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Diagonalization Games

Noga Alon Olivier Bousquet Kasper Green Larsen
Shay Moran Shlomo Moran

Abstract. We study several variants of a combinatorial game which is based on
Cantor’s diagonal argument. The game is between two players called Kronecker and
Cantor. The names of the players are motivated by the known fact that Leopold
Kronecker did not appreciate Georg Cantor’s arguments about the infinite, and even
referred to him as a ‘scientific charlatan’.

In the game Kronecker maintains a list of m binary vectors, each of length n,
and Cantor’s goal is to produce a new binary vector which is different from each
of Kronecker’s vectors, or prove that no such vector exists. Cantor does not see
Kronecker’s vectors but he is allowed to ask queries of the form

“What is bit number j of vector number i?”

What is the minimal number of queries with which Cantor can achieve his goal? How
much better can Cantor do if he is allowed to pick his queries adaptively, based on
Kronecker’s previous replies?

The case when m = n is solved by diagonalization using n (non-adaptive) queries.
We study this game more generally, and prove an optimal bound in the adaptive
case and nearly tight upper and lower bounds in the non-adaptive case.

1. INTRODUCTION. The concept of infinity has been fascinating philoso-
phers and scientists for hundreds, perhaps thousands of years. The work of
Georg Cantor (1845 – 1918) played a pivotal role in the mathematical treatment
of the infinite. Cantor’s work is based on a natural idea which asserts that two
(possibly infinite) sets have the same size whenever their elements can be paired
in one-to-one correspondence with each other [2]. Despite its simplicity, this
notion has counter-intuitive implications: for example, a set can have the same
size as a proper subset of it1; this phenomenon is nicely illustrated by Hilbert’s
paradox of the Grand Hotel, see e.g., [6].

This simple notion led Cantor to develop his theory of sets, which forms the
basis of modern mathematics. Alas, Cantor’s set theory was controversial at the
start, and only later became widely accepted:

The objections to Cantor’s work were occasionally fierce: Leopold Kronecker’s
public opposition and personal attacks included describing Cantor as a

‘scientific charlatan’, a ‘renegade’and a ‘corrupter of youth’. Kronecker objected
to Cantor’s proofs that the algebraic numbers are countable, and that the

transcendental numbers are uncountable, results now included in a standard
mathematics curriculum [3] .

Cantor’s work influenced areas outside pure mathematics. For example, Can-
tor’s diagonal argument is employed in the theory of computation to prove that

1E.g., the natural numbers and the even numbers, via the correspondence “n 7→ 2n”.
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Figure 1. Georg Cantor (1845 – 1918).
Source: en.wikipedia.org (US-PD)

Figure 2. Leopold Kronecker (1823 – 1891).
Source: en.wikipedia.org (US-PD)

there are problems that cannot be solved by any algorithm. This idea underpins
the concept of undecidable problems, a cornerstone in theoretical computer
science. In complexity theory, sophisticated variants of the diagonal argument
are used to establish separations between a variety of complexity classes (see
e.g., Chapter 5 of [9]). Interestingly, the combinatorial diagonalization game
we investigate in this paper, which studies diagonalizations in finite sets, has
applications in complexity theory. It was introduced in this context by Vyas
and Williams [8] as a means for establishing lower bounds on circuit complexity.
We will discuss this more comprehensively later in this section as well as in
Section 5.

Diagonalization. One of the most basic and compelling results in set theory
is that not all infinite sets have the same size. To prove this result, Cantor came
up with a beautiful argument, called diagonalization. This argument is routinely
taught in introductory classes to mathematics, and is typically presented as
follows. Let N = {1, 2, 3, . . .} denote the set of natural numbers and let {0, 1}N

denote the set of all infinite binary vectors. Clearly both sets are infinite, but it
turns out that they do not have the same size: assume towards a contradiction
that there is a one-to-one correspondence i 7→ vi, where vi = (vi(1), vi(2), . . .) is
the infinite binary vector corresponding to i ∈ N. Define a vector

u = (1 − v1(1), 1 − v2(2), . . .).

That is, u is formed by letting its jth entry be equal to the negation of the jth
entry of vj .

Notice that this means that the resulting vector u disagrees with vi on the ith
entry, and hence u ̸= vi for all i. Thus, we obtain a binary vector which does not
correspond to any of the natural numbers via the assumed correspondence—a
contradiction.

Rather than reaching a contradiction, it is instructive to take a positivist
perspective according to which diagonalization can be seen as a constructive
procedure that does the following:

Given binary vectors v1, v2, . . ., find a binary vector u such that u ̸= vi

for all i.

Moreover, notice that Cantor’s diagonal argument involves querying only a
single entry for each of the input vectors (i.e., the “diagonal” entries vj(j)).
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Thus, it is possible to construct u while using only a little information about
the input vectors vi’s (a single bit per vector).

In this manuscript we study a finite variant of the problem in which m binary
vectors v1, . . . , vm of length n are given and the goal is to produce a vector u
which is different from all of the vi’s, or to report that no such vector exists,
while querying as few as possible of the entries of the vi’s. We first study the
case when m < 2n whence such a vector u is guaranteed to exist, and the goal
boils down to finding one, and later the case when m ≥ 2n.

Cantor-Kronecker Game and Complexity Theory. As previously men-
tioned, finite variants of Cantor diagonalization, similar to the Cantor-Kronecker
game, have been utilized in complexity theory (e.g., [7, 8]). In a recent
work, Vyas and Williams explicitly define and analyze a variant of the Cantor-
Kronecker game, which they call the “Missing String” problem [8]. They use
this game as a unifying tool for establishing separations between complexity
classes defined by circuits, and also for deriving novel ones. This unifying tool
employs methods for minimizing the number of queries needed to determine a
pre-designated entry of a specific missing vector.

How is this variant of the Cantor-Kronecker game used to derive separations
in complexity theory? In a nutshell, we are given a family F of bounded
computation devices (e.g., bounded size/depth circuits), and each of the vectors
v1, . . . , vm, for m < 2n, corresponds to a subset X of {0, 1}k which can be
computed by a device in F (i.e., n = 2k). So, a vector u that differs from all vi

vectors signifies a hard subset Y of {0, 1}k that cannot be computed by a device
in F . Finally, a computation device which is capable of efficiently computing
each bit of u by examining a handful of bits from the vi vectors, computes the
set Y with a relatively small complexity. We will go back to this variant of the
game in the last section of this manuscript, where we suggest possible directions
for future work.

2. THE CANTOR-KRONECKER GAME. Consider a game between
two players called Kronecker and Cantor. In the game there are two parameters
m and n, where m, n are positive integers. Kronecker maintains a set V =
{v1, v2, . . . , vm} of m binary vectors, each of length n. Cantor’s goal is to produce
a binary vector u, also of length n, which differs from each vi, or to report that
no such vector exists. To do so, he is allowed to ask queries, where each query is
of the form

“What is bit number j of vector number i?”,

where 1 ≤ j ≤ n, 1 ≤ i ≤ m. Kronecker answers each query posed by Cantor.
The objective of Cantor is to minimize the number of queries enabling him to
produce u, whereas Kronecker tries to maximize the number of queries. We
distinguish between two versions of the game:
• In the adaptive version Cantor presents his queries to Kronecker in a sequential

manner, and may decide on the next query as a function of Kronecker’s answers
to the previous ones.

• In the oblivious (i.e., non-adaptive) version Cantor must declare all of his
queries in advance, before getting answers to any of them.
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v1 = 0, 1, 1, 0, 1, 0
v2 = 1, 0, 0, 1, 1, 1
v3 = 1, 1, 1, 0, 0, 0
v4 = 0, 1, 0, 1, 1, 0
v5 = 1, 1, 0, 1, 0, 1
v6 = 0, 1, 1, 1, 1, 1

u = 1, 1, 0, 0, 1, 0

Figure 3. An illustration of Cantor’s diagonalization: the vector u at the bottom is not equal
to any of the vi’s at the top.

For m ≤ n, the smallest number of queries, both in the adaptive and oblivious
versions, is m. Indeed, Cantor can query bit number j of vj for all 1 ≤ j ≤ m
and return a vector u whose jth bit differs from the jth bit of vj , for all j. The
lower bound is even simpler. If Cantor asks fewer than m queries then there is
some vector vi about which he has no information at the end of the game. In
this case he cannot ensure that his vector u will not be equal to this vi.

Organization. We begin with the case where m < 2n. In the next section
(Section 3) we derive nearly tight bounds both in the adaptive and oblivious
cases. We do so by exhibiting and analyzing near optimal strategies for Cantor.
Then, in Section 4 we consider the case where m ≥ 2n and derive an optimal
bound of m · n in this case (for both the oblivious and the adaptive versions).
We do so by exhibiting and analyzing an optimal strategy for Kronecker. Finally,
in Section 5 we discuss some algorithmic aspects, and conclude with some
suggestions to future research.

3. THE CANTOR-KRONECKER GAME WITH M < 2N .

Adaptive Version

Theorem 1. Let g(n, m) denote the smallest number of queries that suffices
for Cantor when he is allowed to use adaptive strategies. Then,

g(n, m) =
{

m m ≤ n,

2m − n n < m < 2n.

Theorem 18 and Remark 19 by Vyas and Williams [8] present upper and
lower bounds for the adaptive case which are accurate within a multiplicative
factor of 2. Theorem 1 closes this gap.

The case 1 ≤ m ≤ n is proved in the previous section so we assume n ≤ m <
2n.

Upper Bound. We present a strategy for Cantor which combines diagonaliza-
tion with another simple idea. To illustrate this idea let us first consider the
case m = n + 1 for n ≥ 2. This special case appeared as a question in the 2022
Grossman Math Olympiad for high-school students, and so perhaps the reader
might enjoy trying to solve it before continuing reading.

Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first
bit of v1, v2, and of v3. Notice that there must be a bit ε such that at least two
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vectors among v1, v2, v3 have their first bit equal to ε. Cantor now defines the
first bit of u to be u(1) = 1 − ε and can remove the two vectors among v1, v2, v3
whose first bit equals ε. Now Cantor is left with at most n − 1 vectors and can
therefore set the last n − 1 coordinates of u according to the diagonalization
construction.

The general case is handled similarly by induction on n: for n = 1 since
n ≤ m < 2n, m must also be 1 and the result is trivial.

Assuming the result for n − 1, let v1, . . . , vm be the m vectors of Kronecker.
First, note that there is an integer x satisfying 1 ≤ x ≤ ⌈m/2⌉ so that n − 1 ≤
m − x < 2n−1: e.g., when ⌊m/2⌋>n − 1, let x = ⌈m/2⌉ (thus m − x = ⌊m/2⌋),
and when ⌊m/2⌋≤n − 1, let x = m − n + 1 (thus m − x = n − 1).

Having x as above, Cantor first queries the first bit of each of the vectors
v1, v2, . . . , v2x−1. (Note that 2x − 1 ≤ m hence this is possible). There must be
a bit ε ∈ {0, 1} so that at least x of the vectors have their first bit equal to ε.
Cantor now defines the first bit of his vector u to be 1 − ε, removes from the
set V exactly x of the vectors whose first bit is ε, and defines as V ′ the set of
all restrictions of the remaining m − x vectors to their last n − 1 coordinates.
Note that n − 1 ≤ m − x < 2n−1.

By the induction hypothesis, Cantor can now play the game for the set
V ′ producing an appropriate vector u′ by asking at most 2(m − x) − (n − 1)
additional queries. The total number of queries is thus (2x − 1) + 2(m − x) −
(n − 1) = 2m − n, as needed. The vector u obtained by concatenating the 1-bit
vector 1 − ε and the vector u′ is clearly different from each member of V . This
completes the induction step argument and finishes the proof of the upper
bound.

Lower Bound. For the lower bound, we present a strategy for Kronecker which
essentially mirrors Cantor’s strategy from the upper bound. Suppose Cantor
manages to produce the required vector u after making exactly bj queries in
coordinate number j of some of the vectors vi. Kronecker chooses his answers
ensuring that for each such j, the answers for bits in the jth location are
balanced, that is, at most ⌈bj/2⌉ of the answers are 0 and at most ⌈bj/2⌉ of the
answers are 1.

Consider the vector u produced by Cantor. For every 1 ≤ j ≤ n, there are
at most ⌈bj/2⌉ vectors vi known to be different than u in coordinate number j.
Thus altogether there are at most

n∑
j=1

⌈bj

2
⌉

≤
n∑

j=1

bj + 1
2

vectors vi that are known to Cantor to be different than u. In order to ensure u
is indeed different from each vi, this number has to be at least m and hence

m ≤
n∑

j=1

bj + 1
2 .

By rearranging, this implies that the total number of queries
∑n

j=1 bj must be
at least 2m − n. The proof of Theorem 1 is now complete.

Oblivious Version
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Theorem 2. Let f(n, m) denote the smallest number of queries that suffices
for Cantor when he is restricted to using oblivious strategies. Then,

f(n, m) =
{

m m ≤ n

m
(

log
⌈

m
n

⌉
± O

(
log log

⌈
m
n

⌉))
n < m < 2n.

Quantitatively, for all n < m < 2n

m ·
(

log
( m

ln(2)(n − log m + 1)
)

− 1
)

≤ f(n, m) ≤ m
⌈
log 2m

n
+ 2 log

(
log 2m

n

)
+ 1

⌉
.

The case 1 ≤ m ≤ n is proved above so we assume n < m < 2n.

Upper Bound. Like in the adaptive case, we present a strategy for Cantor
which combines diagonalization with another simple idea. We first illustrate this
idea by considering the case m = n + 1, and again, we encourage the reader to
try and handle this case before continuing reading.

Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first
two bits of each of v1, v2, and v3 (for a total of 6 queries). Notice that there are
22 = 4 possible combinations of 0/1 patterns on the first two bits, but at most
three of them are realized by v1, v2, v3. Hence, there must be a pair of bits ε1, ε2
which is not realized by v1, v2, nor v3:

(ε1, ε2) /∈
{(

v1(1), v1(2)
)
,
(
v2(1), v2(2)

)
,
(
v3(1), v3(2)

)}
.

Thus, by setting u(1) = ε1 and u(2) = ε2, Cantor rules out v1, v2, v3 and is left
with n − 2 vectors v3, . . . , vn+1 which can be obliviously ruled out with n − 2
queries using diagonalization.

For the general case, let 1 ≤ d ≤ n be an integer (to be determined later).
Pick mutually disjoint subsets of coordinates J1, . . . , J⌊n/d⌋ ⊆ [n], each of size d,
and pick a partition of the m vectors to ⌊n/d⌋ subsets V1, . . . , V⌊n/d⌋ such that
the partition is as balanced as possible (i.e., the difference between each pair of
sizes is ≤ 1). Thus, each set has size

|Vi| ≤
⌈ m

⌊n/d⌋

⌉
≤ 2md

n
.

To see why the second inequality holds, let x = n
d

and let k = ⌊x⌋ ≥ 1; thus,⌈ m

⌊x⌋

⌉
=

⌈m

k

⌉
≤ m

k
+ k − 1

k

≤ 2m

k + 1 ≤ 2m

x
.

The inequality m
k

+ k−1
k

≤ 2m
k+1 holds since m > k ≥ 1. Indeed for m = k + 1 it

holds with equality, and when m is incremented by one and k remains fixed, the
left side of the inequality increases by 1

k
, and the right side increases by 2

k+1 ,
and for k ≥ 1 we have 1

k
≤ 2

k+1 . Hence the inequality is valid for m > k ≥ 1.
Cantor queries (obliviously) as follows.
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For each i and each vector in Vi query all the coordinates in Ji.

Thus, the total number of queries is exactly m · d. Now, notice that if d satisfies

2d >
2md

n
, (1)

then there must exist an assignment fi : Ji → {0, 1} such that fi disagrees
with each of the vectors in Vi on at least one coordinate in Ji. Hence Cantor
can output the vector u, which agrees with each of the fi on Ji. Note that
Equation (1) is satisfied exactly when 2d

d
> 2m

n
; this inequality holds since

2d

d
≥ y when d ≥ log(y) + 2 log(log(y)) + 1 and y ≥ 2. Thus for d =

⌈
log

( 2m
n

)
+

2 log
(
log

( 2m
n

))
+ 1

⌉
, the total number of queries is at most

m · d = m
⌈
log

(2m

n

)
+ 2 log

(
log

(2m

n

))
+ 1

⌉
.

Lower Bound. The lower bound proof is based on the following simple idea.
Let Ji denote the set of coordinates of vi which Cantor queries. Thus, the total
number of queries Cantor uses is |J1| + . . . + |Jm|. Now, let fi : Ji → {0, 1}
denote Kronecker’s answers for the queries on vi. The crucial observation is that
the vector u that Cantor outputs must satisfy

(∀i) : u|Ji
̸= fi.

Indeed, if u|Ji
= fi for some i then Kronecker can fail Cantor by picking his ith

vector vi to equal Cantor’s output u (which would be consistent with Kronecker’s
answers).

We summarize the above consideration with a definition that characterizes
the winning (or losing) strategies of Cantor in the oblivious case.

Definition 3 (Covering Assignments). We say that a sequence of sets
J1, . . . , Jm ⊆ [n] has a covering assignment if there are m functions fi : Ji →
{0, 1} such that every binary vector v ∈ {0, 1}n agrees with fi on Ji for some
1 ≤ i ≤ m (i.e., v|Ji

= fi).

Thus, Kronecker has a winning strategy if and only if the sequence of sets
J1, . . . , Jm that Cantor queries has a covering assignment. The following lemma
establishes the lower bound.

Lemma 4. Let J1, . . . , Jm ⊆ [n] such that

|J1| + . . . + |Jm| < m ·
(

log
( m

ln(2)(n − log m + 1)
)

− 1
)

. (2)

Then, J1, . . . , Jm has a covering assignment.
Equivalently, if for each vector vi Cantor queries its entries in Ji and Equa-

tion 2 holds, then Kronecker has a winning strategy.

Proof. Let ti = |Ji| and let t =
∑

i ti < m ·
(

log
(

m
n−log m+1

)
− 1

)
. Assume, with-

out loss of generality, that t1 ≤ t2 ≤ . . . ≤ tm. We show that there are m functions
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fi : Ji → {0, 1} so that for every possible vector v ∈ {0, 1}n there is i ≤ m so
that v|Ji

= fi.
We do so by explicitly constructing the fi’s (which corresponds to describing a

winning strategy for Kronecker). Starting with the set V = {0, 1}n of all possible
potential vectors, go over the vectors vi in order. In step i we choose the function
fi : Ji → {0, 1} such that |{v ∈ V : v|Ji

= fi}| is maximized. Since there are 2ti

possible choices for fi, the maximizing choice satisfies∣∣∣{v ∈ V : v|Ji
= fi}

∣∣∣ ≥ |V |
2ti

.

After picking fi, we remove all the vectors of V that agree with fi and proceed
to the next step. Therefore, after the first i steps, the size of the set V of the
remaining vectors is at most

2n
i∏

j=1
(1 − 1/2tj ).

These steps are repeated until the size of V shrinks to at most m/2, which as
we show below happens during the first ⌈m/2⌉ steps. In each of the remaining
steps we simply select fi which removes at least one vector from V , until we
eliminate all of the vectors. This means that if

2n

⌈m/2⌉∏
j=1

(
1 − 1/2tj

)
≤ m

2 , (3)

then the sequence J1. . . . , Jm has a covering assignment. So it remains to prove
(3).

2n

⌈ m
2 ⌉∏

j=1

(
1 − 1

2tj

)
≤ 2n

⌈ m
2 ⌉∏

j=1
exp

(
− 1

2tj

)
(1 + x ≤ exp(x) for all x ∈ R)

= 2n exp
(

−
⌈ m

2 ⌉∑
j=1

1
2tj

)
≤ 2n exp

(
− m

2 t
m +1

)
,

where the last inequality follows because exp(−x) is decreasing and because

⌈ m
2 ⌉∑

j=1

1
2tj

≥ m

2 · 1

2
1

⌈m/2⌉
∑⌈m/2⌉

j=1 tj

≥ m

2 · 1
2 t

m

,

which follows by convexity of the function f(x) = 2x and because t1 ≤ t2 ≤
. . . ≤ tm.

We have thus shown that if |J1| + . . . + |Jm| = t, where t is such that

2n exp
(

− m

2 t
m +1

)
≤ m

2 ,
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then the sequence J1, . . . , Jm has a covering assignment. The last inequality
surely holds provided

m

2 t
m +1

≥ ln(2)(n + 1 − log m).

That is, the inequality holds provided

2 t
m +1 ≤ m

ln(2)(n + 1 − log m) ,

or

t ≤ m ·
(

log
( m

ln(2)(n + 1 − log m)
)

− 1
)

which is guaranteed by the premises of the lemma, thus completing the proof.

4. THE CANTOR-KRONECKER GAME WITH M ≥ 2N . Assume
now that Kronecker’s list V consists of m ≥ 2n binary vectors of length n. In
this case V may contain all the binary vectors of length n and there may be
no vector Cantor can output that is different from each vector on Kronecker’s
list. In this regime it is more natural to first focus on the decision problem in
which Cantor’s goal is to decide whether V contains {0, 1}n, and if this is not
the case, to provide a vector which is not in V .2 Clearly Cantor can achieve this
if he queries all mn entries. Can he do better?

We first observe that mn queries are in fact needed in the oblivious case:
assume that Cantor submits only mn − 1 queries, and leaves the jth bit of vi

unqueried. Then Kronecker may set vi to be the unique occurrence of the all
ones vector 1n, and set the remaining m − 1 vectors in V to include all 2n − 1
vectors that are different from the all ones vector. Clearly, it is necessary for
Cantor to query also the last bit of vi in order to see whether vi is the all ones
vector or not. Consequently, Cantor must query all mn queries in the oblivious
case.

How about the adaptive case? The following (similar to the above) argument
shows that for m = 2n, Kronecker can force mn = 2nn queries in the adaptive
case. Use any list which contains each binary vector of length n exactly once.
After mn − 1 bits are queried, the last unqueried bit belongs to a vector which
occurs only once in V . Assume without loss of generality that this bit is 0. If
this bit is set to 1, then V does not contain all 2n binary vectors of length n.
Hence it is necessary to get the value of this last bit.

The case when m > 2n turns out to be more subtle. Nevertheless, we prove
that mn queries are necessary even in this case. We start with introducing some
notation.

Notation. Each step of the game consists of a query by Cantor followed by a
response by Kronecker. The status of the game after each such step is given by
an m × n matrix L, where L(i, j) denotes the status of the jth bit of vi, that is:
L(i, j) ∈ {0, 1, ⋆}, where L(i, j) = ⋆ means that the jth bit of vi has not been
queried yet, and otherwise L(i, j) equals the value of this bit as answered by
Kronecker.

2Our results below imply that the decision and search variants are equivalent for m ≥ 2n

(for m < 2n the decision variant is trivial), in the sense that in both cases it is necessary and
sufficient to query all m · n entries.
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Definition 5. FIXED(L) =
{
v ∈ L : v ∈ {0, 1}n

}
. That is, FIXED(L) is the set

of all vectors in L that were fully queried by Cantor.

Definition 6. L is complete if FIXED(L) = {0, 1}n.

Definition 7. A subset S of 2n rows of L is useful if it either contains all the
2n binary vectors of length n, or it can be converted to this set by replacing
each ⋆-entry in S by 0 or 1.

Definition 8. A matrix L is unblocked if it can be completed; that is, if L has
a useful subset. Otherwise L is called blocked.

Notice that for m ≥ 2n, the m by n matrix all whose entries are ⋆ is unblocked.
As a warmup, and to get used to the definitions, let us assume first that

Cantor queries the vectors one by one according to their order. That is, he
first queries all the bits of v1 from left to right, then all the bits of v2 from left
to right and so on. We use the following strategy for Kronecker: when Cantor
queries the jth bit of vi (i.e., the value of L(i, j)), Kronecker replies according
to the following “0 first” strategy.

Modified value of L(i, j) =
{

1 If setting L(i, j) to 0 blocks L.

0 Otherwise.
(4)

It is not hard to verify that since Cantor queries the vectors one by one and
from left (most significant bit) to right, the following matrix is produced. Each
of the first m − 2n + 1 rows will be set to the all-zeros vector, and the last 2n − 1
rows will be set to the 2n − 1 nonzero vectors in increasing lexicographical order:
starting with 0n−11 and ending with 1n. Hence Cantor is forced to query all mn
entries as in the oblivious case.

It turns out that, for any strategy of Cantor, the above “0 first” strategy of
Kronecker forces Cantor to make mn queries.

Theorem 9. Let m > 2n. Then for any strategy of Cantor, the “0 first” strategy
of Kronecker forces Cantor to make mn queries in order to determine if L
contains {0, 1}n.

In the following we consider an arbitrary execution of the game, where
Kronecker follows the “0 first” strategy (and Cantor’s strategy is arbitrary). We
denote by Lt the m × n matrix L after t steps of the game. Thus L0 is the initial
matrix which is filled only with ⋆’s. Notice that if L is unblocked and L(i, j) = ⋆,
then either setting L(i, j) to 0 or setting L(i, j) to 1 does not block L. Therefore

Observation 10. If Lt is unblocked, so is Lt+1. Hence Lmn is complete; i.e.,
it contains {0, 1}n.

Definition 11. We say that a row L(i) is essential for an unblocked matrix L
if every useful subset of L’s rows contains L(i).

Note that if Lt(i) is essential for Lt, then Ls(i) is essential for Ls for all s ≥ t.
Also, if Lmn(i) is essential for Lmn, then Lmn(i) is equal to a unique vector in
{0, 1}n which is different from all other rows of Lmn.

Lemma 12. Assume that Lt(i) is not essential for Lt and Lt(i, j) = ⋆. If Lt(i, j)
is queried at time t + 1, then it is set to 0, i.e., Lt+1(i, j) = 0.

10 © the mathematical association of america [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 December 11, 2023 8:11 a.m. AMM˙with˙list231204.tex page 11

Proof. If L(i) is not essential for an unblocked matrix L, then L(i, j) can be set
to any bit without blocking L(i). Hence, by the ‘0 first” strategy, it is set to
0.

By a straightforward induction Lemma 12 implies

Corollary 13. If Lt(i) is not essential for Lt, then Lt(i) contains no 1’s (only
0’s or ⋆’s). In particular, if Lmn(i) is not essential for Lmn, then Lmn(i) is the
zero vector 0n. Hence, every row of Lmn which is not the zero vector is essential,
and thus it is different from all other rows of Lmn.

Lemma 14. Let Lmn−1(i, j) be the last bit queried in the game. Then Lmn−1(i)
is an essential row of Lmn−1.

Proof. To simplify notation, we assume without loss of generality that j =
1. Assume towards contradiction that Lmn−1(i) is not essential for Lmn−1.
By Corollary 13, this implies that Lmn−1(i) = ⋆0n−1 and Lmn(i) = 0n. (i.e.,
Kronecker sets Lmn−1(i, 1) to 0 at Cantor’s mn’th query). Since Lmn is complete
(Observation 10), this implies that Lmn−1 contains a distinct occurrence of each
of the 2n − 1 nonzero vectors of {0, 1}n, and in particular for some k ̸= i,
Lmn−1(k) is the unique row of Lmn−1 which equals 10n−1. Then, any subset S
of Lmn−1 which contains
• the row Lmn−1(i),
• the 2n − 2 nonzero rows of Lmn−1 excluding Lmn−1(k), and
• some zero row of Lmn−1 (by Corollary 13 there are m − 2n > 0 such rows in

Lmn−1),
is a useful subset of Lmn−1 which does not contain Lmn−1(k). Hence Lmn−1(k)
is not essential for Lmn−1, and by Lemma 12 Lmn−1(k, 1) = 0 ̸= 1, which stands
in contradiction with Lmn−1(k) = 10n−1.

Proof of Theorem 9. Let Lmn−1(i, j) be the last query in the game. By Lemma
14, Lmn−1(i), and hence also Lmn(i), is essential, meaning that Lmn(i) is different
from all other rows of Lmn. Thus Cantor must get the value of Lmn−1(i, j) in
order to reach a decision.

A remark on computational complexity. A naive implementation of the
“0 first” strategy might take exponential time. Indeed, the naive implementation
involves checking whether setting the queried bit to 0 blocks the current matrix,
which involves checking a potentially exponential list of constraints. Nevertheless,
we next show that this strategy in fact admits a polynomial-time implementation.
First, notice that the initial m − 2n steps are trivially efficient, because setting
L(i, j) to any value cannot block L (since at least 2n rows of L are not queried
yet).

Thus it suffices to show that each later step can be performed in time which
is polynomial in mn, the size of L. In other words, deciding whether setting
L(i, j) to 0 blocks the matrix, can be performed in polynomial time. Let Lt

be the matrix L after t steps of the game, t > m − 2n. Consider the bipartite
graph Gt = (At, B, Et), where At = {Lt(i) : 1 ≤ i ≤ m} is the set of rows of Lt,
B = {0, 1}n, and (Lt(i), u) ∈ Et if and only if Lt(i) can be converted to the
binary vector u by replacing the ⋆’s in Lt(i) (if any) by binary digits. Then,
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a subset S of Lt is useful for Lt if and only if Gt contains a perfect matching
between the vertices in At which correspond to S and B.

Assume now that we are given the graph Gt, and some perfect matching Mt

for Gt as above, and let Lt(i, j) be the entry queried by Cantor at step t + 1. To
check if setting Lt(i, j) to 0 blocks Lt, we remove from Gt all the edges (Lt(i), u)
in which u(j) = 1, and check if the resulted graph contains a perfect matching.
Recall that we are given a perfect matching Mt for Gt, and removing these edges
eliminates at most one edge from Mt. If no edge of Mt was removed then we are
done. Otherwise, this checking can be done by searching an augmenting path
in the resulted graph. This can be accomplished in O(|Et|) = O(m2n) = O(m2)
time by executing one phase in some classical algorithm for bipartite matching
(see, e.g., [4]).

5. CONCLUDING REMARKS AND FUTURE RESEARCH. We
studied the Cantor-Kronecker game for different values of m and n. When m ≤ n
the trivial lower bound of m is tight (a lower bound of m follows because Cantor
must query at least one bit in each vector); when m ≥ 2n, the trivial upper
bound of mn is tight (an upper bound of mn follows because querying all the
bits is clearly sufficient); when n < m < 2n the landscape is more interesting,
and in particular the bounds depend on whether Cantor is adaptive or oblivious.

Further Research. We conclude with suggestions for possible future research:

1. Study the Cantor-Kronecker game when there are r rounds of adaptivity. There
are r rounds in which Cantor can submit queries, and in each round the submitted
queries may depend on Kronecker’s answers to queries from previous rounds.
How does the query complexity change as a function of r? Note that r = 1 is
the oblivious case and r = ∞ is the adaptive case.3

2. It is also natural to consider randomized variants of the game. Can Cantor use
fewer queries if he is allowed to use randomness? In this context it is natural
to assume that Kronecker picks the vectors vi’s before the game begins, and
Cantor’s goal is to minimize the expected number of queries until finding a
missing vector u. Alternatively, one can allow Cantor a small error. That is,
with probability at most ε Cantor can output a vector u which is equal to one
of the vi’s. Note that ε should be smaller than m

2n or else the problem becomes
trivial since then Cantor can output a vector u which is sampled uniformly and
be successful with probability at least 1 − ε without submitting even a single
query.

3. Consider the following generalization of the game. Let k ≤ m, ℓ ≤ n be positive
integers. Kronecker maintains an m × n binary matrix, and Cantor queries the
entries of Kronecker’s matrix. Cantor’s goal is to find a k × ℓ matrix which does
not appear as a submatrix of Kronecker’s m × n matrix, or to decide that one
does not exist. So, the original game is when k = 1, ℓ = n. What is the query
complexity as a function of k, ℓ, m, n in the adaptive/oblivious case? For which
values does Cantor have a strategy that uses strictly less than m · n queries?

4. Find tighter bounds for the oblivious case. Specifically, notice that Cantor’s
original diagonalization provides tight bounds on the number of queries needed
for the oblivious case when m ≤ n. It will be interesting to derive tight bounds

3In fact r = n is already equivalent to r = ∞ because the optimal strategy presented in the
proof of Theorem 1 uses n rounds of adaptivity.
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and optimal strategies in the remaining cases. As we show below, this question
has connections with natural combinatorial problems.

Consider the case when m is at the other end of the scale, namely 2n−1 ≤
m < 2n. Then, Cantor can win the game by querying mn − d bits, where
d = 2n − m − 1. In fact, it suffices that Cantor chooses his queries such that
each of the d unqueried entries belongs to a different vector. In this case any
assignments of values to the unqueried entries covers (in the sense of Definition 3)
the m − d fully queried vectors, and at most two additional vectors per each of
the remaining d vectors (each of which contains one unqueried entry); altogether
at most (m − d) + 2d = m + d vectors. Hence, Cantor is guaranteed to win the
game provided that m + d < 2n (equivalently d ≤ 2n − m − 1).

Is the above strategy optimal? That is, can Kronecker win the game when
Cantor queries only mn − (2n − m) bits? Informally, Kronecker has a winning
strategy if, for any distribution of the 2n − m unqueried entries, there is an
assignment which covers sufficiently many vectors, where “sufficiently many” is
detailed below.

Definition 15 (cube(v), J-cube). Let v be a vector with possibly some
unqueried entries. cube(v) is the set of binary vectors which can be ob-
tained by replacing the unqueried entries in v by zeros or ones. In particular,
cube(v) = {v} if v is fully queried. The cube cube(v) is called a J-cube if
J = {j : the jth bit of v is not queried}. For j ∈ [n], a {j}-cube is denoted by
j-edge.

Assume that Cantor distributes the (2n − m) unqueried entries among vectors
v1, . . . , vq. Then Kronecker’s answers to the queried entries define a cube C(vi)
for each vector vi. Kronecker wins if and only if those cubes cover {0, 1}n. Hence
Kronecker has a winning strategy when Cantor uses mn − (2n − m) queries
(2n−1 + 1 ≤ m < 2n) if and only if the following holds.

Conjecture 16. Let d = 2n − m < 2n−1. For any collection J1, J2, . . . , Jq of
nonempty subsets of [n] satisfying

∑q
i=1 |Ji| = d, there are cubes C1, . . . , Cq such

that Ci is a Ji-cube, and |
⋃q

i=1 Ci| ≥ d + q.

The following result of [5] proves Conjecture 16 for the case that each Ji-cube
is a singleton {ji}.

Theorem 17 ([5]). Let d < 2n−1. For any multiset D = {j1, j2, . . . , jd} of
elements of [n], {0, 1}n contains a matching {e1, . . . , ed} such that for i =
1, . . . , d, ei is a ji-edge.

It is also shown in [5] that the conclusion of Theorem 17 (and hence also
the conclusion of Conjecture 16) does not hold when d = 2n−1. In this case a
corresponding matching exists if and only if each element in [n] occurs an even
number of times in D. This implies that when m = 2n−1 Cantor has a winning
strategy with only mn − (2n − m) = mn − 2n−1 queries. He may query n − 1
entries for each vector, so that at least one dimension is left unqueried in an
odd number of vectors.

5. Finally, Vyas and Williams [8] investigate a local variant of the game in which
Cantor’s goal is not to output a full vector u, but only to output a pre-specified
bit, uj , of it. That is, Cantor is given as an input an entry j and should make as
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few queries as possible and output the bit uj . Notice that when the number of
vectors m satisfies m ≤ n then the basic diagonalization strategy queries only
a single entry, namely vj(j). Vyas and Williams show that then at least Ω(m

n
)

queries are necessary and at most O(m
n

log m
n

) queries are sufficient. However,
the precise relationship between m and n that minimizes the number of queries
is left as an interesting open question.
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