Distributed Approximation of Fixed Points in Trust Structures
(Extended Abstract)

Karl Krukow
Andrew Twigg

1BRICS, Department of Computer Science
University of Aarhus, Denmark

2Computer Lab
University of Cambridge, UK

International Conference on Distributed Computing Systems, 2005
Setting

- The theme of this work is *trust management* (TM) systems (coined in the PolicyMaker system of Blaze et al. (1996)).
 - Supports security decision-making in open, large-scale distributed applications.

- Key Concept:
 - Security Policy.
 - A corresponding notion of compliance with security policy.

- Foundations of TM has been the subject of sophisticated theoretical work.
 - (e.g., Mitchell; Li; Feigenbaum; Weeks; Shmatikov & Talcott; Carbone, Nielsen & Sassone; others . . .)
Motivation

- Our work completes the trust-structure framework: a general semantic model for trust.
- In line with the original ideas of TM.
 - Based on decentralized “trust-policies”.
 - Flexible.
 - Separates mechanism from policy (in fact, there is no mechanism at all!)
- This last point is exactly the topic of this work.
 - Augment the framework with operational mechanisms for policy-based decision-making.
Outline

1 Trust Structures
 - A Soft Introduction
 - The Formal Model
 - The Operational Problem

2 Our Contribution
 - A Distributed Algorithm for Computing Trust Values
 - Approximation protocols
 - Dynamic Policy Updates
Outline

1. Trust Structures
 - A Soft Introduction
 - The Formal Model
 - The Operational Problem

2. Our Contribution
 - A Distributed Algorithm for Computing Trust Values
 - Approximation protocols
 - Dynamic Policy Updates
Trust Structures: An Introduction

- Provides a generic mathematical framework, formalizing and solving the following problem.
 - Given a set \mathcal{P} of principal identities, each specifying a local trust-policy, define a unique global trust-state compatible with those policies.

A global trust-state?
- formally, a global trust state is a function $\text{gts} : \mathcal{P} \to \mathcal{P} \to X = \text{GTS}$ for some set X of “trust degrees” (called trust values).
- for each $p, q \in \mathcal{P}$ answer: “to what degree does p trust q?” as $\text{gts}(p)(q)$.

A generic model?
- Different applications have different requirements for trust-information.
- Obtained by choosing set X of trust degrees, and by choosing appropriate trust policies.
Trust Structures: An Introduction

- Provides a generic mathematical framework, formalizing and solving the following problem.
 - Given a set \mathcal{P} of principal identities, each specifying a local trust-policy, define a unique global trust-state compatible with those policies.

A global trust-state?

- formally, a global trust state is a function $\text{gts} : \mathcal{P} \rightarrow \mathcal{P} \rightarrow X = \text{GTS}$ for some set X of “trust degrees” (called trust values).
- for each $p, q \in \mathcal{P}$ answer: “to what degree does p trust q?” as $\text{gts}(p)(q)$.

Trust policies?

- Specifies how a principal defines its trust in others.
- π_p : “my trust in:- Alice is high, -Bob is low - for anyone else, it is the maximum of what Alices thinks and unknown.”
- Formally: $\text{gts} \xrightarrow{\pi_p} \text{lts}$

 i.e. $\pi_p : (\mathcal{P} \rightarrow \mathcal{P} \rightarrow X) \rightarrow \mathcal{P} \rightarrow X$
Trust Structures: The Formal Model (1/3)

- Refining the main objective of the model.
 - Fix a set \mathcal{P} of principal identities.
 - Each principal $p \in \mathcal{P}$ specifying a local trust-policy π_p.
 Let $\Pi = (\pi_p : \text{GTS} \rightarrow \text{LTS} \mid p \in \mathcal{P})$ be the (global) collection of all these policies.
 - Goal is to define a suitable unique global trust-state, denoted gts_Π, respecting the locality of control for all policies Π.

- But... policies may have cyclic references.
 - Example: $\pi_p(\text{gts}) = \text{gts}(q)$, $\pi_q(\text{gts}) = \text{gts}(p)$.
 - In this example, the policies contain no information: this is distinct from explicitly specifying untrusted.

- This example suggests that the set X of trust-values can be ordered in two fundamentally distinct ways: with respect to
 - trust / privilege (\preceq), e.g. low \preceq high
 - information content (\sqsubseteq), e.g. unknown \sqsubseteq high

Karl Krukow (University of Aarhus)
Approximation of Fixed Points
ICDCS'05, Columbus Ohio 7 / 23
Refining the main objective of the model.

- Fix a set P of principal identities.
- Each principal $p \in P$ specifying a local trust-policy π_p.

Let $\Pi = (\pi_p : \text{GTS} \to \text{LTS} | p \in P)$ be the (global) collection of all these policies.
- Goal is to define a suitable unique global trust-state, denoted gts_Π, respecting the locality of control for all policies Π.

But... policies may have cyclic references.

- Example: $\pi_p(\text{gts}) = \text{gts}(q)$, $\pi_q(\text{gts}) = \text{gts}(p)$.
- In this example, the policies contain no information: this is distinct from explicitly specifying untrusted.

This example suggests that the set X of trust-values can be ordered in two fundamentally distinct ways: with respect to

- trust / privilege (\preceq), e.g. low \preceq high
- information content (\sqsubseteq), e.g. unknown \sqsubseteq high
A *trust structure* is a triple $T = (X, \preceq, \sqsubseteq)$, consisting of a set X and two orderings on X, called the *trust ordering* (\preceq) and the *information ordering* (\sqsubseteq). The trust ordering preorders X and the information order makes (X, \sqsubseteq) a complete partial order with a least element $\bot \sqsubseteq$.

Example $X = \{\text{low}, \text{mid}, \text{high}, \text{unknown}, \text{midORhigh}\}$.

<table>
<thead>
<tr>
<th>Trust order, \preceq</th>
<th>Information Order, \sqsubseteq</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>midORhigh</td>
<td>midORhigh</td>
</tr>
<tr>
<td>mid</td>
<td>mid</td>
</tr>
<tr>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>
Definition [Trust Structure]

A trust structure is a triple \(T = (X, \preceq, \sqsubseteq) \), consisting of a set \(X \) and two orderings on \(X \), called the trust ordering \((\preceq)\) and the information ordering \((\sqsubseteq)\). The trust ordering preorders \(X \) and the information order makes \((X, \sqsubseteq)\) a complete partial order with a least element \(\bot \).

Example \(X = \{ \text{low}, \text{mid}, \text{high}, \text{unknown}, \text{midORhigh} \} \).

<table>
<thead>
<tr>
<th>Trust order, (\preceq)</th>
<th>Information Order, (\sqsubseteq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>midORhigh</td>
<td>midORhigh</td>
</tr>
<tr>
<td>mid</td>
<td>mid</td>
</tr>
<tr>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>
Let $T = (X, \preceq, \sqsubseteq)$ be a trust structure, and $\Pi = (\pi_p \mid p \in \mathcal{P})$ be a collection of trust policies.

A fixed point of Π is a global trust-state gts so that for all $p \in \mathcal{P}$ we have $\pi_p(\text{gts})(q) = \text{gts}(p)(q)$.

- Any fixed point of Π is consistent with all policies.

Assuming that all policies are continuous with respect to \sqsubseteq.

Definition gts_Π

Define the global trust-state of Π in T as the \sqsubseteq-least fixed-point of Π.

$$\text{gts}_\Pi \overset{\text{(def)}}{=} \text{lfp}_{\sqsubseteq} \Pi$$
Let $T = (X, \preceq, \sqsubseteq)$ be a trust structure, and $\Pi = (\pi_p \mid p \in \mathcal{P})$ be a collection of trust policies.

A **fixed point of** Π is a global trust-state gts so that for all $p \in \mathcal{P}$ we have $\pi_p(\text{gts})(q) = \text{gts}(p)(q)$.

- Any fixed point of Π is **consistent with all policies**.

Assuming that all policies are **continuous with respect to** \sqsubseteq.

Definition $[\text{gts}_\Pi]$

Define the global trust-state of Π in T as the \sqsubseteq-least fixed-point of Π.

$$\text{gts}_\Pi \overset{(def)}{=} \text{lfp}_{\sqsubseteq} \Pi$$
Suppose principal p has to make a *trust-based* access-control decision about another principal q.

A common security policy for p would be

- Allow access to q if my trust in q is trust-wise above threshold $t \in X$. (e.g., $t = \text{high}$)

Generally, a *trust-based* security policy is a function of the trust in the requestor (q).

So one *mechanism* for deciding a request could be

- compute $x := \text{gts}_\Pi(p)(q)$
- compare this value with threshold, $x \preceq \text{high}$.
The Operational Problem (1/2)

- Suppose principal p has to make a trust-based access-control decision about another principal q.

- A common security policy for p would be
 - Allow access to q if my trust in q is trust-wise above threshold $t \in X$. (e.g., $t = \text{high}$)

- Generally, a trust-based security policy is a function of the trust in the requestor (q).

- So one mechanism for deciding a request could be
 - compute $x := \text{gts}_\Pi(p)(q)$
 - compare this value with threshold, $x \preceq \text{high}$.
Suppose principal p has to make a trust-based access-control decision about another principal q.

A common security policy for p would be
- Allow access to q if my trust in q is trust-wise above threshold $t \in X$. (e.g., $t = \text{high}$)

Generally, a trust-based security policy is a function of the trust in the requestor (q).

So one mechanism for deciding a request could be
- compute $x := \text{gts}_\Pi(p)(q)$
- compare this value with threshold, $x \leq \text{high}$.
The Operational Problem (1/2)

- Suppose principal \(p \) has to make a *trust-based* access-control decision about another principal \(q \).

- A common *security policy* for \(p \) would be
 - Allow access to \(q \) if my trust in \(q \) is trust-wise above threshold \(t \in X \). (e.g., \(t = \text{high} \))

- Generally, a *trust-based* security policy is a function of the trust in the requestor (\(q \)).

- So one *mechanism* for deciding a request could be
 - compute \(x := \text{gts}_\Pi(p)(q) \)
 - compare this value with threshold, \(x \preceq \text{high} \).
Given Π, gts_Π is defined as the least fixed point of Π.

A denotational model:
- gts_Π is a well defined, unique mathematical object.

But there is “no recipe for getting there”?
- One might say there is no mechanism for evaluating policies.

How do we actually *compute* the trust values, when
- Π is distributed.
- $|\mathcal{P}|$ is large.
- no centralized authority.
- policy updates . . .

The standard technique for fixed point computation:

\[
\perp \subseteq \Pi(\perp) \subseteq \Pi^2(\perp) \ldots \subseteq \Pi^{|\mathcal{P}|^2} h(\perp)
\]

- Inadequate!
The Operational Problem (2/2)

- Given Π, gts_Π is defined as the least fixed point of Π.
- A denotational model:
 - gts_Π is a well defined, unique mathematical object.
- But there is “no recipe for getting there”?
 - One might say there is no mechanism for evaluating policies.

How do we actually compute the trust values, when
- Π is distributed.
- $|\mathcal{P}|$ is large.
- no centralized authority.
- policy updates . . .

The standard technique for fixed point computation:

$$
\bot \sqsubseteq \Pi(\bot) \sqsubseteq \Pi^2(\bot) \cdots \sqsubseteq \Pi^{|\mathcal{P}|^2} \cdot h(\bot)
$$
- Inadequate!
Outline

1. Trust Structures
 - A Soft Introduction
 - The Formal Model
 - The Operational Problem

2. Our Contribution
 - A Distributed Algorithm for Computing Trust Values
 - Approximation protocols
 - Dynamic Policy Updates
A Distributed Asynchronous Algorithm

Scenario.

▶ Principal \(p \) needs to compute its trust in \(q \), i.e., the value \(\text{gts}_\Pi(p)(q) \).
▶ Principals are network nodes with computational and communication capacity.
 ✷ Asynchronous, but reliable network.

Basic observation.

▶ Compute the local value \(\text{gts}_\Pi(p)(q) \) directly, rather than computing the global state \(\text{gts}_\Pi \) and then looking up “entry” \((p, q) \).
▶ Excludes principals that are not relevant for the specific computation.

Algorithm: two-step computation.

▶ Dependency analysis distributedly computes a sub-graph \(G_{(p,q)} \) of the dependency graph \(G \) for the policies \(\Pi \).
▶ Asynchronous fixed-point algorithm in dependency graph.
Very simple algorithm; instance of a framework for asynchronous fixed-point algorithms (Bertsekas and Tsitsiklis, 1989).

Tailored for local least fixed-points \(\text{gts}_\Pi(p)(q) \).

Essentially a distributed, asynchronous version of the synchronous iteration:

\[
\bot \subseteq \Pi(\bot) \subseteq \cdots \subseteq \Pi^i(\bot)
\]

Proved correct using the Asynchronous Convergence Theorem of Bertsekas; the following invariant is essentially maintained:

- Node \(p \), is able to compute a sequence of values \(\bot \subseteq t_0 \subseteq \cdots \subseteq t_n = \text{gts}_\Pi(p)(q) \) converging towards its local fixed point value.
- Similar convergence holds at other nodes.
Node $x \in G(p,q)$ is always asleep or awake.

Algorithm [(essential) State]

- Outgoing x^+ and ingoing x^- edges of x in $G(p,q)$ (dependencies).
- Array $x.m$ of type X (storing trust values), indexed by x^+.
- Variables $x.t_{old}$ and $x.t_{cur}$ of type X.

Algorithm [Transitions]

```plaintext
input  recv(x,q,t)
   effect x.m[q] := t; wake := true;
output send(x,q,t)
   precondition (not wake) and (t_cur = t) and (send[q] = true)
   effect send[q] := false
internal eval(id)
   precondition wake
   effect wake := false;
   x.t_old := x.t_cur;
   x.t_cur := pi_x[x.m];
   if x.t_old != x.t_cur
      then
         for q : Principal in x^- do send[q] := true od
      fi
```
A Least-Fixed-Point Algorithm (2/2)

Node $x \in G_{(p,q)}$ is always asleep or awake.

Algorithm [(essential) State]
- Outgoing x^+ and ingoing x^- edges of x in $G_{(p,q)}$ (dependencies).
- Array $x.m$ of type X (storing trust values), indexed by x^+.
- Variables $x.t_{old}$ and $x.t_{cur}$ of type X.

Algorithm [Transitions]

\begin{verbatim}
input recv(x,q,t)
 effect x.m[q] := t; wake := true;
output send(x,q,t)
 precondition (not wake) and (t_cur = t) and (send[q] = true)
 effect send[q] := false
internal eval(id)
 precondition wake
 effect wake := false;
 x.t_old := x.t_cur;
 x.t_cur := pi_x[x.m];
 if x.t_old != x.t_cur
 then
 for q : Principal in x^- do send[q] := true od
 fi
\end{verbatim}
A Least-Fixed-Point Algorithm (2/2)

Node $x \in G(p,q)$ is always asleep or awake.

Algorithm [(essential) State]

- Outgoing x^+ and ingoing x^- edges of x in $G(p,q)$ (dependencies).
- Array $x.m$ of type X (storing trust values), indexed by x^+.
- Variables $x.t_{old}$ and $x.t_{cur}$ of type X.

Algorithm [Transitions]

- **input** recv(x,q,t)
 - effect $x.m[q] := t; \text{ wake} := \text{ true}$;
- **output** send(x,q,t)
 - precondition (not wake) and ($t_{cur} = t$) and (send[q] = true)
 - effect send[q] := false
- **internal** eval(id)
 - precondition wake
 - effect wake := false;
 - $x.t_{old} := x.t_{cur}$;
 - $x.t_{cur} := \pi_x[x.m]$;
 - if $x.t_{old} \neq x.t_{cur}$
 - then
 - for $q : \text{ Principal in } x^-$ do send[q] := true od
 - fi

Karl Krukow (University of Aarhus)
Approximation Protocols

- Trust-based security policies
 - Make security decisions based on trust-values.
 - A policy is \textit{monotonic} (with respect to \leq), if whenever a value $t \in X$ grants access, so does any value $t' \leq t'$.
 - e.g., threshold policies.

- Often the exact trust-value is not important!
 - Instead knowing a property of this value is sufficient to make a decision (e.g., value is above mid).

The idea in our \textit{approximation} protocols is to compute a safe approximation of the “real” trust value.
 - i.e., an approximant \tilde{p} so that $\tilde{p}(p)(q) \leq \text{gts}_\Pi(p)(q)$.
Approximation Protocols

- Trust-based security policies
 - Make security decisions based on trust-values.
 - A policy is monotonic (with respect to \preceq), if whenever a value $t \in X$ grants access, so does any value t' with $t \preceq t'$.
 - e.g., threshold policies.

- Often the exact trust-value is not important!
 - Instead knowing a property of this value is sufficient to make a decision (e.g., value is above mid).

- The idea in our approximation protocols is to compute a safe approximation of the “real” trust value.
 - i.e., an approximant \bar{p} so that $\bar{p}(p)(q) \preceq \text{gts}_\Pi(p)(q)$.
A Proof-Carrying Approximation Protocol

- The idea in the “proof-carrying” approximation protocol is
 - Avoid an entire fixed-point computation, by having the requestor supply information (“proof”) helping the provider make its security decision.

- Structure of “proof-carrying” authorization: ‘Prover’ \(p \) want to access a resource controlled by ‘verifier’ \(v \).
 - Prover \(p \) (somehow) knows a “proof”/reason \(\bar{p} \) that access should be granted – this is sent to \(v \).
 - Verifier, getting help from its dependencies, verifies that \(\bar{p} \) is a “correct” proof.
 - Access is granted.

- Assumptions:
 - Security policies are monotonic wrt \(\preceq \).
 - Trust policies \(\pi_p \) are monotonic with respect to \(\preceq \).
 - (and a few inessential technical assumptions about the trust-structure \(T = (X, \preceq, \sqsubseteq) \)).
A Proof-Carrying Approximation Protocol

The idea in the “proof-carrying” approximation protocol is

- Avoid an entire fixed-point computation, by having the requestor supply information (“proof”) helping the provider make its security decision.

Structure of “proof-carrying” authorization: ‘Prover’ p want to access a resource controlled by ‘verifier’ v.

- Prover p (somehow) knows a “proof”/reason \bar{p} that access should be granted – this is sent to v.
- Verifier, getting help from its dependencies, verifies that \bar{p} is a “correct” proof.
- Access is granted.

Assumptions:

- Security policies are monotonic wrt \preceq.
- Trust policies π_p are monotonic with respect to \preceq.
- (and a few inessential technical assumptions about the trust-structure $T = (X, \preceq, \sqsubseteq)$).
Basic theorem

Let \((X, \preceq, \sqsubseteq)\) be a trust structure in which \(\preceq\) is \(\sqsubseteq\)-continuous. Let \(\Pi : X^{P^2} \to X^{P^2}\) be any function that is \(\sqsubseteq\)-continuous and \(\preceq\)-monotonic.

Theorem (Proof Carrying)

Let \(\tilde{p} \in X^{P^2}\). If we have \(\tilde{p} \preceq \bot_{\sqsubseteq}\) and \(\tilde{p} \preceq \Pi(\tilde{p})\), then \(\tilde{p} \preceq \text{lfp}_{\sqsubseteq} \Pi\).

Illustrative example: Trust Structure \((X, \preceq, \sqsubseteq)\);

\(X = \{(m, n) \mid m, n \in \overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}\}\)

- \((m, n) \in X\) represents a history of \(m + n\) interactions; \(m\) “good” and \(n\) “bad”.
- \((m, n) \sqsubseteq (m', n')\) iff \(m \leq m'\) and \(n \leq n'\).
- \((m, n) \preceq (m', n')\) iff \(m \leq m'\) and \(n \geq n'\).
Basic theorem

Let \((X, \preceq, \sqsubseteq)\) be a trust structure in which \(\preceq\) is \(\sqsubseteq\)-continuous. Let \(\Pi : X^{P^2} \to X^{P^2}\) be any function that is \(\sqsubseteq\)-continuous and \(\preceq\)-monotonic.

Theorem (Proof Carrying)

Let \(\bar{p} \in X^{P^2}\). If we have \(\bar{p} \preceq \perp \sqsubseteq \) and \(\bar{p} \preceq \Pi(\bar{p})\), then \(\bar{p} \preceq \text{lfp}_{\sqsubseteq} \Pi\).

Illustrative example: Trust Structure \((X, \preceq, \sqsubseteq)\);

\(X = \{(m, n) \mid m, n \in \overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}\}\)

- \((m, n) \in X\) represents a history of \(m + n\) interactions; \(m\) “good” and \(n\) “bad”.
- \((m, n) \sqsubseteq (m', n')\) iff \(m \leq m'\) and \(n \leq n'\).
- \((m, n) \preceq (m', n')\) iff \(m \leq m'\) and \(n \geq n'\).
The Approximation Protocol (1/2)

An example

- The p wants to convince v that $(0, N) \preceq \text{gts}_p(v)(p)$
 - bounding the observed number of “bad” interactions.

- Suppose that v’s policy depends on some large set S of principals, and is so that if a and b in S have a “high” value for p then this is sufficient for v.

- By its previous interactions with a and b, it knows that a’s and b’s values for p are above $(0, N)$.

- To convince v that v’s value for p is also above $(0, N)$ it sends the following proof.

\[
\bar{\rho} = [(v, p) \mapsto (0, N), (a, p) \mapsto (0, N), (b, p) \mapsto (0, N), __ \mapsto \bot \leq (0, \infty)]
\]

- Which we can think of as a claim, $\bar{\rho}(x, y) \preceq \text{gts}_p(x, y)$.
The p wants to convince v that $(0, N) \preceq \text{gts}_\Pi(v)(p)$
- bounding the observed number of “bad” interactions.

Suppose that v’s policy depends some large set S of principals, and is so that if a and b in S have a “high” value for p then this is sufficient for v.

By its previous interactions with a and b, it knows that a’s and b’s values for p are above $(0, N)$.

To convince v that v’s value for p is also above $(0, N)$ it sends the following proof.

\[\bar{p} = [(v, p) \mapsto (0, N), (a, p) \mapsto (0, N), (b, p) \mapsto (0, N), (_, _) \mapsto \perp \preceq = (0, \infty)] \]

- Which we can think of as a claim, $\bar{p}(x, y) \preceq \text{gts}_\Pi(x, y)$.

Karl Krukow (University of Aarhus)
Approximation of Fixed Points
ICDCS’05, Columbus Ohio
The Approximation Protocol (2/2)

An example

\[\bar{\rho} = [(v, p) \mapsto (0, N), (a, p) \mapsto (0, N), (b, p) \mapsto (0, N), (_ , _) \mapsto \bot = (0, \infty)] \]

- If \(v \) can verify \(\bar{\rho} \preceq \bot = (0, 0) \) and \(\bar{\rho} \preceq \Pi(\bar{\rho}) \) then \(\bar{\rho} \preceq \text{gts}_\Pi \).
- Checking \(\bar{\rho}(x, y) \preceq (0, 0) \) is easy.
- To check \(\bar{\rho} \preceq \Pi(\bar{\rho}) \):
 - check \((0, N) \preceq \pi_v(\bar{\rho})(v, p) \)
 - ask \(a \) and \(b \) to perform similar check (sending proof \(\bar{\rho} \)).
- if all checks succeed, \(v \) knows by theorem, \((0, N) \preceq \text{gts}_\Pi(v, p) \).
Comments

- However
 - Prover needs to know that v relies on a and b in this specific manner (information about verifiers policies).
 - Because $\bar{p} \preceq \perp$, this can usually only prove “not too much bad behaviour.”

- We have also a snap-shot algorithm which doesn’t have these restrictions (the cost is that the algorithm might require more communication and computation).
Summary

- The trust-structure framework is a denotational semantic model for trust-management systems.
 - We have provided an operational counterpart. (can be formalized, in terms of I/O Automata, as a correspondance between a denotational and an operational semantics for trust policies).
- An asynchronous algorithm for computing/approximating trust values.
- Several protocols for trust-value approximation.

Outlook

- Automatic theorem-proving and code-generation using the IOA framework for I/O Automata.
- This is a purely theoretical contribution – experimental validation is needed.
Summary

- The trust-structure framework is a denotational semantic model for trust-management systems.
 - We have provided an operational counterpart.
 (can be formalized, in terms of I/O Automata, as a correspondance between a denotational and an operational semantics for trust policies).

- An asynchronous algorithm for computing/approximating trust values.

- Several protocols for trust-value approximation.

Outlook

- Automatic theorem-proving and code-generation using the IOA framework for I/O Automata.
- This is a purely theoretical contribution – experimental validation is needed.
For Further Reading

Bertsekas, D. P. and Tsitsiklis, J. N.: 1989,
Parallel and Distributed Computation: Numerical Methods,

Blaze, M., Feigenbaum, J., and Lacy, J.: 1996,
in Proceedings from the 17th Symposium on Security and Privacy,

Carbone, M., Nielsen, M., and Sassone, V.: 2003,
in Proceedings from Software Engineering and Formal Methods
(SEFM’03), IEEE Computer Society Press

Krukow, K. and Twigg, A.: 2005,
Distributed Approximation of Fixed-Points in Trust Structures,
Technical Report RS-05-6, BRICS, University of Aarhus,
Available online: http://www.brics.dk/RS/05/6