;:‘ Higher-Order and Symbolic Computation, 11, 399-404 (1998)
‘ © 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The First Report on Scheme Revisited

GERALD JAY SUSSMAN gjs@mit.edu
Massachusetts Institute of Technology, 545 Tech Square, Room 428, Cambridge, MA 02139, USA

GUY L. STEELE JR. guy.steele@east.sun.com
Sun Microsystems Labs, 2 Elizabeth Drive, MS UCHL03-207, Chelmsford, MA 01824, USA

Designs and standards tend to go in cycles. After a specific new design or standard become
established, it is incrementally “improved”—usually by the accretion of features, until it
becomes unwieldy. Then it is time to step back and reassess the situation.

Sometimes a judicious designer can sort through the accumulated set of ideas, discard th
less important ones, and produce a new design that is small and clean. Pascal and Modula-
were produced in this way.

Scheme wasn't like that at all. We were actually trying to build something complicated
and discovered, serendipitously, that we had accidentally designed something that met al
our goals but was much simpler than we had intended.

We thought that Scheme would turn out to be the next in a long series of programming
languages that had been designed at MIT over the course of 17 years. The principal theme
of this series were complex data structures with automatic pattern matching, and com-
plex control structures with automatic backtracking. These languages were specifically
envisioned as tools to support explorations into theorem proving, linguistics, and artifi-
cial intelligence, in much the same way that Fortran was intended to support numerical
computation or COBOL to support business applications.

There was Lisp, of course, designed in 1958 by John McCarthy. Less well-known today is
Victor Yngve's COMIT (1962), a pattern-matching language intended for use in linguistic
analysis. A COMIT program repeatedly matched a set of rules against the contents of a flat,
linear workspace of symbolic tokens; it was a precursor of SNOBOL and an ancestor of such
rule-based languages as OPS5. In 1964, Daniel Bobrow implemented a version of COMIT
in Lisp and (punningly) called the result METEOR. This in turn inspired Adolfo Guzman
in 1969 to design CONVERT, which merged the pattern-matching features of COMIT with
the recursive data structures of Lisp, allowing the matching of recursively defined patterns
to arbitrary Lisp data structures.

In 1969, Carl Hewitt designed an extremely ambitious Lisp-like language for theorem-
proving called Planner, based on the use of pattern-directed procedure invocation and the
use of automatic backtracking as an implementation mechanism for goal-directed search.
It was never completely implemented as originally envisioned, but it spurred three other
important developments: Muddle, Micro-Planner, and Conniver.

The language Muddle (later MDL) was an extended version of Lisp designed in 1970
by Sussman, Carl Hewitt, Chris Reeve, and David Cressey (later work was done by Bruce
Daniels, Greg Pfister, and Stu Galley). One of its goals was to serve as a base for a full-
blown implementation of Planner. (This in itself was an interesting development: Planner,
which was intended to support Al applications too difficult to program “directly” in Lisp,
was itself so complex that it was thought to require a special implementation language.)



400 SUSSMAN AND STEELE

Muddle introduced the lambda-list syntax mark&RTIONAL REST, andAUXthat were
later adopted by Conniver, Lisp Machine Lisp, and Common Lisp.

In 1971, Sussman, Drew McDermott, and Eugene Charniak implemented a subset of Plan-
ner called Micro-Planner. The semantics of the language were not completely formalized
and the implementation did not work correctly in certain complicated cases; for example,
the matcher was designed to match two patterns, each of which might contain variables,
but did not use a complete unification algorithm. (Much later, Sussman, on learning about
Prolog, remarked to Steele that Prolog appeared to be the first correct implementation of
Micro-Planner.) Micro-Planner was successfully used for a number of Al projects, notably
Terry Winograd's SHRDLU system.

The language Conniver was designed in 1972 by Drew McDermott and Sussman in
reaction to certain limitations of Micro-Planner. Intheir papéty Conniving Is Better Than
Planning they argued that automatic nested backtracking was merely an overly complicated
way to express a set of FORALL loops used to perform exhaustive search:

It is our contention that the backtrack control structure that is the backbone
of Planner is more of a hindrance in the solution of problems than a help. In
particular, automatic backtracking encourages inefficient algorithms, conceals what
is happening from the user, and misleads him with primitives having powerful names
whose power is only superficial.

The design of Conniver put the flow of control very explicitly in the hands of the programmer.
The model was an extreme generalization of coroutines; there was only one active locus
of control, but arbitrarily many logical threads and primitives for explicitly transferring the
active locus from one to another. This design was strongly influenced by the “spaghetti
stack” model of Daniel Bobrow and Ben Wegbreit, which provided separate notions of a
data environment and a control environment and the possibility of creating closures over
either. The implementation of spaghetti stacks addressed efficiency issues by allowing
stack-like allocation and deallocation behavior wherever possible. This required a certain
amount of low-level coding. In contrast, Conniver was implemented in Lisp; control and
data environments were represented as heap-allocated Lisp list structures, relying on the
Lisp garbage collector to handle reclamation of abandoned environments.

At about this time, Carl Hewitt was developing his theoraoforsas a model of compu-
tation. This model was object-oriented and strongly influenced by Smalltalk. Every object
was a computationally active entity capable of receiving and reacting to messages. The
objects were called actors, and the messages themselves were also actors. Every comput
tional entity was an actor and message-passing was the only means of interaction. An acto
could have arbitrarily mangicquaintancesthat is, it could “know about” other actors and
send them messages or send acquaintances as (parts of) messages. Hewitt then went
to model many traditional control structures as patterns of message-passing among actors
Functional interactions were modeled with the use of continuations; one might send the
actor named “factorial” a message containing two other actors: the number 5 and another
actor to which to send the eventually computed value (presumably 120). While Conniver
made control points into first-class data, the actors model went to the logical extreme by
makingeverythingoe first-class data.



FIRST REPORT ON SCHEME REVISITED 401

Hewitt and his students developed and implemented in Lisp a new language to make
concrete the actor model of computation. This language was first called Planner-73 but the
name was later changed to PLASMA (PLAnner-like System Modeled on Actors).

It was at this point that we (Sussman and Steele) put our heads together. (Steele had jus
become a graduate student at MIT, but he had been following this progression of language
designs because he had had a part-time job at MIT Project MAC as one of the maintainers of
MacLisp.) We wanted to better understand Hewitt's actors model but were having trouble
relating the actors model and its unusual terminology to familiar programming notions. We
decided to construct a toy implementation of an actor language so that we could play with
it. Using MacLisp as a working environment, we wrote a tiny Lisp interpreter and then
added mechanisms for creating actors and sending messages.

Sussman had just been studying Algol. He suggested starting with a lexically scoped
dialect of Lisp, because that seemed necessary to model the way names could refer t
acquaintances in PLASMA. Lexical scoping would allow actors and functions to be created
by almost identical mechanisms. Evaluating a form beginning with the \eonibda
would capture the current variable-lookup environment and create a closure; evaluating a
form beginning with the wordlpha would also capture the current environment but create
an actor. Message passing could be expressed syntactically in the same way as functiol
invocation. The difference between an actor and a function would be detected in the part
of the interpreter traditionally known apply . A function would return a value, but an
actor would never return; instead, it would typically invokeantinuation another actor
that it knew about. Our interpreter also provided the necessary primitives for implementing
the internal behavior of primitive actors, such as an addition operator that could accept two
numbers and a continuation actor.

We were very pleased with this toy actor implementation and named it “Schemer” because
we thought it might become another Al language in the tradition of Planner and Conniver.
However, the ITS operating system had a 6-character limitation on file names and so the
name was truncated to sim@BCHEMBANd that name stuck. (Yes, the names “Planner” and
“Conniver” also have more than six characters. Under ITS, their names were abbreviated
to PLNRand CNVR We can no longer remember why we ch@®€HEMEather than
SCHMR-maybe it just looked nicer.)

Then came a crucial discovery. Once we got the interpreter working correctly and had
played with it for a while, writing small actors programs, we were astonished to discover
that the program fragments epply that implemented function application and actor
invocation were identical! Further inspection of other parts of the interpreter, such as
the code for creating functions and actors, confirmed this insight: the fact that functions
were intended to return values and actors were not made no difference anywhere in their
implementation. The difference lay purely in the primitives used in their bodies. If the
underlying primitives all returned values, then the user could (and must) write functions
that return values; if all primitives expected continuations, then the user could (and must)
write actors. Our interpreter provided both kinds of primitives, so it was possible to mix the
two styles, which was our original objective. Buttahmbda andalpha mechanismswere
themselves absolutely identical. We concluded that actors and closures were effectively the
same concept. (Hewitt later agreed with this, but noted that two types of primitive actors
in his theory, namely cells (which have modifiable state) and synchronizers (which enforce



402 SUSSMAN AND STEELE

exclusive access), cannot be expressed as closures in a lexically scoped pure Lisp withou
adding equivalent primitive extensions.)
That is how Scheme got started. This led us to three important ideas:

e First, we realized that all the patterns of control structure that Hewitt had described in
terms of actors could equally well be described byttealculus. Thiswas no surprise to
theoreticians, of course, especially those working in the area of denotational semantics,
but Scheme became the vehicle by which those theoretical concepts became much mor
accessible to the more practical side of the programming language community.

e Second, we realized that thecalculus—a small, simple formalism—could serve as
the core of a powerful and expressive programming language. (Lisp had adopted the
A-notation for functions but had failed to support the appropriate behavior for free vari-
ables. The original theoretical core of Lisp was recursion equations, nottakeulus.)

An important consequence of the existence of an interpreter for-tizéculus was that
suddenly a denotational semantics could be regarded as an operational semantics. (Sor
styles of denotational specifications require a call-by-name interpreter rather than the
call-by-value evaluation order used by Scheme. We went on to study this distinction
carefully and settled on call-by-value as the “official” evaluation order for Scheme only
after a fair amount of deliberation and debate.)

e Third, we realized that in our quest for the “ultimate Al language” we had come full
circle. Asthe MIT school had struggled to find more and more powerful ways to express
and manipulate control structure to support heuristic search, we had progressed from
Lisp to CONVERT to Planner to Conniver to PLASMA to a simple variation of Lisp!

In 1976, we wrote two more papers that explored programming language semantics using
Scheme as a frameworkambda: The Ultimate Imperativdrew on earlier work by Peter
Landin, John Reynolds, and others to demonstrate how a wide variety of control structures
could be modeled in Schemd.ambda: The Ultimate Declarativdiscussedambda
as a renaming construct and related object-oriented programming generally and actors
specifically to closures. These ideas in turn suggested a set of techniques for constructing
a practical compiler for Scheme. Steele then wrote the first Scheme compiler as part of the
work for his master’s degree.

Much of the content of these papers was not new; their main contribution was to bridge the
gap between theory and practice. Scheme provided a vehicle for making certain theoretical
contributions in such areas as denotational semantics much more accessible to Lisp hacker:
it also provided a usable operational platform for experimentation by theoreticians.

In this process we learned some great lessons. A¢eculus can be seen as a universal
glue by which compound constructs can be built inductively from simpler ones and a set of
primitives. In particular, if our primitives are functions, then our constructs are functions;
if our primitives are relations, then our constructs are relations; if our primitives are actors,
then our constructs are actors. The essence of the matter is that#leulus provides a
way of abstracting entities of any particular type and then combining such abstractions with
other entities to make new entities of that same type, which are instances of the abstractions
This became apparent to us in, for example, the development of constraint languages. A
A-expression (or its “value”) may be a function (if its application yields a value), but it is



FIRST REPORT ON SCHEME REVISITED 403

more general and more fruitful to regard it as an abstraction. Similarly, a combination is not
always a “function call”; it is more general simply to speak of instantiating an abstraction.
Given the right primitives, the-calculus can serve as a foundation for the abstraction and
instantiation of virtually any kind of complex conceptual structure.

We also were struck by the great importancenafesas a means of reference. Other
notational systems can serve as universal glue, such as combinatory logic or the variant of
the A-calculus that uses de Bruijn numbers instead of names. These other systems can b
used as the basis for programming languages, and indeed are better suited in some way
for machine execution; but, despite the fact that they are computationally equivalent to the
A-calculus in a fairly direct way, as notations they seem to be harder for people to read (and
to write). Naming seems to correspond to some important cognitive mechanism that is, if
not innate, then at least extremely well-developed in our culture Xt¢edculus embodies
a provably coherent theory of naming.

In retrospect, we can also see that some aspects of the initial design of Scheme were
flat-out wrong, most notably the approach to multiprocessing. Synchronization and mutual
exclusion are matters of time, not of space, and are not properly addressed by lexical
scoping, which governs textual structures rather than the dynamics of execution. We also
now believe that Carl Hewitt was right: we would have been better off to have introduced
cells as a separate, primitive kind of object, rather than allowing assignment to any and
every \-bound variable. (Worse yet, the assignment primitive W&&ET, not ASETQ
which exposed the mapping from Lisp symbols to variables in our implementation—a
decision we were later to regret.)

In 1978, we wrote a revised report on Scheme. Since then, to our amazement, Schem:
caught on and spread. Scheme’s small size, roots in-ttedculus, and generally compact
semantic underpinnings began to make it popular as a vehicle for research and teaching
Because it was so small and simple, Scheme could be put up on top of some other Lisp
system in a very short time. Local implementations and dialects sprang up at many other
sites. In particular, strong groups of Scheme implementors and users developed early on a
MIT, Indiana University, and Rice University.

At MIT, under the guidance of Sussman and Hal Abelson, Scheme was adopted for
teaching undergraduate computing. The b&bkucture and Interpretation of Computer
Programs which was developed for this undergraduate course, has been in print since
1984, and is still used at many universities (now in a revised edition).

Once Scheme came into wide use, it began to accrete “improvements”; we are happy
to say that most of these are in fact improvements. Scheme has served as a sturdy bas
for experimentation in language design. Examples of this are a numerical system that
distinguishes between exact and inexact numbers while also supporting arbitrary-precision
integer and rational arithmetic, and the concept of hygienic macros, which can perform
textual substitutions within programs while keeping possible name conflicts under control.

In 1991, Scheme became an IEEE and ANSI standard programming language. But we
knew long before that that Scheme had found its place in the world.

We knew Scheme had made it when other researchers began to use it as an expositor
vehicle in their papers, published in such conferences as ACM POPL and ACM PLDI. We
knew Scheme hagkally made it when researchers no longer cited our papers, but simply
took Scheme for granted as part of the communication infrastructure for programming



404 SUSSMAN AND STEELE

language research. The most gratifying thing to us about Scheme is that it no longer
belongs to us. We are happy to have made a discovery that many other people have foun
useful.



