Flow-Sensitive Type Recovery in Linear-Log Time

Michael D. Adams*, Andrew W. Keep*, Jan Midtgaard†, Matthew Might‡, Arun Chauhan*, and R. Kent Dybvig*

*Indiana University †Aarhus University ‡University of Utah

To appear at SPLASH/OOPSLA’11
Fast type recovery for dynamically typed languages

- Historic goal: to make Lisp compilers competitive (e.g., Steenkiste:91 survey)

- Present relevance:
 - JIT compiler performance
 - Programmer feedback in IDEs
 - Dynamic languages galore: JavaScript, Python, Ruby, Scheme, ...
Examples

... (car x) ...
... (cdr x) ...

(if (pair? x)
 (begin ... (car x) ...)
 (begin ... (cdr x) ...))

(if (... (my-pair? x) ...)
 (begin ... (car x) ...)
 (begin ... (cdr x) ...))
Related work: tagging

Dynamically typed languages *tag* values with their type, in order to test it at run time.

Steenkiste:Topics91 surveyed tagging techniques. He classified tagging operations into four primitives:

- *tag insertion*,

- *tag extraction*,

- *tag removal*, and

- *tag checking*.

Steenkiste’s conclusion: the latter is the most expensive (adding 11–24% to run time)
Related work: tagging optimization

Henglein (LFP’92): an $O(n^{\alpha(n)})$ tagging optimization algorithm.

Goal: eliminate *tag insertion* and *tag removal*

Means: unification

Performance:

- eliminates $\sim 40\%$ of dynamic tag insertions
- and $\sim 55\%$ of dynamic tag removals

Closely related, albeit a slightly different problem
Context and contribution

- Type recovery for Scheme
- Optimization angle: eliminate redundant *tag checks*
Context and contribution

- Type recovery for Scheme
- Optimization angle: eliminate redundant *tag checks*
- Result: An $O(n \log n)$ time flow analysis algorithm.
Context and contribution

- Type recovery for Scheme
- Optimization angle: eliminate redundant *tag checks*
- Result: An $O(n \log n)$ time flow analysis algorithm.
- Chez Scheme implementation:
 - Optimization enabled by default
 - Large input programs
 - Computer generated code (e.g., Scheme macros)
Outline

- From data-flow analysis to 0CFA
- From 0CFA to sub-0CFA
- From flow-insensitive to flow-sensitive CFA
- Efficient flow-sensitive CFA
- Implementation and benchmarks
Data flow analysis and complexity

Work-list based data-flow analysis algorithm:

\[W := \{ e | e \in Prog \} \]

\[\text{while } W \neq \emptyset \]

\[e := \text{dequeue}(W) \]

\[\text{compute } e.\text{out}(e.\text{in}) \]

\[\text{if } e.\text{out} \text{ changed} \]

\[\text{for outgoing edges } e \rightarrow e' \]

\[\text{compute } e'.\text{in}(e.\text{out}) \]

\[\text{enqueue}(e') \]

Time complexity: \(O(|L|(N + E)) \)

(under the usual finite lattice and monotonicity assumptions)
0CFA can also be cast as a work-list based algorithm:

\[W := \{ e \mid e \in \text{Prog} \} \]

\[\text{while } W \neq \emptyset \]

\[e := \text{dequeue}(W) \]

\[\text{compute } e.\text{out}(e.\text{in}) \]

\[\text{if } e.\text{out} \text{ changed} \]

\[\text{for outgoing edges } e \rightarrow e' \]

\[\text{compute } e'.\text{in}(e.\text{out}) \]

\[\text{enqueue}(e') \]

with dynamic addition of call and return edges

and where \(\hat{r} \in \{\bot, \top\} \) and \(\hat{v} \in \{\lambda x_1.e_1, \lambda x_2.e_2, \ldots\} \).

Time complexity: \(O(|L|(N + E)) = O(n(n + n^2)) = O(n^3) \)
Sub-0CFA and complexity

Sub-0CFA is a faster and more approximate CFA variant (Ashley-Dybvig:98).

It works over a flat lattice of singleton lambdas:

\[
\lambda x_1.e_1 \quad \lambda x_2.e_2 \quad \lambda x_3.e_3 \quad \cdots \quad \lambda x_n.e_n
\]

where \(\top \) denotes “any lambda”

Time complexity: \(O(|L|(N + E)) = O(3(n + n)) = O(n) \)
Technical question: how do you apply \top?

Answer: (modularity trick due to Shivers)

track keep of 'escaping lambdas'.

\top and escape trigger each other:

- If e_0 of a call site $e_0 \ e_1$ is \top, then operand e_1 escapes
- If a function $\lambda x. e$ escapes, then x is \top
Flow-Sensitive vs. Flow-Insensitive Analysis

\[
\lambda x \\
\text{car } x \\
\text{cdr } x
\]
Standard 0CFA is **flow-insensitive**: Different occurrences of the same variable are not distinguished.
Flow-Sensitive vs. Flow-Insensitive Analysis

\[
\lambda x \\
\quad x: T \\
\text{car } x \\
\quad x: PAIR \\
\text{cdr } x \\
\quad x: PAIR
\]

Hence we need a **flow-sensitive** CFA to distinguish different occurrences of the same variable

(Mogensen:HOSEC00)
Flow-sensitive sub-0CFA as a work-list based algorithm:

\[
W := \{ e \mid e \in Prog \}
\]

while \(W \neq \emptyset \)

\[
e := \text{dequeue}(W)
\]

compute \(e.\text{out}(e.\text{in}) \)

if \(e.\text{out} \) changed

\[
\text{for outgoing edges } e \to e' \\
\text{compute } e'.\text{in}(e.\text{out}) \\
\text{enqueue}(e')
\]

where \(\hat{r} \in \{ \bot, \top \} \), \(\hat{\rho} \in \text{Var} \to \hat{\text{Val}} \) and

\(\hat{v} \in \hat{\text{Val}} = \{ \text{TRUE}, \text{FALSE}, \text{PAIR}, \ldots, \lambda x_1.e_1, \lambda x_2.e_2, \ldots \} \)

Time complexity: \(O(|L|(N + E)) = O(n(n + n)) = O(n^2) \)
Idea: move information more efficiently between occurrences of the same variable. This is the job of the skipping function.

Given an expression \(e \) in context \(C \), the information about \(x \)'s type after \(C \) is a function of the information about \(x \)'s type after \(e \) and \(x \)'s type before \(C \) (assuming \(C \) does not mention \(x \)).
Assuming e_1 and e_2 do not mention x:

$$ (\text{if (pair? x) e}_1 e_2) $$

If, e.g, e_1 can only give true and e_2 can only give false
Assuming e_1 and e_2 do not mention x:

$\text{(if (pair? x) } e_1 e_2)\text{)}$

If, e.g., e_1 can only give false and e_2 can only give true
Skipping function, examples

\((\lambda\ x.e)\)
Skipping functions in general

Assuming C does not mention x:

In general: a combination of knowledge about x that depends on the flow into C and e
With only a (small) finite number of combinations a context skipping function has a canonical form $\mathcal{V}_{C,e}$

Combining context skips:

$$\mathcal{V}_{C_2C_1,e} = \mathcal{V}_{C_2,C_1[e]} \circ \mathcal{V}_{C_1,e}$$

Idea: cache context skipping functions

A cache entry $\mathcal{V}_{C,e}$ is shared for all variables not mentioned in C.

Once more flow information is learned about C or e we update the cache.
With the cache we can quickly move information across C in $O(1)$ time

Intuitively, there are n choices for C and e, hence the cache size would be $O(n^2)$.

Idea: cache less, but enough information:

- $O(n \log n)$ entries
- any entry can be recomputed in $O(\log n)$ time
- entry updates only require $O(\log n)$ time
Cache, diagrammatically

\[\begin{align*}
\mathcal{V}_{C_1 \ldots C_4, e_5} & \quad \mathcal{V}_{C_1, e_1} \quad \text{if}_0 \\
\mathcal{V}_{C_1 C_2, e_3} & \quad \mathcal{V}_{C_2, e_2} \quad \text{if}_1 \quad e_1^t \quad e_1^f \\
\mathcal{V}_{C_1 \ldots C_4, e_5} & \quad \mathcal{V}_{C_3, e_3} \quad \text{if}_2 \quad e_2^t \quad e_2^f \\
\mathcal{V}_{C_3 C_4, e_5} & \quad \mathcal{V}_{C_4, e_4} \quad \text{if}_3 \quad e_3^t \quad e_3^f \\
\mathcal{V}_{C_1 \ldots C_8, e_9} & \quad \mathcal{V}_{C_5, e_5} \quad \text{if}_4 \quad e_4^t \quad e_4^f \\
\mathcal{V}_{C_5 \ldots C_8, e_9} & \quad \mathcal{V}_{C_6, e_6} \quad \text{if}_5 \quad e_5^t \quad e_5^f \\
\mathcal{V}_{C_5 \ldots C_8, e_9} & \quad \mathcal{V}_{C_7, e_7} \quad \text{if}_6 \quad e_6^t \quad e_6^f \\
\mathcal{V}_{C_7 C_8, e_9} & \quad \mathcal{V}_{C_8, e_8} \quad \text{if}_7 \quad e_7^t \quad e_7^f \\
\mathcal{V}_{C_7 \ldots C_8, e_9} & \quad \mathcal{V}_{C_8, e_8} \quad \text{if}_8 \quad e_8^t \quad e_8^f
\end{align*}\]
What to skip?

The cache tells us *how* to skip a context.

Now, *what* should we skip?
What to skip?

The cache tells us how to skip a context.

Now, what should we skip?

A: skip the longest context not containing the variable in question

This can be answered with a lowest common ancestor algorithm (Aho-al:73, Alstrup-al:04)

It takes linear time to build, and then answers queries in $O(1)$ time.
Flow-sensitive sub-0CFA, revised complexity

$W := \{ e \mid e \in Prog \}$

while $W \neq \emptyset$

 e := dequeue(W)
 compute e.out(e.in)
 if e.out changed
 update skipping function cache
 for outgoing edges $e \rightarrow e'$ //with and w/o skipping
 compute e'.in(e.out)
 enqueue(e')

Time complexity:

$O(|L|(N + E)) = O(1(n \log n + n \log n)) = O(n \log n)$
Implemented for full Scheme as experimental optimization in Chez Scheme to remove run-time type checks

For a standard set of benchmark it removes

- $\sim 69\%$ of type tests in code, corresponding to
- $\sim 55\%$ dynamic (run-time) type checks

The analysis soundly models Scheme’s undefined evaluation order.

By fixing the evaluation order it goes up to $\sim 60\%$.
Empirical complexity analysis

Source node count versus analysis time
Flow sensitivity of sub-0CFA vs. 0CFA

Percentage of dynamic type checks removed
Selected Benchmarks

Percent of type checks removed

- mbooz
- mperm
- nboyer
- normalization
- nqueens
- noku
- nucleic
- parafins
- parsing
- peval
- pi
- pnpoly
- primes
- puzzle
- quicksort
- ray
- readd

Legend:
- Sub-0CFA flow-insensitive
- 0CFA flow-insensitive
- Sub-0CFA flow-sensitive
- 0CFA flow-sensitive
Selected Benchmarks

Percent of type checks removed
Future work

- Must-analysis
- Range analysis
- Forwards/Backwards Abstract Interpretation
- ...
A novel type-recovery algorithm which is both fast ($O(n \log n)$) and effective (eliminating $\sim 60\%$ of dynamic type checks) Suitable for just-in-time compilers etc.