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Abstract9

Consider a sender S and a group of n recipients. S holds a secret message m of length l bits and10

the goal is to allow S to create a secret sharing of m with privacy threshold t among the recipients,11

by broadcasting a single message c to the recipients. Our goal is to do this with information12

theoretic security in a model with a simple form of correlated randomness. Namely, for each subset13

A of recipients of size q, S may share a random key with all recipients in A. (The keys shared14

with different subsets A must be independent.) We call this Broadcast Secret-Sharing (BSS) with15

parameters l, n, t and q.16

Our main question is: how large must c be, as a function of the parameters? We show that n−t
q

l17

is a lower bound, and we show an upper bound of ( n(t+1)
q+t

− t)l, matching the lower bound whenever18

t = 0, or when q = 1 or n − t.19

When q = n − t, the size of c is exactly l which is clearly minimal. The protocol demonstrating20

the upper bound in this case requires S to share a key with every subset of size n − t. We show that21

this overhead cannot be avoided when c has minimal size.22

We also show that if access is additionally given to an idealized PRG, the lower bound on23

ciphertext size becomes n−t
q

λ + l − negl(λ) (where λ is the length of the input to the PRG). The24

upper bound becomes ( n(t+1)
q+t

− t)λ + l.25

BSS can be applied directly to secret-key threshold encryption. We can also consider a setting26

where the correlated randomness is generated using computationally secure and non-interactive27

key exchange, where we assume that each recipient has an (independently generated) public key28

for this purpose. In this model, any protocol for non-interactive secret sharing becomes an ad hoc29

threshold encryption (ATE) scheme, which is a threshold encryption scheme with no trusted setup30

beyond a PKI. Our upper bounds imply new ATE schemes, and our lower bound becomes a lower31

bound on the ciphertext size in any ATE scheme that uses a key exchange functionality and no32

other cryptographic primitives.33
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11:2 Broadcast Secret-Sharing, Bounds and Applications

1 Introduction43

In this paper, we consider the following scenario: We have a sender S and a group of n44

recipients. S holds a secret message m of length l bits, and the goal is to allow S to create45

a secret sharing of m with privacy threshold t among the recipients. This should be done46

by broadcasting a single message c to the recipients, followed by local computation by the47

recipients.48

Our goal is to do this with information theoretic security, and since this is clearly49

impossible in the plain model, we consider a model with correlated randomness.50

Note that, if the correlated randomness is “strong enough”, the problem becomes trivial:51

we could ask that S has a random secret r of the same length as m and the recipients have52

shares of r in, e.g., Shamir’s secret sharing scheme. Now, S can broadcast m− r which is53

clearly of minimal size, and the recipients adjust their shares accordingly. The problem,54

however, is that each instance of the correlation can only be used once. And if we want to55

use the Shamir-based solution several times, the only known approach is to create every56

correlation instance from scratch, implying a communication cost for every instance. In57

other words, there is no known way to create new instances from old ones using only local58

computation, not even if we settle for computational security.59

We therefore choose an arguably arguably simpler and easier to implement form of60

correlated randomness where S shares random strings with one or more of the recipients.61

More precisely, for each subset A of recipients of size q, S may share a secret random bit62

string sA with all recipients in A. Note that this form of correlated randomness can be set63

up using only communication between the sender and the receivers; receivers do not need64

to interact. Furthermore, from one instance of such correlated randomness, the parties can65

generate as many new (pseudorandom) instances as they like using a PRF and only local66

computation. These properties are very useful for applications. See, for instance, Section 1.1.67

For any q, we also allow S to share a secret with any subset smaller than q 1. This means68

that, for larger q, we have stronger forms of correlated randomness.69

We consider protocols where S computes c from m and all the shared secrets (sA’s). Then70

c is broadcast, and each recipient computes his share of m from c and the shared secrets71

he holds. Security means that c and the information held by up to t recipients contain no72

information on m, but c and the information held by any t + 1 recipients determine m.73

We call the notion we just sketched Broadcast Secret-Sharing (BSS), with parameters74

l, n, t and q. In the following, we will sometimes refer to c as the ciphertext and the75

correlated randomness as shared keys, which is motivated by the fact that any broadcast76

secret sharing scheme can be used as is for a secret key threshold encryption scheme. More77

on this interpretation below.78

Our main question is: how large must c be, as a function of the parameters? And, as79

a secondary question, how much secret correlated data do we need? To the best of our80

knowledge, these questions, as well the notion of broadcast secret-sharing, have not been81

considered before.82

Let lc be the length of c. It is easy to see that83

l ≤ lc ≤ n · l.84

Namely, c must always carry enough information to transmit m to the receivers — and on85

1 The motivation is that, for virtually any way to implement the shared randomness, S could always
share with q′ < q parties by imagining q − q′ virtual parties and emulate these herself.
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the other hand, S can always solve the problem by sharing a one-time pad key with each86

receiver, then making a standard secret sharing of m and letting c consist of the one-time87

pad encryptions of each of the shares.88

In this paper, we show the much stronger conditions89

n− t

q
l ≤ lc ≤ (n(t + 1)

q + t
− t)l.90

Note that our upper bound matches the lower bound whenever t = 0 or when q = 1 or91

n− t. Note also that when q = n− t, the size of c is exactly l which is minimal, so q = n− t92

is the largest value it makes sense to consider. The protocol demonstrating the upper bound93

in this case requires S to share a key with every subset of size n − t. We show that this94

(possibly exponential) overhead cannot be avoided when c has minimal size.95

The BSS schemes we mentioned so far produce Shamir secret-sharings as output. In the96

final part of the paper, we show that if access is additionally given to an idealized PRG2,97

other solutions become possible. Namely, the sender chooses a PRG-input, shares it among98

the receivers using the best available BSS, and one-time pad encrypts the message using the99

output from the PRG. Note that this produces a non-standard, non-linear secret sharing.100

The lower bound on ciphertext size becomes n−t
q λ + l − negl(λ) (where λ is the length of101

the input to the PRG). The upper bound becomes ( n(t+1)
q+t − t)λ + l.102

1.1 Applications103

We believe broadcast secret-sharing is interesting in its own right, and we describe below a104

couple of applications that make use of a BSS-scheme “out of the box”. As further motivation,105

we also consider in the following subsection two different ways to provide the correlated106

randomness, leading to other applications.107

1.1.1 (Secret-Key) Threshold Encryption108

The first application is to secret-key threshold encryption, where a sender sends a ciphertext109

to set of receivers such that only large enough subsets can decrypt. The main difference110

between broadcast secret sharing and secret-key threshold encryption is that, in secret-key111

threshold encryption, it is important that the shared keys be reusable. We can easily achieve112

this by interpreting each key shared between S and a (subset of) receiver(s) as a key for a113

pseudorandom function (PRF) ϕ. To encrypt, S chooses a random nonce r, and for each114

shared key K, computes ϕK(r). Note that these PRF values form a (pseudorandom) set115

of values that can be used as fresh correlated randomness for the broadcast secret-sharing116

scheme we use. S now uses this scheme to share her message m among the receivers, resulting117

in a ciphertext c, and sends the pair (r, c). Decryption can clearly be done by any subset118

consisting of at least t + 1 receivers, and no smaller subset learns anything, which follows119

easily from security of the PRF and the underlying BSS-scheme. Note that decryption120

requires minimal interaction: each receiver just has to send his share to the others.121

Note also that this application works exactly for the simple form of correlated randomness122

we use, where S knows some keys, and each receiver knows a subset of them. Had we allowed123

2 We warn the reader that in an actual implementation, a real PRG would have to be used, and the
scheme would only be computationally secure.

ITC 2021



11:4 Broadcast Secret-Sharing, Bounds and Applications

a more complicated correlation, the receivers could not have generated new (pseudorandom)124

correlations of the same form simply by applying the PRF locally.125

1.1.2 Secure Multiparty Computation126

A second application of BSS is to use it to non-interactively supply input to a secret-sharing127

based multiparty computation protocol, where the keys held by the sender and receivers can128

be generated in an earlier setup phase. Given an ideal functionality for distributing keys,129

we get information theoretic security if the keys are used once. But if we are happy with130

computational security, we can use a PRF as explained in the previous subsection to extend131

the key material and support any number of inputs. Note that this will not work when using132

the well-known method of “pre-cooking” a Shamir secret sharing of a random value known133

to the sender. Note also that our construction generates Shamir secret-sharings and so is134

compatible with standard MPC protocols.135

1.2 Implementing Shared Keys136

Broadcast secret sharing assumes keys shared between the sender and (subsets of) the137

receiver(s). To discuss the use of BSS in practice, we must also consider the distribution of138

these keys. We suggest two approaches: non-interactive key exchange (NIKE), and quantum139

key agreement.140

1.2.1 Using NIKE to get (Public-Key) Ad-Hoc Threshold Encryption141

In this subsection, we discuss a way to generate the shared keys on the fly, via computationally142

secure and non-interactive key exchange. Here, we assume that each recipient has an143

(independently generated) public key and secret key for this purpose.144

In this model, any protocol for BSS (including our upper bounds) implies a (public-key)145

ad hoc threshold encryption (ATE) scheme, which is a threshold encryption scheme with146

no trusted setup beyond a PKI. Namely, the sender creates a ciphertext that includes the147

information required for the key exchange as well as the c created for broadcast secret-sharing148

of the message m. To decrypt, at least t+1 recipients will first compute the shared randomness149

using the key exchange, then use this to compute their shares, and finally exhange the shares150

to reconstruct m. In the related work section below, we give more background on ATE and151

its relation to standard threshold encryption.152

Note that for q = 1 the non-interactive key exchange can be done very efficiently based153

on the DDH assumption: if each receiver i has a public key of form gxi in some appropriate154

group, then S just needs to include a single element gr for random r in the ciphertext, then155

the shared key will be of form gxir for receiver i. A similar solution for q = 2 can be designed156

using pairing friendly groups. Thus, for these cases, our upper bounds become (essentially)157

upper bounds on the ciphertext size of the corresponding ATE-scheme. In particular, the158

ATE-scheme that follows from this and our construction for q = 2 has smaller ciphertext159

size than the best previous scheme of Daza et al. [DHMR08]. For instance, when t = 1, that160

scheme has ciphertext size (n− 1)l while we can obtain ( 2n
3 − 1)l.161

Less efficient non-interactive key exchange solutions also exist for larger values of q. They162

can be constructed from multilinear maps, indistinguishability obfuscation [BZ14], universal163

samplers [HJK+16, GPSZ17] (which can be built from indistinguishability obfuscation or164

functional encryption), or encryption combiners satisfying perfect independence [MZ17]165

(which can be built from universal samplers).166
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On the other hand, in this setting, our lower bound becomes a lower bound on the167

ciphertext size in any ATE scheme that uses an ideal functionality for key exchange (and168

perhaps for PRG), and no other cryptographic primitives. We formalize the demand that169

no other cryptographic primitives are used by requiring that the scheme is information170

theoretically secure when using the ideal functionalities.171

We stress that these lower bounds hold for ATE-schemes that have access to the crypto-172

graphic primitives only via the ideal functionalities they implement. This is more restrictive173

than if black-box access were given to the corresponding algorithms; one might say that we174

allow the protocol to use them “only as intended”. However, to the best our knowledge, no175

general lower bound was known for ATE before.176

1.2.2 Using Quantum Agreement177

The correlated randomness needed for BSS can also be provided in a setting where the sender178

shares entangled quantum states with each of the receivers. As is well known, if sender179

and receiver share a pair of particles that are in the so-called EPR state, then measuring180

each particle results in the same random bit being obtained by both parties. Moreover, as181

long as the state really is the pure EPR state, no third party has any information on the182

randomness obtained. Thus this setting gives us exactly what we want for q = 1, with perfect183

security assuming perfect ability to prepare states and measure them. The same is true if184

one assumes that sender and receiver has executed a secure quantum key exchange protocol185

at some earlier time.186

The case of q > 1 also has a quantum implementation, namely if we assume that the187

sender shares multipartite entangled states with subsets of receivers. In a multipartite188

entangled state, each involved party holds a particle, and the global state of the particles189

can be designed to be fully entangled so that local measurements return the same random190

result for all parties.191

1.3 Related Work192

1.3.1 Threshold Secret-Key Cryptosystems193

There is not much work on secret-key (symmetric) cryptosystems where the decryption194

and/or the encryption process can be distributed among a number of parties. A formal195

study of this was done by Agrawal et al. [AMMR18], in which formal security definitions and196

constructions were given for the case where both encryption and decryption is distributed.197

Our construction is in a different model where only the decryption is distributed. This allows198

us to offer new tradeoffs for constructions using only secret-key primitives and no public-key199

techniques, which is usually the more efficient case. The one construction from [AMMR18]200

using only secret-key primitives (a PRF) is very similar to our solution where q = n− t. It201

has minimal ciphertext size l but requires
(

n
t

)
keys, potentially leading to exponential in n202

overhead. At the other extreme, we have the trivial solution where q = 1 and the sender203

secret-shares the message and sends a share to each receiver, leading to ciphertext size nl and204

a total of n keys. However, the construction leading to our upper bound implies a spectrum205

of options “in between”, namely we can get ciphertext size ( n(t+1)
q+t − t)l using n

q+t

(
q+t

t

)
keys.206

1.3.2 Threshold Public-Key Cryptogsystems207

The concept of public-key threshold encryption is very well known. It goes back at least to208

Desmedt et al. [DDFY94], and has since then been studied in a very long line of research.209

ITC 2021



11:6 Broadcast Secret-Sharing, Bounds and Applications

For this type of scheme, the key generation outputs a public key pk and a set of secret210

keys sk1, . . . , skn which are generated with respect to a threshold value t, where 0 ≤ t < n.211

Informally, the important security properties are that given any set of at least t + 1 secret212

keys, one can decrypt a ciphertext encrypted under pk, while the encryption remains secure213

even given any set of t secret keys. For efficiency, ciphertexts should have size independent214

of n.215

Requiring a single trusted execution of key generation can be very limiting, particularly216

in a system where parties may join at any point, or where senders want to dynamically217

choose subsets of the parties to be the recipients of a particular message. Dynamic threshold218

public-key encryption, introduced by Delerablée and Pointcheval [DP08], has a reduced setup219

requirement where the sender can pick the set of n recipients at encryption time; however,220

each recipient’s secret key must be derived from a common master secret key, so a trusted221

authority is still necessary. Ad hoc threshold encryption (ATE), first introduced by Daza et222

al. [DHMR08] as threshold broadcast encryption3 (motivated by its applicability to mobile223

ad hoc networks), requires no trusted setup beyond the absolute minimum — a PKI.224

ATE considers a universe of users, where each user i has a public key pki and corresponding225

secret key ski, and where all key pairs are independently generated. A sender can select a226

set R of n users and a threshold value t at the time at which he decides to send a message227

m. He can then construct a ciphertext c = EpkR,t(m), where pkR is the set of public keys228

belonging to parties in R. ATE requires properties similar to those of standard threshold229

encryption: namely, that any t + 1 parties in R can decrypt, while the encryption remains230

semantically secure even given the secret keys of any t parties in R.231

Clearly, ATE has a number of attractive properties that standard threshold encryption232

lacks: no trusted authority, and the ability to decide on the set of receivers and the threshold233

on the fly. On the other hand, it is not clear that an ATE ciphertext can be as small as a234

standard one. The best known solution is from Daza et al. [DHMR08]. They show how to235

get ciphertext size linear in n− t. This solution is in our model discussed earlier (though it236

was not presented this way). Namely, it combines a BSS-scheme with non-interactive key237

exchange, where q = 1. In fact, their BSS scheme is a special case of our upper bound.238

In this context, our lower bound shows that the ATE scheme of Daza et al. has optimal239

ciphertext size in the class of ATE schemes that use non-interactive key exchange with q = 1240

and no other cryptographic tools (but as mentioned above, it can be improved using q = 2).241

To the best of our knowledge, our bound is the first lower bound obtained for ATE schemes.242

Reyzin et al. [RSY18] show that using indistinguishability obfuscation, as well as a few243

standard primitives, it is possible to get ciphertext size independent of n. There are several244

reasons, however, why this is not a very satisfactory answer. For one thing, the construction245

requires that senders (as well as receivers) have public and secret keys, which is not usually246

assumed for ATE. Moreover, obfuscation requires strong assumptions; and with current state247

of the art techniques, it comes at the price of a huge loss of efficiency in practice.248

1.3.3 Pseudorandom Secret-Sharing249

In [CDI05], Cramer et al. show that, in a model where sufficiently many independent random250

values are generated and each player is given an appropriate subset of these, the players can251

locally convert this information to a random Shamir secret-sharing (with a fixed threshold252

3 One should note that ATE for t = 0 is very similar to broadcast encryption: each party can decrypt on
his own. However, in broadcast encryption, centralized key generation is usually allowed (or at least key
generation is coordinated between receivers). This is exactly what is not allowed in ATE.
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that depends on the set-up). This model is a somewhat similar to ours. The crucial difference,253

however, is that we have a distinguished player - the sender - who knows all the values254

and can send a single message to the others. This allows us to create secret-sharings with255

any threshold, and while we do make use of their technique in our construction, we need256

additional new ideas to do so.257

1.4 Open Problems258

There is a very rich space of problems to explore. The most obvious open question is of259

course to close the gap between the upper and the lower bound on ciphertext size. Another260

problem is to understand how large the correlated randomness must be. Can the lower261

bound for minimal ciphertext size be generalized, or is there a way to get polynomial size262

randomness when the ciphertext is (close to) minimal size?263

2 Definitions264

In this section, we give the syntax and security definitions for broadcast secret sharing (BSS).265

We consider the following random variables:266

SA, the random variable shared by the sender with the q parties in the set A,267

the message M, and268

the ciphertext C.269

For ease of notation, we also let U be the random variable giving all the secrets SA shared270

by the sender with any subset of receivers, Ui be the random variable giving all the secrets271

held by party Pi (that is, Ui = {SA}i∈A), and UA be the random variable giving the union272

of all the secrets held by parties in A.273

We use uppercase variables — S, U, M, C — to refer to distributions, and lowercase274

variables — s, u, m, c — to refer to concrete values.275

2.1 BSS Syntax276

We assume that any BSS scheme comes with a specification of finite sets from where the277

random variables are to be chosen. Hence, when we say in the following “any distribution of278

M”, for instance, this means any distribution over the specified set of outcomes.279

A BSS scheme with parameters (l, n, t, q) consists of two algorithms, described below.280

EuR(m) → c is a secret sharing algorithm (which we also sometimes dub encryption) that281

uses a set of keys uR = {ui}i∈R belonging to the parties in the size-n set R of intended282

recipients (where each ui consists of all secrets known to sets A where i ∈ A) to transform283

a length-l message m into a secret sharing (or ciphertext) c.284

DuA(c) → m is a reconstruction (or decryption) algorithm that uses keys uA = {ui}i∈A285

belonging to a subset A of the intended recipient set R (where |A| > t) to recover the286

message m from the sharing / ciphertext c.287

2.2 BSS Security288

Informally, a BSS scheme is secure if any t parties in the designated set of receivers R can289

learn nothing about a message from a ciphertext, but any t + 1 parties in R can recover the290

message. More precisely:291

ITC 2021



11:8 Broadcast Secret-Sharing, Bounds and Applications

▶ Definition 1 (BSS Perfect Security). A BSS scheme (E, D) is perfectly secure with threshold292

t if for any set of receivers R of size n, for C = EUR(M), the following two properties hold293

for any distribution of M:294

Security For any A ⊂ R of size at most t, we have H(M|C, UA) = H(M).295

Correctness For any A ⊂ R of size greater than t, we have H(M|C, UA) = 0. Furthermore,296

M = DUR(C).297

We can define statistical security similarly, where we assume that the distribution of298

the variables may also depend on a security parameter λ, but we always assume that the299

parameters l, n, t are polynomial in λ.300

▶ Definition 2 (BSS Statistical Security). A BSS scheme (E, D) is statistically secure with301

threshold t if for any set of receivers R of size n, for C = EUR(M), the following two302

properties hold for any distribution of msg:303

Security For any A ⊂ R of size at most t, we have H(M|C, UA) ≥ H(M)− negl(λ).304

Correctness For any A ⊂ R of size greater than t, we have H(M|C, UA) ≤ negl(λ). Fur-305

thermore, M = DUR(C) with overwhelming probability.306

Finally we define a different type of security that we will need later for technical reasons.307

It is designed for a situation where t = 0, so C alone reveals nothing about the message.308

Moreover, each player on her own can learn l′ bits of the message, but not necessarily the309

entire message.310

▶ Definition 3 (BSS l′-Security). A BSS scheme (E, D) is l′−secure if for any set of receivers311

R of size n, for C = EUR(M), the following two properties hold for any distribution of M312

and some l′ ≤ H(M):313

Security H(M|C) ≥ H(M)− negl(λ).314

Correctness For any receiver Pi we have H(M|C, Ui) ≤ H(M)− l′ + negl(λ).315

Clearly, if a BSS-scheme is l′-secure for l′ = H(M), it is statistically secure in the case316

where t = 0.317

3 Lower Bounds for Broadcast Secret Sharing318

In this section, we prove a lower bound for BSS schemes with statistical security. Throughout319

the proofs, we consider sending a uniform random message M of l bits. We then prove that the320

corresponding ciphertext of a BSS scheme must (roughly) satisfy H(C) ≥ nH(M)/q = nl/q.321

Since the entropy of a random variable giving a bit string is a lower bound on its expected322

length (Shannon’s source coding theorem), this also lower bounds the length of the ciphertext.323

We prove the lower bound in steps, starting with the warm-up case t = 0, q = 1 and then324

extending it to arbitrary q and finally also to arbitrary t.325

3.1 Warm-Up: BSS with t = 0 and q = 1326

We start with a lower bound proof in the simple setup with threshold t = 0 and shared keys327

among q = 1 recipients. We let the message M be a uniform random bit string of length l328

(hence H(M) = l). We prove the following lower bound, where negl(λ) may be replaced by 0329

for perfect security:330

▶ Theorem 4. For any BSS scheme with statistical security, n recipients, threshold t = 0
and sharing of keys with q = 1 recipients, we must have:

H(C) ≥ n(l − negl(λ)).
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To prove the lower bound, let Si for i = 1, . . . , n denote the shared key received by the331

i’th recipient (for q = 1, only i receives that random key). The high level idea in our proof is332

to argue that C must contain a lot of information about the randomness Si for every index i.333

Since the shared keys are independent, this implies a lower bound on the entropy of C. More334

formally, consider the mutual information I(Si; C | M, S1, . . . , Si−1). We will show:335

▶ Lemma 5. For all recipients i, it holds that I(C; Si | M, S1, . . . , Si−1) ≥ l − negl(λ).336

Before proving Lemma 6, let us see how we use it to prove Theorem 5. Using non-negativity337

of entropy and the chain rule of mutual information, we have338

H(C) ≥ H(C | M)339

≥ H(C | M)−H(C | M, S1, . . . , Sn)340

= I(C; S1, . . . , Sn | M)341

=
n∑

i=1
I(C; Si | M, S1, . . . , Si−1)342

≥ n(l − negl(λ)).343

This completes the proof of Theorem 5. Thus what remains is to prove Lemma 6.344

Proof of Lemma 6. The basic idea in the proof of Lemma 6 is that C and Si together345

reveal M, thus collectively they must have l − negl(λ) bits of information about M. Since346

S1, . . . , Si alone have no information about M, those l−negl(λ) bits must be accounted for in347

I(C; Si | M, S1, . . . , Si−1). We prove that formally in the following. By definition, the mutual348

information in Lemma 6 equals:349

I(C; Si | M, S1, . . . , Si−1) =350

H(Si | M, S1, . . . , Si−1)−H(Si | C, M, S1, . . . , Si−1).351

The message M and all the shared keys are independent, hence H(Si | M, S1, . . . , Si−1) =352

H(Si). Since entropy may only increase by dropping variables we condition on, we also con-353

clude H(Si | C, M, S1, . . . , Si−1) ≤ H(Si | C, M). Using the definition of mutual information,354

we thus have:355

I(Si; C | M, S1, . . . , Si−1) ≥ H(Si)−H(Si | C, M)356

= I(Si; C, M)357

= H(C, M)−H(C, M | Si).358

Since the ciphertext C contains no information about M alone (up to negl(λ)), we have359

H(C, M) = H(C)+H(M | C) ≥ H(C)+H(M)−negl(λ). By the chain rule of entropy, we have360

H(C, M | Si) = H(C | Si) + H(M | C, Si) ≤ H(C) + H(M | C, Si). But H(M | C, Si) ≤ negl(λ)361

since recipient i can recover M from C and Si. We therefore have:362

I(Si; C | M, S1, . . . , Si−1) ≥ H(C) + H(M)− negl(λ)− (H(C) + negl(λ))363

= H(M)− negl(λ)364

= l − negl(λ).365

◀366
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3.2 BSS with t = 0367

In this section, we generalize the lower bound from Section 3.1 to q ≥ 1 (still assuming t = 0368

and that the message M is a uniform random l bit string):369

▶ Theorem 6. For any BSS scheme with statistical security, n recipients, security threshold
t = 0 and sharing of keys with q recipients, we must have:

H(C) ≥ n(l − negl(λ))/q.

To show this, we will show a stronger statement that will be useful for other purposes in370

the following:371

▶ Theorem 7. For any l′-secure BSS scheme with n recipients, and sharing of keys with q

recipients, we must have:

H(C) ≥ n(l′ − negl(λ))/q.

Clearly, this result implies Theorem 7: when M is uniform and H(M) = l, the assumption372

in Theorem 7 is equivalent to requiring l-security.373

The basic idea in the proof for q = 1 was to argue that the ciphertext C contained a lot374

of information about each Si. Formally, Lemma 6 showed that I(C; Si | M, S1, . . . , Si−1) ≥375

l− negl(λ). In the following, we discuss the obstacles we face when generalizing the proof to376

q ≥ 1 and show how we overcome them.377

First, in order to prove Lemma 6, we used the fact that Si together with C revealed M to378

conclude that I(C; Si | M, S1, . . . , Si−1) ≥ l − negl(λ). Considering instead l′-security this379

statement would be I(C; Si | M, S1, . . . , Si−1) ≥ l′−negl(λ) and it could be proved in exactly380

the same way for q = 1.381

However, since a recipient may now use all his shared keys to recover M, we define a random382

variable Ui for each recipient i: We let Ui denote all shared keys held by recipient i (Ui =383

{SA}i∈A). Intuitively, the analog of Lemma 6 would state that I(C; Ui | M, U1, . . . , Ui−1) ≥384

l′ − negl(λ).385

With this definition of Ui we again have that Ui and C together reveal l′ bits of M.386

Unfortunately, the sets of shared keys held by different recipients are not disjoint. This means387

that Ui may depend on U1, . . . , Ui−1 and thus the lower bound on the mutual information is388

not necessarily true.389

Our key idea for addressing the above issue is to further partition Ui into subset390

Ui,1, . . . , Ui,q where Ui,k contains all shared keys SA for which i is the k’th smallest in-391

dex in A. Note that with this definition Ui,k and Uj,k with i ̸= j are disjoint sets of shared392

keys (only one index can be the k’th smallest in a set A) and thus are independent. The393

same holds for Ui,j and Ui,k with j ≠ k (i cannot both be the j’th and k’th smallest index394

in A). Finally, we also define Fi,k to denote the set of all shared keys SA in which i is the395

largest index in A and |A| < k. Our generalization of Lemma 6 then becomes:396

▶ Lemma 8. There is an index k ∈ {1, . . . , q} such that

n∑
i=1

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥ n(l′ − negl(λ))/q.
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Before proving Lemma 9, let us see that it implies Theorem 7. We have:397

H(C) ≥ H(C | M)398

≥ H(C | M)−H(C | M, U1,k, F1,k, . . . , Un,k, Fn,k)399

= I(C; U1,k, F1,k, . . . , Un,k, Fn,k | M)400

=
n∑

i=1
I(C; Ui,k, Fi,k | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k)401

≥ n(l′ − negl(λ))/q.402

What remains is thus to prove Lemma 9. The key step in doing so is to replace each mutual403

information in the sum by a term that only depends on the sets Ui,1, . . . , Ui,q seen by the i’th404

recipient. The rewriting is quite non-trivial and crucially relies on the fact that we applied405

the chain rule in reverse order of indices such that we condition on Uj,k, Fj,k for indices j > i.406

The rewriting we make uses the following:407

▶ Lemma 9. For every recipient i and every index k ∈ {1, . . . , q} we have

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥ I(Ui,k; C | M, Ui,1, . . . , Ui,k−1).

Let us first use Lemma 10 to prove Lemma 9.408

Proof of Lemma 9. Consider summing over all recipients and all choices of k, applying409

Lemma 10 on each term:410

q∑
k=1

n∑
i=1

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥411

q∑
k=1

n∑
i=1

I(Ui,k; C | M, Ui,1, . . . , Ui,k−1) =412

n∑
i=1

q∑
k=1

I(Ui,k; C | M, Ui,1, . . . , Ui,k−1) =413

n∑
i=1

I(Ui,1, . . . , Ui,q; C | M) =414

n∑
i=1

I(Ui; C | M).415

Since Ui and M are independent, we have I(Ui; C | M) = H(Ui | M) − H(Ui | C, M) =
H(Ui)−H(Ui | C, M) = I(Ui; C, M) = H(C, M)−H(C, M | Ui). Since M cannot be recovered
from C, we have

H(C, M) = H(C) + H(M | C) ≥ H(C) + H(M)− negl(λ).

By the chain rule, H(C, M | Ui) = H(C | Ui) + H(M | C, Ui) ≤ H(C) + H(M | C, Ui). But, by
l′-security, l′ bits of M are determined from C and Ui, more precisely

H(M | C, Ui) ≤ H(M)− l′ + negl(λ).
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We have thus shown I(Ui; C | M) ≥ H(C)+H(M)−negl(λ)− (H(C)+H(M)− l′ +negl(λ)) =416

l′ − negl(λ). We therefore have:417

q∑
k=1

n∑
i=1

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥418

n∑
i=1

l′ − negl(λ) =419

n(l′ − negl(λ)).420

Averaging over all choices of k completes the proof of Lemma 9. ◀421

To finish, we thus need to prove Lemma 10:422

Proof of Lemma 10. We need to show that for all recipients i and every index k, it holds
that

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥ I(Ui,k; C | M, Ui,1, . . . , Ui,k−1).

The main observation needed in the proof is the fact every shared key in Ui,1, . . . , Ui,k also423

appears in Ui,k, Fi,k, . . . , Un,k, Fn,k. More formally, we start by observing that:424

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥425

I(Ui,k; C | M, Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) =426

H(Ui,k | M, Fi,k, Ui+1,k, . . . , Fn,k)−H(Ui,k | C, M, Fi,k, Ui+1,k, . . . , Fn,k).427

Notice that the set of shared keys Ui,k is disjoint from the sets Uj,k with j ̸= i. This
holds since for any set of receivers A, only one receiver can be the k’th smallest. Moreover,
Ui,k is also disjoint from Fj,k for all j. This is true since Fj,k contains only shared keys
for sets of receivers with cardinality less than k. This means that Ui,k is independent of
M, Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k and thus we have

H(Ui,k | M, Fi,k, Ui+1,k, . . . , Fn,k) = H(Ui,k).

We therefore have:428

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥429

H(Ui,k)−H(Ui,k | C, M, Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k).430

Since entropy may only increase by removing variables that we condition on, we remove all431

shared keys from Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k which do not appear in Ui,1, . . . , Ui,k−1.432

We claim that we are left with precisely the full set of shared keys appearing in Ui,1, . . . , Ui,k−1.433

To see this, consider a shared key SA appearing in Ui,j for some j < k. Assume first that i is434

the largest index in the set A. Then the cardinality of A is j < k and we have SA ∈ Fi,k by435

definition of Fi,k. Next, assume that the cardinality of A is less than k, but i is not the largest436

index in A. Let i′ > i be the largest index. Then by definition, we have SA ∈ Fi′,k. Finally,437

assume that the cardinality of A is at least k. Let i′ > i be the k’th smallest index in A,438

then SA ∈ Ui′,k. In all cases, we have that SA is in one of Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k439

and we conclude that we are left with Ui,1, . . . , Ui,k−1. We therefore have:440

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥441

H(Ui,k)−H(Ui,k | C, M, Ui,1, . . . , Ui,k−1).442
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Conditioning on a random variable may only decrease entropy, we can therefore bound the443

above by:444

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥445

H(Ui,k | M, Ui,1, . . . , Ui,k−1)−H(Ui,k | C, M, Ui,1, . . . , Ui,k−1) =446

I(Ui,k; C | M, Ui,1, . . . , Ui,k−1).447

This concludes the proof of Lemma 10 and thus also of Theorem 8. ◀448

3.3 Final BSS Lower Bound449

In this section, we finally extend the lower bound in Theorem 7 to the general case of t ≥ 0450

and q ≥ 1. Our final result is the following:451

▶ Theorem 10. For any BSS scheme with statistical security, n recipients, security threshold
t and sharing of keys with q recipients, we must have:

H(C) ≥ (n− t)(l − negl(λ))/q.

The proof follows via a reduction from the case with t = 0 (Theorem 7). The basic idea is to452

show that any BSS scheme for arbitrary threshold t ≥ 0 can be converted into a scheme for453

t = 0 and n− t receivers. This is done by treating the first t receivers as dummy receivers454

for which all shared keys are public information. This way, we get a BSS scheme with t = 0455

for the remaining receivers t + 1, . . . , n.456

In detail, consider all shared keys U1, . . . , Ut held by the first t parties in a BSS scheme457

with threshold t. Consider any concrete instantiation u1, . . . , ut of the random variables458

and let Eu1,...,ut
denote the event that Ui = ui for i = 1, . . . , t. We will prove that for most459

instantiations of U1 = u1, . . . , Ut = ut, conditioned on Eu1,...,ut , the BSS statistical security460

definitions hold for the remaining n− t receivers with threshold t = 0. Formally, we require461

that:462

463

Security We have H(M | C, Eu1,...,ut
) ≥ H(M)− negl(λ).464

465

Correctness For any receiver i with i ∈ {t + 1, . . . , n}, we have466

H(M | C, Ui, Eu1,...,ut) ≤ negl(λ).467

Call u1, . . . , ut typical if they satisfies the above Security and Correctness. If u1, . . . , ut are
typical, then we have a BSS scheme with threshold t = 0 for the remaining n− t receivers
t+1, . . . , n if we hard code U1 = u1, . . . , Ut = ut and let those be shared knowledge. Therefore,
by Theorem 7, it must be the case for typical u1, . . . , ut, that

H(C | Eu1,...,ut
) ≥ n− t

q
(1− negl(λ)).

We will show:468

▶ Lemma 11. U1, . . . , Ut are typical with probability at least 1− negl(λ).469
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Before we prove Lemma 12, we use the lemma to finish the proof of Theorem 11. We see that470

H(C) ≥ H(C | U1, . . . , Ut)471

=
∑

u1,...,ut

H(C | Eu1,...,ut
) Pr[Eu1,...,ut

]472

≥
∑

u1,...,ut:u1,...,ut are typical
H(C | Eu1,...,ut) Pr[Eu1,...,ut ]473

≥ n− t

q
(1− negl(λ)) Pr[U1, . . . , Ut are typical]474

= n− t

q
(1− negl(λ)).475

What remains is thus to prove Lemma 12.476

Proof of Lemma 12. Let X(u1, . . . , ut) take the value H(M)−H(M | C, Eu1,...,ut). Observe477

that since M is independent of U1, . . . , Ut, we have H(M) = H(M | Eu1,...,ut
) and thus478

X(u1, . . . , ut) = H(M | Eu1,...,ut
)−H(M | C, Eu1,...,ut

). Conditioning on C may only decrease479

entropy, hence X is non-negative for all u1, . . . , ut. It follows by Markov’s inequality that480

Pr
[
X(U1, . . . , Ut) >

√
E[X(U1, . . . , Ut)]

]
<

√
E[X(U1, . . . , Ut)].481

Now recall from the security requirements of a BSS scheme with threshold t that:482

H(M)− negl(λ) ≤ H(M | C, U1, . . . , Ut)483

=
∑

u1,...,ut

H(M | C, Eu1,...,ut
) Pr[Eu1,...,ut

],484

which implies485

E[X(U1, . . . , Ut)] = H(M)−
∑

u1,...,ut

H(M | C, Eu1,...,ut
) Pr[Eu1,...,ut

]486

≤ negl(λ).487

Thus by Markov’s, we have Pr
[
X(U1, . . . , Ut) > negl(λ)

]
< negl(λ).488

Next, for any receiver i > t, define Yi(u1, . . . , ut) to take the value H(M | C, Ui, Eu1,...,ut).489

Since entropy is always non-negative, so is Yi. By definition of conditional entropy, we490

have E[Yi(U1, . . . , Ut)] = H(M | C, Ui, U1, . . . , Ut). Thus from Markov’s we again have491

Pr[Yi(U1, . . . , Ut) > negl(λ)] < negl(λ). It finally follows by a union bound that with probabil-492

ity at least 1−(n−t+1)negl(λ) = 1−negl(λ), we simultaneously have X(U1, . . . , Ut) < negl(λ)493

and Yi(U1, . . . , Ut) < negl(λ) for all i = t + 1, . . . , n. That is, U1, . . . , Ut are typical with494

probability at least 1− negl(λ). ◀495

4 Upper Bound on Ciphertext Size496

In this section, we explore constructions of broadcast secret-sharing.497

4.1 Building Block: Pseudorandom Secret Sharing498

Our results in this section leverage pseudorandom secret sharing, which is a technique for the499

local (that is, non-interactive) conversion of a replicated secret sharing to a Shamir secret500

sharing.501
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A replicated secret sharing for the (t + 1)-out-of-n threshold access structure proceeds as502

follows. First, the dealer splits the secret M into
(

n
t

)
additive secret shares, where each share503

rA corresponds to a different maximally unqualified set A of size t. Then, the complement504

of each set A (that is, the n− t parties that are not in A) are all given rA. It is then clear505

that any maximally unqualified set A is only missing knowledge of one share rA, which any506

additional party holds.507

Pseudorandom secret sharing [CDI05] locally converts such a replicated secret sharing508

into a Shamir secret sharing (a degree-t polynomial f with f(0) = M as the secret, and509

f(i) = si as party i’s share for i ∈ [1, . . . , n]). Pseudorandom secret sharing proceeds as510

follows: let fA be the degree-t polynomial such that fA(0) = 1, and fA(i) = 0 for all i ∈ A.511

Each player Pi can then compute their Shamir share as512

si =
∑

A⊆[n]:|A|=t,i/∈A

rAfA(i).513

We stress that, despite the name, pseudorandom secret-sharing as presented here provides514

perfect information theoretic security. The name comes from an application of the technique515

that uses pseudorandom functions.516

Cramer, Damgård and Ishai [CDI05] also prove a lower bound, stated in Theorem 13.517

▶ Theorem 12 (From [CDI05]). Fewer than
(

n
t

)
independent random values shared among518

various subsets of parties cannot be locally converted into a (t + 1)-out-of-n threshold secret519

sharing.520

4.2 Lower Bounding the Correlated Randomness When H(C) = H(M)521

▶ Theorem 13. For any perfectly secure BSS scheme with threshold t = θ(n), if H(C) =522

H(M), then correlated randomness of exponential size is necessary.523

Proof. If H(C) = H(M), then for any distribution of keys, there is exactly one ciphertext524

that corresponds to any given message. Therefore, choosing a ciphertext at random (without525

considering the correlated randomness) will always give a valid ciphertext that corresponds526

to some message, no matter which value the randomness takes. Choosing the randomness527

and ciphertext simultaneously independently at random thus produces a random (t + 1)-528

out-of-n secret sharing (where the ciphertext is simply an additional random value given529

to all parties). So, the exponential lower bound by Cramer et al. [CDI05] (Theorem 13)530

on amount of independent randomness that can be converted into a (t + 1)-out-of-n secret531

sharing applies. ◀532

4.3 The Upper Bound533

Construction 1 below achieves optimal ciphertext size whenever t = 0, or when q = 0 or534

when q is the maximal relevant value n− t. This construction leverages the techniques of535

replicated or pseudorandom secret sharing. The price we pays is that the overhead in terms536

of size of correlated randomness is sometimes exponential (that is, the sender and each of the537

receivers must use an exponential number of shared random values). Whether this happens538

depends on the parameter values.539

▶ Construction 1. Let n′ = q+t. We partition the recipients into n
n′ subsets of size n′ = q+t.540

(We assume for simplicity that n′ = q + t divides n.) An arbitrary but fixed one of these541

subsets is chosen and named B. This is done publicly once and for all. We also assign once542

and for all a unique point in a suitable finite field to each recipient.543
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Consider now any of the above subsets A. We set up the correlated randomness such544

that the sender S shares a random value with any subset of A, of size n′ − t = q. These545

values form a random replicated secret-sharing among the players in A and hence, using the546

technique from [CDI05], S can share a random polynomial fA of degree at most t with the547

participants in A, using only the correlated randomness. Concretely, S knows fA and each548

player in A knows a point on fA.549

The ciphertext consists of m + fB(0) and fB − fA for every subset A ≠ B.550

Each recipient locally computes from the correlated randomness fA(i) where A is the551

subset she is in and i is her assigned point in the field. Then she computes fB(i) =552

fA(i) + (fB − fA)(i). To reconstruct, any subset of size at least t + 1 can interpolate fB and553

compute m = (m + fB(0))− fB(0).554

The security of this construction follows trivially from the security of replicated secret
sharing: each fA is uniformly random of degree at most t and so fB − fA contains no
information on m, even given m + fB(0). Since each polynomial fB − fA can be specified
using t + 1 coefficients, the ciphetext size is

((t + 1)(n/(q + t)− 1) + 1)l = (n(t + 1)/(q + t)− t)l.

The size of the shared keys (correlated randomness) is n/(q + t) ·
((q+t)

t

)
field elements.555

This can be as much as
(

n
t

)
and so may be exponential in n. But as we showed above, at556

least when q = n− t, this overhead cannot be avoided.557

5 Bounds Additionally Assuming an Idealized PRG558

In this section, we add to our BSS model an idealized pseudorandom generator (PRG); an559

idealized functionality that takes in a random length-λ seed, and outputs a longer random560

value. (As long as the output is at least one bit longer than the input, we can bootstrap the561

PRG to give arbitrarily long outputs. In our case, the output length that most often makes562

sense is l, the length of the message.) Our BSS algorithms are augmented with oracle access563

to the idealized PRG.564

We make some assumptions on how the BSS protocol may use the idealized PRG:565

▶ Definition 14. An admissible BSS-protocol satisfies the following:566

For any subset of receivers, any PRG-seed chosen by the sender can either be computed567

using what that subset of receivers knows, or has full entropy (possibly up to a negligible568

loss).569

During the sharing phase, the sender chooses all seeds that are input to PRG uniformly,570

independently of anything else.571

The idealized PRG is not called with any shared keys as input.572

In the following we will only consider admissible BSS constructions. The motivation for573

this is as follows:574

We want to make sure that an admissible protocol can be turned into a construction in575

the real world by replacing the idealized PRG by a real PRG construction. Now, if a576

seed has (essentially) full entropy in the view of the adversary, then (and only then) can577

we use the standard security of a real PRG to conclude that the output is pseudorandom.578

Seeds for which the adversary has partial information are not useful in this sense, and we579

may as well give the adversary full information on that seed for free.580

This is why we assume that in the view of a subset of receivers, any seed that the sender581

chose can either be computed or has (essentially) full entropy. However, for a seed to be582



I.B. Damgård, K.G. Larsen and S.Yakoubov 11:17

potentially useful it must have full entropy in the first place, which is why we assume583

that the sender chooses all seeds uniformly, independently of anything else.584

We assume that the idealized PRG is not called using shared keys as input for simplicity,585

because this does not cost us any generality: calls to the PRG using shared keys as input586

is equivalent to asking for longer shared keys. In both cases, the result is a greater amount587

of correlated randomness.588

Finally, we will assume that privacy only needs to hold given ability to call the PRG a589

polynomial number of times. The reason for this is that otherwise protocols that actually590

make use of the PRG could not ensure that the message is hidden from a non-qualified subset591

of receivers. As an example, suppose the sender secret-shares a seed s and includes in the592

ciphertext a one-time pad encryption m⊕ PRG(s). A completely unbounded adversary can593

call the PRG on all inputs and, once all the outputs are given, the only uncertainty she has594

is which seed the sender used. Then, if m is longer than s, it cannot have full entropy.595

To be able to talk about the information a set of receivers can get from the oracle, we596

abuse notation and let PRG(C, UA) denote the random variable that is obtained by calling597

the PRG on inputs that are selected by an unbounded randomized algorithm that gets C, UA598

as input. The algorithm only returns a polynomial number of outputs. For simplicity of599

notation, we suppress the algorithm and the random coins it uses.600

▶ Definition 15 (BSS Statistical Security with PRG). A BSS scheme (E, D) is statistically601

secure with threshold t with respect to a random oracle PRG if for any set of receivers R of602

size n, for C = EP RG
UR

(M), the following two properties hold for any distribution of M:603

Security For any A ⊂ R of size at most t, we have H(M|C, UA, PRG(C, UA)) ≥ H(M) −604

negl(λ).605

Correctness For any A ⊂ R of size greater than t, H(M|C, UA, PRG(C, UA)) ≤ negl(λ).606

Furthermore, M = DP RG
UR

(C) with overwhelming probability.607

5.1 Lower Bound on Ciphertext Size608

▶ Theorem 16. Consider any BSS scheme that is statistically secure with threshold t with609

respect to PRG (which takes inputs of size λ) and shares messages of length l ≥ λ. If the610

scheme is admissible it holds that611

H(C) ≥ n− t

q
λ + l − δ(λ)612

for a negligible function δ(λ).613

To show the above theorem, consider first a scheme that satisfies the assumption with614

threshold t = 0, so then the only unqualified set of receivers is the empty set. Since the615

scheme is admissible, there is a (possibly empty) set of seeds S that were chosen by the616

sender, but where each seed in S has full entropy given the ciphertext C, and all other seeds617

are determined by C.618

We claim that we can transform this scheme into a new one (for a different distribution619

of messages) that is l′-secure (Definition 4) with l′ = λ. In particular, this will be a scheme620

where the PRG is not available. Recall that in such a scheme a qualified subset of receivers621

can determine at least l′ bits of the message.622

To this end, we define the message M′ in the new scheme to be the original M concatenated623

with the seeds in S. Reconstruction in the new scheme by a qualified set A works as follows:624

If at least one seed s ∈ S is determined by C, UA, then return s. Otherwise, by admissibility,625
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all seeds in S have full entropy given C, UA. Consider the random variable PRG(C, UA)626

that would have been used for reconstruction in the original scheme. Notice that since627

this variable is formed by calling the PRG a polynomial number of times, the inputs used628

will overlap with S with only negligible probability. Therefore unless this overlap event629

happens, access to the PRG can be perfectly simulated without calling the PRG, simply by630

choosing fresh randomness to play the role of the PRG’s output. Hence, we can return M631

with overwhelming probability without calling the PRG, so H(M|C, UA) is negligible, even632

without access to the PRG.633

Since l ≥ λ, we have shown that given C, UA for a qualified set A, the entropy of M′
634

drops by at least l′ bits (up to a negligible amount), and this is the correctness property of635

Definition 4.636

The security property of Definition 4 follows immediately from admissibility and from637

the security property of Definition 16: given only C, all seeds in S have full entropy and638

H(M|C, UA, PRG(C, UA)) can only increase if we take away the PRG and therefore do not639

condition on PRG(C, UA).640

We can now apply Theorem 8 and since we did not change the distribution of C, we641

conclude:642

▶ Lemma 17. For any BSS-scheme satisfying Definition 16 with t = 0, we have:643

H(C) ≥ n(λ− δ(λ))/q.644

Proof of Theorem 17. Given any BSS-scheme satisfying Definition 16, we can construct645

from this a new scheme for n′ = n− t receivers and threshold 0 (but the same ciphertext646

dsitribution). This is done by fixing the shared keys of the first t players and making them647

public, exactly as in the proof of Theorem 11, so we will not repeat the details here. We then648

apply the above lemma, and conclude that H(C) ≥ (n− t)(λ− δ(λ))/q. We finally obtain649

Theorem 17 by also noting that C must carry enough information to determine the message,650

so we can add l to the lower bound.651

◀652

5.2 Upper Bound653

Construction 2 describes how, using an idealized PRG in addition to shared keys, we can654

achieve655

H(C) = (n(t + 1)/(q + t)− t)λ + l.656

▶ Construction 2. The sender chooses a random PRG seed, uses the scheme from Con-657

struction 1 to share this seed among the receivers, and uses the PRG output on this seed to658

one-time-pad-encrypt the message.659

Ciphertext size and correctness follow trivially from Construction 1. As for security,660

it follows from security of Construction 1 that an unqualified set A of receivers has no661

information on the seed chosen by the sender. Hence the event that the (polynomial number662

of) inputs to the PRG chosen by A include the sender’s seed has negligible probability. Unless663

this event happens, the message has full entropy, so the security property follows.664

It is important to remark that, unlike Construction 1, Construction 2 does not give the665

receivers a Shamir secret sharing of the message, but rather of a PRG seed. The receivers666

reconstruct by first recovering the PRG seed, and then expanding that seed and using the667

resulting longer string to recover the message. The downside is that this not a linear secret668
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sharing of the message. However, the upside is that, since a PRG seed can be used to669

generate an arbitrarily long pseudorandom string, the shared PRG seed can be re-used and670

the sender can share additional messages of length l to the same set of receivers by sending671

only l additional bits.672

6 Application: Ad hoc Threshold Encryption673

We can use any (l, n, t, q) BSS scheme together with any non-interactive key exchange (NIKE)674

scheme for q + 1 parties to get (l, n, t) ad hoc threshold encryption (ATE). Informally,675

the message sender uses the NIKE scheme to set up the correlated randomness for BSS676

non-interactively. She simply generates a fresh NIKE key pair, uses the secret key to derive677

shared secrets with every size-q subset of receivers, uses those shared secrets to run BSS,678

and sends the NIKE public key along with the resulting ciphertext to enable the recipients679

to derive the same shared secrets.680

We sketch the definitions of NIKE and ATE below, and formalize how ATE can be681

instantiated from NIKE and BSS.682

6.1 NIKE Definitions683

A non-interactive key exchange (NIKE) scheme consists of two algorithms:684

KG(1λ) → (pk, sk) is a randomized key generation algorithm that takes in the security685

parameter λ and returns a public-private key pair.686

KA(ski, pkA) → s is a key agreement algorithm that takes in one secret key and q public687

keys pkA = {pkj}j∈A and returns a shared secret.688

Informally, a NIKE scheme for q parties is correct as long as, for any i ∈ A (where689

|A| = q + 1), sA ← KA(ski, {pkj}j∈A,j ̸=i) gives the same value. It is secure as long as, given690

{pki}i∈A (but none of the associated secret keys ski), sA is computationally indistinguishable691

from random.692

6.2 ATE Definitions693

An ad hoc threshold encryption (ATE) scheme consists of three algorithms:694

KG(1λ) → (pk, sk) is a randomized key generation algorithm that takes in the security695

parameter λ and returns a public-private key pair.696

EpkR(m) → c is an encryption algorithm that encrypts a message m to a set of public keys697

pkR = {pki}i∈R belonging to the parties in the intended recipient set R in such a way698

that any size-(t + 1) subset of the recipient set should jointly be able to decrypt.699

DpkR,skA(c) → m is a decryption algorithm that uses secret keys skA = {ski}i∈A belonging700

to a subset A of the intended recipient set R (where |A| > t) to decrypt the ciphertext c701

and recover the message m.702

Informally, an (l, n, t) ATE scheme is correct if D(E(M)) = M (where D and E are run703

with the appropriate keys). It is secure if, for any two messages m0 and m1 of the same704

length l, c0 = EpkR(M0) and c1 = EpkR(M1) are computationally indistinguishable even705

given t or fewer of the secret keys ski, i ∈ A.706
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6.3 ATE from NIKE and BSS707

We can build an ATE scheme from a NIKE scheme and a BSS scheme as follows:708

KG(1λ) → (pk, sk):709

1. Return (pk, sk)← NIKE.KG(1λ).710

EpkR(m) :711

1. Run (pk, sk)← NIKE.KG(1λ).712

2. For every size-q subset A ⊆ R, run sA ← NIKE.KA(sk, pkA).713

3. Run BSS.c← BSS.EuR(m).714

4. Return (pk, BSS.c).715

DpkR,skA(c = (pk, BSS.c)):716

1. For every party i ∈ A, for every size-q subset A′ such that i ∈ A′, run717

sA′ ← NIKE.KA(ski, {pk} ∪ {pkj}j∈A′,j ̸=i).718

2. Recall that uA denotes {sA′}A′∪A̸=∅. Return m← BSS.DuA(BSS.c).719

The size of a ciphertext in this scheme will be equal to the size of the corresponding BSS720

ciphertext plus the size of a NIKE public key.721

6.4 From ATE and NIKE to BSS722

Assume we have an ATE-scheme whose algorithms use an ideal NIKE functionality. We also723

assume that the ATE scheme is statistically secure when using the ideal NIKE functionality,724

that is, ciphertexts of different messages are statistically indistinguishable, and the message725

has full entropy in the view of a non-qualified set of receivers (up to a negligible amount).726

From this, we can obtain a BSS scheme: the keys returned from the NIKE functionality727

become the correlated randomness, the encryption algorithm becomes the sharing algorithm,728

and the view of each receiver (including the ciphertext) is a share. Reconstruction is done by729

emulating the decryption protocol.730

It therefore follows that our lower bound for BSS ciphertext size is also a lower bound for731

ciphertext size in any ATE scheme of the type we assumed.732
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