
Barriers for Faster Dimensionality Reduction
Ora Nova Fandina ∗ Mikael Møller Høgsgaard† Kasper Green Larsen‡

Abstract
The Johnson-Lindenstrauss transform allows one to embed a dataset of n points in Rd into Rm,

while preserving the pairwise distance between any pair of points up to a factor (1 ± ε), provided that
m = Ω(ε−2 lg n). The transform has found an overwhelming number of algorithmic applications, allowing
to speed up algorithms and reducing memory consumption at the price of a small loss in accuracy. A
central line of research on such transforms, focus on developing fast embedding algorithms, with the
classic example being the Fast JL transform by Ailon and Chazelle. All known such algorithms have an
embedding time of Ω(d lg d), but no lower bounds rule out a clean O(d) embedding time. In this work,
we establish the first non-trivial lower bounds (of magnitude Ω(m lg m)) for a large class of embedding
algorithms, including in particular most known upper bounds.

∗fandina@gmail.com. Aarhus University. Supported by Independent Research Fund Denmark (DFF) Sapere Aude Research
Leader grant No 9064-00068B.

†hogsgaard@cs.au.dk. Aarhus University. Supported by Independent Research Fund Denmark (DFF) Sapere Aude Research
Leader grant No 9064-00068B.

‡larsen@cs.au.dk. Aarhus University. Supported by Independent Research Fund Denmark (DFF) Sapere Aude Research
Leader grant No 9064-00068B.

1 Introduction
Working with high dimensional data can be both costly in memory and computational power, motivating
the study of dimensionality reduction techniques. The goal of dimensionality reduction is to take a high
dimensional dataset X and embed it to a dataset Y in a lower dimensional space. If Y approximately
preserves similarities between points in X, then one may use Y as input to an algorithm in place of X
to save both memory and computation time at the cost of a small inaccuracy in ones output. A greatly
celebrated dimensionality reduction result is the Johnson-Lindenstrauss lemma [18], which states: For any
fixed X ⊂ Rd, with the size of X being n, and any distortion 0 < ε < 1, there exists a map f : X → Rm

such that for all x, y ∈ X
∥f(x) − f(y)∥2 ∈ (1 ± ε)∥x − y∥2,

with m being Θ(ε−2 lg n) [18, 25]. Thus the mapping is approximately preserving the Euclidean distances
between the points in X in the lower dimensional space Rm. The property of preserving pairwise distances via
the Johnson-Lindenstrauss lemma have found great use in many applications, for instance as a preprocessing
step to speed up machine learning algorithms.

A standard approach for obtaining an embedding f satisfying the above, is to pick a random m × d
matrix A with each entry being i.i.d. N(0, 1) distributed [15] (or uniform −1/1 [5]) and embedding any
input x ∈ X to f(x) = m−1/2Ax. Computing such an embedding thus takes O(md) time. In some
applications of dimensionality reduction, this becomes the bottleneck in the running time, thus motivating
faster embedding algorithms. The work on faster dimensionality reduction in Euclidian space can be divided
roughly into two categories: 1) using sparse embedding matrices A, or 2), using matrices A with special
structure that allows fast matrix-vector multiplication. In both cases, the fastest embedding algorithms use
super-linear time in the input dimensionality in the worst case. For sparse matrices, there is near-tight
lower bound by Nelson and Nguyen [28] showing that the embedding time cannot be reduced below roughly
Ω(dε−1 lg n). For structured matrices, the fastest embeddings use at least Ω(d lg m) time, however in this
case there are no lower bounds ruling out faster embeddings that could conceivably embed a vector in O(d)
time see e.g. [10, 17]. Working towards such lower bounds is the focus of this work.

Our Contributions. In this work, we establish the first non-trivial lower bounds on the time required
for dimensionality reduction in Euclidian space when not restricted to using sparse matrices to perform the
embedding. Focusing on the case of d = cm, for a constant c > 1 and optimal m = O(ε−2 lg n), we prove
that a large class of embedding algorithms, including most known upper bounds, must use time Ω(m lg m).
This coincides with known upper bounds for several tradeoffs between ε and n. In addition to establishing
a first lower bound, we believe our careful definition of the class of algorithms that the lower bound applies
to, shines light on the barriers faced when developing fast embedding algorithms.

In the following section, we survey previous work and formally present our results.

1.1 Fast Dimensionality Reduction
As mentioned above, the previous work on fast dimensionality reduction can be divided into two categories,
either based on sparse matrices or on structured matrices. We elaborate on these approaches in the following.

Sparse JL. The basic idea in sparse JL embeddings, is to use an embedding matrix A with only s < m
non-zeros per column. With such a matrix A, the product Ax can be computed trivially in O(sd) time
rather than O(md), thus speeding up the embedding. Moreover, if x itself has few non-zeros, then the
product may even be computed in O(s∥x∥0) time, where ∥x∥0 is the number of non-zeros in x. Using sparse
embedding matrices was initiated by [1] and culminated with the current state-of-the-art embedding by
Kane and Nelson [21] who showed that it suffices to pick a matrix A having s = O(ε−1 lg n) random entries
(without replacement) in each column set uniformly and independently to −1/1 and embedding a vector x
to s−1/2Ax. Moreover, this nearly matches a sparsity lower bound by Nelson and Nguyen [28] who showed
that any sparse embedding matrix must have s = Ω(ε−1 lg n/ lg(1/ε)) non-zeros per column. Another line

1

of research in this direction, studies sparsities s below the lower bound by Nelson and Nguyen. For instance,
Feature Hashing [33] considers the extreme case of s = 1. Of course, such embeddings cannot work for
all data sets X. However, as shown by Weinberger et al. [33] and later refined by Kamma et al. [11] and
generalized to s > 1 by Jagadeesan [16], one can use extremely sparse embedding matrices, provided that
for all pairwise difference vectors z = x − y for x, y ∈ X, the ratio ∥z∥∞/∥z∥2 is small. That is, there are no
single large coordinates in z.

Fast JL. The second line of research on fast embeddings exploits structured matrices A with fast matrix-
vector multiplication algorithms. Ailon and Chazelle [2] initiated this direction by introducing the FastJL
transform. FastJL embeds a vector by computing a product m−1/2PHDx, where P is a sparse matrix, H
is the normalized d × d Hadamard matrix and D is a diagonal matrix with random signs on the diagonal.
The trick is that computing Dx can be done in O(d) time and computing H(Dx) takes only O(d lg d) time
by exploiting the structure of the Hadamard matrix. Finally, the transformation HDx has the effect of
“smoothening” out the coordinates of the input vector, making the ratio ∥HDx∥∞/∥HDx∥2 small. This
is precisely the setup allowing very sparse embedding matrices. Concretely, Ailon and Chazelle [2] showed
that it suffices to let each entry in P be non-zero with probability q = O((lg2 n)/d), resulting in a total
embedding time of O(d lg d + m lg2 n). Their analysis was recently refined by Fandina et al. [10], showing
that the sparsity parameter q can be reduced further. Numerous other embeddings exploiting structured
matrices has since then been introduced [22, 8, 3, 6], including for instance embeddings based on Toeplitz
matrices [14, 31, 12] and the Kac random walk [19, 17]. If one insists on optimal m = O(ε−2 lg n) dimensions
in the embedding, then the current state-of-the-art is either the FastJL transform or the Kac random walk
depending on the relationship between n and ε. However none of these are faster than O(d lg m) for any
tradeoff between ε and n.

Unlike the sparse matrix case, there are no known lower bounds ruling out e.g. O(d) time embeddings
via structured matrices. Naturally, the reason for this, is that it is much harder to prove lower bounds
for general embedding algorithms that exploit structured matrices than merely bounding the sparsity of
the embedding matrix. In fact, proving super-linear lower bounds for general linear circuits (which capture
current embedding algorithms) is a major open question in complexity theory. In light of this obstacle, which
we will elaborate on in Section 1.3, we identify common traits in most known upper bounds that we exploit
to prove lower bounds for dimensionality reduction. In the following, we formally define the model under
which we prove our lower bound.

1.2 Formal Lower Bound
As mentioned earlier, our lower bound holds for a large class of dimensionality reducing maps. This class is
captured by a certain scaling parameter. Concretely, we define a ScaledJL-matrix as follows:

Definition 1. Let 0 < ε, δ < 1 and s ∈ N. A stochastic matrix A ∈ Rm×d is said to be a ScaledJL(ε, δ, s)-
matrix, if for any x ∈ Rd we have that

PA

[∥∥∥s−1/2Ax
∥∥∥2

2
̸∈ (1 ± ε) ∥x∥2

2

]
< δ.

Let us remark a few things about Definition 1. First, we assume that a ScaledJL(ε, δ, s)-matrix s−1/2A
preserves the (squared) norm of any single vector x up to (1 ± ε) except with probability δ. This is the
standard definition of a distributional Johnson-Lindenstrauss transform and all known upper bounds give
such a guarantee. In greater detail, known upper bounds prove the distributional guarantee and then sets
δ < 1/n2 and applies a union bound over all z = x−y for x, y ∈ X to conclude that the embedding preserves
all pairwise (squared) distances among vectors in X. In this work, we focus on the squared distance as
it simplifies calculations and anyways only changes ε by a constant factor. The non-standard thing in
Definition 1 is the scaling parameter s. Of course, such a scaling parameter can also be implicitly hidden in
A by scaling all entries of A by s−1/2. To explain the role of s in our model, we need to first introduce a
linear circuit/algorithm as defined e.g. by Morgenstern:

2

Definition 2. [26] A linear algorithm takes as an input 1, x1, . . . , xd ∈ R and proceeds in t > 0 steps. In
the l’th step the algorithm computes xd+l by xd+l = λd+lxj + µd+lxi for some pair of indices i, j < d + l,
where λd+l, µd+l ∈ R.

We say that a linear algorithm computes a linear transformation B ∈ Rm×d if there exist indices 1 ≤
k1, . . . , km ≤ d + t such that: (Bx)1 = xk1 , . . . , (Bx)m = xkm

for every possible input x = (x1, . . . , xd) ∈ Rd.

Note that the number of steps t determines the number of operations performed by the algorithm (up to
a factor 3). Proving super-linear lower bounds for linear algorithms in the sense of Definition 2, is a major
open problem [30]. Thus several previous works [27, 7] have considered restrictions where the coefficients λ
and µ are bounded in absolute value by a constant r independent of m and d. This is crucially necessary if
one wants to avoid the long-standing complexity theoretic barriers further elaborated on in Section 1.3.

With this in mind, the role of s in our definition of ScaledJL(ε, δ, s)-matrix becomes clearer. Concretely,
if we consider an embedding s−1/2Ax, then we think of A as being computable by a linear algorithm/circuit
where all coefficients λi and µi are bounded by a constant. This naturally leads to a scaling factor s−1/2 for
some s. Such a scaling also occurs in most known upper bounds. Let us first state our main lower bound
result and then discuss how it relates to known constructions:

Theorem 3. Let A ∈ Rm×d be a ScaledJL(ε, δ, s)-matrix for ε ≤ 1/4, δ ≤ C (C being some universal
constant), s ∈ N, m = Θ(ε−2 lg(1/δ)) and d ≥ m, then the expected (over the random choice of A) minimum
number of operations needed for any linear algorithm computing A with |λi|, |µi| ≤ 1 for all i is Ω(m lg s).

Let us briefly argue that most known constructions are of the form captured by the lower bound and
the definition of a ScaledJL(ε, δ, s)-matrix. Concretely, these upper bounds have lg s = Ω(lg m) and thus
our lower bound shows that it must take Ω(m lg m) operations to compute these embeddings, even if more
clever linear algorithms could be devised. As an example of an upper bound, consider first the classic JL
construction using a matrix A with i.i.d. random −1/1 entries and a scaling of s−1/2 = m−1/2. In this case,
the matrix A can clearly be computed by a linear algorithm using coefficients bounded by 1 in absolute
value (just carry out the trivial algorithm). So it falls under the definition of a ScaledJL(ε, δ, s)-matrix with
s = m. Next consider embeddings based on Toeplitz matrices [14, 31, 12]. Here we embed as m−1/2TDx,
where D is a diagonal with random signs and T is a Toeplitz matrix with random signs on its diagonals. The
matrix T can be computed via a fast Fourier transform using coefficients bounded by a constant. Hence the
construction also falls under the definition of ScaledJL(ε, δ, s)-matrix with s = m. We could also consider
the sparse JL transform by Kane and Nelson [21]. Their construction uses an embedding matrix where each
column has t = Θ(ε−1 lg n) non-zero entries, each of magnitude t−1/2. Such a sparse embedding is typically
computed by moving the scaling t−1/2 outside and then doing the straight-forward sparse matrix-vector
multiplication using constant magnitude coefficients. It thus falls under the definition of a ScaledJL(ε, δ, s)-
matrix with s = t = Θ(εm). This has lg s = Ω(lg m) when m is optimal O(ε−2 lg n). Finally, consider for
instance the m−1/2PHD construction by Ailon and Chazelle [2]. They use the normalized Hadamard matrix,
i.e. all entries in H are scaled down by d−1/2. If we move that scaling factor outside, as (md)−1/2PH̄D,
then H̄ is computed recursively using coefficients of 1 and −1. The entries of P are b · N(0, q−1) distributed,
where b is a Bernoulli random variable with success probability q for a q > lg(1/δ)/d. With high probability,
no entry of P is thus larger than about O(

√
d). Moving this scaling factor outside, it cancels out with the

d−1/2 from the Hadamard matrix and then P can also be computed using coefficients bounded by a constant
and the final algorithm is a ScaledJL(ε, δ, s)-matrix with s = Θ(m). Common to all these approaches, is that
they project onto something that resembles a random m-dimensional subspace. Intuitively, such a matrix
should have m rows all of norm about

√
d/m. With d columns, this would imply that each entry should be

about m−1/2 in magnitude. Moving the scaling factor outside to have constant magnitude entries, results in
the m−1/2 scaling factor observed in all these upper bounds.

Thus many known upper bounds fall under the definition of a ScaledJL(ε, δ, s)-matrix with a scaling s
satisfying lg s = Ω(lg m). Theorem 3 therefore sheds light on why they all require Ω(m lg m) time (which is
ω(d) when d = O(m)). Let us also mention the only upper bound we are aware of, that does not seem to
suffer from the lower bound. In the Kac JL transform [19, 17], one embeds a vector by repeatedly picking
two random coordinates, among the d input coordinates, and performing a random rotation on the two.

3

After sufficiently many steps (Ω(d lg d + m lg n) in the current analysis), all but the first m coordinates are
discarded and those m coordinates are scaled by

√
d/m. While seemingly not being captured by the lower

bound, we remark that the analysis of Kac JL cannot be sharpened to o(d lg d) steps as otherwise, by a
coupon collector argument, there is a vector ei among em+1, . . . , ed whose coordinate i is never involved in
a rotation and hence ei is embedded to 0.

Of course, it would have been more natural, if our lower bound in Theorem 3 only required bounded
coefficients in the linear algorithm, not that there is also a scaling parameter s−1/2. Unfortunately, as we
argue in Section 1.3, it seems unlikely that we can establish such a lower bound using current techniques. We
thus believe our results can be seen in two ways: 1), as providing strong evidence that FastJL constructions
cannot be made much faster, or 2), as pointing towards a direction for further improvements, by trying
to design embeddings where a constant scaling parameter s suffices, or super-constant coefficients are used
when computing the embedding, or perhaps using non-linearity.

1.3 Barriers for Linear Algorithm Lower Bounds
Proving super-linear unconditional lower bounds is one of the biggest barriers in many areas of complexity
theory, including in particular for linear operators. A natural computational model for computing linear
operators is a linear algorithm, a.k.a. linear circuit, as in Definition 2. While being a very natural model
of computation for linear operators, capturing in particular all known JL constructions, it suffers from a
lack of tools for proving lower bounds (without any assumptions on coefficients). Concretely, there are still
no super-linear size lower bounds, even for circuits restricted to logarithmic depth. Moreover, this road
block is not for lack of trying. For instance, already in 1977, Valiant [30] introduced the notion of matrix
rigidity. Loosely stated, the rigidity of a square matrix (corresponding to a linear operator) A ∈ Rn×n, is the
minimum number of entries in A that needs to be changed to reduce its rank below n/2. Valiant showed that
any explicit matrix A with rigidity Ω(n2/ lg lg n) cannot have a linear-sized and log-depth linear circuit for
computing the corresponding linear operator. Matrix rigidity has since then been the topic of much research,
see e.g. [13, 4, 29, 9], however none of these works lead to super-linear lower bounds (also when considering
rectangular matrices) for explicit matrices, despite the fact that a random matrix has high rigidity with high
probability.

Bounded Coefficients. In light of the above strong barriers for proving lower bounds for linear circuits, a
natural restriction to the computational model, is to assume that all coefficients λi and µi used by the gates
are bounded in absolute value by a constant r. Indeed, if we enforce such a restriction, then Morgenstern [27]
for instance proved an Ω(n lg n) lower bound on the size of any linear circuit computing the n×n unnormalized
fast Fourier transform. Similarly, Chazelle [7] proved Ω(n lg n) lower bounds for linear circuits, with bounded
integer coefficients, for computing linear transformation corresponding to incidence matrices for various
geometric range searching problems. Common to these techniques, is that they relate the circuit complexity
to the eigenvalues of the corresponding matrix A. In particular, the lower bounds one obtains peak at
Ω(ℓ lg γℓ), where γℓ denotes the ℓ’th largest eigenvalue of AT A.

Now in the context of dimensionality reduction, an embedding matrix A ∈ Rm×d can have at most m
non-zero eigenvalues. This means that lower bounds obtained via these techniques will be proportional to
only Ω(m lg γℓ) for an ℓ ∈ Θ(m). Since the size of the circuit is already at least d, it makes most sense from
a lower bound point of view to consider setups where m and d are within constant factors. However, since
embedding matrices A must preserve the norm of standard unit vectors ei, their columns will have norms of
magnitude (1 ± ε). This implies that the trace of AT A is d(1 ± ε) = Θ(m). Since the trace of AT A equals
the sum of its eigenvalues, we get for ℓ ∈ Θ(m) that γℓ is at best a constant. Thus the lower bounds we may
hope to obtain are only Ω(m), i.e. trivial. Thus considering only the restriction to have coefficients bounded
by a constant is insufficient for proving non-trivial lower bounds using known techniques.

Output Scaling. Having observed the above, we examined existing FastJL constructions and found a
common trait in most of them: they embed a vector x by computing s−1/2Ax for some scaling factor s and

4

matrix A, where A can be computed efficiently by a linear circuit using coefficients of constant magnitude.
Given the obstacles mentioned above, we thus settled on proving lower bounds for embeddings that follow
this template, resulting in Theorem 3 above.

2 Lower Bound for Linear Algorithms
The goal of this section is to prove our lower bound from Theorem 3 on the operations needed for any linear
algorithm computing a ScaledJL(ε, δ, s)-matrix. We state a stronger version of the theorem here:

Theorem 4. Let A ∈ Rm×d be a ScaledJL(ε, δ, s)-matrix for ε ≤ 1/4, δ ≤ C(C being some universal
constant), s ∈ N and tε−2 lg(1/δ) = m, t ≥ 1 and d ≥ m, then the expected (over the random choice
of A) minimum number of operations needed for any linear algorithm computing Ax for any x ∈ Rd with
|λi|, |µi| < r for all i and r > 1/2, is Ω(m lg(s/t2)/(t lg(2r)).

We notice that Theorem 3 is a special case of Theorem 4 where r is set equal to 1 and t = Θ(1).
The main tool for proving Theorem 4 is a lemma by Morgenstern relating the operations needed by a

linear algorithm computing a linear transformation B, to the determinants of square submatrices of B:

Lemma 5. [27] Let B be a real matrix and let ∆(B) denote the maximum over the absolute value of the
determinant of any square submatrix of B. A linear algorithm computing the linear transformation B, with
|λi|, |µi| < r for all i and r > 1/2, must use at least lg(∆(B))/ lg(2r) operations.

Using Lemma 5 as our offset, our goal is thus to show that any ScaledJL(ε, δ, s)-matrix A must have a
submatrix whose determinant is in the order of sΩ(m). Since A is allowed to be stochastic and fail to preserve
the norm of a vector x with probability δ, we only prove that this holds with constant probability over A:

Lemma 6. Let A ∈ Rm×d be a ScaledJL(ε, δ, s)-matrix for ε ≤ 1/4, δ ≤ C (C being some universal
constant), s ∈ N and tε−2 lg(1/δ) = m, t ≥ 1 and d ≥ m, then there exist a set S ⊆ supp(A) such that
PA [S] ≥ 1/2 and for B ∈ S it holds that there exists a square submatrix F of B such that

| det(F)| ≥
(
c2s/(3(et)2)

)⌈cm/t⌉/2

where c is some universal constant less than 1.

The proof of Theorem 4 follows immediately from the above two lemmas:

Proof of Theorem 4. Let A be a ScaledJL(ε, δ, s)-matrix. Lemma 6 gives the existence of a set S ⊆ supp(A)
with PA[S] ≥ 1/2 and for B ∈ S, B has a square submatrix F such that | det(F)| ≥

(
c2s/(3(et)2)

)⌈cm/t⌉/2

implying that ∆(B) ≥
(
c2s/(3(et)2)

)⌈cm/t⌉/2. It now follows by Lemma 5 that a linear algorithm calculating
Bx for all x ∈ Rd must use lg(∆(B))/ lg(2r) operations. Since lg(∆(B)) ≥ (⌈cm/t⌉) lg(c2s/(3(et)2))/2 =
Ω(m lg(s/t2)/t) we get that lg(∆(B))/ lg(2r) = Ω(m lg(s/t2)/(t lg(2r)). Thus we conclude, since PA[S] ≥
1/2, that the expected number of operations needed by any linear algorithm computing the transformation
A is Ω(m lg(s/t2)/(t lg(2r)), which concludes the proof of Theorem 4.

The main challenge we face is thus establishing Lemma 6, i.e. proving that for any ScaledJL(ε, δ, s)-
matrix A, it is often the case that A has a square submatrix of large determinant. This is the focus of the
next section.

2.1 Submatrix with Large Determinant (Proof Lemma 6)
To prove Lemma 6, we have to show that with probability at least 1/2, a ScaledJL(ε, δ, s)-matrix has a
square submatrix with an

(
c2s/(3(et)2)

)⌈cm/t⌉/2 large determinant. For this, we will use a technical lemma
from [23] which relates the eigenvalues of BT B to the determinants of square submatrices of B:

5

Lemma 7. ([23] proof of Theorem 10) For B ∈ Rm×d, with m ≤ d, let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 denote the
eigenvalues of BT B. For all positive integers l ≤ m, there exists a square submatrix F ∈ Rl×l of B such that

| det (F) | ≥

√√√√∏l
i=1 λi(

d
l

)(
m
l

) .

By the above lemma, we can reduce the problem of finding a square submatrix of a ScaledJL(ε, δ, s)-
matrix A with large determinant, to lower bounding the eigenvalues of a AT A. Using λi(BT B) to denote
the i’th largest eigenvalue of BT B, this is precisely the contents of the following lemma:

Lemma 8. Let A ∈ Rm×d be a ScaledJL(ε, δ, s)-matrix for ε ≤ 1/4, δ ≤ C(C being some universal constant)
and s ∈ N, tε−2 lg(1/δ) = m, t ≥ 1 and d ≥ m, then there exist a set S ⊆ supp(A) such that PA [S] ≥ 1/2
and for B ∈ S it holds that

λ⌈cm/t⌉(BT B) ≥ ds/(3m)

where c is some universal constant less than 1.

Before we give the proof of Lemma 8, let us see that it suffices to finish the proof of Lemma 6:

Proof of Lemma 6. Let A be ScaledJL(ε, δ, s)-matrix such that the conditions of Lemma 8 are met. We
then have for B in the set S described in Lemma 8 that the l = ⌈cm/t⌉’th largest eigenvalue of BT B is at
least ds/(3m). Now by Lemma 7. we have that there exist a square submatrix F ∈ Rl×l of B such that
| det(F)| ≥ (

∏l
i=1 λi/

(
d
l

)(
m
l

)
)1/2. Now using these two properties combined with

(
n
k

)
≤ (en/k)k and l ≥ cm/t

we get that

| det(F)| ≥

(
l∏

i=1
λi/

((
d

l

)(
m

l

)))1/2

≥
(
dsl2/(3e2dm2)

)l/2 ≥
(
c2s/(3(et)2)

)⌈cm/t⌉/2
.

Thus Lemma 6 follows by the conditions in Lemma 6 and Lemma 8 on the ScaledJL(ε, δ, s)-matrix being
the same.

After having established the above connection between eigenvalues and linear algorithms, we are left with
proving Lemma 8, i.e. to show that for a ScaledJL(ε, δ, s)-matrix A, it is often the case that AT A has many
large eigenvalues. We first give an overview of the main ideas in the proof, before proceeding to give the
formal details.

Proof Overview. The proof of Lemma 8 is at a high level inspired by methods used in [24]. The main
result of [24] was a lower bound of m = Ω(ε−2 lg n) on the embedding dimension of any linear dimensionality
reducing map. Their lower bound was proved for a “hard” set of vectors consisting of the standard basis
vectors and several independent Gaussian vectors. The standard basis vectors were used to lower bound the
trace Tr(AT A) where A is the full embedding matrix (including any scaling factors), whereas the Gaussian
vectors were used to upper bound the squared Frobenius norm ∥AT A∥2

F . Since Tr(AT A) is the sum of the
eigenvalues of AT A and ∥AT A∥2

F is the sum of squared eigenvalues, one cannot have a large Tr(AT A) and
a small ∥AT A∥2

F without having many non-zero eigenvalues. Their lower bound on m follows by observing
that the number of non-zero eigenvalues equals the rank of A, and the rank cannot exceed m. We remark
that the idea of using Gaussian vectors as a hard instance was also seen in [20].

Compared to the proof above, we need to show something stronger. More precisely, the previous work
merely showed that there are Ω(ε−2 lg n) non-zero eigenvalues. We need to show that there are Ω(ε−2 lg n)
eigenvalues that are all at least ds/(3m) large. This requires a more refined analysis and the introduction of
the scaling parameter s−1/2 in the embedding s−1/2Ax as in the definition of a ScaledJL(ε, δ, s)-matrix.

The hard instance in our lower bound is also the standard basis vectors e1, . . . , ed in Rd together with
a Gaussian distributed vector g ∈ Rd. By Markov’s inequality, we get that the following two events hold

6

simultaneous with constant probability over the random choice of A: The number of basis vectors whose
norm is preserved, i.e. |{i : ∥Aei/

√
s∥2 ∈ (1 ± ε)}|, is Ω(d), and secondly, the probability that the random

Gaussian vector has its norm preserved satisfies Pg[∥Ag/
√

s∥2
/ ∈ (1 ± ε) ∥g∥2] ≥ 1 − Θ(δ). Thus if we now

consider an outcome B of A which satisfies these two relations, we get by |{i : ∥Bei/
√

s∥2 ∈ (1 ± ε)}| = Ω(d)
that the trace of BT B, which is equal to the sum of the eigenvalues BT B, is Ω(ds). Now by ∥Bg/

√
s∥2

being in (1 ± ε) ∥g∥2 and ∥g∥2 being in (1 ± ε)d, both with probability least 1 − δΘ(1) over g, we also get
with probability at least 1 − δΘ(1) over g that ∥Bg∥2 ∈ (1 ± Θ(ε))ds.

Now using the lower bound
∑

λ(BT B)i = Ω(ds) and the fact that BT B has at most m non-zero
eigenvalues, we get that the sum of the eigenvalues larger than ds/(3m) is at least Ω(ds) − m(ds/(3m)) =
Ω(ds) (provided that we can prove a large enough constant in the Ω(ds) notation). However, we also need
to prove that there are not just a few such eigenvalues that are huge and account for most of the sum. For
this, let l denote the number of eigenvalues that are greater than or equal to ds/(3m).

To prove a lower bound on l, we first use anti-concentration inequalities to relate the distribution of
∥Bg∥2 to Tr(BT B), obtaining an upper bound on ∥BT B∥2

F =
∑

λ(BT B)2
i ≤ O((ds)2/m) (like in previous

work). Using the upper bound on
∑

λ(BT B)2
i and Cauchy-Schwartz, we then conclude that the sum of the

eigenvalues larger than ds/(3m) is at most Θ(ds
√

l/m) - hence combining the lower and upper bound on the
sum of the eigenvalues larger than ds/(3m), we get that Θ(ds

√
l/m) = Ω(ds), so we conclude that l = Ω(m)

as wanted. We remark that while this last part of our proof carries some resemblance to that in [24], we
believe that the whole reduction above, reducing the problem to arguing that the embedding matrix must
have many large eigenvalues, is highly novel in its own right.

Preliminaries. To prove Lemma 8, we need the following two concentration bounds for normal distributed
random variables.

Lemma 9. [34] Let g1, . . . , gd be independent N(0, 1) random variables and u1, . . . , ud be non-negative
numbers, then for constants c1 ≤ 1 and C1 ≥ 1 we have that

c1 exp
(
−C1x2/∥u∥2

2
)

≤ P

[
d∑

i=1
ui(g2

i − 1) ≥ x

]
, ∀0 ≤ x

c1 exp
(
−C1x2/∥u∥2

2
)

≤ P

[
d∑

i=1
ui(g2

i − 1) ≤ −x

]
, ∀0 ≤ x ≤ c1∥u∥2

2/∥u∥∞.

Lemma 10. (Example 2.11 [32]) Let g1, . . . , gd be independent N(0, 1) random variables then

P

[∣∣∣∣∣
d∑

k=1
g2

i − d

∣∣∣∣∣ ≥ αd

]
≤ 2e−dα2/8, for all α ∈ (0, 1).

Proof of Lemma 8. We are now ready to give the proof of Lemma 8.

Proof. Let A ∈ Rm×d be a ScaledJL(ε, δ, s)-matrix for ε ≤ 1/4 and δ ≤ C (where C is a constant to be fixed
later), tε−2 lg(1/δ) = m and d ≥ m.

Let e1, . . . , ed be the standard basis vectors in Rd. Let further Pg denote the measure of a standard
Gaussian random vector g ∈ Rd independent of A. We now claim the existence of a set of matrices S such
that A ∈ S holds with probability at least 1/2 and for B ∈ S, we have that

|{i : |
∥∥Bei/

√
s
∥∥2 − ∥ei∥2 | > ε ∥ei∥2}| < 4δd (1)

and

Pg

[
|
∥∥Bg/

√
s
∥∥2 − ∥g∥2 | > ε ∥g∥2

]
< 4δ. (2)

7

To show this, define for each i ∈ [d] the event Ei = {| ∥Aei/
√

s∥2 − ∥ei∥2 | > ε ∥ei∥2} and set Xi equal to
1Ei

, such that
∑d

i=1 Xi = |{i : | ∥Bei/
√

s∥2 − ∥ei∥2 | > ε ∥ei∥2}|. By the ScaledJL(ε, δ, s)-matrix assumption
of A, we have that

EA

[
d∑

i=1
Xi

]
≤ δd

so by Markov’s inequality we get that

PA

[
d∑

i=1
Xi ≥ 4δd

]
≤ 1/4

similarly by the ScaledJL(ε, δ, s)-matrix assumption we have that

EA

[
Pg

[
|
∥∥Ag/

√
s
∥∥2 − ∥g∥2 | > ε ∥g∥2

]]
< δ

so by applying Markov’s inequality again, we get that

PA

[
Pg

[
|
∥∥Ag/

√
s
∥∥2 − ∥g∥2 | > ε ∥g∥2

]
≥ 4δ

]
≤ 1/4.

Now using a union bound gives that eq. (1) and eq. (2) hold simultaenously with probability at least 1/2 as
claimed.

If we can show that for B ∈ S, it holds that λ(BT B)⌈cm/t⌉ > ds/(3m), then we are done since the
probability of A being in S is at least 1/2. So let B ∈ S. We now notice that by eq. (1) there exist
(1 − 4δ)d indices in i ∈ [d] such that (BT B)i,i ∈ (1 ± ε)s. If we now let λi(BT B) denote the i’th largest
eigenvalue of BT B, we get the following lower bound on the sum of eigenvalues of BT B (assuming ε ≤ 1/4
and δ ≤ C ≤ 1/36):

m∑
i=1

λi(BT B) = Tr(BT B) ≥ (1 − ε)(1 − 4δ)ds ≥ 2ds/3. (3)

Now by Cauchy-Schwartz, we also have that

m∑
i=1

λi(BT B) ≤

√√√√m

m∑
i=1

λi(BT B)2 ≤

√√√√m

m∑
i=1

λi(BT B)2

√√√√ m∑
i=1

λi(BT B)2/λ1 =
√

m

m∑
i=1

λi(BT B)2/λ1 (4)

Combining eq. (3) and eq. (4), we get that

(
m∑

i=1
λi(BT B)2)/λ1(BT B) ≥ 2ds/3

√
m ≥ ds/4

√
m. (5)

Now since B was in S, we have by eq. (2) that ∥Bg∥2 ∈ (1 ± ε) ∥g∥2 with probability at least 1 − 4δ over g.
At the same time, we have by Lemma 10 that for 0 < α < 1, it holds that ∥g∥2 ∈ (1±α)d with probability at
least 1 − 2 exp (−dα2/8). Now choosing α = ε, we get that 2 exp(−dε2/8) ≤ 2δ1/8. By the assumption that
d ≥ m ≥ ε−2 lg(1/δ), we get that ∥g∥2 ∈ (1 ± ε)d with probability at least 1 − 2δ1/8 over g. Now combining
this with ∥Bg∥2 ∈ (1 ± ε) ∥g∥2 with probability at least 1 − 4δ over g, we get by a union bound that

∥Bg∥2 ∈ (1 ± ε)(1 ± ε)ds = (1 − 2ε + ε2, 1 + 2ε + ε2)ds (6)

with probability at least 1 − 6δ1/8 over g.

8

Now using the eigenvalue decomposition of BT B into UT DU , where U is an orthogonal matrix and D
an diagonal matrix with the eigenvalues of BT B on its diagonal in decreasing order, and that a standard
normal Gaussian vector is invariant in distribution under rotations, we obtain the following relation

∥Bg∥2 − Tr(BT B) =
gT BT Bg − Tr(BT B) =

gT UT DUg − Tr(BT B) d= (7)

g̃T Dg̃ −
d∑

i=1
λi(BT B) =

d∑
i=1

λi(BT B)(g̃2
i − 1).

Our next step is to relate
∑

i λ2
i (BT B) to δ. Here we take two different approaches depending on Tr(BT B).

c1 and C1 in the following are the constants of Lemma 10.

Case 1: If Tr(BT B) ≤ (1 − 2ε + c1/(4
√

m))ds then by eq. (6) (and the comment above the equation) we
have with probability at least 1 − 6δ1/8 over g that

∥Bg∥2 − Tr(BT B) ≥ ((1 − 2ε + ε2) − (1 − 2ε + c1/(4
√

m)))ds > −c1ds/4
√

m.

implying that 6δ1/8 ≥ Pg

[
∥Bg∥2 − Tr(BT B) ≤ −c1ds/4

√
m
]
.

Now noticing that c1ds/4
√

m ≤ c1(
∑m

i=1 λi(BT B)2)/λ1(BT B) by eq. (5), we may invoke the second
relation in Lemma 9 on eq. (7) to get:

Pg

[
∥Bg∥2 − Tr(BT B) ≤ −c1ds/4

√
m
]

= Pg̃

[
d∑

i=1
λi(BT B)(g̃2

i − 1) ≤ −c1ds/4
√

m

]
≥ c1 exp

(
−C1(c1ds)2/(16m

d∑
i=1

λ2
i (BT B))

)
.

Yielding that 6δ1/8 ≥ c1 exp
(

−C1(c1ds)2/(16m
∑d

i=1 λ2
i (BT B))

)
.

Case 2: If Tr(BT B) ∈ [(1 − 2ε + c1/(4
√

m))ds, ∞) then by eq. (6) (and the comment below the equation)
we have with probability at least 1 − 6δ1/8 over g that

∥Bg∥2 − Tr(BT B) ≤ ((1 + 2ε + ε2) − (1 − 2ε + c1/(4
√

m))))ds < 5εds.

implying that 6δ1/8 ≥ Pg

[
∥Bg∥2 − Tr(BT B) ≥ 5εds

]
.

Now using the first relation in Lemma 9 combined with eq. (7), it follows that

Pg

[
∥Bg∥2 − Tr(BT B) > 5εds

]
= Pg̃

[
d∑

i=1
λi(BT B)(g̃2

i − 1) > 5εds

]
≥ c1 exp

(
−C1(5εds)2/(

d∑
i=1

λ2
i (BT B))

)
.

Yielding that 6δ1/8 ≥ c1 exp
(

−C1(5εds)2/(
∑d

i=1 λ2
i (BT B))

)
.

9

Conclusion. Now using that m ≥ ε−2 lg(1/δ) and c1 ≤ 1 it follows that c2
1/16m ≤ 52ε2 which then implies

that C1(c1ds)2/(16m
∑d

i=1 λ2
i (BT B)) ≤ C1(5εds)2/(

∑d
i=1 λ2

i (BT B). Combining this with the conclusion of
the above two cases, we get that 6δ1/8 ≥ c1 exp

(
−C1(5εds)2/(

∑d
i=1 λ2

i (BT B))
)

. With this relation, choosing
the universal constant C = (c1/6)16 (less than 1/36 as used in eq. (3)), which implies that c1/(6δ1/16) ≥ 1,
and using that m = tε−2 lg(1/δ), we now get that

lg(6δ1/8) ≥ lg(c1) − C1(5εds)2/(
d∑

i=1
λ2

i (BT B))

⇒
d∑

i=1
λ2

i (BT B) ≤ C1(5εds)2/(lg(c1/(6δ1/8))) ≤ C116(5εds)2/ lg(1/δ) ≤ 202C1t(ds)2/m (8)

We now define the vector w ∈ Rd as

[w]i =


1 if λi(BT B) ≥ ds/(3m)

0 else

and let l be equal to the number of non-zero entries of w. Let further λ denote the vector in Rd with the
eigenvalues of BT B in decreasing order. It then follows by Cauchy-Schwartz and eq. (8) that we have the
following upper bound on the sum of the eigenvalues of BT B larger than ds/(3m):

∑
i:λi(BT B)≥ds/(3m)

λi(BT B) = ⟨λ, w⟩ ≤ ∥λ∥ ∥w∥ =

√√√√ d∑
i=1

λ2
i (BT B)l ≤

√
202C1t(ds)2l/m.

At the same time, we get the following lower bound on the sum of the eigenvalues of BT B larger than
ds/(3m) by eq. (3) and the fact that (BT B) has rank at most m and hence at most m non-zero eigenvalues

∑
i:λi(BT B)≥ds/(3m)

λi(BT B) =
d∑

i=1
λi(BT B) −

∑
i:λi(BT B)<ds/(3m)

λi(BT B) ≥ 2ds/3 − ds/3 = ds/3.

Hence combining the upper and lower bound we obtain that ds/3 ≤
√

202C1t(ds)2l/m, implying that
m/(602C1t) ≤ l, which by setting c in Lemma 8 equal to 1/602C1 ≤ 1 (C1 ≥ 1 by Lemma 9) concludes the
proof of Lemma 8.

References
[1] D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. J.

Comput. Syst. Sci., 66(4):671–687, 2003.

[2] N. Ailon and B. Chazelle. The fast johnson–lindenstrauss transform and approximate nearest neighbors.
SIAM J. Comput., 39:302–322, 2009.

[3] N. Ailon and E. Liberty. Fast dimension reduction using rademacher series on dual BCH codes. In
S. Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 1–9. SIAM, 2008.

[4] N. Alon, R. Panigrahy, and S. Yekhanin. Deterministic approximation algorithms for the nearest code-
word problem. In I. Dinur, K. Jansen, J. Naor, and J. D. P. Rolim, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop,
APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23,
2009. Proceedings, volume 5687 of Lecture Notes in Computer Science, pages 339–351. Springer, 2009.

10

[5] R. I. Arriaga and S. S. Vempala. An algorithmic theory of learning: Robust concepts and random
projection. Mach. Learn., 63(2):161–182, 2006.

[6] S. Bamberger and F. Krahmer. Optimal fast johnson–lindenstrauss embeddings for large data sets.
Sampling Theory, Signal Processing, and Data Analysis, 19(1):3, 2021.

[7] B. Chazelle. A spectral approach to lower bounds with applications to geometric searching. SIAM
Journal on Computing, 27(2):545–556, 1998.

[8] T. T. Do, L. Gan, Y. Chen, N. Nguyen, and T. D. Tran. Fast and efficient dimensionality reduction
using structurally random matrices. In 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 1821–1824, 2009.

[9] Z. Dvir, A. Golovnev, and O. Weinstein. Static data structure lower bounds imply rigidity. In
M. Charikar and E. Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 967–978. ACM, 2019.

[10] O. N. Fandina, M. M. Høgsgaard, and K. G. Larsen. The fast johnson-lindenstrauss transform is even
faster. CoRR, abs/2204.01800, 2022.

[11] C. Freksen, L. Kamma, and K. G. Larsen. Fully understanding the hashing trick. In Proceedings of the
32nd International Conference on Neural Information Processing Systems, NIPS’18, page 5394–5404,
Red Hook, NY, USA, 2018. Curran Associates Inc.

[12] C. B. Freksen and K. G. Larsen. On using toeplitz and circulant matrices for johnson-lindenstrauss
transforms. Algorithmica, 82(2):338–354, 2020.

[13] J. Friedman. A note on matrix rigidity. Comb., 13(2):235–239, 1993.

[14] A. Hinrichs and J. Vybíral. Johnson-lindenstrauss lemma for circulant matrices**. Random Structures
& Algorithms, 39(3):391–398, 2011.

[15] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensional-
ity. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, page
604–613, New York, NY, USA, 1998. Association for Computing Machinery.

[16] M. Jagadeesan. Understanding sparse JL for feature hashing. In H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 15177–15187, 2019.

[17] V. Jain, N. S. Pillai, and A. Smith. Kac meets johnson and lindenstrauss: a memory-optimal, fast
johnson-lindenstrauss transform. CoRR, abs/2003.10069, 2020. To appear in Annals of Applied Prob-
ability.

[18] W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space. Contemporary
Mathematics, 26:189–206, 01 1984.

[19] M. Kac. Foundations of kinetic theory. In Proceedings of The third Berkeley symposium on mathemat-
ical statistics and probability, pages 171–197. University of California Press Berkeley and Los Angeles,
California, 1958.

[20] D. M. Kane, R. Meka, and J. Nelson. Almost optimal explicit johnson-lindenstrauss families. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 14th
International Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton,
NJ, USA, August 17-19, 2011. Proceedings, pages 628–639, 2011.

11

[21] D. M. Kane and J. Nelson. Sparser johnson-lindenstrauss transforms. J. ACM, 61(1):4:1–4:23, 2014.

[22] F. Krahmer and R. Ward. New and improved johnson-lindenstrauss embeddings via the restricted
isometry property. SIAM J. Math. Anal., 43(3):1269–1281, 2011.

[23] K. G. Larsen. Constructive discrepancy minimization with hereditary L2 guarantees. In R. Niedermeier
and C. Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS
2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 48:1–48:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019.

[24] K. G. Larsen and J. Nelson. The johnson-lindenstrauss lemma is optimal for linear dimensionality
reduction. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016,
July 11-15, 2016, Rome, Italy, pages 82:1–82:11, 2016.

[25] K. G. Larsen and J. Nelson. Optimality of the johnson-lindenstrauss lemma. In C. Umans, editor,
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 633–638. IEEE Computer Society, 2017.

[26] J. Morgenstern. On linear algorithms. In Z. Kohavi and A. Paz, editors, Theory of Machines and
Computations, pages 59–66. Academic Press, 1971.

[27] J. Morgenstern. Note on a lower bound on the linear complexity of the fast fourier transform. J. ACM,
20:305–306, 1973.

[28] J. Nelson and H. L. Nguyen. Sparsity lower bounds for dimensionality reducing maps. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 101–110. ACM, 2013.

[29] S. Saraf and S. Yekhanin. Noisy interpolation of sparse polynomials, and applications. In Proceedings
of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose, California,
USA, June 8-10, 2011, pages 86–92. IEEE Computer Society, 2011.

[30] L. G. Valiant. Graph-theoretic arguments in low-level complexity. In J. Gruska, editor, Mathematical
Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia, September
5-9, 1977, Proceedings, volume 53 of Lecture Notes in Computer Science, pages 162–176. Springer, 1977.

[31] J. Vybiral. A variant of the johnson-lindenstrauss lemma for circulant matrices. Journal of Functional
Analysis, 260:1096–1105, 02 2010.

[32] M. J. Wainwright. Basic tail and concentration bounds, page 21–57. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 2019.

[33] K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, pages 1113–1120, 2009.

[34] A. R. Zhang and Y. Zhou. On the non-asymptotic and sharp lower tail bounds of random variables.
Stat, 9(1):e314, 2020. e314 sta4.314.

12

