
Quantum Mechanics Quick Reference

Ivan Damg̊ard

This note presents a few basic concepts and notation from quantum mechanics in very
condensed form. It is not the intention that you should read all of it immediately. The
text is meant as a source from where you can quickly recontruct the meaning of some of
the basic concepts, without having to trace through too much material.

1 The Postulates

Quantum mechanics is a mathematical model of the physical world, which is built on a
small number of postulates, each of which makes a particular claim on how the model
reflects physical reality. All the rest of the theory can be derived from these postulates,
but the postulates themselves cannot be proved in the mathematical sense. One has to
make experiments and see whether the predictions of the theory are confirmed.

To understand what the postulates say about computation, it is useful to think of how
we describe classical computation. One way to do this is to say that a computer can be
in one of a number of possible states, represented by all internal registers etc. We then
do a number of operations, each of which takes the computer from one state to another,
where the sequence of operations is determined by the input. And finally we get a result
by observing which state we have arrived in.

In this context, the postulates say that a classical computer is a special case of some-
thing more general, namely a quantum computer. More concretely they say how one
describes the states a quantum computer can be in, which operations we can do, and
finally how we can read out the result. In this respect, the claim of quantum mechanics
is that this describes the most general form of computation that nature allows.

2 States

The first postulate is that states of a physical system correspond to unit vectors in a
complex vector space.

A state is usually written |φ〉, where φ is the name of the vector. A vector of this form
should be thought of as a column vector, i.e., if |φ〉 ∈ CM , then

|φ〉=

a1

a2

.

.
aM

If the above are the coordinates of |φ〉 with respect to the basis vectors |e1〉,, |eM〉, we
may of course also write |φ〉 as a linear combination of basis vectors:

|φ〉=
M∑
i=1

ai |ei〉

In general the dagger operator † means “transpose complex conjugate”, so |φ〉†, written
as 〈φ|, is a row vector containing the complex conjugates of the coordinates of |φ〉:

〈φ|= (a∗1, ..., a
∗
M)

Thus, the matrix product 〈φ||ψ〉, written 〈φ|ψ〉, is a single number, namely the inner
product of 〈φ| and |ψ〉. The matrix product |ψ〉〈φ| is an n by n matrix, and is called the
outer product.

As a first example of this, think of a 1-bit register in a computer. In a classical com-
puter, only two states are possible, namely 0 and 1. In a quantum computer these are
only 2 out of an infinite number of possible states. More precisely, a quantum bit, or a
qubit is a physical object with states in a 2-dimensional space, the standard basis vectors
are called |0〉, |1〉, and should be thought of as the classical states 0 and 1. In general the
state of a qubit is α|0〉+ β|1〉 where |α|2 + |β|2 = 1. This is also known as a superposition
of 0 and 1. Such a state “contains” both 0 and 1. One may say that it has not decided
yet whether it wants to be 0 or 1. The coefficients α and β measure how much “one-ness”
or “zero-ness” the state contains.

Given two objects in states |φ〉, |ψ〉, say in N , resp. M dimensional spaces V,W , the
joint system has state corresponding to a vector |φ〉 ⊗ |ψ〉. By definition, |φ〉 ⊗ |ψ〉 is a
vector with NM coordinates, namely all (ordered) pairwise products of coordinates of |φ〉
and |ψ〉. We say that |φ〉 ⊗ |ψ〉 is an element in V ⊗W , the tensor product of V and W ,
which has dimension NM .

Usually, when computing with tensor products, the ⊗ symbol is omitted, and we write
|0〉 ⊗ |1〉 = |0〉|1〉 = |01〉. Example: Given two qubits is states α|0〉+ β|1〉, γ|0〉+ δ|1〉, the
joint system is in state

(α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉) = αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉

This also exemplifies the rules for computing with tensor products: the tensor product
behaves from an algebraic point of view exactly like multiplication, which is also why the
⊗ symbol is often omitted. Hence one is always allowed to “multiply out” the parentheses
following normal rules of algebra, and having done this, one is allowed to manipulate
single terms as follows: α|0〉γ|0〉 = αγ|0〉|0〉 = αγ|00〉.

In general, suppose we have a computer containing n qubits. The state of these can
be described in a vectorspace of dimension N = 2n. The standard basis vectors are the
tensor products of all classical states of each of the n qbits. Put another way: n bits
can be in 2n distinct classical states, and these therefore form the basis of the space
in which the state of n quantum bits lives. In standard notation the basis vectors are

|00..0〉, |00...1〉, ..., |11...1〉. This is sometimes also written |0〉, |1〉, |2〉, ..., |N −1〉, where |i〉
is the basis vector corresponding to the bit string that is i in binary notation.

A state in a tensor product space V ⊗W that can be written as |φ〉 ⊗ |ψ〉 is called
a product state. Product states are in general states where one part of the system is
“independent” of the other. For instance, if the system is in state |φ〉 ⊗ |ψ〉, then the first
part of the system remains in state |φ〉 no matter what happens to the pother part. But
it is important to understand that V ⊗W contains many vectors that are not product
states. If a state is not a product state, it is called entangled. For instance, two qubits
may be in the state 1√

2
|00〉+ 1√

2
|11〉, and this state is entangled.

The intuitive reason for this name is the following: the state above describes a system
that contains an equal amount of 00 and 11. There is nothing referring to 01 or 10. So if
we use the interpretation above of a superposition, namely that the system has not yet
decided what it wants to be, it is clear that these two qubits can later decide to be both
0 or both 1, but they can never decide to be 01 or 10. This means that if we measure the
first qubit (see details on measurements below), and get 0 as result, for instance, the other
qubit must also be in state 0. In this way, something we do to the first qubit instantly
affects the other, and this is why such states are called entangled.

Two qubits in state 1√
2
|00〉 + 1√

2
|11〉 is called an EPR pair (named after Einstein,

Podolsky and Rosen). In fact, Einstein came up with this example state to show that
quantum mechanics was wrong: the point is that quantum mechanics predicts that mea-
suring one particle instantly affects the other, no matter how far apart they are. Einstein
believed that this would violate the principle from relativity theory, that information can-
not travel faster than the speed of light. In fact, there is no contradiction, although the
reason for this is rather subtle: measuring one qubit will produce a random bit: 0 or 1
with probability 1/2, and there is no way to bias the result in any particular direction.
Transferring information means we can get a bit given as input and somehow send it to
the other side. If we wanted to use EPR pairs to send information, we would have to make
the measurement result depend on the input bit, and this is not possible.

3 State Changes

The second postulate of quantum mechanics is that a system evolves from one state to
another by being subjected to a unitary linear mapping.

A matrix is unitary if it is a square matrix, every column is a unit vector and the
columns are pairwise orthogonal. A linear mapping is unitary of its matrix is unitary.
A unitary matrix U is invertible and the inverse is U †. The postulate claims that any
such matrix correspond to a physical process that could in principle take place, and any
physical process corresponds to such a matrix. Concretely, if we have system in state |ψ〉
and subject it to a physical process corresponding to a linear mapping with matrix U ,
then the new state is U |ψ〉.

This means that quantum computation is and must be reversible: if we start our
computer in some state |ψ〉, do some operations and arrive in some new state, U |ψ〉, it is

always possible to “undo” this and recreate the state |ψ〉, namely by doing some operations
corresponding to U †. We cannot be sure, however, that we can do so efficiently.

The standard operator or matrix that computes a classical function f : {0, 1}n →
{0, 1}m is called Uf and is defined as follows: it operates on a space of dimension 2n2m.
We write basis vectors in this space as |x, y〉 where x ∈ {0, 1}n, y ∈ {0, 1}m. Uf is described
by its action on the basis vectors: it sends |x, y〉 to |x, f(x)⊕y〉. This is just a permutation
of the basis vectors and so is certainly a unitary operation.

Note that we could not have defined Uf by requiring that it sends |x〉 to |f(x)〉: if f
is not injective, the corresponding linear mapping will not be unitary.

4 Measurements

4.1 Projective Measurements

We first describe so called projective measurements which will be sufficient for quantum
computing. A measurement on an object in vectorspace V is specified by a set of subspaces
W1, ...,Wt with the property that they are pairwise orthogonal and together, they span
the entire space V . In other words, V is the direct sum of the Wi’s. A measurement can
be thought of as asking a system in state |φ〉 ∈ V which subspace it is in. Although the
system may not be in any of the subspaces initially, the measurement forces it to choose
one of the subspaces, as follows:

Let Pj be the linear mapping that projects V on the subspace Wj. The measurement
specified by W1, ...,Wt returns a result in {1, 2, .., t}. To find the probability that result
is i is retured, we look at the projection Pi|φ〉 on the corresponding subspace, and the
probability is the length squared of the projection. In other words, it is the inner product
of this projection with itself:

〈φ|P †i Pi |φ〉= 〈φ|Pi |φ〉.

Here, the last equality follows because Pi is a projection, so P 2
i = Pi and P †i = Pi. Since

|φ〉 is always a unit vector, the probability for all outcomes sum to 1, as they should.
The state after measurement is always decided by the rule: “it’s in the state you

measured it to be in”. Concretely, this means that if the system said it was in subspace
Wj, it really is there, in other words the state is basically the projection Pi|φ〉. However,
a state must have length 1, so the state actually is

1√
〈φ|Pi|φ〉

Pi |φ〉,

i.e., we normalize by dividing by the length of the projection.
Measurements are the only non-reversible operations in quantum mechanics: after

measurement, information about the state before measurement is lost.
The standard measurement in quantum computing is to decide on a basis v1, ..., vN

of the space, and let the subspaces for the measurement be W1, ...,WN where Wi is the

1-dimensional space spanned by vi. Measuring a state |ψ〉 can be described by writing its
coordinates in the basis v1, ..., vN :

|φ〉=

a1

a2

.

.
aN

The measurement in basis v1, ..., vN returns a result in {1, .., N}, result i is returned with
probability |ai|2, and in this case, the state after measurement is ai

|ai|vi.
With a quantum computer, we usually end the computation by a measurement in the

computational basis. This just refers to the fact that the state of a quantum computer
is the state of, say n qbits, and the standard basis for this space corresponds to the 2n

classical states of n bits, as described above. This is called the computational basis. In
this case, the i’th basis vector will often be called |i〉, corresponding to the bit string that
is i in binary notation. The state we have is then in ket-notation

|φ〉=
2n−1∑
i=0

ai |i〉

and the measurement in the computational basis will return result i with probability |ai|2.

4.2 When you measure only part of a system

Suppose you have a state of n qubits, and you are interested in measuring only the first
one of them. A first observation about this is the principle you might call At the end, you
may as well measure everything. Namely, if your state is the final result of some quantum
computation, you may as well assume that all the qubits are measured: if you look only
at the first bit of the classical result, the distribution you will see is the same as if you
had measured only the first bit.

We will prove this for n = 2 (only for simplicity, the generalization to any n is straight-
forward). Let the state be |Ψ〉 =

∑
b1, b2 ∈ {0, 1}αb1b2|b1, b2〉.

Measuring the first bit can described as a projective measurement asking the sys-
tem if it is in the subspace V0 spanned by |00〉, |01〉 or in the subspace V1 spanned by
|10〉, |11〉. This so since states in V0(V1) are superpositions of exactly those classical possi-
bilities where the first bit is 0(1). The projection of |Ψ〉 to V0 is a vector with coordinates
α00, α01, 0, 0 so the square of its length is |α00|2 + |α01|2, so this is the probability that we
measure a 0 as result. Similarly, we measure 1 as result with probability |α10|2 + |α11|2.

If instead we measure both bits, we will, by the general rule in the previous subsection,
get 00 with probability |α00|2, 01 with probability |α01|2, 10 with probability |α10|2 and
11 with probability |α11|2. From this it is clear that the first bit of the result is 0 with
probability |α00|2 + |α01|2, i.e., the same as in the previous experiment.

There is also a different way to describe what happens if you measure only one bit,
a way that is more convenient if your state is not the final result, and if you want to
describe what happens if you compute some more on the remaining bits.

So let us assume that we have a state |Φ〉 for n qubits. We can always write |Φ〉 as:

|Φ〉=
∑

(x1,...,xn)∈{0,1}n
αx1,...,xn |x1, ..., xn〉

Splitting this sum in two according to the value of the first bit, we get

|Φ〉=
∑

(x2,...,xn)∈{0,1}n−1

α0,x2,...,xn |0〉|x2, ..., xn〉+
∑

(x2,...,xn)∈{0,1}n−1

α1,x2,...,xn |1〉|x2, ..., xn〉

From this it follows that we can also write

|Φ〉= α |0〉|Φ0〉+ β |1〉|Φ1〉

where |α|2 + |β|2 = 1 and where |Φ0〉, |Φ1〉 are both legal states for n− 1 qubits, i.e., they
are both unit vectors. From this, we can directly read off the effect of measuring the first
bit: we will get result 0 with probability |α|2 and then the remaining bits will be in state
|Φ0〉 – and we get result 1 with probability |β|2 and then the remaining bits will be in
state |Φ1〉.

This is so, since the measurement splits the space in two subspaces, according to the
value of the first bit. And furthermore, the projections of |Φ〉 on these two subspaces are
α|0〉|Φ0〉, respectively β|1〉|Φ1〉.

This rewriting of |Φ〉 can be used to show the Principle of deferred measurement:
Suppose a qubit in a circuit is measured before the computation is over, and the resulting
classical bit is used to control if a subsequent gate U is executed or not. Then an equivalent
circuit is obtained by pushing the measurement to the end and replacing the classically
controlled U by a quantum Control-U operation. This is essentially what exercise 4.35 in
Nielsen and Chuang says. By letting U be the identity, this covers also the simpler case
where the measured bit is not used to control anything.

4.3 General Measurements

The most general measurements allowed by quantum mechanics can be seen as a gen-
eralization of the projective ones. This is easy to see by rephrasing slightly the way a
projective measurement is defined: to specify a projective measurement, we could just
specify the projection operators P1, ..., Pt, say by giving their matrices in some basis (this
uniquely defines the subspaces we talked about before). The fact that the subspaces are
pairwise orthogonal and span the entire space is equivalent to saying that 1 =

∑
i Pi which

is the same as

1 =
∑
i

P †i Pi

- again because P 2
i = Pi and P †i = Pi. A general quantum measurement is now simply

defined by a set of mappings that are not necessarily projections, but are only required
to satisfy the above equation.

To be more precise, the third postulate of quantum mechanics says that The most
general measurement possible is defined as follows: we need a set of mappings M =
{M1, ...,Mt} satisfying the completeness condition:

1 =
∑
i

M †
iMi

Measuring state |φ〉 with measurement M produces one of 1, 2, ..., t as outcome, the
probability of outcome i is

p(i) = 〈φ|M †
iMi |φ〉

It is easy to see that the completeness condition implies
∑

i p(i) = 1. If the outcome was
i, then the state after measurement is

1√
〈φ|M †

iMi|φ〉
Mi |φ〉.

Because the Mi’s do not have to be projections, a general measurement cannot be directly
interpreted as “asking the system which subspace it is in”. However, any measurement
can be implemented “almost” as a projective measurement, as follows: to measure state
|φ〉, we prepare another known and fixed state |ψ〉, a so called ancilla, and then perform
a projective measurement on |φ〉 ⊗ |ψ〉. By choosing appropriately the state |ψ〉 and the
projections, this can be made to produce exactly the same effect as any given general
measurement M.

If we are only interested in the probabilities of the different outcomes of a measurement,
it sufficient to specify only the mappings Ei = M †

iMi and forget about the Mi’s. The
set of mappings E1, ..., Et is called a POVM (Positive Operator Value Measurement).
The reason for the name is that the Ei’s by construction are guaranteed to be positive
operators. Positive operators are linear operators with real, non-negative eigenvalues, see
the section below for details. It turns out that any set of positive operators E1, ..., Et with∑

iEi = 1 corresponds to some measurement in the way specified here.

5 Normal Operators, the Trace Function and Density Matrices

A vector |v〉is an eigenvector for the linear operator A if A|v〉 = λ|v〉 for some scalar λ,
which is called an eigenvalue.

An operator A is normal if AA† = A†A. The Spectral decomposition theorem says
that A is normal if and only if you can choose an orthonormal basis such that the matrix
of A written in this basis is diagonal. Put another way, there exists a basis consisting of
eigenvectors of A, and if you write A in this basis, the eigenvalues of A will appear on the
diagonal. For a proof see N&C, page 72.

Some special types of normal matrices: A is Hermitian if A = A†, in this case all
eigenvalues of of A are real. A is positive if all eigenvalues of A are non-negative. Note
that unitary operators are also normal, and some are even both Hermitian and Unitary,
such as the X,H and Z gates.

The trace function tr applies to a matrix and is simply the sum of all elements on
the diagonal. It holds in general for matrices A,B and scalars a, b that tr(aA + bB) =
a · tr(A) + b · tr(B) and tr(AB) = tr(BA). From this also follows that the trace is basis
invariant, namely for a unitary matrix U , we have tr(U †AU) = tr(UU †A) = tr(A), so if
we think of U as transforming to coordinates in a different basis, this shows that if we
write A in another basis, the trace is the same. Therefore the trace can be thought of as
a property of a linear operator, not just a property of a matrix.

Thinking of states as being unit vectors is some space is sufficient for quantum com-
puting, but is not sufficient is all scenarios, in particular cases that include communication
or cryptography. Suppose A is about to send a state to B. Suppose she does this by choos-
ing which state to send among a set of states |ψ1〉, ..., |ψt〉, such that with probability pi
the state |ψi〉 is chosen. How can we describe the object A sends? certainly not by single
unit vector. We could of course simply specify the set of pairs {pi, |ψi〉}, this is called an
ensemble. But it turns out that there is a more compact and convenient way to do it,
namely by giving the so called density matrix. For the ensemble {pi, |ψi〉}, the density
matrix is

ρ =
∑
i

pi |ψi〉〈ψi|

The motivation for the density matrix approach is as follows: the only way B can infer any
information on the state he has been sent is to preform some measurement on it. It turns
out that the behavior of any measurement B could possibly do, can be predicted given
only the density matrix. Namely, given measurement M = {M1, ...,Mt}, and density
matrix ρ, the probability of outcome i is

p(i) = tr(M †
iMiρ)

(where tr is the trace operator), and after the measurement, if the outcome was i, we will
have an ensemble with density matrix

ρi =
1

tr(M †
iMiρ)

MiρM
†
i

This is proved in Nielsen and Chuang p.99-100. It is very important to understand that
different ensembles may have the same density matrix. This means that even though A
may prepare a state to send in several different ways (resulting in different ensembles), if
these different methods result in the same density matrix, B will never be able to tell the
difference, since any measurement he can perform will behave the same way, as long the
density matrix is the same. It therefore makes good sense to say that the state A sends is
the density matrix. In other words, we may think of density matrices as a generalization
of the state concept we have seen earlier.

In general, any matrix that is positive and has trace 1 is a valid state in this sense,
i.e., there is an ensemble that would result in this matrix being produced.

An example: if A sends the ensemble {(1
2
, |0〉), (1

2
, |1〉)}, i.e. he flips a fair coin to

decide whether to send |0〉 or |1〉, the density matrix can directly be computed using the
definition to be 1

2
· I, i.e., one half times the identity matrix. Suppose instead A decides

at random to send either |+〉 = 1√
2
(|0〉 + |1〉) or |−〉 = 1√

2
(|0〉 − |1〉) , i.e., the ensemble

is {(1
2
, |+〉), (1

2
, |−〉)}. Again by direct computation one can verify that the same density

matrix results.
In general, two ensembles {pi, |ψi〉}, {qi, |φi〉} are equivalent, i.e., they have the same

density matrix if and only if there exists a unitary matrix with entries uij such that for
every i √

pi |ψi〉=
∑
j

uij
√
qj |φj〉

If the underlying ensemble is such that some pi = 1, i.e., A sends a particular |ψi〉
all the time, we say we have a pure state, and everything reduces essentially to the unit
vector formalism we have seen earlier, namely the density matrix will then be |ψi〉〈ψi|,
but this matrix uniquely defines the vector |ψi〉 and vice versa. In the following, we will
talk about a state as being a density matrix or a vector, choosing whatever is more
convenient (although of course we will have to use density matrices for non-pure states).
This correspondence can also be used to see what happens if a receiver B decides to do
some computation on the state ρ he has received, that is, to apply a unitary transform U
to it. Here, the rule is that:

After applying U to a system in state ρ, the new state is UρU †.

The reason why this is the only reasonable way to define how U acts on a density matrix
is that if the density matrix was actually a pure state |ψ〉, that is, ρ = |ψ〉〈ψ|, then the
state after operating with U should of course be U |ψ〉 which when written as a density
matrix becomes U |ψ〉〈ψ|U † = UρU †.

It may be helpful to think of density matrices as the quantum analogue of a classical
phenomenon: a classical probabilistic algorithm is basically a computer program that
makes random choices underway. As a result, even if the input is fixed, the output is not
any particular value. Instead, we can say that the output is a probability distribution
over possible output values. Clearly, there may be many different algorithms that will (on
this particular input) produce the same output distribution. If some receiver is given the
output value, he has no chance whatsoever of determining which of these algorithms were
actually used.

One may now think of the classical output distribution as corresponding to the density
matrix in the quantum case, and the different classical algorithms correspond to different
ways of preparing the same density matrix.

There is an even more compelling reason why density matrices correspond to prob-
ability distributions: since a density matrix is normal, it can be diagonalized, i.e., there
is an orthonormal basis in which it is diagonal. Since it is also positive and has trace 1,

we see that the diagonal written in this basis defines a probability distribution. This also
shows that there is a standard, so called canonical way to prepare an ensemble resulting
in a given density matrix ρ, namely use the eigenvectors forming the basis in which ρ is
diagonal and use the probabilities appearing on the diagonal.

6 When you only have access to a part of the system

6.1 The partial trace

Consider the familiar EPR state |φ〉 = 1√
2
(|00〉 + |11〉), which is a state for two qbits.

Suppose A prepares such a state and sends one of the qbits to B. Which state is B’s qbit
in? Seen, of course, from B’s point of view, who only has access to the one particle A
sends him.

There is a general rule telling us how to compute this. In general, if we have a state
in the tensor product of two vector spaces A⊗B, then the partial trace TrA is a function
that takes as input a state in A⊗B and outputs a state in B. We say that we trace out
A, and the result is the state as it looks if we have access to only the part of it that resides
in B.

The rule works, assuming we write the state in the form of a density matrix. For
instance, when looking at the state |φ〉 above, we think of it as the matrix |φ〉〈φ| (but it’s
the same state anyway!). Plugging in what φ actually is, we see that

|φ〉〈φ|= 1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

Now, TrA(|φ〉〈φ|) is a density matrix, which will describe exactly the state B is looking
at. For any state of form (|a1〉 ⊗ |b1〉)(〈a2| ⊗ 〈b2|) where |a1〉, |a2〉 ∈ A and |b1〉, |b2〉 ∈ B,
we have that by definition,

TrA(|a1〉⊗ |b1〉)(〈a2|⊗ 〈b2|) = 〈a2|a1〉· |b1〉〈b2|

This is clearly a state that lives in B: it is a complex number times the state |b1〉〈b2|.
Furthermore, TrA is (again by definition) linear, so that means we know all we need to
know to compute TrA(|φ〉〈φ|): Recalling that |00〉 is short for |0〉 ⊗ |0〉, we see that all 4
terms above are in a form where the definition of TrA applies. We obtain:

TrA(|φ〉〈φ|) =
1

2
(TrA(|00〉〈00|) + TrA(|00〉〈11|) + TrA(|11〉〈00|) + TrA(|11〉〈11|))

=
1

2
(〈0|0〉|0〉〈0|+ 〈1|0〉|0〉〈1|+ 〈0|1〉|1〉〈0|+ 〈1|1〉|1〉〈1|)

=
1

2
(|0〉〈0|+ |1〉〈1|)

=
1

2
I

Note that this is the same density matrix or state, that B would see, if A had instead
flipped a fair coin and had sent to B either |0〉 or |1〉 according to the outcome. By what we

said earlier on density matrices, there is no way B can distinguish how A really prepared
the state to send.

The name partial trace can be explained as follows: the state (|a1〉 ⊗ |b1〉)(〈a2| ⊗ 〈b2|)
can also be written as

(|a1〉⊗ |b1〉)(〈a2|⊗ 〈b2|) = |a1〉〈a2|⊗ |b1〉〈b2|

Now, an equivalent definition of the partial trace is as follows:

TrA(|a1〉〈a2|⊗ |b1〉〈b2|) = tr(|a1〉〈a2|) |b1〉〈b2|

From this definition, the name partial trace looks more natural, the two definitions are
equivalent because one can easily verify that tr(|a1〉〈a2|) = 〈a2|a1〉

There is yet another way to express what the partial trace does. This is based on
something called the partial inner product: If we have |a1〉, |a2〉 ∈ A and |b1〉, |b2〉, |e〉, |e′〉 ∈
B, then we define

〈e|(|a1〉〈a2|⊗ |b1〉〈b2|) |e′〉= |a1〉〈a2|〈e|b1〉〈b2|e′〉

This has a bit the same flavor as the partial trace, where this time we trace out B: we
take something that lives in A ⊗ B and produce something that lives only in A. This is
no coincidence - if we let |e1〉, ..., |eN〉 be a basis of B, then∑

i

〈ei|(|a1〉〈a2| ⊗ |b1〉〈b2|)|ei〉 =
∑
i

|a1〉〈a2|〈ei|b1〉〈b2|ei〉 (1)

= |a1〉〈a2|
∑
i

〈ei|b1〉〈b2|ei〉 (2)

= |a1〉〈a2| · tr(|b1〉〈b2|) (3)

In other words, we have in fact computed TrB(|a1〉〈a2| ⊗ |b1〉〈b2|).
We need to note for later that the partial inner product is well defined for any operator

(matrix) M that acts on A⊗B, i.e., we claim that writing something like 〈e|M |e′〉 makes
good sense. This is simply because A⊗ B has a basis where all basis vectors are of form
|a〉⊗ |b〉. In such a basis it is not too hard to see that M can always be written as a linear
combination of matrices of form |a1〉〈a2|⊗|b1〉〈b2|, so then, since the partial inner product
is of course linear, it is clear what 〈e|M |e′〉 should be.

The way in which the partial trace is defined is by no means arbitrary. It is, in fact,
the only way that makes sense. This is shown on page 107 of N&C. The idea is as follows:
if the state ρ in questions lives in a space A⊗B and we make a projective measurement
on only the part that is in A, then this can be described directly from what the postulates
say, if we think of it as a measurement that works on the entire space, except it really
only operates on the part in A. Concretely, this would mean that the observable defining
the measurement M is of form M ′ ⊗ I where M ′ acts on A.

On the other hand, if we want a way to compute from ρ a matrix ρA describing what
the state is if we only only consider the part in A, then ρA should satisfy that applying
M ′ to ρA should behave the same as when we apply M ′ ⊗ I to ρ. It turns out that that
this demand implies that the only way to define ρA is via the partial trace as defined here.

6.2 Quantum operators

Usually, we say that a quantum state evolves by applying a unitary transform to it. This
is true if we have control over and access to an entire system. But if we communicate
a state and something happens to it underway, say some noise on the channel, we need
a more general formalism. The point is that our state interacts with the environment
underway, but the receiver has no access to the entire environment, only to the state that
is received.

So it would be nice, if we could describe what can happen in this situation, referring
only to the state we are interested in and the space in which it lives.

This can be done with the Operator Sum formalism. In this formalism, an quantum
operation E is described as a set of linear mappings E = {E1, ..., Et}, all defined over the
same vectorspace V with the property that∑

i

EiE
†
i = I

In the most general case, the operation E can act on a state (or density matrix) ρ, provided
ρ is also defined over the space V . The state after applying operator E is

E(ρ) =
∑
i

EiρE
†
i

The basic claim here is that if we send a quantum state |ψ〉 over some channel, then no
matter what happens to it underway, the received state can be described as E(|ψ〉〈ψ|) for
some quantum operation E .

The same operation can sometimes be expressed in different ways. In general, two
quantum operations E ,F are equivalent, if and only if we have, for E = {E1, ..., Et},
F = {F1, ..., Ft} that Ei =

∑
j uijFj, where the matrix formed by the uij’s is unitary.

This is Thm. 8.2 in N&C.

A particularly simple and nice case of quantum operations is the case where Ei =√
piUi, where Ui is unitary and the pi’s are non-negative real numbers with

∑
i pi = 1. In

this case what the quantum operation is doing is simple to describe: with probability pi,
it applies the unitary transform Ui to the input state.

Otherwise, the way in which a quantum operation could happen physically, is more
complicated, but can always be described as follows: the environment takes the input state
ρ of, say n qbits and an auxiliary register of m qbits, which without loss of generality
can be assumed to be in state |0m〉. The environment applies a unitary transform U to
ρ ⊗ |0m〉〈0m|. As a result you get the state U(ρ ⊗ |0m〉〈0m|)U †. Then the environment
passes on as output the n qbits that contained ρ before.

The reason why this corresponds to the operator sum formalism above is that, by what
we have seen before, the state of the n first qubits is

Trm(U(ρ⊗ |0m〉〈0m|)U †)

where Trm is the partial trace where we trace out the state of the last m qubits. It is now
possible to compute the operator sum representation of what has happened to the state.
We can do this using the expression from (1) for the partial trace. Let {|fi〉} be a basis
for the space where the m first qubits live. Then we get

Trm(U(ρ⊗ |0m〉〈0m|)U †) =
∑
i

〈fi|U(ρ⊗ |0m〉〈0m|)U † |fi〉=
∑
i

〈fi|U |0m〉ρ 〈0m|U † |fi〉

This is exactly of the form we expect from the operator sum formalism, where we set
Ei = 〈fi|U |0m〉.

The fact to take away from this is that we now have a formula for how one computes
the operator sum representation for a process where some input state ρ together with an
environment in pure state |e0〉 is subjected to unitary operation U . After this, considering
only the space where ρ lives, the state has now changed to E(ρ), where E = {Ei} is a
quantum operation with Ei = 〈fi|U |e0〉, and where {|fi〉} is a basis for the space where
the environment lives,

Finally, note that the operator sum formalism is a natural generalization of unitary
operations: a unitary operation U can be described as a quantum operation FU = {U}.
Indeed, we have by definition that FU(ρ) = UρU † which is identical to the way we have
seen before that unitary operations act on general states.

7 Quantum Circuits are as powerful as Classical Circuits

We first consider the Toffoli gate, this can thought of as a classical gate with 3 input and
output bits, defined as Toffoli(x, y, z) = (x, y, z⊕xy). The Toffoli gate is universal, i.e.,
any classical computable function can be computed using a circuit of Toffoli gates, and
furthermore, since one can simulate a Nand gate, fan-out and other standard elementary
gates using a single call to Toffoli, the number of Toffoli gates needed to compute a
function coincides, up to a constant factor, with standard measures of circuit complexity
of a function. In particular, for Nand,

Toffoli(a, b, 1) = (a, b,¬ab),

and for fan-out
Toffoli(1, a, 0) = (1, a, a).

One detail that will be important is that these simulations of standard gates using
Toffoli requires that we specially prepare some of the inputs in fixed states, and we may
only be interested in one or two of the outputs. This means that a circuit Cf of Toffoli
gates computing function f : {0, 1}n → {0, 1}m will have the following behavior:

C(x, x0) = (f(x), g(x))

where x is the actual input, x0 is a fixed string of bits that contain all those specially
prepared inputs we need to make the Toffoli gates do the right thing, f(x) is the actual

output and g(x) represents the set of values that happens to be on all the other wires.
We are not interested in computing g, but the value sitting there will clearly be some
function of x (which we call g).

We would now like to use the existence of such a circuit Cf for any function f to argue
that there exists a quantum circuit of similar size as Cf that computes the operator Uf .
The good news is that since the Toffoli gate is reversible, we can think of it as a quantum
operator, whose behavior on classical basis states is “the same” as it’s classical definition.
Concretely, we define the quantum Toffoli gate by

Toffoli(|x〉|y〉|z〉) = |x〉|y〉|z ⊕ xy〉

It is easy to see that this just defines a permutation of the basis vectors, so this is indeed
a unitary operation. Therefore, we can think of Cf as a quantum circuit, whose behavior
on classical input is as defined above.

The bad news is that this behavior is not the one we defined for Uf . One might think
that this does not matter, after all we wanted to compute f , and this value is indeed
computed as part of the output. Nevertheless, direct usage of Cf in the quantum case
would not work. If we would only use the circuit on classical input, there would be no
problem, but in general, when we are done, the qubits holding f(x) are entangled with
those holding g(x). For instance, if we place the input register in an equally weighted
superposition of all classical inputs, then we will end in the state

1√
2n

∑
x∈0,1n

|f(x)〉|g(x)〉

With such a state, it will not work to just forget about the qubits holding g(x). If, for
instance, that register is measured, it will collapse to one classical state g(y), for a random
y. But then the first register will also collapse, to f(y), and our nice superposition holding
information about all f -values is gone. So to get anything useful out of this, we would
have to keep the state in the last qubits alive indefinitely, and if we wanted compute f
many times, we would need more and more auxiliary qubits. This is not reasonable: when
a subroutine computes a function using some auxiliary memory, it should be possible to
reuse that memory many times.

To solve this, we add an extra step where we first compute exactly what is expected
from Uf and second, the auxiliary qubits are returned to the state they were in at the
start of the computation. This means in particular that they cannot be entangled with
the qubits holding the result.

To describe this in a simple way, we the observation that the Toffoli gate is its own
inverse. This means that the inverse operation of what the quantum circuit Cf does can be
implemented easily, we simply execute the gates in Cf in the reversed order. The resulting
circuit is called C−1

f . We now have the following algorithm for computing Uf , where we
describe what it does on any classical input strings x ∈ {0, 1, }n, y ∈ {0, 1}m. As usual,
this determines what happens to any input state:

1. We start with input state |y〉|x〉|x0〉 (where x0 is fixed as above), and apply Cf to the
last two registers. We get the state |y〉|f(x)〉|g(x)〉.

2. We apply m C-NOT gates, where each bit in |f(x)〉 gets to act as control bit and
a corresponding bit in |y〉 is target bit. This x-or’s f(x) to y, so we have the state
|y ⊕ f(x)〉|f(x)〉|g(x)〉.

3. Finally, we apply C−1
f to the last two registers, resulting in the state |y⊕ f(x)〉|x〉|x0〉.

Since the last register is returned to its original state, we are allowed to ignore it, as
far as the input/output behavior is concerned, so we really have an implementation of Uf .
If we ignore degenerate cases where Cf has size sublinear in m, the circuit we have built
has size linear in the size of Cf . We therefore have proved:

Theorem 1. For any classical function f : {0, 1}n → {0, 1}m with classical circuit com-
plexity CC(f), there exists a quantum circuit of size O(CC(f)) computing Uf .

8 On variants of CSS codes

Codewords in a CSS code are defined from two classical codes C1, C2 where C2 ⊂ C1 and
C1, C

⊥
2 both correct t errrors. If C1 is a (n, k1)-code and C2 is a (n, k2)-code, then the

CSS(C1, C2) code can encode k1−k2 qubits into n and can correct for arbitrary quantum
operations applied to at most t of the n qubits.

Consider the cosets of C2 in C1, there are 2k1−k2 such cosets. Choose one element from
each coset, to get a set C1/2 = {v1, ..., v2k1−k2} of codewords from C1.

The CSS codewords are defined as

|vk + C2〉=
1√
|C2|

∑
y∈C2

|vk + y〉, vk ∈ C1/2

Suppose we also choose one element in each coset of C1 in the entire set of 2n binary
vectors. Since there are 2n−k1 cosets, we get a set Call/1 = {x1, ..., x2n−k1}. And finally, we
choose one element from the cosets of C⊥2 in the set of all vectors. There are 2n−(n−k2) = 2k2

of those, so we get a set Call/2⊥ = {z1, ..., z2k2}. A useful fact to note is that there is a
1-1 correspondence between pairs (vk, xi) and cosets of C2 in the entire space, there are
2k1−k22n−k1 = 2n−k2 such pairs, and this is indeed the number of cosets of C2 in the entire
space. More concretely, vk, xi designates the coset xi + vk + C2 of C2.

Now, we can define a set of codes that are equivalent to the CSS(C1, C2) code in
terms of error correction capabilities, namely for any x ∈ Call/1, z ∈ Call/2⊥ , we have a
code CSS(C1, C2)z,x where codewords are defined by

|ξvk,z,x〉=
1√
|C2|

∑
y∈C2

(−1)y·z |vk + x+ y〉, vk ∈ C1/2

Note that the codeword |vk + C2〉 defined above is a special case: we have |vk + C2〉 =
|ξvk,(0,..,0),(0,...,0)〉.

The encoding operation for one of the codes CSS(C1, C2)z,x can be described as a
unitary mapping Uz,x that takes as input a basis state of form |k〉|0n−(k1−k2)〉, where k is
a string of length k2 − k1 bits, and outputs

Uz,x |k〉
∣∣0n−(k1−k2)

〉
= |ξvk,z,x〉

To use CSS codes for quantum cryptography, one needs two important facts about
them, that are proved in the exercises:

– The set of states {|ξvk,z,x〉} form an orthonormal basis for the space of n qubits.

– For the state
∑

j∈{0,1}n|j〉|j〉 of n EPR pairs, we have

2−n/2
∑

j∈{0,1}n
|j〉|j〉= 2−n/2

∑
vk∈C1/2,x∈Call/1,z∈Call/2⊥

|ξvk,z,x〉|ξvk,z,x〉

9 Guide to the material on Lo-Chau and BB84 in N&C

9.1 The state you need for a secure key

The first major point is that Alice and Bob could generate a completely secure key if they
could generate exactly the state of n EPR pairs, i.e.

|β00〉⊗m =
1

2m/2

∑
j∈{0,1}m

|j〉|j〉

This is actually clear, if Alice and Bob have exactly this state, they just both measure in
the standard basis, get the same bit string, and since Eve cannot be entangled with Alice
and Bob (if she was, they would have a mixed and not a pure state), there is nothing she
can do to learn any information on the key.

The next point is that it is actually enough to have a (possibly mixed) state ρ that
is close to |β00〉⊗m, in the sense that its so called fidelity with |β00〉⊗m is close to 1. The
fidelity is by definition

〈β00|⊗mρ |β00〉⊗m

it is always between 0 and 1, and almost 1 means the two states are very close. Lemma
12.19 says that if this fidelity is at least 1− 2−s, then the Von Neumann entropy S(ρ) is
exponentially small in s. Furthermore, by the corollary to Holevo’s bound, the information
Eve can learn when Alice and Bob generate a key from ρ, is bounded by S(ρ), i.e., Eve
can learn essentially nothing.

Next, we observe that if Alice and Bob could generate a state which with large prob-
ability is the right state, and else is something arbitrary, then we are in business. As we
shall see, we can generate something which is correct with probability 1 − 2−αn, where
2n is the total number of qubits we send in the protocol, and hence the state we have is
actually

ρ = (1− 2−αn) · |β00〉⊗m 〈β00|⊗m + 2−αn · ρerror

It easy to see that the fidelity of this state with respect to |β00〉⊗m is at least 1 − 2−αn,
so when generating the key from such a state, Eve can learn no more than 2−αn bits of
information about it.

9.2 How to get a good state from one with not too many errors

The actual (modified) Lo-Chau protocol in the book is described as if one can use an
arbitrary quantum error correcting code. It is actually not entirely clear that this would
work, and one should read it as if CSS codes are used, encoding m = k1 − k2 qubits into
n bits. That is, Steps 9 and 10 should be replaced by: Consider the state of the remaining
n qubits as the superposition

2−n/2
∑

vk∈C1/2,x∈Call/1,z∈Call/2⊥

|ξvk,z,x〉
∣∣∣ξ̃vk,z,x

〉

where the ξ̃ indicates that some errors may have been introduced by Eve on Bob’s side.
Alice then measures for z and x and sends the results to Bob. This makes the state collapse
to

2−m/2
∑

vk∈C1/2

|ξvk,z,x〉
∣∣∣ξ̃vk,z,x

〉
Now, if less that t bit and phase flips have occurred, Bob can correct the errors, we then
have the state

2−m/2
∑

vk∈C1/2

|ξvk,z,x〉|ξvk,z,x〉

Finally, Alice and Bob both apply U †z,x on their part of the state (see previous section)
and this results in

2−m/2
∑

k∈{0,1}m
|k〉|k〉

that is, exactly the EPR state we need (we have removed the |0〉’s that are also output).

9.3 How to ensure the number of errors is small

The only assumption we made was that no more than t bits and phase flips occur, so we
now just have to argue that the first part of the protocol ensures that this is the case
except with probability 2−αn. To make this work, one has to replace Step 8 by: if more
than t− εn errors (for a constant 0 < ε < 1) are observed, Alice and Bob abort. We shall
see below why this change is necessary.

The intuition of the first part of the protocol is clear: Alice sends half of 2n EPR pairs.
She selects randomly n of them to serve as the test set, and we check how many errors are
in the test set. If we do not see many errors in the test set, we believe that there were also
not many errors in the set we did not check - the point being, of course, that Eve cannot
not know ahead of time which qubits are in the testset. We now make this intuition more
precise..

How to detect errors As discussed under error correction, although Eve can introduce
arbitrary errors to the qubits sent to Bob, we can always measure the bits in such a way
that we force the error to decide if it wants to be a bit flip, a phase flip, both, or nothing.
Now, a single EPR pair subjected to one of the these 4 possible errors will be changed to
one of the 4 Bell vstates:

No error:
1√
2

(|00〉+ |11〉), X :
1√
2

(|01〉+ |10〉), Z :
1√
2

(|00〉− |11〉), XZ :
1√
2

(|01〉− |10〉)

Since these form an orthogonal basis of the 4 dimensional space for 2 qubits, it is in prin-
ciple possible to measure EPR pairs in the test set, and make them collapse to one of the
4 possibilities. This measurement can be “separated” into two, namely one that only tests
for bit flips and one that only tests for phase flips. To test for a bit flip, we do a projective
measurement defined by splitting the 4-dimensional space in the two subspaces spanned
by { 1√

2
(|00〉+ |11〉), 1√

2
(|00〉 − |11〉)} respectively by { 1√

2
(|01〉+ |10〉), 1√

2
(|01〉 − |10〉)}. In

other words we ask the system to decide if it is in the subspace where a bit flip did, resp.
did not occur. As usual, the subspaces could also be defined by projectors projecting to
those subspaces, and this is exactly what the book does, defining the measurement by
projectors Πbf , I −Πbf . In the same way, we can define a measurement that determines
whether a phase flip occurred, by projectors Πpf , I −Πpf .

It is easy to see that you can do these two measurements in any order you like, and
the joint distribution of the outcomes is the same no matter the order. In fact, at the
end, you will have projected the input to one of the 4 Bell states, in other words you have
done the same as a complete projective measurement. This is what is meant in the book
by “these measurements commute with the Bell basis”. This also means that once we fix
the state Alice and Bob hold after the quantum transmission, there is one fixed (classical)
probability distribution Pbf for the results you get if you would measure all the 2n pairs
for bit flips, and another Ppf for the distribution of phase flips.

Unfortunately, the measurement cannot be done as they are described, they require
that you operate in a coherent way on both qubits in a pair. Alice and Bob are physically
separated and cannot do this. However, Alice and Bob can do something almost as good,
namely they can either both measure in the computational basis |0〉, |1〉 (the Z basis) or
in the diagonal basis |+〉, |−〉 (the X basis). It is clear that if Alice and Bob both measure
in the computational basis, and compare the results, they get exactly the same statistics
out as if they had done the measurement defined by Πbf , I − Πbf , after all, the natural
way to detect a bit flip is if both measure their bit and compare. In the same way if both
measure in the X basis, they detect phase flips with the same output distribution as if
Πpf , I − Πpf had been used. The price is that they cannot test a pair for both bit and
phase flips, because the measurements are now destructive.

Looking at the test set is enough Let us now for a while concentrate on bit flips. If
Alice and Bob test for bit flips as described above in the test subset, we want to argue
that the number of bit flips we would see if we looked for bit flips in the other n positions
is not much larger. More precisely, the event we want to avoid is that, for some constant

ε > 0, when we look for for bit flips inside the test set we see at most t− εn errors, but if
we measure for bit flips outside the test set, we have more than t errors. Call this event
Bad.

Remember that there is a fixed distribution Pbf for the bit flips. We can think of this
as a distribution that produces a string of 2n bits, where a 1 in some position means that
when measuring the corresponding pair of qubits, the system decided to have a bit flip
here, whereas a 0 means no bitflip. Pbf is essentially created by Eve since she decides
what to do to the qubits sent to Bob. If she does nothing, for instance, Pbf will output
the all-zero string with probability 1. Since Eve has no idea which bits are in the test set,
we can assume that Pbf is independent of the choice of test set. This allows us to bound
the probability of Bad. Consider the following two experiments:

– Choose at random n among the 2n positions as test set. Choose bits in the test set
according to Pbf “restricted” to the test set. Then choose bits outside the test set such
that the entire bit string is distributed according to Pbf .

– Choose the entire 2n bit string according to Pbf , then choose a random test set.

The first experiment corresponds exactly to what is done in the protocol: first we look at
the test set, then Bob tries to correct the errors and thereby fixes the string outside the
test set. Note, moreover, that since Pbf is independent of the choice of test set, the two
experiments output identical results, so Bad occurs with the same probability in both
experiments. We can now directly apply the result of Exercise 12.27 (N&C) to the second
experiment, and we obtain

Pr(Bad) ≤ e−cε
2n

for some constant c and all large enough n. This requires that t can be chosen as a constant
times n, say t = µn, and CSS codes indeed allow us to do this. Then we can set δ from
the exercise to be µ− ε, and the result above follows immediately. Of course, an exactly
similar argument can be done for phase flips.

Testing for both bit and phaseflips We need, of course, to test for both bit and phase
flips. The tests we are able to do cannot test the same position for both error types, so we
cannot choose two independent test sets for bit and phase flips, as they would overlap with
large probability. Instead, the Lo-Chau protocol uses the method of applying Hadamard
gates randomly to the qubits sent, and test only for bit flips. Since a Hadamard transform
converts a bit flip to a phase flip and vice versa, what happens is that we in fact test for
both bit and phase flips at the same time.

More precisely, the experiment can be modeled as follows: choose a 2n bit string bbf
according to Pbf and a string bpf according to Ppf . Now, for each bit position, choose
at random whether to leave the bits of bpf and bbf in this position alone or interchange
them. Call the bits strings obtained b′bf and b′pf . Finally, choose n positions for a test set
at random and look at how many 1-bits b′bf has in the test set.

Note that we assume that the decisions to switch bits or not is independent of the bit
strings. This is justified since in real life Eve has no information on whether Alice applied

an H to a given qubit or not. For every such qubit, Eve will see the same state in any
case, namely the mixed state I/2.

Now, in a similar way as above, one can argue that for a constant ε′ < ε and with
exponentially small probability, we will see at most t−εn 1’s in the test set but more than
t − ε′n 1’s in b′bf outside the test set. But moreover, since the decision to switch bits is
independent of the actual bit strings, we expect the number of 1’s in b′bf and b′pf (outside
the test set) to be almost the same, in fact the probability that they will be different by
more than ε′n is exponentially small.

This therefore finally shows that it is exponentially unlikely that the test looks good,
but we have more than t bit or phase flips.

