Dynamic Trust Management

Based on Progress Report “On foundations for dynamic trust management”, available

http://www.brics.dk/~krukow

Karl Krukow

krukow@brics.dk

BRICS, University of Aarhus, Denmark
Essence of SECURE:

Explore to which extent (intuition about) the human notion of trust can guide security-related decision-making for computational entities in global-computing environments.
Essence of SECURE:

Explore to which extent (intuition about) the human notion of trust can guide security-related decision-making for computational entities in global-computing environments.

Security-related decision-making.

Passive decisions.

 e.g. “should I allow p to access my resource res?”.

Active decisions.

 e.g. “which of p, q and r is most likely to provide the best service for me?”.
Essence of SECURE:

Explore to which extent (intuition about) the *human notion of trust* can guide *security-related decision-making* for computational entities in *global-computing environments*.

Properties of *global-computing environments*

- Vast numbers of interacting entities.
 - impossible to have *complete information* about every potential collaborator.
- Entities are mobile and networked, but decisions are made *autonomously*.
Essence of SECURE:

- Explore to which extent (intuition about) the human notion of trust can guide security-related decision-making for computational entities in global-computing environments.

Intuition about human notion of trust.

- Locality: trust exist between principals.
 - e.g. p’s trust in q may be different from r’s trust in q.
- Dynamics: reflects behavior.
- Contextual.
Overview of the rest of the talk

- The SECURE trust model.

- Topics not covered by this talk:
 - Transfer of information between contexts.
 - An abstract denotational framework for trust.
 - Operational aspects of the denotational models.
 - A canonical construction: intervals.

- The future?
Model: a decision involving entity p has a number of possible outcomes, o_1, o_2, \ldots, o_n.

Each outcome o_i has an associated cost or benefit, say $\text{cost}(o_i)$.

Trust values must convey enough information, that estimation of probabilities of outcomes be possible, e.g.

$$\text{expected-cost} = \sum_{i=1}^{n} \text{cost}(o_i) \cdot \text{likelihood}(o_i)$$
A trust model: mathematical framework that specifies a global trust state: \(\text{gts} : \mathcal{P} \rightarrow \mathcal{P} \rightarrow T. \)

\(T \)? - Use the trust-structure framework, \(TS = (T, \sqsubseteq, \preceq) \)?

However, an arbitrary complete lattice is too abstract:

- How does one estimate probabilities of outcomes?
- How does one update trust information based on behaviour?
- Must formalise: outcomes, behaviour.
SECURE Trust Model

- A trust model: mathematical framework that specifies a global trust state: \(\text{gts} : \mathcal{P} \rightarrow \mathcal{P} \rightarrow T \).

- \(T \)? - Use the trust-structure framework, \(TS = (T, \sqsubseteq, \preceq) \)?

- However, an arbitrary complete lattice is too abstract:
 - How does one estimate probabilities of outcomes?
 - How does one update trust information based on behaviour?
 - Must formalise: outcomes, behaviour.

- Require additional structure...
 - \(T = \text{Outcomes} \rightarrow \text{EvidenceValues} \)
 - Outcomes and EvidenceValues also have structure...
Example: E-Purse

- A scenario where entities store electronic cash in an electronic ‘purse’.
- Entities can transfer money from one purse to another, e.g. to purchase services.
- Entities can request a transfer of ‘real’ money from their bank account to their e-purse.
- Scenario: User p wants to withdraw an amount, m, from its bank-account to its purse.
 - For this decision, what are the possible outcomes?
Example: E-Purse – outcomes

- From the user’s point of view, various events may occur:
 - Request may be *denied*:
 - Insufficient funds on account.
 - Server down.
 - Timeout.
 - . . .
 - Request may be *granted*, and m units are transferred.
 - Bank withdraws $n \neq m$ from account.
 - Bank withdraws m from account.
 - Transferred cash is forged.
 - . . .
An **outcome** can be described by a *set of observable events*.

These events have structure.

- **Conflict**: both cannot occur.
 - e.g. ‘denied’ vs. ‘granted’.
- **Dependence**: a pre-condition for an event to occur.
 - e.g. ‘granted’ before ‘forged’.
- **Independence**: none of the above.
 - e.g. ‘forged’ and ‘correct amount withdrawn’.
Model: Event structures.

\(ES = (E, \leq, \#) \).

- \(E \) models the set of ‘observable events’.
- \(\leq \subseteq E \times E \): dependency relation.
- \(\# \subseteq E \times E \): conflict relation.

Example:

\[
\begin{align*}
\text{authentic} & \sim \text{forged} \\
\text{reject} & \sim \text{grant} \\
\text{correct} & \sim \text{incorrect}
\end{align*}
\]
Model: Outcomes are configurations.

Example:

Model: Behaviour is a sequence of outcomes.
Choosing trust values

Trust values: Outcomes \rightarrow EvidenceValues.
Choosing trust values

- Trust values: \(C_{ES} \rightarrow \text{EvidenceValues} \).
Choosing trust values

- Trust values: $C_{ES} \rightarrow \text{EvidenceValues}$.
- EvidenceValues?

\[
\begin{align*}
\{g,a,c\} & \quad \{g,f,c\} & \quad \{g,a,i\} & \quad \{g,f,i\} \\
\{g,a\} & \quad \{g,c\} & \quad \{g,f\} & \quad \{g,i\} \\
\{r\} & \quad \{g\} & \quad \{\emptyset\} \\
\end{align*}
\]
Choosing trust values

- Trust values: $C_{ES} \rightarrow \text{EvidenceValues}$.
- EvidenceValues?

\[
\begin{align*}
\{g, a, c\} & \quad \{g, f, c\} & \quad \{g, a, i\} & \quad \{g, f, i\} \\
\{g, a\} & \quad \{g, c\} & \quad \{g, f\} & \\
\{r\} & \quad \{g\} & \quad \{g, i\} & \\
\emptyset & & & \\
\end{align*}
\]
Choosing trust values

- Trust values: $C_{ES} \rightarrow EvidenceValues$.
- EvidenceValues?

```
{g,a,c}   {g,f,c}   {g,a,i}   {g,f,i}
  /      /      /      /
{g,a}   {g,c}   {g,f}   {g,i}
  /            /            /
{r} {g} {g,f} {g,i}
  /      /    /    /
\   /    /    /  \\
\  /    /    /   \
 0    /    /    \
```

Dynamic Trust Management – p. 11/22
Choosing trust values

- Trust values: $C_{ES} \rightarrow EvidenceValues$.
- EvidenceValues?

Diagram:

- \emptyset
- $\{g\}$
- $\{r\}$
- $\{g,a\}$
- $\{g,c\}$
- $\{g,f\}$
- $\{g,a,i\}$
- $\{g,f,i\}$
- $\{g,a,c\}$
- $\{g,f,c\}$
- $\{g,a,i\}$
- $\{g,f,i\}$
for any $x \in C_{ES}$ define the effect of x as a function $\text{eff}_x : C_{ES} \rightarrow \mathbb{N}^3$:

$$\text{eff}_x(w) = \begin{cases}
(1, 0, 0) & \text{if } w \subseteq x \\
(0, 0, 1) & \text{if } x#w \text{ (i.e. } \exists e \in x, e' \in w : e \neq e') \\
(0, 1, 0) & \text{otherwise}
\end{cases}$$

for a history $b = x_1x_2 \cdots x_n$, define $\text{eval} : C_{ES}^0 \rightarrow (C_{ES} \rightarrow \mathbb{N}^3)$ by

$$\text{eval}(x_1x_2 \cdots x_n) = \lambda w . \sum_{i=1}^{n} \text{eff}_{x_i}(w)$$

$\text{eval}(b) : C_{ES} \rightarrow \mathbb{N}^3$ i.e. $\text{eval}(b)(w) = (s, i, c)$
SECURE Trust Model

- Model:
 - Decision \sim event structure $ES = (E, \leq, \#)$.
 - (Partial) Outcomes \sim configurations C_{ES}.
 - Behaviour \sim sequences of (finite) outcomes.

- We can derive from $b \in C_{ES}^0$, an evidence value for each outcome, $\text{eval}(b) : C_{ES} \rightarrow \mathbb{N}^3$.

- Trust values $\sim t : C_{ES} \rightarrow \mathbb{N}^3$.
We can order trust values $T_0 = C_{ES} \rightarrow \mathbb{N}^3$.

Define \sqsubseteq on \mathbb{N}^3 by

$$(s, i, c) \sqsubseteq (s', i', c') \iff (s \leq s') \land (c \leq c') \land (s+i+c \leq s'+i'+c')$$

Lift \sqsubseteq to T_0 by ordering pointwise.

(T_0, \sqsubseteq) is a partial order, we complete this by adding a top element, $\top \sqsubseteq$ to \mathbb{N}^3, resulting in $(\hat{\mathbb{N}}^3, \sqsubseteq)$, which is complete.

We can define also a trust order \preceq.
Road map

- The SECURE trust model.

- Topics not covered by this talk:
 - Transfer of information between contexts
 - An abstract denotational framework for trust.
 - Operational aspects of the denotational models.
 - A canonical construction: intervals.

- The future?
Transfer of information

- Two contexts \(\sim \) two event structures \(ES_1, ES_2 \).
- Sometimes one has information about \(p \in P \) regarding \(ES_1 \) but not \(ES_2 \).
- Morphisms of event structures as information transfer functions.
 - \(\eta : ES_1 \rightarrow ES_2 \) is a “backwards” function \(\eta : E_2 \rightarrow 2^{E_1} \) + axioms.
 - \(e_1 \in \eta(e_2) \) means that \(e_2 \) occurs in \(E_2 \) when \(e_1 \) occurs in \(E_1 \).
- ITFs and event structures form a category – compose and have identities.
- Useful?
A mathematical framework - Trust Structures

- An instance must define a set \mathcal{P} of *principal names* and a set T of possible *trust values*, ordered by \preceq and \sqsubseteq.
- (T, \sqsubseteq) must be a complete lattice.
- For any collection Π of monotonic policies there is a unique global trust state, given by $\text{gts} = \text{lfp} \; \Pi : \mathcal{P} \to \mathcal{P} \to T$.
 - Interpretation: $\text{gts}(p)(q)$ is p’s trust in q.
- The framework support the specification of imprecise or uncertain trust values.
Trust-structures $TS = (T, \preceq, \sqsubseteq)$ give a framework for denotational semantics for collections of mutually referring trust policies.

No good if principals are unable to reason about their own trust in others.

$p \in \mathcal{P}$ wants to compute $(\text{lfp} \Pi_\lambda)_p : \mathcal{P} \rightarrow T$

- Problem: function Π_λ is distributed as $\pi_q, q \in \mathcal{P}$.
- Problem: in principle $(\text{lfp} \Pi_\lambda)_p$ depends on π_q for all $q \in \mathcal{P}$.
Operational Aspects

- Trust-structures $TS = (T, \preceq, \subseteq)$ give a framework for denotational semantics for collections of mutually referring trust policies.

- No good if principals are unable to reason about their own trust in others.

- $p \in P$ wants to compute $(\text{lfp } \Pi_\lambda)_p : P \rightarrow T$

 - Problem: function Π_λ is distributed as π_q, $q \in P$.
 - Problem: in principle $(\text{lfp } \Pi_\lambda)_p$ depends on π_q for all $q \in P$.
 - In practice, perhaps π_p depends on a significantly smaller subset.
 - Dynamically compute dependency, and then run a distributed least-fixed-point algorithm.
Constructing trust-structures.

- Suppose I have a structure \((D, \leq)\) of ‘trust values’ without uncertainty.
- If \((D, \leq)\) is a complete lattice, then \((ID, \preceq, \sqsubseteq)\) is a trust-structure.
 - Access-rights often form a complete lattice.

- Intervals introduces uncertainty in a canonical way.

```
      RW
     /   \
  R   RW
   /     \
W     ↓
```

```
  [R]    [RW]    [⊥]    [W]
/        /        /        /
[R, RW]  [⊥, R]  [W, RW]  [⊥, W]
```

PhD Studies: Present

Starting point: Define a formal model for trust to be deployed in the SECURE project.
Starting point: Define a formal model for trust to be deployed in the SECURE project. ✅
PhD Studies: Present

- Starting point: Define a formal model for trust to be deployed in the SECURE project. ✓
- Spin-off problems:
 - Consider trust models more generally, study notion of trust structures \((T, \sqsubseteq, \preceq)\).
PhD Studies: Present

- Starting point: Define a formal model for trust to be deployed in the SECURE project. ✓

- Spin-off problems:
 - Consider trust models more generally, study notion of trust structures \((T, \sqsubseteq, \preceq)\).
 - Operational aspects of a denotational framework: algorithms and approximation protocols.
PhD Studies: Present

- Starting point: Define a formal model for trust to be deployed in the SECURE project. ✓

- Spin-off problems:
 - Consider trust models more generally, study notion of trust structures \((T, \sqsubseteq, \preceq)\).
 - Operational aspects of a denotational framework: algorithms and approximation protocols.
 - Dynamics: Formalisation of behaviour.
Reality-check: √?

- Assess the usefulness of trust-structures, the SECURE model, transfer-functions...
- Practical aspects of algorithms.
Reality-check: √?

- Assess the usefulness of trust-structures, the SECURE model, transfer-functions...
- Practical aspects of algorithms.

Develop further the notion of trust-structures

\[TS = (T, \preceq, \sqsubseteq) \]

- Natural axioms.
- Specification and proof of trust-based security properties.
 - e.g., if \(\pi \) assigns value \(t \) to \(p \), then \(p \)'s behaviour \(b \) satisfies \(\phi(b) \).
- Development of protocols valid in every trust-structure.
