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ABSTRACT
The proliferation of online social networks has created intense in-
terest in studying their nature and revealing information of interest
to the end user. At the same time, such revelation raises privacy
concerns. Existing research addresses this problem following an
approach popular in the database community: a model of data pri-
vacy is defined, and the data is rendered in a form that satisfies the
constraints of that model while aiming to maximize some utility
measure. Still, these is no consensus on a clear and quantifiable
utility measure over graph data. In this paper, we take a different
approach: we define a utility guarantee, in terms of certain graph
properties being preserved, that should be respected when releas-
ing data, while otherwise distorting the graph to an extend desired
for the sake of confidentiality. We propose a form of data release
which builds on current practice in social network platforms: A
user may want to see a subgraph of the network graph, in which
that user as well as connections and affiliates participate. Such a
snapshot should not allow malicious users to gain private informa-
tion, yet provide useful information for benevolent users. We pro-
pose a mechanism to prepare data for user view under this setting.
In an experimental study with real data, we demonstrate that our
method preserves several properties of interest more successfully
than methods that randomly distort the graph to an equal extent,
while withstanding structural attacks proposed in the literature.

Categories and Subject Descriptors
G.2 [Discrete Mathematics]: Graph Theory; H.2 [Database Man-
agement]: Database Applications; K.4.1 [Computers and Soci-
ety]: Public Policy Issues—Privacy
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1. INTRODUCTION
Online Social Network Sites (SNSs) allow users to discover and

share information about themselves and their peers, while they pro-
vide researchers with a valuable tool for social, cultural, and media
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studies via data analysis and mining [16]. The capacity to exchange
information in such networks rests on an assumed underlying trust
among users [7]. While trust is thicker among people with strong
interpersonal ties, it also affects one’s ability to cultivate and mo-
bilize weak social ties for the transfer of valuable information [12].
Trust is thus essential not only for bonding social capital, associ-
ated with strong ties, but also for bridging social capital, associated
with weak social ties and information-seeking behavior [8]. SNSs
are valuable for the development of social capital, in particular for
bridging social capital [5]. In short, the technological affordances
of SNSs provide leverage in building weak ties, while the value of
these ties for an individual is mediated by interpersonal trust [12].

In order to safeguard such trust, as well as institutional trust users
place in the owners and administrators of the SNS, the privacy of
users has to be guarded. Still, the facility to ease the creation of
social ties online is a central feature in any SNS [3]; such facility
requires that some information about users is made available to both
known others and to strangers. This tension between confidentiality
and facility is pertinent in sites like LinkedIn or Xing, specializing
in professional networking that eases the formation of weak ties.

Consequently, the need arises for a method that reveals network
graph data in a discretionary manner, deterring malicious users,
while at the same time provides certain utility for benevolent users.
This problem of discretionary user-centric network data release
is related to, but distinct from the problem of revealing whole-
network data to third parties. We focus on the problem of revealing
user data to end-users with the aim of helping them network bet-
ter. The end-user derives utility from such revelation, and may thus
willingly choose to participate in such a scheme. We aim to guar-
antee such utility while releasing data in a discretionary manner.

Existing research in the area follows a privacy-driven paradigm:
it formulates a certain privacy principle, and develops techniques
that bring the network data to a form that abides thereby, while
keeping the loss of utility low [1, 9, 13, 2, 4, 18, 22]. However, the
extent to which such techniques maintain the information utility of
the network and structure thereof is vague. These studies suffice
themselves to measuring ad hoc utility metrics, which do not cap-
ture the extent to which an object as complex as a graph maintains
its original properties. Nevertheless, in case the information recipi-
ents are end-users of the social network site, they would like to have
a guarantee precisely on the utility of the released data, in terms of
certain graph properties, no less than they would desire a certain
privacy guarantee about their own information being revealed.

A network is modeled as an undirected graph G = (V,E),
where V is a set of vertices (nodes) representing entities and E
is a set of edges representing relations between entities.

A naive anonymization of G would substitute all entity identi-
fiers in G by synthetic identifiers. However, such an anonymiza-



tion does not conceal the identities behind the published graph, as
the structural information in the network can itself serve to identify
nodes [1, 9, 13, 23, 20]. Thus, a structural anonymization is called
for. Besides, a privacy threat is not posed by the identification of
nodes in the network per se, but rather by the disclosure of the po-
sitions of such identified nodes with respect to each other. When
the data recipient is an end-user, a structural anonymization would
suffice to provide the confidentiality users require, while other iden-
tifying information can still be published, as it may be valuable for
purposes such as professional networking.

1.1 A Practical Example
We envisage a scenario in which an SNS user requests to see

the network subgraph involving one’s connections up to a certain
number of hops. Such a subgraph would provide the user with
an overview of her position in the broader network neighborhood
of her contacts and their contacts. To be truly useful, this sub-
graph should correctly reveal the identities of individuals within its
scope and also provide some indication as to their relative posi-
tions. However, for the sake of confidentiality, the subgraph should
not reveal their precise relationships among each other.

Currently, many SNS platforms, such as LinkedIn1 and Xing2,
provide a functionality by which users can see information about a
path connecting them to other persons; in some cases, one can also
see individuals along that path. This service offers valuable infor-
mation to networkers, yet poses problems both from a privacy and
a utility point of view: In terms of privacy, the revelation of individ-
uals along the path poses a risk, as the relationships among distant
connections to the querying user may be sensitive. From a utility
viewpoint, the published information is limited; a user may wish to
view her position relative to a whole neighborhood, so as to identify
nodes of interest; single paths do not provide such information.

Figure 1 shows an example of the type of information provided
by LinkedIn, again with fictional names. While the provided in-
formation indicates the existence of a connection, it is limited to a
single path, and does not reveal other graph neighborhood informa-
tion that may be of legitimate interest to the user.

Figure 1: Visualization of connections in LinkedIn
Meanwhile, Xing shows all intermediate connections and even

provides names along a single path. If taken further, i.e., to longer
paths, this practice would arguably compromise the privacy of users
involved. Nevertheless, inspired by this practice, we envisage that
a user could ask for a presentation of a fuller view of the network’s
neighborhood structure around the presented path, or, more gener-
ally, for the presentation of any network subgraph of interest. Such
a service should be discretionary, not revealing too much infor-
mation about the network’s microstructure that would compromise
individual users’ confidentiality, yet at the same time it should be
informative.

Nevertheless, revealing a network’s structural information can
render users vulnerable to attacks. A malicious user may create a
set of fake accounts and attempt to forge direct links between those

1http://www.linkedin.com/
2http://www.xing.com/

accounts and to one or more targets, so as to directly elicit private
information from them, or to create a unique structure that can be
later identified in a revealed graph. This observation is the basis of
the structural attack introduced in [1]. We aim to design a utility-
driven data revelation scheme that can foil such attacks.

1.2 Our proposal
Motivated by the above discussion, we suggest a methodology

for revealing social network data to relevant users following a utility-
driven paradigm, similar in spirit to [21]. By our scheme, network
data are manipulated under certain constraints, aiming to preserve
structural properties of the underlying graph, while otherwise dis-
torting the graph’s microstructure to the farthest extent allowed by
those constraints. In this manner, the trade-off between data util-
ity and data privacy is addressed in a novel manner, adhering to a
utility guarantee. We define the structural constraints in terms of
distance properties between pairs of nodes, and demonstrate that
the resulting graphs can withstand attacks by adversaries possess-
ing prior structural background knowledge, as suggested in [1].

In our approach, we publish a subgraph of the network graph,
containing nodes of interest with respect to the querying user (pos-
sibly along with identifying information, depending on the applica-
tion at hand). This subgraph is constructed so as to faithfully pre-
serve the reachability information in the true subgraph: if a node
is reachable from another node by a path of length lower than a
threshold k, then it should also be similarly reachable in the re-
leased graph. However, the subgraph is otherwise distorted, so as
to conceal exact node-to-node relationships, to the extent allowed
by the reachability constraint. Thus, a querying user cannot con-
fidently infer the potentially sensitive relationships among distant
connections. Yet the same querying user obtains a wide view of her
own and her peers’ position in the overall network.

2. REACHABILITY PRESERVATION
Real-world social networks of certain size are usually connected;

any two individuals in them are bound to be linked by a sufficiently
large path. The shortest-path distance between two individuals
is usually rather small, not exceeding six steps. Milgram’s small
world experiment [14] suggested that social networks of people in
the United States are characterized by such short distances, of ap-
proximately three friendship links, on average, without considering
global linkages; Watts [19] recreated Milgram’s experiment on the
internet and found that the average number of intermediaries via
which an e-mail message can be delivered to a target was around
six; Leskovec and Horvitz [11] found the average distance among
users of an instant messaging system to be 6.6.

In view of this connectedness of real-world social networks, we
deduce that no previously unknown information is disclosed when
the mere existence of a path among two entities in a network is
revealed. Thus, an objective of thwarting the inference of any link-
age whatsoever, as in [4], would set an unnecessarily high goal and
irretrievably alter the nature of the network. Besides, a bona fide
SNS user can reasonably expect to be able to learn whether other
individuals in the same network are reachable at up to a certain
distance threshold and also gain a glimpse of the nature of the net-
work that stands between them. On the other hand, a discretionary
revelation of such reachability information should not reveal the
exact relationships among people in the exposed neighborhood, as
malicious users can may take advantage thereof.

As we discussed, professional networking platforms provide a
function that concerns us: when users search for someone, they can
see the path that leads from their node to the searched-for person,
possibly under the condition that the path is not longer than 3 hops.



Thus, Alice can see that the path Alice → Lara → Olivia →
Bob, connects her to Bob. An extension of this functionality to
paths of arbitrary length would endanger users’ confidentiality, as
Alice would then acquire intimate knowledge about the relation-
ships of people she is not acquainted with. Yet Alice has a le-
gitimate interest to find out whether she is connected to a certain
individual by a path longer than the ones she is already allowed to
see, as well as to identify individuals in her extended neighborhood
and thereby possibly attempt to expand her social circle.

Motivated by such needs, we propose a discretionary graph pub-
lication model that provides useful connectivity and reachability
information, along with other rich graph information, yet without
correctly revealing the graph’s microstructure concerning individu-
als lying along the presented connections. The connections shown
in a graph published by our method are not necessarily true. Still,
the published graph is constructed so that it does provides fairly
correct reachability information.

Furthermore, by our proposal, users in the network can specify
a distance threshold parameter d, so that they can quantify their
own comfortable zone. Figure 2(a) depicts an example of a graph
shown to user Alice, in which it is revealed that another user, Mike,
is reachable within 4 hops. This happens under the condition that
Mike has agreed to have the information about being reachable by
4 hops available to such other users; i.e., Mike has set his personal
distance threshold to d = 4. Alice then gets the highlighted path
information if she wants to see her position relative to Mike’s po-
sition, even though this particular path may not be the exact path
between Alice and Mike. Figure 2(b) shows what Alice would see
in case Mike has not opted in to make his information available
to users within 4 hops. To encourage users’ participation, Alice’s
ability to view Mike’s information can be made conditional on her
making her own information available to users within 4 hops, i.e.
her own personal distance threshold being at least 4.

(a) (b)
Figure 2: Example of path revelation.

We expect that users will be willing to accept the discretionary
revelation of their own presence in the network, as they stand to
gain themselves in terms of increased networking functionality.

2.1 Problem Definition
Let G = (V,E) be a simple undirected graph that represents

part of a social network; such a graph can consist of a network
neighborhood of around a querying user’s node. V is a set of ver-
tices representing entities in the network, and E is a set of edges
representing relations between entities.

DEFINITION 1. The k-reachability graph of G, Gk, is a graph
having the same vertices V as G, such that an edge between two
vertices exists in Gk iff the distance between them is at most k.

For example, the 2-reachability graph of the graph G1 at the left
side of Figure 3 is the graph in the middle of the figure. If k is
set to be the longest distance (i.e., the diameter) in G, then the
k-reachability graph becomes trivially the same as the transitive
closure of G. However, for intermediate values of k, Gk is rich in

information, showing which entities in the network share connec-
tions of up to a certain length.

G1 �
�

G2

For k=2

Figure 3: Graphs G1 and G2 having the same G2

Our main claim is that, given a network neighborhood G and
a certain k of interest, a graph G′, having the same vertices, equal
number of edges, and the same k-reachability graphGk asG, while
differing from G in as extensive a way as possible otherwise, pro-
vides high-utility information about G in a manner discretionary
with respect to the confidential information of the users involved.
We aim to devise a method that generates G′ given G. We define
the following problem:

PROBLEM 1. Given a graph G(V,E) and an integer k, pro-
duce a graph G′(E′, V ), such that |E| = |E′| and Gk = G′k,
while the edge-edit-distance between G and G′, Dist(G,G′) =
|E∪E′\E∩E′|

|E| , achieves a required value θ.

In this problem, the graph G represents the network neighbor-
hood around a querying user’s node u. The parameter k defines the
view of that neighborhood that user wishes to obtain. The obtained
graph G′ reveals users within k hops of u or of each other.

The requirement that Gk = G′k in Problem 1 defines our ideal
objective. A graph G′ that satisfies this reachability requirement
for a large value of θ may not exist, and, even if it exists, may be
hard to find. After all, this reachability requirement is strict, and
does not allow much flexibility. In many practical circumstances,
a more flexible version of the same requirement may still satisfy
our objectives. Therefore, we suggest such a relaxed version of the
reachability requirement that would be easier to satisfy while still
maintaining much of the information we wish to preserve.

2.2 Relaxing the Reachability Requirement
Let d(v1, v2) (d′(v1, v2)) be the distance of vertex v2 from ver-

tex v1 in G (G′). Then the standard reachability requirement, i.e.,
the requirement that Gk = G′k, can be expressed as follows:

DEFINITION 2. Reachability Requirement (RR)
A graph G′(V,E′) is said to satisfy the reachability requirement
with respect to an original graph G(V,E) for a given integer k, iff
|E| = |E′|, and, for any pair of nodes v1, v2 ∈ V , it holds that
d(v1, v2) ≤ k ⇔ d′(v1, v2) ≤ k.

We can relax the requirement by demanding only that a distance
not exceeding k − 1 in G does not exceed k in G′, and vice versa.
This relaxation is twofold: we reduce the amount of distances in-
volved, as we now care only for distances in the range [1, k − 1]
instead of the range [1, k], and we introduce some laxness in the
preservation of distances within this range, by allowing that each
distance in the range [1, k − 1] in G is mapped to a distance in
a wider range, namely the range [1, k] in G′, and vice versa. We
express this relaxed requirement as follows:

DEFINITION 3. Relaxed Reachability Requirement (RRR) A
graphG′(V,E′) satisfies the relaxed reachability requirement with
respect to an original graph G(V,E) for a given integer k, if and
only if |E| = |E′|, and, for any pair of nodes v1, v2 ∈ V , the
following implications hold:

d(v1, v2) < k ⇒ d′(v1, v2) ≤ k
d′(v1, v2) < k ⇒ d(v1, v2) ≤ k



Under this relaxation,G′ still presents representatively small dis-
tance values (i.e., values d′≤k) for short distances inG (i.e., d<k)
and avoids the misrepresentation of longer distance values in G
(i.e., values d>k) as short in G′ (i.e., as d<k). We contend that a
graph G′ satisfying the relaxed, instead of the standard, reachabil-
ity requirement with respect to G provides slightly less precise, but
still rich, information about the distances between vertices of inter-
est, yet allows for much-desired higher flexibility in modifying the
graph, which allows for a higher degree of protection against struc-
tural attacks. In the following section we present an algorithm that
generates graphs satisfying either the RR or the RRR with respect
to an original graph G, and hence provides an avenue for revealing
a modified, utility-preserving and discretionary version of G.

2.3 Algorithm
The problem could be tackled by an exhaustive-search algorithm

that would try out all combinations of edges that could make a
modified graph. Yet such an exhaustive search becomes compu-
tationally prohibitive as the size of the graph grows. Our Similar
Reachability Graph (SRG) algorithm (Algorithm 1) modifies the
graph by alternatively adding or deleting one edge at time. At each
step, we opt for a modification that satisfies the standard (or re-
laxed) reachability requirement. As long as such modifications are
possible, we keep updating the graph, monitoring the distortion in-
flicted thereon. Once the distortion reaches a desired level θ, the
algorithm terminates and the modified graph is output.

Algorithm 1: SRG
Input: graphG with V vertices andE edges;
reachability k; distortion threshold θ;
Result: Modified GraphG′

1 compute distance matrixD(G);
2 initializeG′ asG;
3 initialize delete-candidate edge list L1, length `1;
4 initialize add-candidate edge list L2, length `2;
5 whileDist(G,G′) < θ do
6 for λ← 1 to min{`1, `2} do
7 for each edge set C1 ←

(`1
λ

)
do

8 for each edge set C2 ←
(`2
λ

)
do

9 delete C1 from and add C2 toG′;
10 ifG′ satisfies (R)RR wrtG then
11 update L1 and L2;
12 Break for loops;
13 else
14 add back C1 and delete C2;
15 ReturnG′(V,E′);

Our SRG algorithm makes use of a basic operation that computes
the distance matrix D of a graph G. Having the D of the original
graph G, as well as the distance matrix D′ of a modified graph G′,
we can check whether the standard or relaxed reachability condi-
tion is satisfied, and calculate the respective k-reachability graphs
Gk and G′k. To that end, we employ the Warshall-Floyd algorithm
[6], with extra pruning and optimization provisions, eschewing the
computation of distances larger than the k threshold.

At first, SRG constructs lists of edges that are candidate for ad-
dition (deletion). All edges in G are candidates for deletion, while
edges candidate for addition are those that do not exist in G but
exist in Gk; it starts out with the original graph G, and proceeds to
perform iterative modification steps. At each iteration, it progres-
sively checks all allowed combinations of λ edges to delete and λ
edges to add, starting with λ = 1 and increasing λ progressively,
until it detects an add/delete combination that produces a modified
graph G′ satisfying the (relaxed) reachability requirement, (R)RR,
with respect to G. Having succeeded in this iteration, it proceeds
to modify the obtained graph G′ further in the next iteration.

We emphasize that the satisfaction of the (R)RR is always checked

with respect to the original graph G, not to the modified graph of
the preceding step. Thus we always maintain a modified graph G′

that satisfies the (R)RR with respect to G.
The modification terminates when the modified graph G′ has

achieved a desired difference from the original graph G. We mea-
sure the difference between graphsG(V,E) andG′(V,E′) in terms
of distortion, defined as the ratio of the number of edges they do
not share to |E|: Dist(G,G′) = |E∪E′\E∩E′|

|E| ; since |E| is not
changed by the algorithm, the distortion depends on the amount of
edges altered, |E∪E′ \E∩E′|. Distortion values near 100% (i.e.,
half the maximum possible value of 200%) provide the highest ob-
fuscation, as one can tell with confidence neither that an edge inG′

also appears in G, nor that it does not.
The SRG algorithm works with both the standard reachability

requirement (RR) and the relaxed one (RRR). The satisfaction of
this requirement is checked in Step 10, by comparing the distance
matrix of the modified graph, (G′), to that of the original graph. In
the next section we proceed to an experimental study, in which we
opt for using the RRR, which allows for higher flexibility.

3. EXPERIMENTAL EVALUATION
We now evaluate our algorithm using real data sets. The experi-

ments ran on an Intel Core, 2 Quad CPU, 2.83GHz, 4GB machine
running Windows 7. The algorithm was implemented in Standard
C, while utility measure computations were done in Python.

3.1 Data Description
We used two real data sets, representative of real social networks,

which are made freely available for research purposes. The for-
mer, Flickr3[15], contains user-to-user links in an online social net-
work for image and video hosting. Five subgraphs used in our ex-
periments are uniformly sampled with 50 vertices and around 100
edges for each. The latter data, Gnutella4, describes a peer-to-peer
file sharing network. Nodes represent hosts in the network topol-
ogy and edges connections between hosts. We uniformly sample 5
connected subgraphs of the 2002 Gnutella network snapshot, con-
taining 50 vertices and around 52 edges for each subgraph. In all
our experiments, results are averaged over 5 subgraphs, with 5 runs
for each subgraph. The data sizes we test are representative of the
neighborhoods graphs that arise in the applications we envisage.

3.2 Utility Assessment
We claim that graphs generated by our SRG algorithm preserve

other structural properties of the original graph G. To demonstrate
our claim, we compare graphs obtained by our methods to graphs
of the same distortion obtained by the randomized anonymization
algorithm (RAA) of Hay et al. [10]. This technique modifies the
original graph by randomly deleting a prescribed number of edges
and randomly adding the same number of edges; thus, the resulting
graph has the same number of edges as the original graph.

To assess the degree to which SRG graphs resemble the origi-
nal ones, we measure the Earth-Mover’s Distance (EMD) [17] be-
tween the original and modified degree distributions, for different
distortion values. Figure 4(a) shows the EMD between the degree
distributions on SRG graphs with k = 2 and k = 3, and RAA-
perturbed versions of the Flickr graphs, and the original ones, as a
function of distortion, while Figure 4(b) shows the EMD between
their geodesic distance distributions. As expected, the measured
metric on the SRG graphs diverge from those of the original graph
much less than those on the RAA graph.

3Available online at http://socialnetworks.mpi-sws.org/
4Available online at http://snap.stanford.edu/data/
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Figure 4: EMD of degree distribution and geodesic distribution, Flickr (a-b), properties with increasing distortion, Gnutella (c-d)

Then, we assess the divergence between original and anonymi-
zed graphs on other graph properties: the average shortest path
length and graph diameter. Figure 4(c-d) show the results for the
Gnutella data. Again, the SRG graphs produce measures much
closer to those of the original graphs than the RAA graphs do.

Given that we employ the relaxed reachability requirement in
our experiments, the results to reachability queries are expected to
have a slight error. We end our utility assessment by quantifying
this error in terms of precision and recall measures on reachability
queries, in which a user asks whether a target node is reachable
within a certain number of k hops. We measure each of these
metrics on each vertex, and average our results over all vertices in
the graph, over 5 extracted subgraphs, and 5 runs for each subgraph.
Figure 5 shows our results with both the Flickr and Gnutella data,
for graphs modified by the SRG and RAA algorithms, for queries
involving k = 2 and k = 3 hops. In examined cases, the SRG
algorithm achieves higher precision and recall measures than RAA.
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Figure 5: Precision and Recall Flickr (a) and Gnutella (b)

3.3 Resistance to Structural Attacks
We now assess the extent to which distorted graphs can resist

structural attacks of the kind suggested in [1]. We measure the
success rate for any attack based on the identification of an embed-
ded subgraph, vs. the distortion of the graph in which a malicious
subgraph is embedded. For each data set, we embed 50 different
subgraphs prior to the graph’s distortion. For each of the resulting
attacked graphs, we conduct 10 separate runs of SRG perturbation,
where we randomly shuffle the order in which edges are examined
so as to obtain non-deterministic results; thus we obtain 10 differ-
ent distorted versions of the original attacked graph, at the same
distortion. The attack’s success rate is measured as the ratio of suc-
cessful attacks over 10 × 50 runs. Figure 6 shows our results for
two different values of the reachability parameter k. Remarkably,
we obtain low success rates even at distortion levels in which we
preserve structural graph properties with satisfactory fidelity.
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Figure 6: Success rate of structural attack

4. CONCLUSION
This work addressed the problem of social network data sharing

under confidentiality concerns, from a utility-oriented standpoint,
focusing on revealing a subgraph of connections in a user’s neigh-
borhood. We defined a utility guarantee involving a reachability
property and suggested a method to distort the graph to a desired
extent while observing this requirement. Our technique preserves
crucial properties while blurring individual linkages; thus, it offers
a perturbed, albeit informative, view of the network. Our exper-
imental study confirms that (i) graphs obtained with our scheme
do preserve large-scale structural properties of the original graphs
more faithfully than graphs that have undergone the same amount
of distortion by random perturbation, while (ii) they also pose sat-
isfactory resistance to structural attacks.
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