
On Σ-protocols

Ivan Damg̊ard

CPT 2010, v.2

1 An example

Let p be a prime, q a prime divisor in p−1, and g an element of order q in
Z∗p . Suppose a prover P has chosen w in Zq at random and has published
h = gw mod p. A verifier V who gets p, q, g, h can check that p, q are
prime, and that g, h have order q. Since there is only one subgroup of
order q in Z∗p , this automatically means that h ∈< g >, i.e. there exists
w such that h = gw. But this does not necessarily mean that P knows
such a w.

The following protocol suggested by Schnorr gives a very efficient way
to convince V about this:

1. P chooses r at random in Zq and sends a = gr mod p to V .
2. V chooses a challenge e at random in Z2t and sends it to P . Here, t

is fixed such that 2t < q.
3. P sends z = r + ew mod q to V , who checks that gz = ahe mod p,

that p, q are prime and that g, h have order q, and accepts iff this is
the case.

We define proofs of knowledge later on in this note, but intuitively,
if some P ∗, having sent a, could answer two different challenges e, e′

correctly, this would mean that he could produce z, z′ such that gz =
ahe mod p and also gz

′
= ahe

′
mod p. Dividing one equation by the other,

we get that gz−z
′

= he−e
′

mod p. Now by assumption e − e′ 6= 0 mod q,
and so it has a multiplicative inverse modulo q. Since g, h have order q, by
raising both sides to this power, we get h = g(z−z

′)(e−e′)−1
mod p, in other

words w = (z−z′)(e−e′)−1 mod q. So loosely speaking, a cheating prover
who does not know w can only be able to answer at most one challenge
value correctly, since otherwise the argument we just gave would imply
that he was in fact able to compute w after all. Thus the error probabil-
ity for this proof is 1/2t. This is formalized later on, using the standard
definition of proofs of knowledge by Bellare and Goldreich.

On the other hand the protocol is NOT known to be zero-knowledge:
in order for the problem of finding w to be non-trivial in the first place,

q must be (exponentially) large. Furthermore, to achieve negligible error
in a single run of the protocol, 2t must be exponentially large too. In this
case, standard rewinding techniques will fail to apply, because it becomes
too hard for a simulator to guess the value of e in advance. It is therefore
not known if there exists some efficient malicious strategy that the verifier
may follow which, perhaps after many executions of the protocol, enables
it to “steal” w.

The protocol is honest verifier zero-knowledge, however: To simulate,
simply choose at random z ∈ Z∗p and e ∈ Zq and compute a = gzh−e mod
p. Then clearly (a, e, z) has exactly the same probability distribution as
real conversations between the honest prover and the honest verifier. It is
even possible to take any given value e and then produce a conversation
where e occurs as challenge – just choose z at random and compute the
a that matches. In other words, the simulator does not have to insist on
choosing e itself, it can take an e-value as input.

One might argue that honest verifier zero-knowledge is not a useful
property, since it does not make sense in practice to assume that V is
honest. The point, however, is that protocols with this weaker property
can often be used as building blocks in constructions that are indeed
secure against active cheating, as we shall see.

A final practical note: in a real-life scenario, it will often be the case
that p, q are fixed for a long period, so that V can check primality once
and for all, and will not have to do it in every execution of the protocol.

2 Definitions

Based on the Schnorr example, we will now define some abstract proper-
ties for a protocol that capture the essential properties of the example.

First, let R be a binary relation, i.e., R is a subset of {0, 1}∗×{0, 1}∗,
where the only restriction is that if (x,w) ∈ R, then the length of w is at
most p(|x|), for some polynomial p(). For some (x,w) ∈ R, we may think
of x as an instance of some computational problem, and w as the solution
to that instance. We call w a witness for x.

For example, we could define a relation DL by

DL = {(x,w)| x = (p, q, g, h), ord(g) = ord(h) = q, h = gw},

where it is to be understood that p and q are prime, g, h ∈ Z∗p , and
w ∈ Zq. So in this case, R contains the entire set of discrete log problems
of the type we looked at above, together with their solutions.

We will be concerned with protocols of the following form, where x is
common input to P, V and a w such that (x,w) ∈ R is private input to
P :

1. P sends a message a.
2. V sends a random t-bit string e.
3. P sends a reply z, and V decides to accept or reject based on the data

he has seen, i.e. x, a, e, z.

We will assume throughout that both P, V are probabilistic polynomial
time machines, so P ’s only advantage over V is that he knows w.

Definition 1. A protocol P is said to be a Σ-protocol for relation R if:

– P is of the above 3-move form, and we have completeness: if P, V
follow the protocol on input x and private input w to P where (x,w) ∈
R, the verifier always accepts.

– From any x and any pair of accepting conversations on input x,
(a, e, z), (a, e′, z′) where e 6= e′, one can efficiently compute w such
that (x,w) ∈ R. This is sometimes called the special soundness prop-
erty.

– There exists a polynomial-time simulator M , which on input x and a
random e outputs an accepting conversation of the form (a, e, z), with
the same probability distribution as conversations between the honest
P, V on input x. This is sometimes called special honest-verifier zero-
knowledge.

It should be clear that the above example by Schnorr is a special case
of this definition. The point, however, is that many such examples exist.
And so any protocol we can build using Σ-protocols as subroutines will
automatically work no matter which example protocol we use.

Define LR to be the set of x’s for which there exist w such that (x,w) ∈
L. Then the special soundness property implies that a Σ-protocol for R is
always an interactive proof system for LR with error probability 2−t. This
is also the case for our example relation DL. Here, however, this is not so
interesting because the verifier could very easily check membership in LR
on his own. However, even if deciding membership in LR is easy, it still
may make sense for P to demonstrate that he knows a w corresponding
to a given x.

Here are some easily verified properties:

Lemma 1. The properties of Σ-protocols are invariant under parallel
composition, for instance repeating a Σ-protocol for R twice in parallel
produces a new Σ-protocol for R with challenge length 2t.

Lemma 2. If a Σ-protocol for R exists, then for any t, there exists a
Σ-protocol for R with challenge length t.

Proof. Let t′ be the challenge length for the given protocol P. Then any
challenge length t shorter than t′ can be implemented as follows: P sends
the first message a as in P. V sends a random t-bit string e. P appends
t′ − t zeros to e, calls the result e′ and computes the answer z to e′ as in
P. V checks z as in P, as if the challenge was e′.

Any challenge length t > t′ can be implemented by first repeating the
given protocol in parallel j times, such that jt′ ≥ t, and then possibly
adjusting down to t as above.

3 Proofs of Knowledge

The standard definition of proofs of knowledge given below was proposed
by Bellare and Goldreich [1]. It should be noted that it is not at all
straightforward to define this notion. The situation is that some arbitrary
prover P ∗ claims to “know” something – but what exactly should this
mean? should we require that the relevant information appears in memory
at some point? or is it OK if it is somehow encoded in the program of
the machine? if so, how can we know it’s really there? The definition
below sidesteps all these problems by instead saying (loosely speaking)
that a machine knows something if it can be used to compute the relevant
information efficiently. Put differently: if you can pull the information out
of P ∗, it must somehow have been in there!

Definition 2. Let κ() be a function from bit strings to the interval [0..1].
The protocol (P, V) is said to be a proof of knowledge for the relation R
with knowledge error κ, if the following are satisfied:

Completeness On common input x, if the honest prover P gets as pri-
vate input w such that (x,w) ∈ R, then the verifier V always accepts.

Knowledge soundness There exists a probabilistic algorithm M called
the knowledge extractor. This M gets input x and rewindable black-box
access to the prover and attempts to compute w such that (x,w) ∈ R.
We require that the following holds: For any prover P ∗, let ε(x) be the
probability that V accepts on input x. There exists a constant c such
that whenever ε(x) > κ(x), M will output a correct w in expected time
at most

|x|c

ε(x)− κ(x)

where access to P ∗ counts as one step only.

One can think of the error κ() as the probability that one can convince
the verifier without knowing a correct w. Being better than that requires
some ability to actually compute w, and computing w gets more efficient,
the better you are at convincing V .

Based on what we said about Σ-protocols in the beginning, one should
expect that any Σ -protocol for relation R is a proof of knowledge with
knowledge error 2−t, where t is the challenge length. Indeed this is true:

Theorem 1. Let P be a Σ -protocol for relation R with challenge length
t. Then P is a proof of knowledge with knowledge error 2−t.

Proof. Completeness is clear by definition.
For soundness, let H be the 0/1-matrix with a row for each possible

set of random choices ρ by P ∗, and one column for each possible chal-
lenge value e. An entry Hρ,e is 1 if V accepts with this random choice
and challenge, and 0 otherwise. Using P ∗ as black-box and choosing a
random challenge, we can probe a random entry in H. By rewinding P ∗,
we can probe a random entry in the same row, i.e., where P ∗ uses the
same internal random coins as before. Our goal is to find two 1’s in the
same row; using special soundness the resulting two conversations give us
sufficient information to compute a witness w for x efficiently.

All we know is that ε := ε(x) equals the fraction of 1-entries in H.
Note that this gives no guarantees about the distribution of 1’s in a given
row. For instance, if we stumbled across a row with a single 1, we will
never finish if we keep looking in that same row.

We can however make the following observation about this distribu-
tion. Define a row to be heavy if it contains a fraction of at least ε/2 1’s.
By a simple counting argument, we see that more than half of the 1’s are
located in heavy rows. Indeed, let H ′ be the sub-matrix of H consisting
of all rows that are not heavy, and write h′ for the total number of entries
in H ′ and h for those in H. By assumption, the number of 1’s in H is hε
and the number of 1’s in H ′ is smaller than h′ε/2. Then the number g of
1’s in heavy rows satisfies

g > hε− h′ε/2 ≥ hε− hε/2 = hε/2.

Assume for the moment that

ε ≥ 2−t+2,

so that a heavy row contains at least two 1’s. In this case, we will show
that we can find two 1’s in the same row in expected time O(1/ε). This will

be more than sufficient, since 1/ε is less than required by the definition,
namely 1/(ε− 2−t).

Our approach will be to first repeatedly probe H at random, until we
find a 1 entry, a “first hit.” This happens after an expected number of
1/ε tries.

By the observation above, with probability greater than 1/2, the first
hit lies in a heavy row. Now, if it does (but note that we cannot check
if it does), and if we continue probing at random along this row, the

probability of finding another 1 in one attempt is ε/2·2t−1
2t , and therefore

the expected number T of tries to find the second hit satisfies

T =
2t

ε/2 · 2t − 1
≤ 4/ε

tries. The inequality follows from the assumption on ε we made above.
We would therefore be done in O(1/ε) tries, which is good enough, as
argued above.

However, with some probability smaller than 1/2, the first hit is not in
a heavy row. In that case we might spend too much time finding another
1 (if it exists at all!). To remedy this, we include an “emergency break”,
resulting in the following algorithm:

1. Probe random entries in H until the first 1 is found (the first hit).

2. Then start the following two processes in parallel, and stop when
either one stops:

Pr1 Probe random entries in the row in which we found a 1 before,
until another 1-entry is found (the second hit).

Pr2 Repeatedly flip a coin that comes out heads with probability ε/d,
for some constant d (we show how to choose d below), until you
get heads. This can be done by probing a random entry in H and
choosing a random number among 1, 2, ..., d - you output heads if
the entry was a 1 and the number was 1.

Since d is constant, this algorithm certainly runs in expected time
O(1/ε). But of course, what we really want is that Pr1 finishes first since
this will give us the result we want. So we have to make sure that Pr1
gets enough time to finish before Pr2, if indeed the first hit is in a heavy
row.

The probability that Pr2 finishes after k attempts is ε/d(1− ε/d)k−1.
Using the (crude) estimate (1− ε/d)k−1 ≤ 1, we get that the probability
of finishing after k or fewer attempts is at most kε/d. For k = d/(2ε),

this bound is 1/2, so we conclude that the probability that Pr2 needs
more than d/(2ε) trials to finish is at least 1/2. Now choose d “large”,
say d=16. This will mean that with probability at least 1/2, Pr2 finishes
after more than 8/ε tries.

As before, if indeed the first hit is in a heavy row, then with probability
at least 1/2, Pr1 is done after fewer than 2T ≤ 8/ε tries1.

Therefore, with probability greater than 1/2 · 1/2 = 1/4, Pr1 finishes
before Pr2 in this case.

Overall, this procedure finds two 1’s along the same row if we hit a
heavy row and the right process finishes first, which happens with prob-
ability greater than 1/2 · 1/4 = 1/8, and it runs in expected time O(1/ε).

The required knowledge extractor now repeats the above algorithm
until we have success. Since the expected number of repetitions is constant
(at most 8), we obtain an algorithm that achieves its goal in expected time
O(1/ε), as desired.

So what if 2−t < ε < 2−t+2?. We treat this case by a separate algo-
rithm, using the fact that when ε is so small, we are in fact allowed time
enough to probe an entire row. The algorithm we describe then simply
runs in in parallel with the above algorithm.

Define δ by ε = (1 + δ)2−t; so that 0 < δ < 3. Let R be the number
of rows in H. Then we have at least (1 + δ)R 1’s among the R2t entries.
At most R of these can be alone in a row, thus at least δR of them must
be in rows with at least two 1’s. Such a row is called semi-heavy. The
algorithm now does the following:

1. Probe random entries until a 1 is found.

2. Search the entire row for another 1 entry. If no such entry was found,
go to step 1.

To analyze this, note that the fraction of ones in semi-heavy rows is
δ/(1+δ) among all ones and δ/2t among all entries. The expected number
of probes to find a 1 is 1/ε = 2t/(1 + δ). The expected number of probes
to find a 1 in a semi-heavy row is 2t/δ. So we expect to find a one in a
semi-heavy row after finding (1 + δ)/δ 1’s. For each 1 we find, we try the
entire row, so we spend O(2t(1 + δ)/δ) probes on this. In addition, we
spend O(2t/δ) probes on finding 1’s in step 1, so altogether we spend

2t(
1

δ
+

1 + δ

δ
) = 2t

2 + δ

δ

1 This follows from Markovs inequality: a non-negative random variable is less than
twice its expectation with probability at least 1/2.

which is certainly O(2t/δ). But this is no more than the time we are
allowed:

1

ε− κ
≥ 1

ε− 2−t
=

1

(1 + δ)2−t − 2−t
= 2t/δ

4 The OR-proof

One basic construction with Σ-protocols allows a prover to show that
given two inputs x0, x1, he knows w, such that either (x0, w) ∈ R or
(x1, w) ∈ R, BUT without revealing which is the case.

So we assume we are given a Σ-protocol P for R. Assume also that
x0, x1 are common input to P, V , and that w is private input to P , where
(xb, w) ∈ R, where b = 0 or 1. Roughly speaking, the idea is that we will
ask the prover to complete two instances of P, with respect to x0 resp.
x1. For xb, he can do this for real, for x1−b he will have to fake it using
the simulator M . However, if we give him a little freedom in choosing the
challenges to answer, he will be able to complete both instances. More
precisely, consider the following protocol, which we call POR:

1. P computes the first message ab in P, using xb, w as input.
P chooses e1−b at random and runs the simulator M on input x, e1−b,
let (a1−b, e1−b, z1−b) be the output.
P sends a0, a1 to V .

2. V chooses a random t-bit string s and sends it to P .
3. P sets eb = s⊕ e1−b and computes the answer zb in P to challenge eb

using xb, ab, eb, w as input. He sends e0, z0, e1, z1 to V .
4. V checks that s = e0⊕e1 and that conversations (a0, e0, z0), (a1, e1, z1)

are accepting conversations in P, on inputs x0 resp. x1.

Let ROR = {((x0, x1), w)| (x0, w) ∈ R or (x1, w) ∈ R}. Then we have:

Theorem 2. The protocol POR above is a Σ-protocol for ROR. Moreover,
for any verifier V ∗, the probability distribution of conversations between
P and V ∗, where w is such that (xb, w) ∈ R, is independent of b

Proof. It is clear that the protocol has the right 3-move form. To verify
soundness, let two accepting conversations

(a0, a1, s, e0, e1, z0, z1), (a0, a1, s
′, e′0, e

′
1, z
′
0, z
′
1) with s 6= s′

be given. Then clearly it must be the case that for some c = 0 or 1,
ec 6= e′c and then from (ac, ec, zc), (ac, e

′
c, z
′
c) we can compute w such that

(xc, w) ∈ R, by special soundness of P.

Honest verifier zero-knowledge is clear: given s, choose e0, e1 at ran-
dom subject to s = e0 ⊕ e1 and run M twice, on inputs (x0, e0), resp.
(x1, e1).

Finally assume we are given an arbitrary verifier V ∗. Then observe
that the distribution of conversations between P and V ∗ can be specified
as follows: they have the form a0, a1, s, e0, e1, z0, z1, where a0, a1 are dis-
tributed as an honest prover in P would choose them (this follows from
perfect honest verifier zero-knowledge of P). Then s has whatever distri-
bution V ∗ outputs, given x0, x1, a0, a1. And e0, e1 are random, subject to
s = e0 ⊕ e1. Finally, z0 has whatever distribution the honest prover in P
outputs, given that the input was x0 and the first part of the conversation
was a0, e0. A similar conclusion holds for z1. This is trivial for zb and fol-
lows from perfect honest verifier zero-knowledge for z1−b. It is clear from
this specification that the distribution does not depend on b.

By the last claim in this theorem, the protocol POR is what is known
as witness indistinguishable (WI): there are several different values of w
that a prover may know that would enable him to complete the protocol
successfully. But there is no way one can tell from the conversations which
of the possible values he knows. This is a first sign that we can get security
properties that hold for arbitrary verifiers, even starting from a protocol
that is only honest-verifier zero-knowledge.

5 Additional Examples

As one obvious example of a Σ-protocol, one can note that the well-known
protocol for graph isomorphism is in fact a Σ-protocol, albeit not a very
efficient one: to have just one challenge bit, an entire graph, as large as the
input graph, must be sent. What makes Schnorr’s protocol so attractive
is that for an input length of k bits, you can get challenge length k (and
hence error probability 2−k) at a communication cost linear in k. Here
are a couple of examples with similar efficiency:

Let p, q be chosen as in Schnorr’s protocol, and let g, ḡ, h, h̄ ∈ Z∗p be of
order q. Assume P gets as input w where h = gw mod p, h̄ = ḡw mod p.
Consider the following protocol:

1. P chooses r at random in Zq and sends a = gr mod p, ā = ḡr mod p
to V .

2. V chooses a challenge e at random in Z2t and sends it to P . Here, t
is fixed such that 2t < q.

3. P sends z = r+ ew mod q to V , who checks that gz = ahe mod p and
ḡz = āh̄e mod p, that p, q are prime that g, ḡ, h, h̄ have order q and
accepts iff this is the case.

Exercise 1 Prove that this is a Σ-protocol for equality of discrete logs,
more precisely show that this is a Σ-protocol for the relation

{(x,w)| x = (p, q, g, ḡ, h, h̄) and h = gw, h̄ = ḡw}.

- here it is understood that it should also be satisfied that p, q are prime,
that w ∈ Zq, and that g, h, ḡ, h̄ ∈ Z∗p have order q.

Let n be an RSA modulus and q be a prime. Assume we are given
some element y ∈ Z∗n, and P knows an element w such that wq = y mod n.
Consider the following protocol:

1. P chooses r at random in Z∗n and sends a = rq mod n to V .
2. V chooses a challenge e at random in Z2t and sends it to P . Here, t

is fixed such that 2t < q.
3. P sends z = rwe mod n to V , who checks that zq = aye mod p, that
q is a prime, that gcd(a, n) = gcd(y, n) = 1, and accepts iff this is the
case.

Exercise 2 Prove that this is a Σ-protocol for proving knowledge of q’th
roots modulo n, more precisely show that this is a Σ-protocol for the
relation

{(x,w)| x = (n, q, y), y, w ∈ Z∗n, q prime, and y = wq mod n}.

Hint for the soundness property: if you are given e, e′ such that e− e′ 6=
0 mod q, then since q is a prime, this means that gcd(q, e − e′) = 1, and
therefore there exist integers α, β such that αq + β(e − e′) = 1. If you
are given conversations (a, e, z), (a, e′, z′) with e 6= e′, it turns out that
yα(z/z′)β is a good candidate for a correct value of w.

6 Hard Relations

Of course, if it was easy for a given relation R and input x to find w with
(x,w) ∈ R, there would not be much point in having the verifier talk
to the prover. So we define a relation to be hard, if one can efficiently
generate (x,w)’s such that, when given only x, finding a witness w for it
is hard. More precisely:

Definition 3. A relation R is said to be hard, if

– There exists a probabilistic polynomial time algorithm G, called the
generator, which on input 1k outputs a pair (x,w) ∈ R where |x| = k.

– The following holds for all probabilistic polynomial time algorithms
A: consider the experiment where we run G on input 1k, give the x
produced to A, and let wA be the output A produces. Let pA(k) be the
probability that (x,wA) ∈ R. Then pA(k) is negligible in k.

So for instance if we define a generator that picks random primes p
and q such that q|p− 1 and random g, h ∈ Z∗p with ord(g) = ord(h) = q,
then saying that the example relation DL is hard with respect to this
generator is equivalent to the standard discrete log assumption.

With this concept, we can show more about the protocol POR we
constructed above. Although it cannot be shown to be zero-knowledge
when the challenge length is large (no Σ-protocol can), it has some se-
curity against a cheating verifier when based on a hard relation: it turns
out that it has a property known as witness hiding (WH): even a cheat-
ing verifier cannot, by talking to the prover, learn enough to be able to
compute a solution to any of the two public problem instances.

To state this more precisely, let a relation R with generator G be given
and assume R has Σ-protocol P. Consider the following game played by
an arbitrary poly-time verifier V ∗:

– Run G on input 1k to get pairs (x,w) ∈ R. Give w as private input
to the prover P in P.

– Let V ∗ execute P with P an arbitrary (polynomial) number of times
on common input x.

– V ∗ outputs a string w∗.

We are interested in the probability that (xw∗) ∈ R, and we say that V ∗

wins the game if this happens.

Definition 4. P is witness hiding if any poly-time V ∗ wins the above
game with only negligible probability.

We now want to show that POR satisfies this definition, so we need
to define a generator GOR, which we do as follows: Run the generator
G for R twice on input 1k to get pairs (x0, w0), (x1, w1). Choose bit b at
random and output wb. We then have:

Theorem 3. If R is a hard relation, then the protocol POR for ROR is
witness hiding.

Proof. For convenience, we rewrite the above WH game as it would look
in the particular case of POR:

– Run GOR on input 1k to get wb (for random bit b) and give wb as
private input to the prover P in POR.

– Let V ∗ execute POR with P an arbitrary (polynomial) number of
times on common input x0, x1.

– V ∗ outputs a string w∗.

Assume for contradiction that the theorem is false so that some V ∗

wins this game with non-negligibile probability, that is, (x0, w
∗) ∈ R

or (x1, w
∗) ∈ R.

Given V ∗, we will build the following algorithm which will contradict
the assumption that R is a hard relation. The algorithm gets x of length
k as input (as generated by G) and uses V ∗ to try to find a w such that
(x,w) ∈ R. It does the following:

1. Run G on input 1k to get (x̃, w̃) ∈ R.

2. Choose b at random, and set (x0, x1) = (x, x̃) if b = 0 and (x0, x1) =
(x̃, x) otherwise.

3. Now we let V ∗ conduct its interaction with the prover in POR. Here
we play the role of the prover, following exactly the prover’s algorithm
and using our knowledge of w̃. Once V ∗ is done, we output the w∗

that V ∗ produces.

Let ε be the probability with which V ∗ wins. Now, witness indistinguisha-
bility of POR implies that V ∗ has no information on our choice of b.
So since we choose b at random, it is clear that the probability that
(x,w∗) ∈ R, given that V ∗ wins, is at least 1/2. And hence the probabil-
ity that we reach our goal is at least ε/2. If ε is non-negligible, so is ε/2,
and we have a contradiction.

Witness hiding is a weaker property than zero-knowledge which de-
mands that the verifier learns nothing new whatsoever. But still WH is
good enough in many cases, such as for instance in the obvious application
for identification schemes which we look at in the next section.

It is interesting to note that even though POR is WH, this does not
have to be the case for the protocol P we start from. Thus the OR con-
struction is a very economic way of producing extra security: the com-
plexity is only about twice that of P.

7 Identification Schemes from Σ-protocols

We want now construct a secure identification scheme for users U1, .., Un.
Given a hard relation R with Σ-protocol P, this is easily done: to set
up the system, we run the generator G n times on input 1k to get pairs
(x1, w1), ..., (xn, wn). We give wi as private key to user Ui and publish the
list of xi’s.

In order to identify himself, Ui executes P with xi as public input,
playing the role of the prover. Here, we assume that P has been con-
structed such that the length of a challenge is k bits (or at least θ(k)), so
that we are sure that there is an exponentially large number of challenges.
This is always possible, as we have seen. We also assume that P is WH.
As we have seen this can be achieved by the OR-construction, if P does
not have this property already.

Now, by completeness, Ui will always succeed. Moreover, the sound-
ness and WH properties imply that any adversary A who first gets to
do the protocol as verifier with Ui (following any strategy he wants) still
cannot do the protocol as prover with non-negligible success probability.
Or more precisely, if he could, this would imply that he could in fact
compute wi on his own. To see this, consider the following algorithm:

1. Let A play verifier against Ui as many times as he wants.

2. Consider the knowledge extractor M guaranteed to exist by the fact
that the protocol is a proof of knowledge with soundness error 2−k

(see Theorem 1). Let M interact with A (in its current state after
having talked to the honest prover)

3. Let wi be M ’s output. Output wi.

If A’s success probability when acting as prover is non-negligible, say
greater than 1/f(k) for some polynomial f(), then this algorithm returns
a correct wi in expected polynomial time. This is because the definition
of knowledge soundness guarantees that M succeeds in expected time
proportional to 1

1/f(k)−2−k wich is certainly less than a polynomial for all

large enough k (and is in fact approximately equal to f(k)).

In other words, this is an efficient algorithm that first interacts with
the prover on input xi and then computes wi such that (xi, wi) ∈ R, and
this contradicts the WH property of P.

There is one potential problem in practice with this: we have assumed
that the attack takes place in two phases: first A tries to get information
from the honest prover Ui, and then A tries to impersonate the prover
towards the honest verifier. In this last phase A is on his own and cannot

get help from the honest prover. This may not always be the case in
real life. Suppose Ui is identifying himself to a corrupt verifier Ṽ , who
is colluding with A while he is trying to impersonate Ui towards honest
verifier V . Now, every time Ui sends a message to Ṽ , this is immediately
relayed to A who sends it to V , while messages from V are relayed in a
similar way back to Ui. Clearly, this will lead V to accept. Now, if for
instance Ui thinks he is making a purchase in some store (say, owned
by Ṽ), the attack could have the effect that A is in fact spending Ui’s
money somewhere else. This is known as the mafia-fraud or the man-in-
the-middle attack.

So is this identification scheme flawed? Actually, it isn’t! Notice that
the protocol correctly demonstrates to V that Ui is alive ”somewhere out
there”. By just relaying messages from one party to the other, the two
cheating parties are essentially reducing themselves to a communcation
channel between the honest prover and verifier. The protocol cannot be
held responsible for the fact that the communcation channel turns out to
be different from what the honest players might have expected.

Put differently, the problem is not that the protocol is wrong, but
rather that the security it was designed to achieve is not sufficient for
the practical scenario sketched above. Some thought on the scenario will
show that the problem comes from the fact that the prover has no way to
distinguish one verifier from the other: we have not assumed that verifiers
have identities or public keys. We therefore have to modify the set-up and
protocol, in order to change this.

To this end, we will assume that provers as well as verifiers have public
keys, and (as before) that it is always possible to determine the public key
of a player with a given name. We then modify the protocol as follows:
When prover Ui wants to identify himself to Uj , they first exchange their
identities and determine each other’s public keys xi, xj . Now, instead of
proving that he knows wi, Ui will use the OR-construction to prove that
he knows wi or wj . Note that this proof will be convincing to an honest
Uj : he knows wj himself and no one else does, so the only other prover
who could do this protocol successfully is Ui.

Now consider the scneario from before: A is trying to impersonate
Ui towards honest Uv, and simultaneously Ui is proving his identity to
corrupt Ũj . Note first that Uv is expecting to see a proof that A knows
wi or wv. The proof given simultaneously by Ui does not directly help
because it is different, nemaly a proof of knowledge of wi or wj . In fact,
it’s even better: even though Ũj is corrupt, we can reasonably assume
that he knows his own private key wj . With this knowledge, the proof

given by Ui can be simulated perfectly, by WI of the protocol: knowledge
of wi or wj will suffice to do it, and one cannot tell which one is used. So
in fact, the attack can be carried out without Ui participating at all, and
we have already seen that no attack of this type can be successful.

One way to describe this idea is that it gives a way for the prover to
target his proof at a particular verifier such that only this party will be
convinced. It is important to understand that the solution only works in
practice if the prover can correctly determine who to target. If for instance
the protocol is carried out by the prover’s mobile phone in some shop, it
is not clear that the phone could on its own determine which shop it is in.
It will most likely receive a name and certified public key from the shop’s
machine. It should then on the display show the name to the human user
who can interrupt if the name does not correspond to the physical shop
we are in.

7.1 Better to use signatures?

Using the examples of Σ-protocols we have seen in the identification
scheme above, one gets a genuinely practical solution. One might wonder,
however, if it could not be solved in a simpler way using a secure signature
scheme: suppose Ui has a public/private key pair (pki, ski) for a secure
signature scheme. The a verifier could choose a challenge c, and require
Ui to prove his identity by returning his signature on c, sigski(c). This
can be checked using the public key. If the verifier makes sure to choose
c such that it has not been used before, say by choosing it randomly
from a large enough set, simple replay of signatures is not a problem.
And security of the signature scheme exactly implies that without ski, an
adversary cannot sign anything that the real signer did not sign already,
not even if the adversary gets to choose what should be signed.

This may seem like a conceptually simpler and slightly more efficient
solution, since it uses only 2 messages, and not 3 as the Σ-protocols
do. There is one very important difference, however, in relation to user
privacy: if Ui produces a signature to prove himself, this signature can
later be shown to anyone by the verifier, proving that he actually talked
to Ui. Even if the protocol prescribes that c should be chosen at random,
the verifier could choose to compute it as a hash value of time, date and
place, which allows him to get a proof of the whereabouts of Ui.

This may not be desirable as it potentially violates Ui’s privacy. The
property is sometimes called deniability – what we have seen above is that
identification using signatures is not deniable. In contrast, identification
using Σ-protocols and OR-proofs is deniable: the verifier could always

simulate the protocol on his own using his own secret key, and hence
showing a transcript of the protocol is not convincing proof that he talked
to Ui.

8 Zero-Knowledge from Σ-protocols

For completeness, we sketch a construction allowing to make an efficient
zero-knowledge protocol from Σ protocol P for a hard relation R. As
above, we may assume without loss of generality that P is WH. Now
suppose we have public input x and private input w to prover P . The
protocol goes as follows:

1. V runs generator G on input 1k, where k is the length of x, to get
(x′, w′) ∈ R.

2. V sends x′ to P and proves using P that he knows w′. Note that here
V plays the role as prover, and P plays verifier.

3. If P accepted in the previous step, P uses the OR-construction to
prove that he knows w or w′.

We only sketch the proof that this works. Zero-knowledge: consider a
simulator playing against a verifier V ∗. Roughly speaking, if V ∗’s strategy
is such that he convinces P in step 2 with only negligible probability, then
protocol and simulation stops there essentially always. Otherwise, we can
use rewinding of V ∗ to extract a w′ that is good w.r.t. x′ in the same
way as in the previous section. Then step 3 can be simulated by just
following the protocol using the knowledge of w′. By WI, no one can tell
the difference to what the prover does, despite the fact that he uses w to
do the proof.

Soundness is still OK, if we adopt a “cryptographically secure” variant
of soundness: to extract w from some successful prover P ∗, we just follow
V ’s algorithm in steps 1-2, and then use rewinding in step 3 to extract a
value w∗, which must satisfy that (x,w∗) ∈ R or (x′, w∗) ∈ R. However,
the latter case only happens with negligible probability because the proof
given in step 2 is WH and R is a hard relation. So this shows that P ∗

must know w to be successful. Note that by interleaving the moves, a
total of 4 moves suffices.

We note without proof that there is an equally efficient variation of
this protocol that satisfies soundness as we have defined it earlier in these
notes.

9 Commitment Schemes from Σ-protocols

Assume we are given a hard relation R with generator G and Σ protocol
P. Assume also that it is easy to check membership in LR, that is, given
x, it is easy to decide if there exists w such that (x,w) ∈ R.

With this set-up, we can build a perfectly hiding commitment scheme,
which is efficient and allows commitment to many bits, if P is efficient:

Set-up V runs (in private) generator G on input 1k to get (x,w) ∈ R,
sends x to P who checks that x ∈ LR.

Commit To commit to a t-bit string e, P runs the simulator M on input
x, e to get (a, e, z), and sends a to V .

open To open the commitment, P sends e, z to V , who checks that
(a, e, z) is an accepting conversation (w.r.t. x).

Theorem 4. The above scheme is a perfectly hiding commitment scheme
with computational binding.

Proof. For the hiding part, note that in real life, P ’s first message is inde-
pendent of the challenge e. Since x ∈ LR, simulation by M is perfect by
definition of Σ-protocols, so hence the a generated by M is uncorrelated
to e. For the binding, if some P ∗ could efficiently output a, and open
it both as e, z and as e′, z′ with e 6= e′, then we would have accepting
conversations in P, (a, e, z), (a, e′, z′), this means by definition that we
can compute w efficiently, and this contradicts the assumption that R is
a hard relation.

10 Non-interactive Σ-protocols and signatures using
random oracles

Imagine a world where all protocol participants have access to a random
oracle. This is an entity that initially chooses (in private) a random func-
tion R : {0, 1}l → {0, 1}t for some l, t. Then any player can send any bit
string a of length l to the oracle which will then return R(a). Since R was
completely random, R(a) is a uniformly chosen string of length t, and is
independent of a. Moreover, seeing the value of R(a) gives no advantage
whatsoever in predicting the value R(b) for b 6= a. However, R is fixed,
so every time someone sends a to the oracle, the answer will be the same
value R(a). This is known as the random oracle model.

It is clear that with such an oracle, the prover in a Σ-protocol can
execute the protocol without talking to a verifier, one can just replace

the verifier’s random choice of challenge by sending the first message
to the oracle, and using the response as challenge. If this generated the
”conversation” (a, e, z), the prover can send (a, z) to the verifier in one
message. The verifier calls the oracle with a as input to get the value of
e, and checks the answer z as it would have done normally.

Could a cheating prover convince the verifier in this game? First thing
to realize is that the prover cannot get an oracle response on a without
calling the oracle, and so in fact he has no information about e before he
has sent a. So this is completely equivalent to talking to a real verifier.
The only difference is that a cheating prover is free to call the oracle as
many times as he wants in the hope of getting some challenge he can
answer. But if the number of challenges is exponentially large, and the
prover only has polynomial time, this is not a feasible strategy.

Also, it is clear that using the random oracle removes any influence
from a cheating verifier, in fact it is equivalent to forcing the verifier to be
honest, because the challenge values are always randomly and indepen-
dently chosen, just like the honest verifier would choose them. And since
we have assumed that Σ-protocols are honest verifier zero-knowledge, Σ-
protocols are automatically zero-knowledge in the random oracle model.
More formally speaking, the definition of zero-knowledge in this model
says that the simulator is allowed to decide what the oracle responses
should be, as long as they have the same distribution as in real life. So
then one can just choose e at random and run the normal simulator M
to get (a, e, z), and define the oracle’s response on input a to be e, and
output (a, z).

This type of construction can also be used to make secure signature
schemes from Σ-protocols: to generate keys we make a pair (x,w) in a
hard relation, and let x be the public key, and w the private key. To sign
a message m, the signer runs the Σ-protocol (in the role of the prover)
computing the first message a. He then calls the random oracle with a,m
as input, and takes the answer e as the challenge. Using his knowledge of
w, he can compute the answer z. The signature is then the pair a, z. In
the random oracle model, one can then prove that breaking this signature
scheme is as hard as computing w from x.

It is reasonable to ask what (if anything) all this has to do with real
life, since obviously no realistic implementation could hope to rely on such
a random oracle? There is no final answer to this, but from a heuristic
point of view it seems that many of the standard one-way hash functions
in use today, such as SHA1 or RIPEMD160 could be used in place of the
random oracle: because of their one-wayness and complexity it seems that

an adversary would have to decide on an input and compute the function
before being able to do any sensible computation that depends on the
output. This is why random oracles are sometimes referred to as idealized
hash functions. But it is important to realize that assuming that a hash
function is ”equivalent” to a random oracle is a heuristic assumption that
cannot be formally proved: the hash function is not random, it is fixed,
known and is not hidden inside an oracle.

In other words, there is no hope of being able to prove that some con-
crete hashfunction could be used to make all Σ protocols non-interactive
in a secure way. On the other hand it may well be possible to show that
using a concrete hash function together with a concrete Σ-protocol actu-
ally works. But no result of this type is known.

Despite these theoretical problems, hash functions are being used in
this way in practice to large extent, simply because the practical advan-
tages of being able to remove interaction, and because the random oracle
model also allows construction of secure signature and encryption schemes
with better efficiency than what is otherwise known. On the positive side,
it should also be noted that most, if not all attacks on practical protocols
using hash functions as subroutines in fact treat the hash function as if it
were a random oracle: one thinks of it as a black box outputting random
values. The point now is that a security proof in the random oracle model
does in fact rule out any attack of this type.

11 Additional Exercises

Exercise 3

Recall that Special Honest Verifier Zero-Knowledge (SHVZK) for a
Σ-protocol means that there exists a simulator M which on input (x, e)
generates a conversation (a, e, z) distributed identically to conversations
between honest prover and verifier with x as common input, and where
the verifier’s challenge is e.

This differs from standard honest verifier ZK, where the simulator
gets only x as input, and is allowed to choose e by itself. One may ask
if SHVZK can be assumed without loss of generality, or at least without
loss of efficiency? The following shows the answer is yes:

Let P be a Σ protocol for relation R with prover P and verifier V ,
except that we only assume the protocol to be HVZK. Show that the
following is a SHVZK Σ-protocol for R.

1. On input x, the prover computes the first message a from P as P
would have done it. Also, choose a random t-bit string e′. Send a, e′

to the verifier.
2. The verifier chooses a random t-bit string e′′ and sends it to the prover.
3. The prover computes e = e′ ⊕ e′′, and computes a valid answer z to e

using P ’s algorithm. Send z to the verifier.
4. The verifier checks if x, (a, e′ ⊕ e′′, z) is an accepting conversation in
P, and acepts/rejects accordingly.

In other words, the new protocol is the same as the old, except that
challenge to answer is determined as the xor of a string chosen by the
prover and one chosen by the verifier.

Exercise 4
Let p, q be chosen as in Schnorr’s protocol, and let g1, g2, h ∈ Z∗p be

of order q. Assume P gets as input w1, w2 where h = gw1
1 gw2

2 mod p.
Consider the following protocol:

1. P chooses r1, r2 at random in Zq and sends a = gr11 g
r2
2 mod p to V .

2. V chooses a challenge e at random in Z2t and sends it to P . Here, t
is fixed such that 2t < q.

3. P sends z1 = r1 + ew1 mod q, z2 = r2 + ew2 mod q to V , who checks
that gz11 g

z2
2 = ahe mod p, that p, q are prime that g1, g2, h have order

q and accepts iff this is the case.

Prove that this is a Σ-protocol for the relation

{(x, (w1, w2))| x = (p, q, g1, g2, h) and h = gw1
1 gw2

2 }.

(in the description of the relation, it is understood that it should also
be satisfied that p, q are prime, w1, w2 ∈ Zq and that g1, g2, h ∈ Z∗p have
order q).

Exercise 5
Consider again the protocol from Exercise 4. Show that for any given

set of public inputs, there are q different pairs (w1, w2) that all satisfy
h = gw1

1 gw2
2 mod p.

The first goal of this exercise is to show that the protocol is witness
indistinguishable, i.e, no matter what a cheating verifier V ∗ does, the
conversation gives no information on which of the q pairs the prover
knows. Note that it is enough to show that given what V ∗ knows after the
protocol (the conversation), each of the q pairs (w1, w2) remain possible
and are equally likely.

So let a conversation C = (a, e, (z1, z2)) on input h be given, and
note that C will always be accepting. Now consider any of the q pairs
(w1, w2). Show that for each such (w1, w2), there exists exactly one pair
(r1, r2) such that if P had used witness (w1, w2) and chose (r1, r2) in step
1 of the protocol, conversation C would result. Conclude from this that
the protocol is witness indistinguishable.

Show the protocol is witness hiding, assuming discrete logarithms are
hard to compute, i.e., no probabilistic poly-time adversary A who sees the
public input and talks to the prover can output a valid pair (w1, w2) with
non-negligible probability. Hint: show that if such an adversary existed,
we could compute the discrete log of g1 base g2 efficiently. This means: you
are given g1, g2. Now choose w1, w2 at random and set h = gw1

1 gw2
2 mod p.

Now do the protocol where we play prover and A plays verifier, on input
p, q, g1, g2, h. Show, using witness indistinguishability, that if A computes
a valid pair (w′1, w

′
2), it will be different from (w1, w2) with large prob-

ability. Finally show that if (w′1, w
′
2) 6= (w1, w2), you can compute the

discrete log of g1 base g2.

12 Notes

The first efficient Σ-protocol was proposed by Schnorr [10] (the first dis-
crete log example in this note). The RSA based example from the exercises
was proposed by Guillou and Quisquater [9]. Damg̊ard [3] showed how to
make commitment schemes from Σ protocols. None of these papers ac-
tually use the concept as such of Σ protocols. This idea of Σ-protocols
as an abstract concept was introduced by Cramer in his PhD thesis [4].
The OR-proof is due to [5] and the identification that is secure against
man-in-the-middle attacks in a public key scenario is due to [7]. In [6]
it is shown how to to use Σ-protocols for signatures without relying on
random oracles. The idea of using a hash function in place of the verifier
to do non-interactive proofs comes from Fiat and Shamir [8], this was
later formalized as the random oracle model by Bellare and Rogaway [2].

References

1. M. Bellare and O. Goldreich: On defining proofs of knowledge: proc. of Crypto 92.
2. M. Bellare and P. Rogaway: Random Oracles are Practical, Proc. of ACM CCS

conference, 1993.
3. I. Damg̊ard: On the Existence of Bit Commitment Schemes and Zero-Knowledge

Proofs, Proc. of Crypto 89
4. R.Cramer: Modular Design of Secure, yet Practical Cryptographic Protocols, PhD

Thesis, University of Amsterdam, 1996

5. R. Cramer, I. Damg̊ard, B. Schoenmakers: Proofs of Partial Knowledge and Sim-
plified Design of Witness Hiding Protocols, Proc. of Crypto ’94.

6. R. Cramer, I. Damg̊ard: Secure Signatures from Interactive Protocols, Proc. of
Crypto ’95.

7. R. Cramer, I. Damg̊ard: Fast and Secure Immunization against Man-in-the-Middle
Impersonations, Proc. of EuroCrypt ’97.

8. A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions to the Identi-
fication and Signature Problem, Proc. of Crypto 86.

9. L. Guillou and J.-J. Quisquater: A Practical Zero-Knowledge Protocol fitted to
security microprocessor minimizing both transmission and memory, Proc. of Euro-
Crypt 88.

10. C. Schnorr: Efficient Signature Generation by Smart Cards; Journal of Cryptology
vol. 4 (3) 1991.

