
Toward a Cooperative Experimental
System Development Approach*

Kaj Grønbæk
Morten Kyng

Preben Mogensen

Computer Science Department, University of Aarhus
Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark

Tel: +45 8942 3261, FAX: +45 8942 3255
E-mail: {kgronbak,mkyng,preben}@daimi.aau.dk

* From Kyng & Mathiassen (1997). Computers and Design in Context. pp. 201-238.

This chapter represents a step towards the establishment of a new system development
approach, called Cooperative Experimental System Development (CESD). CESD seeks to
overcome a number of limitations in existing approaches: specification oriented methods usually
assume that system design can be based solely on observation and detached reflection;
prototyping methods often have a narrow focus on the technical construction of various kinds
of prototypes; Participatory Design techniques—including the Scandinavian Cooperative
Design (CD) approaches—seldom go beyond the early analysis/design activities of development
projects. In contrast, the CESD approach is characterized by its focus on: active user
involvement throughout the entire development process; prototyping experiments closely
coupled to work-situations and use-scenarios; transforming results from early cooperative
analysis/design to targeted object oriented design, specification, and realisation; and design for
tailorability. The emerging CESD approach is based on several years of experience in applying
cooperative analysis and design techniques in projects developing general, tailorable software
products. The CESD approach is, however, not limited to this development context, it may be
applied for in-house or contract development as well. In system development, particularly in
cooperative and experimental system development, we argue that it is necessary to analytically
separate the abstract concerns, e.g. analysis, design, and realisation from concrete activities and
techniques. Thus we introduce a CESD model which provides a framework for handling this
separation and at the same time makes it possible to identify and discuss the rich variety of
relationships among concrete activities and the main concerns.

INTRODUCTION

Developing useful systems for the workplace is a difficult endeavour, and today it is obvious
that our old ways of doing are inadequate [# Insert ref t. LM/MK intro]. Over the last decade
several approaches have gained widespread attention by addressing the more serious problems:
Prototyping overcomes some of the problems of specification oriented methods which usually
assume that system design can be based solely on observation and detached reflection. Object-
orientation can make the relations between a system and the work it is to support more explicit
and thus simpler to maintain as the context of work changes. Participatory Design, in its many
forms, gives voice to the end-users during design when major decisions can be made and
changed at a reasonable cost, and not only when the system is to be installed. Several
Participatory design approaches, such as the Scandinavian tradition of cooperative design,
combines user involvement with prototyping or mock-up techniques [7, 20], but there is still
some way to go before more comprehensive approaches emerge. Thus Participatory Design

 2

techniques seldomly go beyond the early analysis/design activities of development projects and
Prototyping methods often have a narrow focus on the technical construction of various kinds
of prototypes.

In this chapter we outline a Cooperative Experimental System Development (CESD) approach,
which seeks to overcome such limitations by supporting: active user involvement throughout
the entire development process; prototyping experiments closely coupled to work-situations and
use-scenarios; transforming results from early cooperative analysis/design to targeted object
oriented design, specification, and realisation; and design for tailorability.

However, in order to present the new, more comprehensive CESD approach we need a better
framework for understanding system development. Traditionally system development methods
are described by activity flow models, listing analysis, design and implementation activities,
typically with some iterations among them. In general, however, such models serve better as a
means to get a project manager’s view of project activities than as a designer/developers guide
on how to understand and accomplish the cooperative development activities in a project. Thus,
many Participatory Design researchers, including people within the Scandinavian tradition of
cooperative design, have presented their work by telling the story of specific projects and the
concrete activities carried out in them [2, 3, 22, 30, 41]. When such accounts are supplemented
with presentations of specific techniques (e.g. Mock-up or prototyping techniques [5, 7, 15])
this forms a good basis for designers who want to do Participatory Design early in their
projects. However, with our presentation of CESD we want to do more. We want to help
people understanding whole projects. As a first step in doing so we show how the traditional
concerns of a system development project—like analysis, design and implementation—relates to
active user involvement and how such concerns and participation may be catered to throughout
the activities of a system development project.

In the rest of this chapter we first outline a set of conceptual dimensions relevant to the
understanding of complex development projects and the methods to carry them out such as
CESD. Then we briefly present the cases we use throughout to exemplify different aspects of
projects following a CESD approach (further details on the projects forming the basis for the
development of CESD may be found in [22, 24, 32]). Next we give a presentation and discus-
sion of the concerns of CESD. Finally we present a detailed discussion of the activities in a
specific CESD project, and how they relate to the concerns and context of Cooperative
Experimental System Development. We use a hypermedia development project which has took
place as part of two closely coupled ESPRIT projects EuroCoOp and EuroCODE. Euro-
CoOp/EuroCODE are large EU Esprit projects involving research institutions as well as
industrial partners. The overall project assignment was to develop generic CSCW applications,
i.e. packaged software development, based on the user needs in large engineering companies.
Great Belt A.S. (GB), a company supervising the construction of the bridge/tunnel across the
Great Belt in Denmark, functioned as a prototypical user organization. Thus both projects
emphasised strong cooperation between developers and practitioners from Great Belt A.S.

CONCEPTUAL DIMENSIONS

In our presentation and discussion of complex system development in general and of CESD in
particular we use four different dimensions: Concerns, Activities, Involved domains, and Project
assignment. Below each of these four dimensions is presented briefly.

Concerns

At an abstract level, the category of concerns1 captures what a system development project is
all about: Management is directed towards the project itself as a cooperative process, how it is

1 Our original inspiration to develop the category of concerns owes much to the presentation in [1, 34].
Mathiassen denotes the category Functions. We chose the word concerns – as opposed to functions – since the

 3

established and sustained as work progresses and conditions changes. Analysis focuses on the
need to understand constraints and potentials in the users’ practice with respect to technological
possibilities. Design focuses on the creation and shaping of visions of technology in use; and
realisation focuses on the realisation of the visions in technological artefacts and organizational
changes. Finally the category of computer supported work focuses on the ongoing use and
adaptation of computer systems and the work they support.

Activities

Activities are what goes on in a project, the concrete actions and situations: meetings, work-
shops, implementation of a prototype etc. In papers on Cooperative Design, focus has often
been on activities and their abstract representation as techniques such as Future Workshops,
Mock-up techniques and Cooperative Prototyping [6, 19, 24, 32, 36]. Activities and techniques
are well suited for presentations of cases, for describing what has been done as well as “how
to”. However, they are less useful in conveying an understanding of “why and when”.

Involved domains

Development projects are about change, and to facilitate understanding of change as a project
progresses we look at those domains of the project and its context towards which the activities
are directed: the developers practice, practice in the user organization, technology, and visions
of technology in use. The practice of the developers is the basis for the work in a development
project and the users’ practice is the substrate for the new, emerging ways of working. The
technology, e.g. the software, is traditionally viewed as the result of a development project. We
consider technology as the embodiment of visions not only of technology, but of technology in
use. The visions are recorded, e.g. in descriptions of functionality and scenarios of future use.
Development of technology and visions goes hand in hand with interventions into the practice
of the user organization, these interventions are documented for instance in descriptions of
current use and computer support, typical and problematic situations, and changes on
organization of work.

Project assignment

The project assignment, the task as it is understood by the participants, gives direction to the
concerns Three idealised types of project assignments are often distinguished: in-house
development, custom/contract development, and packaged software/product development [26].
Below we use these three together with that of development in a research setting. As claimed in
the introduction, we find that CESD applies to them all. In the following we mainly consider
two types of CESD assignments: custom development, where an organization, the customer,
hires a development company to develop a system with them; and packaged software
development, where a development company involves itself with one or more user
organizations to develop a software package.

Instead of an activity flow model

Next we present the relations between the different dimensions (see Figure 1). We need to be
able to discuss the relationships between concerns and activities in cooperative system devel-
opment projects. Examples are: relations between analysis, design and realisation on the one
hand, and on the other activities uncovering important aspects of users current work practice,
activities relating prototypes to the users’ future work practice through use scenarios, and
developing and maintaining an object-oriented model of the future system in alignment with
results of prototyping activities.

word concerns relate directly to the interests of the people involved. The main difference, however, is that
functions, in [1, 34], are introduced as abstracted actions and thus map directly to actions.

 4

Analysis

Design

Realisation

Manage-

ment

Computer

Supported

Work

Users'

Practice

Technology

Developers'

Practice

Visions

Cooperative

Experiments

and

Intervention

Project

Assignment

Figure 1: Instead of a project activity model

In the center of the top layer of Figure 1 are the project activities. As in Cooperative Design
[19], the important, distinguishing CESD activities are workshop based cooperative
experiments and interventions. The activities unfold in the context of the involved domains: the
practice of the developers and of the users, the technology and the visions of technology in use.

In the middle layer, the concerns are shown. As indicated by the grey cone, concerns are
realised through activities. One activity typically contributes to more than one concern, but usu-
ally an activity has one concern as its main focus.

Figure 1 also illustrates that project management is mainly—but only mainly—directed towards
the developers practice, analysis towards users’ practice, design towards visions of technology
in use and realisation towards technology.

Finally, the project assignment, the task as it is understood by the project participants, gives
direction to the concerns.

Distinguishing activities and concerns

Two main features distinguish the above model: - the analytical separation of activities and
concerns, acknowledging that an activity may contribute to several concerns and - the

 5

contextualization of the activities, emphasising the relations with the practice of the users and
the other involved domains.

In most presentations of system development methods the category of concerns is merged with
that of activities and/or abstracted activities in terms of techniques. Thus, for example, analysis
is identified with one or more techniques and in a concrete project with specific activities. In
addition these concerns are usually associated with a time-sequence of so-called phases
separated by detailed documents. Thus it is often the expectation that e.g. analysis is finished
and fully documented before design is begun. However, it is a main point in our CESD model
that concrete activities in a system development project contribute to several concerns and vice
versa—i.e. any one concern is realized through a number of activities. Thus analysis cannot in
general be ‘finished’ before design is begun, simply because some of the activities carried out to
cater for the design concern will also contribute to the analysis concern.

A well-known example of a method identifying concerns and activities is the waterfall model,
based on detailed documents and simple feedback loops between neighbouring phases [40].
Several authors have subsequently addressed different problematic aspects of the waterfall
model. Focus has been on problems with sequence and simplistic feedback loops, e.g. on the
impossibility of finishing analysis before beginning realisation. The answers have been circles or
spirals of iteration covering most phases several times, and one of the well-known examples of
models supporting such iteration is the spiral model of Boehm [8]. However, adding iteration in
order to cope with complex situations where the waterfall model is inadequate, do not address
what we consider to be the source of the difficulties with current models: that they ignore that
the same activity may contribute to more than one concern—as when a workshop where
prototypes are tried out by the users both improves our understanding of the users’ practice
(analysis) and produce ideas for improving the prototype (design).

The recent interest in object-orientation—which we share—seems to have had a rather negative
impact on the interest in investigating the relations between on the one hand concerns such as
analysis, design and realisation and on the other activities and techniques. Current discussions
on object-oriented methods usually do not distinguish activities and concerns, and they are
based on a rather linear progression through analysis, via design and realisation to use (e.g.
[10]), with only local iterations within the main activities. In very simple situations, such a view
of development projects suffices, but for the kind of projects that we are interested in it is too
simplistic to be useful in understanding what is going on.

In the section “The Concerns of CESD” we discuss the different concerns one by one to better
understand each concern and how it may be catered to in a CESD project. Then in the last
section we use an activity/concern matrix to present and discuss how the different activities of a
CESD project over time contribute to the different concerns.

Differences to other participatory and experimental models

When we turn to the other distinguishing feature of the model in Figure 1, the contextualization
of project activities, we note that this aspect certainly isn’t new to Participatory Design. In a
way the interaction with the practice of the users is really what PD is all about. What is new to
PD is trying to make a framework or model to support discussions of whole development
projects. Other, related approaches have done this. Many of the most recent project models for
system development incorporate some notion of not only iterative design, but also prototyping.
However, very few models make user involvement explicit.

In [9] a number of flow descriptions of different prototyping and evolutionary development
models are proposed and discussed. The models, for instance, outline that a ‘Prototype’ is
output from a ‘Prototype Installation’ activity and input to activities like ‘Organizational
Integration’ and ‘Evaluation’, but the book gives very little account of how prototypes are
related to the current and future work practices of users and on how users are involved in the

 6

development process. Rather, the main focus is on classification of prototypes and technical
considerations about how to produce the prototype software.

The STEPS [18] methodology proposes a project model based on iteration. This model
explicitly outlines high-level activities carried out by users, by developers, and cooperatively.
Thus the user involvement is explicit in the model, but the model only deals with artefacts like
‘System specification’ and ‘System version’ and does not give explicit room for exploratory
prototyping. Similar to the approach described by [9], there is only little focus on the actual
participatory activities and the relation to the users’ practice.

Finally, the above mentioned Spiral Model by Boehm [8] combines risk analysis, prototyping
and specification in an iterative model. This model is explicit about using prototypes to reduce
the overall uncertainty in the project, but the role of users and their practice in relation to the
development activities is hardly mentioned in the paper.

Before we introduce the project examples and begin our discussion of the concerns of CESD,
we briefly comment on a couple of aspects that are not dealt with explicitly in our model.

Planning activities

Planning of activities is not covered in detail by our model. The activities of a project are folded
into the center of the top layer of Figure 1. Anyone who wants to plan a CESD project will
need to unfold them to make activity plans, and this is no simple matter. As pointed out by Lucy
Suchman [42] plans are necessary and useful resources or tools in development projects, but
only if those using them have a good understanding of what projects are all about. It is our
hypothesis that such understanding requires knowledge of concrete projects, including specific
project activity plans, of techniques, and of methods on the level represented in Figure 1. In the
last part of this chapter we use the model of Figure 1 to present the activities of a concrete
project as they unfold over time and discuss how they relate to the concerns of the project.

Trade union influence

Trade union influence is an aspect of system development which has been covered in detail in
our earlier work preceding CESD [2, 7]. But this aspect is not explicitly built into the model
itself. The CESD approach presented in this chapter is based on work in a number of projects
within the Scandinavian tradition of cooperative design, the Collective Resource Approach,
CRA [14]. CESD shares with CRA the aim of supporting democratic influence on and in system
development, but this concern is not in focus in this chapter. We focus on the system develop-
ment project itself, not on the interface to worker/union activities—or to managerial activities
for that matter.

Our aim is to contribute to an approach to system development that is open to democratic
influence, supports participation of end-users on their own terms, and is open-ended in its
creation of visions. This has led to our focus on cooperative experimental development, CESD.
In our use of cooperative techniques we have a lot in common with Cooperative Design as
presented in e.g. [19]. However, in our coverage also of the realisation concern in a system
development project, CESD goes further than Cooperative Design, which often stops before
any coding is done in the target environment.

Our conjecture is that CESD type projects are more amenable to worker/end-user influence
than traditional projects—and are more likely to succeed in non-ideal political settings, with
rather traditional demands on deliverables etc. than projects modelled more closely over the
schema of the Utopia project [4]. However, worker/union participation in any project in a
traditional company/managerial context should be based on supplementary, worker/union
activities in parallel with the development work, activities that are based on the interests of the
workers and controlled by them. Otherwise, such participation is unlikely to challenge the
traditional managerial goal-setting and may not further democratic worker influence. In a

 7

Scandinavian context, direct negotiations between unions and management about project goals
and other major issues have been used [14].

THE CONCERNS OF CESD

In this section we discuss the concerns of CESD, one by one. The presentation is not intended
as a project model, but to further a more conceptual understanding of the concerns. Readers
unfamiliar with Scandinavian Cooperative Design might consult [2, 19, 22, 24], where more
concrete case-based material is presented.

Project Management: establishing and sustaining cooperation

This concern is directed toward the project itself as a cooperative process. As any other project
a CESD project needs to be established and sustained in order to function well. In CESD
special attention must be paid to a number of aspects associated with cooperation.

People from all the different categories of (potential) end-users need to be involved in a CESD
process

Most important, and often difficult, is to get the message through: that CESD implies
cooperation between developers and (potential) end-users, not their managers or in-house IT
staff. In most cases the first contact between user organization and developers is at the
management level2, and the expectation usually is that ideas and visions of management
combined with the technical knowledge of IT personnel in the user organization are sufficient as
contributions from the user organization. However, the different kinds of (potential) end-users
need to be involved, need to be able to spend time on project activities. The reason for this is
that concrete knowledge of and experience with work-processes are the basis for end-user
contributions in CESD–an issue that has to be explained and illustrated throughout the first
period of a project to be accepted and appropriated by the participants.

In order to take care of the day to day arrangements, specific contacts need to be set up
between the user organization and the developers. Such contacts supplement the structures
needed to evaluate project progress and make go/no go decisions. Usually we ask for one
contact person from each group of end-users involved.

Project plans should accommodate the new role of the practitioners from the user organization
including time off from ordinary work.

A project plan should be sketched for the entire project, with more detailed plans for the first
period. Stipulations of resource spending, including involvement of end-users in cooperative
activities, are important, since this is typically underestimated by the user organization. In order
to get and sustain end-user commitment to project activities it is usually beneficial to reduce
their normal work-load.

To facilitate a CESD project it is useful to make both project aims, plans and participants
known in the user organization. Company-wide information meetings supported by small
leaflets are useful and should be produced throughout the life of a project, since only end-users
directly involved in project activities can be expected to know what is going on.

When we look specifically at custom development projects the most obvious distinguishing
characteristic is that management of the user organization have decided that they want a
project. The aim of the project will be that the organization benefits, and at least part of
management will be committed to the project.

2 Noticeable exceptions are the Scandinavian Trade Union projects such as Utopia, where the first contact was
to the local unions within the user organizations.

 8

However, top level commitment does not guarantee end-user commitment. This is something
that has to be established explicitly. Similarly, organizational benefit, as defined by management,
does not necessarily imply end-user benefit.

When a development organization wants to involve one or more user organizations in packaged
software development, it is usually a major effort to get the initial commitment. A user
organization can expect to learn about constraints and possibilities in its use of technology of
the same kind as the software package. However, when more substantial contributions are
sought from the user organization this is usually not enough. Either the package must be so
mature that it can be used for real in a short time frame, or some other form of compensation
must be found, e.g. in the form of paying the users for their time. For example, GB was paid
with project funds in order to get acceptance from the organization as a whole and in addition
substantial resources were spent to ensure benefits for individual end-users. This kind of
contract with user organizations is recommend for projects aiming at developing packaged
software if the user organization may have to deliver resources to the project which do not pay
off immediately to the organization.

Finally non-disclosure of sensitive information to third parties and other unauthorised use
should be dealt with up front. An obvious issue concerns restrictions on disclosure to people
outside the user and developer organizations respectively, but in many cases it is equally
important to establish some kind of protection of end-users against disclosure of their opinions
etc. to superiors.

Analysis

The overall objective of CESD is change. Therefore, analysis is directed towards investigating
the given use-practice in relation to possible changes. Analysis is seen as facilitating taking
action in order to bring about change. The concern, thus, is both to investigate current practice
in the user organization as it is, and to investigate its inherent constraints and potentials for
considered changes.

Analysis in CESD shares the concern to understand the complexity of current systems with, for
example traditional descriptive approaches [10, 46], and may utilise descriptive techniques from
these. It shares the concern of getting a detailed understanding of current work practice with,
for example, ethnographical(-ly inspired) approaches [28, 29], and utilises observational
techniques inspired by these approaches, particularly in the initial stages. Furthermore, the
analysis concern in CESD emphasises the overall objective of change within practice with the
people from practice. Therefore, analysis in CESD [36, 37] is often realised through
cooperative, experimental, and intervening activities.

Analysis in CESD supports a cooperative learning process with common learning agendas for
practitioners from the user organization as well as developers.

Most approaches to analysis implies that only the analysts learn (as the ones mentioned above).
CRA focused on mutual learning in the sense that developers learn about use-practice and
practitioners learn about technological possibilities [13]. The concern of analysis in CESD
supplements these in focusing on learning processes with common learning agendas, i.e.
‘analysts’ as well as practitioners from the user organization investigate current practice. People
are cooperating on the same issue—current practice (organizational as well as technical
conditions). Both have to deepen their understanding of the given current practice. The system
developers because they are outsiders, and the practitioners for two reasons:

• one’s own practice is to a large extent taken for granted: Entangled in everyday work
supervisors at GB, for example, usually do not consider what competencies they use, what
constitute patterns in non-conformances, when are proposed solutions sufficient, etc.

 9

• the practitioners are in many respects also outsiders: The manager does not know, at least
in detail, what the secretaries are doing, and the secretary does not know what the
supervisor does, and the supervisor does not know….

On the other hand, the common subject matter—current practice—is approached with very
diverse competencies, perspectives, and backgrounds, and different groups will acquire different
outcomes.

Challenging the established with alternative possibilities is a primary means to investigate
constraints and potentials for change within current use-practice.

When the overall objective of CESD is change, it is not enough to investigate how things are
currently, it is also important to investigate the dynamics within the current practice of the
users. For example, in a prototyping session when current practice was challenged by new
possibilities, it triggered a prolonged discussion regarding “invisibility” of office work, manage-
ment’s demand for accountability, the overhead of registration work, and how they would and
could be changed. For a detailed account of how the use of prototypes may trigger new
discussions about current practice and disclose some of its inherent constraints, see [37].

In other words, analysis in CESD focuses both on investigating practice as it is and on the
constraints and potentials for change within the practice.

Experimentation is a primary means in an analysis of actual practice, contrary to formal
explanations or ‘espoused theories’ about it.

The aim of experimentation in analysis is twofold. One is to draw attention to the otherwise not
articulated or ‘invisible’. The other is to challenge the existing, the taken-as-given. From the
fact that things are and have been accomplished in a certain way for years it does not necessarily
follow that it should continue that way, nor that it will continue that way. As a supplement to
traditional approaches such as interviewing, observing, making surveys, etc., CESD ‘asks the
practice’—it experiments with alternatives to see where clashes between current practice and
alternatives occur.

In general, cooperative analysis suggests to analyse constraints and potentials for changes in
current practice by experimenting with alternatives. Dilemma games is an example of such
experiments [3, 36]. They are accomplished by the participants acting through scenarios that
expose dilemmas. It is led by one or more ‘provocateurs’ who on the basis of flexible scripts
introduce scenarios and urge people to take action. The scenarios develop according to the
actions chosen by the participants—actions have consequences—and may thus reveal
problematic aspects of “easy” solutions.

Another approach to explore relationships between current conditions and possible alternatives
is to use prototypes. Prototypes are (early) embodiments of abstract visions. Usually, they have
been used in order to get early feed back into design. However, they might also be used to
further the analysis concern, in that their use may represent a concrete alternative illuminating
current practice. This is one of the reasons why early realisation of envisioned possibilities is at
the core of CESD.

At the same time the cooperative nature of experimentation makes it possible also to address a
range of issues usually outside the scope of analysis by outsiders: by drawing on the knowledge
of the participating users, the developers may investigate the reasons for specific actions, why
one option is preferred over another etc.

As a complement to users’ input, CESD design takes advantage of existing systems, research
results, and standards.

PD and CD are sometimes criticised for reinventing the wheel by letting design decision rely
only on users’ ideas and current work practice. However, in most development projects current
technology, standards, and user interface guidelines play a significant role in shaping the design

 10

of new systems. CESD pays explicit attention to this aspect by studying existing and analogous
systems. CESD developers use their computer oriented competencies in searching for relevant
(alternative) technology bases, standards, user interface paradigms etc. that can be transformed
into visions of technology in use. And they use their current understanding of the problem
domain and their experience to select existing technological concepts and systems which can be
brought in as thought-provoking artefacts in cooperative workshops extending the participants’
understanding of alternatives as well as current practice, see e.g. [35, 36].

For instance, in the EuroCoOp/EuroCODE project past research in hypermedia was studied
intensively, with the result that the Dexter Hypertext Reference Model [27] came to play a
significant role in shaping the core functionality of the system, whereas the user workshops
played a significant role in pushing the design towards an open architecture where hypermedia
functionality could be brought to the users favourite applications [24] instead of living in a
monolithic system as originally assumed by the reference model.

The starting point for analysis in custom development and product development is often quite
different. Although there is not one kind of custom development nor one kind of product
development, the two stereo-types below may indicate typical differences.

In the case of developing custom software, the user organization and its conceived problems are
more or less given and the goal is to find and agree upon alternatives: an organizational change
including new or changed computer systems.

The concern in this setting is to investigate the given practice and to explore its inherent
constraints and potentials in relation to a number of proposed alternatives.

The situation in product development can be seen as the reverse situation to custom
development: the solution, the package, is given, whereas the problem, the intended uses, is
more unknown. The concern of analysis in this setting is to investigate the constraints and
potentials in a number of practices for this possibility, the given package, to become a realistic
and likely possibility within these practices.

Design

Design concerns visions of technology in use, i.e. focus is on creation of common
understandings of realistic technological visions related to specific domains and use situations.
According to many system development methods design is an activity that takes over a
requirement specification and perhaps a domain model from analysis and then converts the
overall requirements for functionality to a specification of the internal technical structure of the
new system being designed. The outcome of design is typically a detailed specification that is
assumed to be given to a group of programmers who in turn implements the specification.

In contrast, much of the CD literature [4, 12, 19] view design as the main concern in system de-
velopment. In design users and designers meet in a series of creative and constructive work-
shops undertaking experiments with possible futures based on artefacts such as mock-ups and
prototypes. In the PD and CD literature focus is on techniques to facilitate common user and
designer creativity.

Experimentation with possible futures, based on hands-on experience with mock-ups and
prototypes is a central feature of CESD design.

To design cooperatively, to develop visions of technology in use, it is important to give these
visions a form that allows the users to apply their knowledge and experience as competent
professionals in the process. In Scandinavian CD, and in CESD, this is accomplished by
simulating future use of the emerging designs [6, 14]. To do this, alternative designs are
embodied in mock-ups/prototypes, example material are produced and potential use scenarios
are sketched as a basis for the simulations. Ideas and focus for this work emerges from analysis,

 11

where problematic or otherwise interesting work situations are identified, and from explicit
idea-generation activities such as the Vision phase of Future Workshops. It was, for example,
the first prototype in EuroCoOp/EuroCODE that enabled people at GB to experience what
hypermedia could be in practice, as opposed to our previous attempts to explain it.

Preparation of efficient transformation of design artefacts such as mock-ups and prototypes
into documentation and application code in the target programming environment is crucial in
design.

The CESD design concern is much in line with the CD point of view on design but it differs in
its emphasis on capturing the design results. Design is both concerned with techniques to
stimulate cooperative creativity and techniques to capture design results in a collection of
artefacts that support an efficient implementation of a system meeting the needs of the users. In
CESD, CD techniques are supplemented and supported with object oriented tools and tech-
niques to enable a smooth transformation of design artefacts to application code.

It is important that experiments as mentioned earlier are carried out with flexible tools that
allow the joint user and designer team to rapidly change the design artefacts according to new
ideas evolving during workshops. Flexibility of tools in line with cardboard and paper or
software tools such as HyperCard, Visual Basic, and various Lisp based environments is given
high priority in CESD. The ideal situation with respect to continued use of prototypes for
evolutionary development [17], however, is to obtain a development environment, that can be
used both for flexible prototyping and as target programming environment. Currently object-
oriented development environments offer the best opportunity for cooperation in system
development, cf. also the next section on realisation. In an object-oriented environment
prototypes can be unfolded to object oriented specifications such that major parts of prototype
code can be reused as application code.

With respect to mock-ups, it is beneficial to go beyond pure interface mock-ups and include
representations of that which is to be handled by the mock-up/emerging system. Such mock-ups
can support the end-users understanding of the emerging system as well as give valuable input
to an object oriented specification of the system. In several of our mock-ups dealing with
materials such as technical drawings, pictures and PERT diagrams we mocked-up databases
with these materials and used them to support work on multiple copies, exclusive write-access
etc. And we illustrated conflicting changes, version control on drawings etc.—all of which
would have been extremely difficult with pure interface mock-ups. At the same time this work
clarified several of the issues involved in deciding upon a suitable object-structure for the
subsequent database prototypes.-

Realisation

Realisation concerns technical implementation of design visions and organisational change.
Traditionally realisation appears late in the life cycle of a development process and involves
mainly programming of the system from design specifications. In CESD there may be realisation
concerns quite early and throughout the process, i.e. programming of early prototypes and
conversion of example material may appear in early stages, e.g. in the EuroCoOp/EuroCODE
project this happened during the first exploratory prototyping. In CESD, the realisation concern
also covers changes to work procedures and the user’s practice related to the system being
developed. Thus, we view realisation in the broad sense similar to [1], where realisation is seen
as an abstract function with a close interrelationship with design and analysis also including
organisational change, e.g. user education, change of work procedures, and data conversion.

Technical implementation
Whereas PD and CD literature rarely pays attention to cooperation under the realisation
concern, CESD sees cooperative and experimental aspects closely related to realisation.

 12

Technical implementation requires understanding of design visions in addition to
programming competencies.

The primary competencies needed for the technical implementation are understanding of the
design vision created so far and programming expertise. Thus actors concerned with technical
implementation should be professional analysts, designers and programmers, i.e. activities
contributing to CESD implementation are not undertaken only by programmers. Artefacts such
as prototypes, mock-ups, scenario descriptions, and various paper based specifications are used
as basis for final realisation. But an overlap between members of the analysis and design groups
and the realisation group is crucial to the success of any development project, since it is
impossible to convey all information needed for implementation through the artefacts and
descriptions [11, 38]. In the EuroCoOp/EuroCODE project we identified a number of co-
operation scenarios regarding GB materials in course of the first prototyping experiments. At
that time we only had a single user hypermedia prototype, but the scenarios were used as
important input to the technical design and implementation of a hypermedia database which
could support the cooperation scenarios by means of advanced transaction and awareness
notification mechanisms. In order to convey the idea to the group implementing the database
cooperation features, we generalised the scenarios and rephrased them in terms that mapped
directly to the object structures of the hypermedia system being designed. The scenarios then
became a common point of reference between the analysis and design oriented actors and the
technical implementation oriented actors.

To improve cost effectiveness of CESD, object oriented tools which reduces or eliminates the
CASE-gap are recommended for implementation.

In many development projects CASE tools are applied to capture the technical aspects of design
in terms of e.g. SA/SD diagrams [46]. This, however, implies both a conceptual and a tool
related gap (“CASE-gap”) between analysis, design and implementation, e.g. data flow
diagrams are used in SA/SD and the C programming language and an object oriented user
interface library based on X-windows are used for implementation. In such development
projects it becomes almost impossible to keep specifications updated with implemented
prototypes and system versions, both of which often change due to new/unrecognised user
requirements.

The traditional CASE-gap can partly be eliminated through the use of object oriented
techniques that can provide a uniform conceptual basis throughout the activities that contribute
to analysis, design and realisation. Emerging OO-CASE tools [31] and interface builders [21]
can handle object oriented user interfaces and code specifications in both diagrammatic and
textual form using the same common representation, such that consistency can be maintained
automatically.

Prototypes and mock-ups are important design artefacts in CESD, and it is crucial to make
efficient transformation of these into documentation and application code in the target
programming environment.

Both prototypes and mock-ups need to be analysed from a technical point of view to break
them down into modules and program constructs which can be organized in the target
programming environment. This is a kind of ‘reverse’ design or redesign activity where
prototype code and mock-ups are turned into object oriented specifications which becomes the
application code. This transformation is a process that requires competence from both those
who constructed the prototypes and mock-ups and from programmers who can produce the
target environment implementation. With most traditional prototyping tools this is a manual
process. However, if the CESD prototypes have been constructed with tools as those
mentioned above, the code from prototypes can be reused in a reverse design process where
OO design diagrams are generated (automatically) from the code of the prototypes. Since these

 13

design diagrams are in fact a different view on the underlying representations of the code the
diagrams can be used to carefully reorganising and modifying this code of which major parts
can be turned into efficient and maintainable code and reused in a targeted implementation.

In the EuroCoOp/EuroCODE project, the code from early prototypes of the hypermedia system
we developed [22, 24, 25] was reorganised, optimised and reused using reverse design tech-
niques with support from the Mjølner OO-CASE tool, cf. Chapter 24 in [31].

Transforming a mock-up into application code is always a manual effort. The concepts used in
the mock-up may, however, quite efficiently be translated into an object oriented domain model
using an OO-CASE-tool.

Use of object oriented techniques for CESD throughout analysis, design and realisation
supports traceability of user oriented concepts across all design artefacts.

When applying object oriented techniques many phenomena and concepts related to the users’
practice will be mapped to classes and objects in design diagrams which in turn appear in the
user interface and in the application code. This enables the developers to discuss the design and
the application code in terms of user oriented concepts, thus making it easier to trace which
objects will be affected by a design change initiated by users in say a prototyping session. Object
oriented CASE tools make it possible to maintain code, such that concepts related to the prob-
lem domain and use situations are easy to identify and filter from the application code [31].
Thus it becomes easier to extend and modify the application code when new requirements are
uncovered and formulated by the users at late stages of development or in later use of the sys-
tems.

Organizational realisation

A CESD process always implies some degree of organisational change related to the use of the
new computer system being developed [34]. Some of this change is unpredictable and happens
as a consequence of system installation and some is planned as part of the CESD design
activities and is implemented in interplay with other activities in the CESD process. Space only
allow us to cover a fraction of this organisational realisation concern. However, organizational
change in a CD context is discussed by several authors [12, 14, 16, 36, 39].

In projects with a priory identified user groups and organizations, the CESD user
representatives can help disseminate the new system in parallel with development.

With respect to the organisational implementation of a system, the user representatives who
have been directly involved in the CESD process have gained a lot of experiences with the new
system through participation in workshops and work with prototypes of the system. The user
representatives can—at least in in-house and contract development projects—give direct
feedback to their organisation. They can use their experiences from working with prototypes
and the like in teaching, informing and discussing with colleagues about the new system [24, 39,
43]. Such interaction between user representatives and colleagues may also result in new
contributions to analysis and design.

CESD supports an incremental organisational implementation of new systems which can give
feedback to analysis and design.

In CESD, it is important to also learn from real use, thus it is recommended in any large
development effort to break down the development assignment into smaller sub-projects
corresponding to sub-tasks performed by the user organization [43]. Then the sub-projects can
be completed such that the organisational implementation of the larger system takes place in
smaller steps. This enables the CESD process of later sub-projects to take advantage of real use
experience from earlier sub-projects already resulting in an organisational implementation [3].
In the EuroCoOp/EuroCODE projects several incremental introduction strategies were

 14

identified [33]. Examples are: introduction of a new system in a specific department,
introduction for a specific function across departments, introduction for a specific project
starting more or less from scratch with new data material. The strategy to choose depend on the
project assignment and other conditions for the project.

Computer supported work

When considering the entire life cycle of a computer system, the main concern is use. The
system—if successful—is adapted into the work practices of its users. Use, however, often
requires customisation/tailoring of computer systems, particularly when the actual users haven’t
been directly involved in the development. New needs for continued development are also quite
frequently uncovered after a period of use. Such needs may be triggered by changes to work
not caused by the system, or they may be due to circumstances not being uncovered during the
main development cycle. To handle such new or uncovered needs, a CESD process should on
the one hand be followed by a responsive support arrangement and on the other hand allow the
users to tailor the delivered system to meet new needs.

The support staff needs to be familiar with the use context of the delivered system, and a short
turn-around time for bugfixes and updates is crucial.

The support staff should be familiar both with the delivered system and important issues
regarding the users’ work. This may be achieved by involving support staff in parts of the
CESD process or by letting support staff familiarize to typical use settings and tasks in the use
domain after the system is delivered. Such familiarity enables the support staff to understand the
users’ problems. Also quick response from support is important, this makes it worthwhile for
the users to report problems and inconveniences instead of just introducing less efficient
“workarounds”. Reports to support staff may contribute also to the analysis and design
concerns.

In CESD needs for tailoring and continued development are seen as the rule rather than the
exception, and depending on the development and use context ‘use’ is seen as an ongoing
development process with a less frequent intervention by developers.

In CESD, cooperative analysis and design techniques may be applied during use to identify
needs for continued development or tailoring.

For instance, Future Workshops can be undertaken to uncover problems and identify and
develop users’ visions related to a system in use. In the EuroCoOp/EuroCODE project, we
conducted such a workshop as part of the evaluation of the third prototype which was
evaluated by the users at GB in a period of three months, most of the time without developers
being present. New features can be mocked up manually or prototyped using e.g. a scripting
tool build into the installed system.

In the context of custom development or contract development, tailoring may be performed by
the original developers using the original development environment. But it is more efficient to
tailor a system in use, if it has been prepared for tailoring [45]. The packaged development
context requires built-in tailoring mechanisms to allow people who were not on the develop-
ment team and who don’t have access to source code and environment to tailor the system.

To maintain evolving opportunities for use, it is important to pay explicit attention to creation
of open points for tailoring, flexible system architectures and tools for tailoring, during
analysis, design and implementation.

To deliver a tailorable system the architecture has to be prepared for tailoring. It is rarely
possible to deliver a fully tailorable system with a user understandable development envi-
ronment that allow users to modify any inconvenient aspect of the system. Instead, , the
ambition in CESD is to deliver a system which is prepared for tailoring at some central places,

 15

“open points”, where variations in use are anticipated. The tailoring facility should allow the
user to think in use oriented terminology when performing tailoring of a system. Unfolding
selected objects and classes identified in the (object-oriented) analysis, will allow the user to
recognize his familiar terms in the context of the computer system, and with an appropriate
tailoring tool be able to modify the behaviour.

To deliver a tailorable system, tailorability must be paid attention to in all concerns: analysis,
design and realisation [44]. An important source for designing open points for tailoring is to
carefully consider places, where several alternative design solutions have been considered feasi-
ble. In such places it may be beneficial to generalise a solution which can be specialised to either
of the alternatives by users. It is also important to consider the tools for tailoring during de-
velopment. Many new operating system architectures provide a notion of scripting:
AppleScript, DDE and Macros, TCL/TK which by means of light weight interpreters can open
up applications to be tailored without having access to the original development environment
[23]. In the EuroCoOp/EuroCODE project, we utilised such features of several standard
packages such as Microsoft Word and Excel to integrate these applications with our
hypermedia system.

ACTIVITIES AND THEIR RELATIONSHIPS TO CONCERNS AND CONTEXT

In the previous section we described and discussed CESD at the level of concerns without an
explicit timeline. A development project, however, unfolds in a concrete process over some
(limited) span of time, typically in a context containing several organizations. Such a process
can be seen as a series of activities, e.g. meetings, workshops, design sessions, prototyping
sessions, and program editing, which to varying degrees are dominated by the five concerns
discussed in the previous section.

It is a main point in our CESD model that the ‘concern’ and the ‘activities’ levels, cf. Figure 1,
should be seen as separate analytical levels, since a detailed analysis of activities in a system
development project will show that most identifiable activities contribute to several concerns
and vice versa—i.e. any one concern is realized through a number of activities. Ideally, an
activity plan for a CESD project should thus not be formulated in concern terms like analysis,
design, etc., but rather in terms like meetings and workshops corresponding to the different
(CESD) techniques to be used. This allows us to view it as a normal situation that a prototyping
session may contribute to all five concerns; and that a four hour programming activity may turn
out to be a major contribution to the design concern and only a marginal contribution to the
realisation concern.

 16

Implementing
 first HM prototype

Data
Collection

First
Workshop

Design/Implementation
of Dexter-based HM (Mac)

Requirement
Documentation Construction

of second
prototype

Data
CollectionInitial

Inquiries

GB
Workshop

Future
Workshop

Second
Workshop

Requirement
Documentation

MRD
HRD

DHM/NT
Demo

Porting to Unix

Integration

Construction of
third prototype

Users'
Contribution

Developers'
Contribution

EuroCoOp: GB

EuroCODE: NR

Porting to Windows NT

EuroCODE: GB

8 GB Workshops

Use/Evaluation
of Pilot

Installation

Independent
use

EuroCODE: EuroParc

EuroCODE: Shell

Framework Design

Design/implementation of multi-user version

GB

Project
Establishment

Time

Figure 2: Actual flow of activities in the EuroCoOp/EuroCODE projects over a four year
period3.

In this section we illustrate how our main example, the EuroCoOp/EuroCODE project, was
organized at the activity level and how the different activities focused on different domains and
were dominated by different concerns. Figure 2 illustrates the sequence of activities at a level of
detail corresponding to the high-level plan for the project. The next seven subsections discuss
the activities with a little less detailed distinction of sub-activities. We do not present the many
techniques developed over the years which can support CESD. Interested readers can find
elaborate discussions of a number of techniques in [2, 3, 19, 20, 36]. These techniques (e.g.
future workshops, mock-up design, cooperative prototyping, dilemma games, and
organizational games) could in turn also be unfolded to illustrate how they contribute to the
different concerns. Here we only do so implicitly through discussions of activities where the
techniques have been applied. The references in parenthesis, e.g. (1M) below, represent
relationships between the activities and concerns and they refer directly to cells in Table 1. The
digits, 1-7, refer to the 7 activities discussed below and the letters refer to the concerns
(Management, Analysis, Design, Realisation, and Computer supported work).

Project establishment

A main focus of the project establishment activity was on planning of tasks, deliverables and a
schedule (1M), in order to provide a means of project management that corresponded to the EU
requirements. Analysis of the state of the art within CSCW research and of CSCW markets
(1A) also played a role in establishing a project that would focus on relevant problems and
developments. Finally, initial visions about the technological innovations (e.g. cooperative
design tools and hypermedia) of the project (1D) were formulated. This activity mainly involved
the developers’ practice and the visions about the project and products.

Initial inquiries and workshops

A condition to get going with the specific cooperative analysis activities was the formation of a
design group with users experienced in supervision of construction processes. Such a group
was identified during the first meetings (2M).

3 Explanation of legend: GB stands for Great Belt, NR stands for Norwegian Computing Center (in Norwegian).
‘Shell’ is the concept used to describe the entire CSCW development environment being developed in
EuroCODE.

 17

Then the objective of the initial inquiries was to get an overall picture of the GB organization,
its objectives, practices, objects of work (bridge construction), etc. We conducted interviews,
studies of materials, studies of work practice in the user organisation, and evaluations of current
technology in use (2A). This involved a number of visits to the headquarters in Copenhagen, a
site office, and a construction site. To a large degree, the focus in the initial inquiries was
determined by GB — they told, showed, and demonstrated what they considered to be of
relevance for us. Our understanding of the GB work practice and the overall project assignment
led to more specific inquiries focusing on the issue of sharing materials. A part of the more
specific inquiries was a modified future workshop. It became evident that organization of huge
amounts of heterogeneous material (thousands of drawings, text documents, reports from
various reporting systems, e-mail, pictures, videos, and many more) was a key issue. In course
of the future workshop vision phase several ideas of improved work procedures and improved
computer support were formulated (2D).

In this activity, the main concern was analysis, and the primary focus was on the domain of
users'-practice. The initial inquiries and workshops improved our understanding of supervision
practice and GB people reconceptualized part of their work. However, several times the
inquiries made us focus on the domain of visions as well. According to the project assignment
we should develop better support mainly for asynchronous collaborative editing of design
diagrams and reports. However, the primary problems for GB supervision appeared to be
handling of huge amounts of heterogeneous supervision materials. Hence, we turned the focus
towards experimentation on the construction of hypermedia support for handling heteroge-
neous materials. As a result, the initial inquiries informed the design concern as well.

Experiments with HyperCard prototype

We planned prototyping sessions (3M) and a first experiment was conducted based on a
prototype with basic hypertext features. This prototype was developed on top of HyperCard
over a couple weeks, and documents from supervision were scanned (with OCR) and entered in
the prototype (3R). Having prepared the prototype with example material, we conducted a
series of sessions where 10-15 supervisors and secretaries from GB had the opportunity to
experience hypermedia in relation to their work. Several aspects of the prototype were
challenged. Both link structures and user interface were modified during the sessions.

The two major concerns in this period was analysis and design: to assess and concretise the
envisioned future use of hypermedia. The general conclusion was that a company wide system
with hypermedia linking capabilities would help overcome many serious bottlenecks in working
with huge amounts of heterogeneous materials. However, for this possibility to become reality
we had to deal with two issues regarding GB practice: a critical mass of supervisors,
secretaries, and area managers should commit themselves to establish links when they saw
relations between parts of materials; and we had to find out how to incorporate the existing
material. During this activity it became more and more clear to us that we had to develop an
open hypermedia service which could integrate the existing materials in their current form (3A).
Furthermore, experiences from using the prototype in work like settings triggered a range of
suggestions for redesigning the prototype including suggestions for span-to-span links (part of a
document to part of a document–the first prototype only supported links from parts to the
wholes), one-to-many and many-to-many relations (the prototype only supported one-to-one),
different types of link markings indicating e.g. priority or type of linked document, and many
more (3D). Finally, it became clear that in order to provide a prototype which could be
integrated in the users work environment, we had to change our technological platform. Thus
the experiments resulted in several adjustments of goals for the hypermedia development (3M).
To sum up, the focus was on the domains of users' practice and visions, the primary concerns
was analysis and design, and the activities brought to bear were coding and prototyping
sessions.

 18

Experiments with Dexter-based prototype on Macintosh

Shortly after, we began developing a generic hypermedia package (Devise Hypermedia, DHM)
based on the Dexter Hypertext Reference Model [27], programmed in the Mjølner Beta System
[31], on Macintosh (4R). The second prototype supported a range of different node types:
Text, Draw, Movie and File. File nodes supported linking to arbitrary files, and following a link
to a File node implied launching the proper application with the attached file, i.e. simple integra-
tion of third party applications. The prototype supported various composite node types and bi-
directional links with multiple endpoints [25]. This development had its main focus in the
domain visions and technology.

With the DHM prototype, we began preparations for a second round of workshops (4M).
Through a series of meetings between people from GB and ourselves, we addressed issues of
how to organize GB material into a hypermedia structure, who should establish links where and
when (4A), and we discussed a set of use scenarios for DHM. Furthermore, we organised a
body of GB material into a hypermedia structure (4D), thus focusing on change of the users’
practice.

In the second round of workshops, first, about 20 people were introduced to the general idea of
hypermedia, how it might support work tasks, and what it would require for it to do so.
Secondly, in smaller groups, DHM was demonstrated by one of the supervisors and used in
work-like settings by different potential user groups (4C). In effect, the prototype–which was
developed primarily to support supervision–was now confronted with the work tasks of many
other parts of GB. This led to new insight about technology and design visions as well as
highlighted constraints and potentials regarding hypermedia-possibilities at GB. Ideas for
improving the general design of DHM including features like awareness notifications (e.g.
notifications to supervisors when parts of the procedure handbook were updated), user-defined
link types, and providing links in read-only documents (4D). The workshops generated both
experiences regarding current prototype and assessments regarding envisioned use of
hypermedia at GB (4A). As a result we developed elaborate ideas on how GB material should
be structured, the work with use scenarios indicated who would establish and use links where
and when (4D). Finally we discussed a number of constraints and potentials for introducing
hypermedia in organizations like GB.

Although, in general, DHM was seen as promising, there were two obstacles to DHM being
introduced at GB: hardware platform (GB used mainly PCs), and lack of integration with the
users favourite applications—the ability to make links, say, from paragraphs in their usual text
processor documents to objects in their CAD drawings.

Development of Dexter-based framework and OODB

To overcome the limitations of the initial design and implementations a major effort on
generalizing the first Dexter-based prototype into a generic, platform independent, multi-user
hypermedia framework was planned (5M). Detailed design of an object-oriented Dexter-based
framework for hypermedia and an object-oriented database (OODB) with cooperation support
was conducted (5D). Implementation of the generic Dexter-based object-oriented hypermedia
development framework (class libraries etc.) and OODB was undertaken (5R), and the process
was monitored (5M) in order to ensure that the overall project deadlines were met. The main
focus in this activity was on visions, technology, and developers’ practice.

Experiments with open hypermedia on Windows/NT

The platform independent framework that was developed made it easy to port the DHM
prototype to Windows/NT which was the user’s hardware platform (6R). Subsequently, this
version of DHM was improved with inter-application communication protocols (6D and 6R) to
support integration with third-party applications on Windows. As a balance between the wishes

 19

at GB, available resources, and technical possibilities we integrated with Microsoft Word,
Microsoft Excel, and Bentley’s Microstation. These systems were extended to support com-
munication with DHM, facilitating creation, following, and inspecting links between, say, parts
of a Word document to a range of cells in an Excel document and/or an object in a Microstation
drawing.

The pilot test was planned (6M), and the third prototype was installed in a network consisting
of five PCs supporting six users at GB (a secretary, the person responsible for quality
information systems, three supervisors, and one manager) (6R). It was used for the handling of
non-conformance and change request reports (NCRs and CRs) at GB in a three month period
(6C). The use context was an elaborated and extended version of the use scenarios from the
second prototype and was primarily focused on interlinking materials relevant for assessment of
Non-Conformance Reports, NCRs, and Change Requests, CRs.

The two major concerns in this period were realisation and computer supported work: the as-
sessment of the running prototype. The affected domains were users' practice, technology, and
visions. This work provided substantial input. First of all, it has provided a new body of
suggestions for improving DHM (6D). Secondly, it highlighted organizational issues regarding
hypermedia introduction and use, for example the question of flexibility: one of the virtues of
DHM as a general tool is its flexibility; however, in order to be used in GB work is needed on
structuring and restricting the use in this practice (6A). Last, but not least, DHM has been con-
fronted with several challenges sparking new visions and design ideas: how to support
interlinking of hundred thousands of documents if used for maintenance, how to support a
generic way to integrate third-party applications avoiding the need to tailor each new one, and
finally the complex issue of handling integration with third-party applications in a multi user
environment.

GB use of open hypermedia prototype in a new area

After the three months pilot use, GB wanted to continue using the DHM prototype for
Windows/NT in a new area. First on hardware borrowed from the project, later they acquired
new hardware themselves suitable for running Windows/NT, DHM, and all the third-party
applications.

The primary use is the establishment of a considerable hypermedia structure supporting the
organization of material relevant for maintenance of the bridge, which is expected to last for at
least 100 years. Basically, the hypermedia has two objectives: 1) Enable supervisors to track
down all information relevant to a particular problem, e.g. crumbling concrete on pylon 17, i.e.
quality documents, non-conformance reports and letters regarding the agreed solution, pictures
of the problem, etc. 2) To function as an inspection tool supporting planning of spot checks of
the bridge. These are entered into the system with links to "historical" material, and the
maintenance staff in turn update the structure with new information after performing the checks.

Clearly, the all important concern here is computer supported work (7C), the attempt to build
up a use practice around DHM; and the domain involved is primarily users' practice (GB). The
activities to accomplish this are almost entirely a cooperative endeavour for GB personnel.
However, there is still a modest dialog with the Quality Manager about experiences (7A), and
relevant (Re-)Design of enhancements based on feedback from user are considered for the
general development of the DHM framework (7D). Finally, bugfixes and minor enhancements
are implemented (7R).

 20

Concern

Activity

Management

Analysis

Design

Realisation

Computer
Supported

Work

(1) Project establishment ● ● ●

(2) Initial inquiries and
workshops ● ● ●

(3) Experiments with
HyperCard prototype ● ● ● ● ●

(4) Experiments with Dexter-
based prototype on Macintosh ● ● ● ● ●

(5) Development of Dexter-
based framework and OODB ● ● ●

(6) Experiments with open
hypermedia on Windows/NT ● ● ● ● ●
(7) GB use of open hypermedia
prototype in a new area ● ● ● ●
Table 1: Examples of relationships between activities and concerns

Table 1 summarizes the relationship between concerns and the activities in EuroCoOp/-
EuroCODE project. It shows schematically how most of the activities listed contribute to most
of the concerns but with various weight. At the same time it shows that there is a main
progression of the project from dominance on the management concern over analysis, design
and realisation to the computer supported work concern.

CONCLUSION

This chapter has taken the Scandinavian tradition in Cooperative Design as the starting point for
discussing a more comprehensive development approach, Cooperative Experimental System
Development (CESD). CESD features cooperative and experimental techniques throughout the
entire life cycle of a computer system from initial ideas to tailoring of the system for specific use
contexts. The cooperative aspect of CESD covers, e.g. workshop techniques similar to those of
PD and CD which enable actors such as end-users, analysts, designers, and programmers with
quite different competence to actively contribute to the development process. The experimental
aspect of CESD covers the iterative approach where alternative futures are explored and
compared through experiments with embodied design visions such as mock-ups and prototypes
in work like situations. Compared to previous PD and CD approaches CESD differs in at least
two respects: (1) it applies the cooperative and experimental techniques also in the parts of the
project where the main concern is technical design and implementation, i.e. developers with CD
competencies and technical skilled developers cooperate throughout a project; (2) it pays ex-
plicit attention to transformation of loosely specified design artefacts such as mock-ups and
prototypes into properly engineered and documented computer systems.

In the presentation (and management) of a system development approach, in particular CESD,
we have argued that it is necessary to analytically separate the abstract concerns, e.g. analysis,
design, and realisation from concrete activities and techniques. A CESD model providing a
framework for handling this separation and the rich variety of relationships among concrete

 21

activities and the main concerns was introduced. Given this framework, an excerpt of the basic
tenets for CESD has been presented and examples from our use of the approach in the Esprit
projects EuroCoOp and EuroCODE were given. These projects represent research aiming at
developing industrial prototypes of general tailorable computer systems. The CESD approach
is, however, not limited to this development context but can be applied for contract
development and in-house projects as well. We expect the CESD approach to evolve in the
years to come, in particular through work at the DEVISE centre at University of Aarhus, where
we develop both CESD techniques and supporting tools. An important source of experience to
improve CESD is a continuous cooperation with European and in particular Danish companies
engaged in software development.

Acknowledgements

We thank our colleagues in DEVISE, EuroCoOp and EuroCODE for cooperation in much of the
work on which this chapter is based, we thank Angelika Paysen for helping in proof reading,
and we acknowledge Esprit II, Esprit III and The Danish Natural Science Research Council for
funding the work.

REFERENCES

1. Andersen, N.E., et al., Professional Systems Development: Experience, Ideas and Action.
Business Information Technology series. 1990, New York: Prentice Hall.

2. Bjerknes, G., P. Ehn, and M. Kyng, eds. Computers and Democracy: A Scandinavian
Challenge. . 1987, Avebury: England.

3. Bødker, S., et al., The AT-Project: practical research in cooperative design. 1993:
Computer Science Dept, Aarhus University. Daimi PB-454.

4. Bødker, S., et al., A UTOPIAN Experience: On Design of Powerful Computer-Based Tools
for Skilled Graphic Workers, in Computers and Democracy, G. Bjerknes, P. Ehn, and M.
Kyng, Editors. 1987, Avebury: Aldershot. p. 251-278.

5. Bødker, S. and K. Grønbæk, Design in Action: From Prototyping by Demonstration to
Cooperative Prototyping, in Design at Work: Cooperative Design of Computer Systems, J.
Greenbaum and M. Kyng, Editors. 1991, Lawrence Erlbaum Associates: Hillsdale, NJ. p.
197-218.

6. Bødker, S., K. Grønbæk, and M. Kyng, Cooperative Design: Techniques and Experiences
from the Scandinavian Scene, in Participatory Design: Principles and Practices, D.
Schuler and A. Namioka, Editors. 1993, Lawrence Erlbaum Associates: Hillsdale, New
Jersey. p. 157-175.

7. Bødker, S., K. Grønbæk, and M. Kyng, Cooperative Design: Techniques and Experiences
from the Scandinavian Scene, in Readings in Human-Computer Interaction: Toward the
Year 2000, R.M. Baecker, J. Grudin, and W.A.S. Buxton, Editors. 1995, Morgan
Kaufmann Publishers, Inc.: San Francisco. p. 215-224.

8. Boehm, B.W., A Spiral Model of Software Development and Enhancement. Computer,
1988. 21: p. 61-72.

9. Budde, R., et al., Prototyping - an Approach to Evolutionary System Development. 1992,
Berlin: Springer Verlag.

10. Coad, P. and E. Yourdon, Object-Oriented Analysis. 1991, Englewood Cliffs, New Jersey:
Yourdon Press.

11. Dreyfus, H. and S. Dreyfus, Mind over Machine: the power of human intuition and
expertise in the era of the computer. 1986, Oxford: Basil Blackwell Ltd.

12. Ehn, P., Work--Oriented Design of Computer Artifacts. 1988, Stockholm, Sweden:
Arbetslivscentrum.

 22

13. Ehn, P. and M. Kyng. A Tool Perspective on Design of Interactive Computer Support for
Skilled Workers. in Seventh Scandinavian Research Seminar on Systemeering. 1984.
Helsinki: Helsinki School of Economics.

14. Ehn, P. and M. Kyng, The Collective Resource Approach to Systems Design, in Computers
and Democracy. 1987, Avebury: Aldershot. p. 17-57.

15. Ehn, P. and M. Kyng, Cardboard computers: mocking-it-up or hands-on the future, in
Design at Work - Cooperative Design of Computer Systems, J. Greenbaum and M. Kyng,
Editors. 1991, Lawrence Erlbaum: Hillsdale, New Jersey. p. 169-195.

16. Ehn, P., B. Mölleryd, and D. Sjögren, Playing in Reality: A Paradigm Case. Scandinavian
Journal of Information Systems, 1990. 2: p. 101-120.

17. Floyd, C., A Systematic Look at Prototyping, in Approaches to Prototyping. 1984,
Springer-Verlag: Berlin. p. 1-18.

18. Floyd, C., F.-M. Reisin, and G. Schmidt, STEPS to Software Development with Users, in
proceedings from ESEC '89. Lecture Notes in Computer Science 387, C. Ghezzi and J.M.
McDermid, Editors. 1989, Springer Verlag: Berlin. p. 48-64.

19. Greenbaum, J. and M. Kyng, Design at Work: Cooperative Design of Computer Systems.
1991, Hillsdale, NJ: Lawrence Erlbaum Associates.

20. Grønbæk, K., Prototyping and Active User Involvement in System Development: Towards
a Cooperative Prototyping Approach, . 1991, Computer Science Dept., University of
Aarhus.

21. Grønbæk, K., A. Hviid, and R.H. Trigg. ApplBuilder – an Object-Oriented Application
Generator Supporting Rapid Prototyping. in Fourth international conference on software
engineering and its applications. 1991. Toulouse, December 9-13.

22. Grønbæk, K., M. Kyng, and P. Mogensen, CSCW Challenges: Cooperative Design in
Engineering Projects. Communications of the ACM, 1993. 36(6): p. 67-77.

23. Grønbæk, K. and J. Malhotra. Building Tailorable Hypermedia Systems: the embedded-
interpreter approach. in ACM conference on Object Oriented Programming Systems,
Languages and Applications (OOPSLA ‘94). 1994. Portland, Oregon, US, 23-27 October,
1994: ACM.

24. Grønbæk, K. and P. Mogensen. Specific Cooperative Analysis and Design in General
Hypermedia Development. in Participatory Design Conference (PDC). 1994. Chapel Hill,
North Carolina.

25. Grønbæk, K. and R.H. Trigg, Design issues for a Dexter-based hypermedia system.
Communications of teh ACM, 1994. 37(2): p. 40-49.

26. Grudin, J., Interactive Systems: Bridging the Gaps between Developers and Users. IEEE
Computer, 1991. April: p. 59-69.

27. Halasz, F. and M. Schwartz, The Dexter Hypertext Reference Model. Communications of
the ACM, 1994. 37(2): p. 30-39.

28. Heath, C. and P. Luff, Collaboration and Control. Crisis Management and Mutimedia
Technology in London Underground Line Control Rooms. Computer Supported
Cooperative Work, 1992. 1(1): p. 69-94.

29. Hughes, J., D. Randall, and D. Shapiro, From Ethnografic Record to System Design - Some
experiencies from the field. Computer Supported Cooperative Work (CSCW). An
International Journal, 1993. 1(3): p. 123-141.

30. Kjær, A. and K.H. Madsen. Participatory analysis of flexibility: Some experiences. in
Participatory Design Conference. 1994. Chapel Hill, North Carolina: Computer
Professionals for Social Responsibility.

31. Knudsen, J.L., et al., Object-Oriented Software Development Environments - The Mjølner
Approach. 1993, Englewood Cliffs, NJ: Prentice Hall.

 23

32. Kyng, M. Scandinavian Design: Users in Product Development. in Human Factors in
Computing Systems, CHI '94, Celebrating Interdependence. 1994. Boston, MA:
Association for Computing Machinery.

33. Kyng, M. and P. Mogensen, Workpackage WP1 Task T1.3: Evaluation of EuroCoOp
prototypes re work at A/S Storebæltsforbindelsen (Great Belt Link Ltd.), in Report from
ESPRIT Project 5303 EuroCoOp: IT Support for Distributed Cooperative Work. 1992,
Aarhus University.

34. Mathiassen, L., Systemudvikling og Systemudviklingsmetode, . 1984, Computer Science
Dept., Aarhus University.

35. Mogensen, P., Towards a Provotyping Approach in Systems Development. Scandinavian
Journal of Information Systems, 1992. 4: p. 31-53.

36. Mogensen, P., Challenging Practice: an Approach to Cooperative Analysis, . 1994, Ph.D
thesis. Aarhus University, Daimi PB-465: Aarhus, Denmark.

37. Mogensen, P. and R. Trigg. Artifacts as triggers for participatory analysis. in
Participatory Design Conference (PDC). 1992. Boston, MA.

38. Naur, P., Programming as theory building. Microprocessing and Microprogramming,
1985. 15: p. 253-261.

39. Pape, T.C. and K. Thoresen, Evolutionary prototyping in a change perspective: A tale of
three municipalities. Information Technology & People, 1990. 6(2-3): p. 145-170.

40. Royse, W.W. Managing the Development of Large Software Systems: Concepts and
Techniques. in Wescon. 1970.

41. Simonsen, J. and F. Kensing. Take users seriously, but take a deeper look: Organizational
and technical effects from designing with an ethnographically inspired approach. in
Participatory Design Conference. 1994. Chapel Hill, North Carolina: Computer
Professionals for Social Responsibility.

42. Suchman, L., Plans and situated actions. The problem of human-machine communication.
1987, Cambridge: Cambridge University Press.

43. Thomsen, K.S., The Mentor Project Model: A model for experimental development of
contract software. Scandinavian Journal of Information Systems, 1993. 5(August): p. 113-
131.

44. Trigg, R.H. Participatory Design meets the MOP: Acountability in the Design of Tailobale
Computer Systems. in 15th IRIS. 1992. Larkollen, Norway: Department of Informatics,
University of Oslo.

45. Trigg, R.H., T.P. Moran, and F.G. Halasz, Adaptability and Tailorability in Notecards, in
Human Computer Interaction – INTERACT'87. 1987, North-Holland: Amsterdam. p. 723-
728.

46. Yourdon, E., Modern Structured Analysis. 1989, Englewood Cliffs, NJ: Prentice Hall.

