)=h(j)g(j)g(i)] = E[1h(i)=h(j)]E[g(j)]E[g(j)] = 0

and we conclude E[X] = vj . Next consider

E[|X − E[X]|] = E[|g(j)A1,h(j) − vj |]

= E[|
∑
i 6=j

1h(i)=h(j)g(j)g(i)vi|]

≤ E[
∑
i 6=j

|1h(i)=h(j)||g(j)g(i)||vi|]

=
∑
i 6=j

E[1h(i)=h(j)]|vi|

≤
∑
i

|vi|/s

= ‖v‖1/s.
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Above we used 2-wise independence of h when we concluded that E[1h(i)=h(j)] = Pr[h(i) = h(j)] ≤ 1/s
for all i 6= j. Finally consider:

E[(X − E[X])2]

= E


∑
i 6=j

1h(i)=h(j)g(j)g(i)vi

2


= E

∑
i6=j

∑
k 6=j

1h(i)=h(j)1h(k)=h(j)g(j)2g(i)g(k)vivk


=
∑
i6=j

∑
k 6=j

E[1h(i)=h(j)1h(k)=h(j)]E[g(i)g(k)]vivk.

Here we notice by 2-wise independence of g that E[g(i)g(k)] = 0 whenever i 6= k and 1 otherwise. The
above is thus bounded by:

E[(X − E[X])2] ≤
∑
i6=j

E[12h(i)=h(j)]v
2
i

≤
∑
i6=j

v2i /s

≤ ‖v‖22/s.

Inner product estimation. Similarly to the case of frequency estimation (point queries), we prove
our new guarantees in Theorem 4 by invoking our general theorems on moments of the median. All we
need is moment bounds for a single row. The following is more or less standard. We show the following
(which are more or less standard):

Lemma 3. For two vectors v, w ∈ Rd, let Av and Aw denote the two matrices representing a CountS-
ketch of the two vectors when using the same random hash functions. Then E[〈Av1, Aw1 〉] = 〈v, w〉
and E[|〈Av1, Aw1 〉 − 〈v, w〉|] ≤ ‖v‖1‖w‖1/s. Moreover, if g is 4-wise independent, then we also have
E[(〈Av1, Aw1 〉 − 〈v, w〉)2] ≤ 2‖v‖22‖w‖22/s.

Theorem 4 follows by combining Lemma 3 and Theorem 5.

Proof. For short, let g = g1 and h = h1. We start by observing the

〈Av1, Aw1 〉 =

d∑
i=1

d∑
j=1

g(i)vig(j)wj1h(i)=h(j).

Using 2-wise independence of g, we get:

E[〈Av1, Aw1 〉] =

d∑
i=1

d∑
j=1

E[g(i)vig(j)wj1h(i)=h(j)]

=

d∑
i=1

d∑
j=1

E[g(i)g(j)]viwjE[1h(i)=h(j)]

=

d∑
i=1

viwi

= 〈v, w〉.

Next, we see that

E[|〈Av1, Aw1 〉 − 〈v, w〉|]

8



= E

∣∣∣∣∣∣
d∑
i=1

∑
j 6=i

g(i)vig(j)wj1h(i)=h(j)

∣∣∣∣∣∣


≤ E

 d∑
i=1

∑
j 6=i

|g(i)||vi||g(j)||wj ||1h(i)=h(j)|


=

d∑
i=1

∑
j 6=i

|vi||wj |E[1h(i)=h(j)]

≤
d∑
i=1

|vi|
d∑
j=1

|wj |/s

= ‖v‖1‖w‖1/s.

And finally for 4-wise independent g, we have:

E[(〈Av1, Aw1 〉 − 〈v, w〉)2]

= E


 d∑
i=1

∑
j 6=i

g(i)vig(j)wj1h(i)=h(j)

2


=

d∑
i=1

∑
j 6=i

d∑
a=1

∑
b6=a

E[g(i)vig(j)wj1h(i)=h(j)g(a)vag(b)wb1h(a)=h(b)]

=

d∑
i=1

∑
j 6=i

d∑
a=1

∑
b6=a

viwjE[1h(i)=h(j)1h(a)=h(b)]E[g(i)g(j)g(a)g(b)]vawb.

Recall that a 6= b and i 6= j. Thus if a /∈ {i, j} or b /∈ {i, j}, then at least one g(·) is independent of the
remaining three by 4-wise independence of g. The expectation E[g(i)g(j)g(a)g(b)] then splits into the
product of the expectation of that single term and the remaining three. Since E[g(·)] = 0, the whole
term in the sum becomes 0. Thus for any given (i, j) with i 6= j, there are two choices of (a, b) that
do not result in the term disappearing, namely (a, b) = (i, j) and (a, b) = (j, i). In both these cases,
g(i)g(j)g(a)g(b) = 1. When (a, b) = (i, j) we have viwjvawb = v2iw

2
j and when (a, b) = (j, i) we have

viwjvawb = viwivjwj . Therefore:

E[(〈Av1, Aw1 〉 − 〈v, w〉)2]

=

d∑
i=1

∑
j 6=i

(v2iw
2
j + viwivjwj)E[1h(i)=h(j)]

≤
d∑
i=1

d∑
j=1

(v2iw
2
j + viwivjwj)/s

= ‖v‖22‖w‖22/s+

d∑
i=1

d∑
j=1

viwivjwj/s

= ‖v‖22‖w‖22/s+ 〈v, w〉2/s.

By Cauchy-Schwartz, we have 〈v, w〉 ≤ ‖v‖2‖w‖2 and thus the whole thing is bounded by 2‖v‖22‖w‖22/s.

4 Experiments

In this section, we empirically support our new theoretical bounds by estimating the variance of CountS-
ketch with 1 row and 3 rows on different data sets. We implemented CountSketch in C++ using the
multiply-shift hash function [7] as the 2-wise independent hash functions h and g. We seeded the hash
functions using random numbers generated using the built-in Mersenne twister 64-bit pseudorandom gen-
erator. Experiments were run both for frequency estimation (Section 4) and for inner product estimation
(Section 4).
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Frequency estimation. We ran experiments on two real-world data sets and two synthetic data sets.
The real-world data sets come in the form of a stream of items, with the same item occurring multiple
times. Instead of running numerous (i, 1) updates (vi ← vi + 1), we have simply computed the number of
occurrences ci of each item. We then normalize the occurrences ci ← ci/

∑
j cj to obtain unit `1-norm

and then run a single update vi ← vi + ci for each item i at the end. This produces the exact same
CountSketch as when processing the updates one by one (with normalization). The data sets are described
in the following:

• Kosarak: An anonymized click-stream dataset of a Hungarian online news portal. 2 It consists of
transactions, each of which has several items. We created a vector with one entry for each item,
storing the total number of occurrences of that item. The vector has 41270 entries, and when
normalized to have `1-norm 1, its `2-norm is 0.112 and the largest entry is 0.075.

• Sentiment140: A collection of 1.6M tweets from Twitter [8]. We extracted all words that occur at
least twice, and created a vector with one entry per word, containing the total number of occurrences
of that word in the tweets. The vector has 147071 entries, and when normalized to have `1-norm 1,
its `2-norm is 0.0773 and the largest entry is 0.0382.

• Zipfian: The Zipfian distribution with skew α and n items is a probability distribution where the
kth item has probability k−α/

∑n
j=1 j

α. Such distributions have been shown to fit a large variety of
real-world data. We created two data sets with n = 1000 items using skews α = 0.8 and α = 1.2,
considering the vector of probabilities. For α = 0.8, the `2-norm is 0.097 and the largest entry is
0.065. For α = 1.2, the `2-norm is 0.2713 and the largest entry is 0.231.

The results of the experiments can be seen in Figures 2-5. For each experiment, we plot the variance
as a function of the number of columns s. We run experiments with s = 22, 23, . . . , 210 on each data set.
For each choice of s, we estimate the variance by constructing 1000 CountSketches on the input with new
randomness for each. For each CountSketch we pick 100 random items and compute the estimation error
for each. We sum the squares of all these estimation errors and divide by 100× 1000 (for small data sets
with less than 5000 items, we instead build 106 CountSketches and make a single estimation on each).
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Figure 2: Variance experiments on the Kosarak data set.
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Figure 3: Variance experiments on the Sentiment140 data set.

On all four data sets, we make three plots of the data. On the first, we show a log-log plot and observe
that in all experiments, the variances look linear on the plot, supporting a polynomial dependency on s.
Second, we scale the variances by s and plot it on a linear scale. In all experiments, the scaled variance
for t = 1 looks constant, supporting a 1/s dependency on the number of columns s. Third, we scale the
variance by s2 and plot it on a linear scale. The scaled variance for t = 2 looks almost constant in all
experiments, supporting a 1/s2 dependency on the number of columns. We remark that our theoretical

2Provided by Ferenc Bodon to the FIMI data set located at http://fimi.uantwerpen.be/data/.
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Figure 4: Variance experiments on Zipfian distribution with skew α = 0.8.
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Figure 5: Variance experiments on Zipfian distribution with skew α = 1.2.

bound in Theorem 1 guarantees E[(v̂j − vj)2] ≤ 3‖v‖21/s2. Since ‖v‖1 = 1 in all our data sets, so we
expect a CountSketch with t = 2 on the third plots to stay below 3 on the y-axis, which it does in all
experiments (it even stays below 0.4).

Data Set Variance t = 1 Variance t = 2 Ratio

Kosarak 1.25× 10−5 1.42× 10−7 88.0
Sentiment140 5.94× 10−6 2.13× 10−7 27.9
Zipfian α = 0.8 9.56× 10−6 2.09× 10−7 45.7
Zipfian α = 1.2 6.94× 10−5 3.99× 10−7 173.9

Table 1: Variances for different data sets with 2 and 3 rows (t = 1, 2) of CountSketch. In all experiments,
we consider a CountSketch with s = 1024 columns. The ratio in the last column of the table gives the
relative difference between using 1 and 3 rows.

Table 1 shows the variance on the different data sets using CountSketch with s = 1024 rows. In all
cases, that increasing CountSketch parameter t from 1 to 2 clearly provides major reductions in variance,
ranging from a factor about 28 to 174.

We also perform experiments measuring the 4th moment of the estimation errors. The results of
these experiments can be seen in Figures 6-9.
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Figure 6: 4th moment experiments on the Kosarak data set.

Again, we have plotted the 4th moment times s and the 4th moment times s2. Similar to the variance
experiments, it appears that CountSketch with t = 1 has a 4th moment error growing as 1/s and with
t = 2 it grows as 1/s2, supporting our new theoretical findings in Theorem 2.

To summarize, we believe our empirical findings support our new theoretical bounds on the variance
and 4th moment. Moreover, our results strongly suggest that practitioners use t ≥ 2 with CountSketch as
it provides major reductions in variance at little increase in time and memory efficiency.

Inner product estimation. In the following, we perform experiments where we use CountSketch for
inner product estimation. We perform experiments on two data sets, a synthetic and a real-world data
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Figure 7: 4th moment experiments on the Sentiment140 data set.
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Figure 8: 4th moment experiments on Zipfian distribution with skew α = 0.8.
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Figure 9: 4th moment experiments on Zipfian distribution with skew α = 1.2.

set:

• Disjoint 64 non-zeros: A synthetic data set with two vectors both having 64 non-zero entries
each with value 1/64. The two vectors have disjoint supports and thus inner product 0. The `2-norm
of the vectors is 1/8 = 0.125 and the largest entry is 1/64 ≈ 0.0156.

• News20: A collection of newsgroup documents on different topics 3. Each document is represented
by a tf-idf vector constructed on the words occurring in the documents. We used the training part
of the data set for our experiments. The data set has 11314 distinct vectors. For comparison to our
theoretical bounds, we normalize the vector v representing each document such that it has ‖v‖1 = 1.
After normalization, the average `2-norm of a document vector is 0.1235 and the average largest
entry is 0.0498.
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Figure 10: Variance experiments on the Disjoint 64 Non-Zeros data set.

For the Disjoint 64 Non-Zeros data set, for 106 iterations, we constructed a new CountSketch on the two
vectors using the same random hash functions. We then computed the squared error of the estimates
and averaged over all 106 iterations. For the News20 data set, we run 1000 iterations where we pick new

3http://qwone.com/~jason/20Newsgroups/
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Figure 11: Variance experiments on the News20 data set.

211 213 215 217 219

s

2 41

2 38

2 35

2 32

2 29

2 26

2 23

va
ria

nc
e

t=1
t=2

0.0 0.2 0.4 0.6 0.8 1.0
s 1e6

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

s
×

 v
ar

ia
nc

e

t=1
t=2

0.0 0.2 0.4 0.6 0.8 1.0
s 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

s2
×

 v
ar

ia
nc

e

t=1
t=2

Figure 12: Variance experiments on the News20 data set and number of columns up to s = 220.

random hash functions in each iteration. In an iteration, we pick 100 random pairs of distinct vectors,
build a CountSketch on both vectors in a pair, and compute the squared estimation error. We finally
average over all 100× 1000 pairs. Figure 10 shows the results of experiments on the Disjoint 64 Non-Zeros
data set. As before, these plots fit our theoretical guarantees in Theorem 4.

Finally, we have run experiments on the News20 data set. The results are shown in Figure 11. Unlike
in previous experiments, it appears that CountSketch with 3 rows (t = 2) has a variance decreasing
as 1/s, not 1/s2. To explain this, recall that the guarantee from Theorem 4 is E[(X − 〈v, w〉)2] ≤
min{3‖v‖21‖w‖2q/s2, 2‖v‖22‖w‖22}. In the News20 data set, the average ‖v‖2 is 0.1235. When this is raised
to the fourth power (it appears in both ‖v‖22 and ‖w‖22) it becomes very small compared to ‖v‖21‖w‖21 = 1,
thus the 1/s2 dependency should only kick in for large values of s. To confirm this, we have run more
experiments, this time with values of s ranging from 210 to 220. The results are shown in Figure 12.

With these larger values of s, we see the expected 1/s2 dependency in the variance for t = 2. To
conclude on this, one may need a larger value of s to see the 1/s2 behaviour in variance when performing
inner product estimation compared to frequency estimation. This is due to the dependency on the product
of two vectors of either ‖v‖21‖w‖21 or ‖v‖22‖w‖22 compared to just the single dependency on ‖v‖21 and ‖v‖22
for frequency estimation.

As with frequency estimation, we also experimentally examine the 4th moments. For the results of
these experiments, see Figures 13 and 14.
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Figure 13: 4th moment experiments on the Disjoint 64 Non-Zeros data set.
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