
Induction
Simon Oddershede Gregersen

gregersen@cs.au.dk

Based on lecture notes by Andrew C. Myers

January, 2019

Induction is a powerful tool for reasoning in mathematics. In the study of programming languages, it is
frequent to encounter inductive reasoning in the form of inductive de�nitions and inductive proofs. In
this note, we present two inductive reasoning techniques, namely mathematical induction and structural
induction.

1 Mathematical Induction

Induction is a method of proving statements about inductively de�ned sets. A set is inductively de�ned
when it is generated from some base elements using some set of constructor operations.

�e most common example of an inductively de�ned set is the set of natural numbers

N = {0, 1, 2, . . .}.

�e set can be generated from the base element 0 and the successor function succwhere succ(x) = x+1.
�at is, the natural numbers can be inductively de�ned by:

1. 0 ∈ N,

2. If n ∈ N then n+ 1 ∈ N.

Nothing else is an element of N. Induction over the natural numbers is o�en called mathematical induc-
tion. �ere are many inductively de�ned sets other than the natural numbers, such as lists, trees and
MiniScala expressions. Section 2 considers induction over such sets.

Example 1. Recall the concept of functional abstraction. A�er ge�ing tired of expressions like 2 · 2,
42 · 42, and 123456789 · 123456789, we can package up the common part of these expressions using
functional abstraction:

def square(x: Int): Int = x * x

In a sense, square packages up in�nitely many potential computations x · x in a single �nite box.
Now, we can do the same sort of abstraction with logical arguments. Induction is an example of

logical abstraction. It essentially allows us to do in�nitely many concrete arguments in a single abstract
argument. For example, suppose we had no built-in integer multiplication and had to construct it using
addition. Consider the following recursive program for multiplication of nonnegative integers:

1



def mult(m: Int , n: Int): Int =

if (n == 0) 0 else m + mult(m, n - 1)

In arguing that this program is correct, we might go through the following thought process for mult(m,
n):

• For any integer m, the program works if n = 0:

mult(m, 0) = if (0 == 0) 0 else m + mult(m, 0 - 1)

= 0.

• If n = 1, the program calls itself recursively on input 0. We just argued that it works for 0, and if
we supply the correct answer in the recursive call, we can argue that it works for n = 1:

mult(m, 1) = if (1 == 0) 0 else m + mult(m, 1 - 1)

= m + mult(m, 0)

= m + 0

= m.

• If n = 2, the program calls itself recursively on input 1. We just argued that it works for 1, and if
we supply the correct answer in the recursive call, we can argue that it works for n = 2:

mult(m, 2) = if (2 == 0) 0 else m + mult(m, 2 - 1)

= m + mult(m, 1)

= m + m

= 2m.

• If n = 3,the programs calls itself recursively on input 2. We just argued that it works for 2, and if
we supply the correct answer in the recursive call, we can argue that it works for n = 3:

mult(m, 3) = if (3 == 0) 0 else m + mult(m, 3 - 1)

= m + mult(m, 2)

= m + 2m

= 3m

and so on. Note that the argument for the base case 0 is di�erent but a�er that, the arguments all look
the same. It is only the numbers that di�er. Using logical abstraction, we can do all these in�nitely many
cases at once. For any n > 0, the program calls itself recursively on input n - 1. Assume that we have
shown that it works for n - 1. If we supply the correct answer in the recursive call, we can argue that it
works for n:

mult(m, n) = if (n == 0) 0 else m + mult(m, n - 1)

= m + mult(m, n - 1)

= m + (n - 1)m

= mn

Note that we were able to make this argument purely symbolically using a symbol n to stand for any
positive number, without knowing what n is. �e argument is therefore valid for any n > 0. �

2



In summary, given a statement P on natural numbers, we can prove P (n) for every natural number
n by the following theorem.

�eorem 1 (�e Principle of Mathematical Induction). For all natural numbers n, let P (n) be a
statement. If

1. P (0) holds, and

2. If P (n) holds, then P (n+ 1) holds

then P (n) holds for all natural numbers.

�e principle of mathematical induction says that in order to prove that a property is true of all natural
numbers, it su�ces to do the following:

1. State what variable n you are doing induction on.

2. Express the property you are trying to prove as a property P of n.

3. Basis: Prove P (0) holds.

4. Induction hypothesis (I.H.): Assume that P (n) holds.

5. Induction step: Show that P (n+ 1) holds without any assumption on what n is.

In a proof by induction, we �rst show that the statement holds for the “smallest” values of our inductively
de�ned set, which for the natural numbers is just 0. �is is the basis. We then want to show that the
statement holds for an arbitrary n + 1 > 0. We do not get to assume anything about n except that it is
positive and that the statement holds for n. �is part of the argument is called the induction step. �e
assumption that the statement holds for n is called the induction hypothesis. Once we have done these
things, we are done; the principle of mathematical induction allows us to conclude that the property holds
for alln. In e�ect, induction provides uswith in�nitelymany results by doing only a �nite amount ofwork.

Recursion and induction are closely related. Induction is o�en used to show that a recursive procedure
computes the correct answer. We saw one examples of this in Example 1 and will see one more in Example
2. �is use of induction relies on equational reasoning (substituing equals for equals) and mathematical
induction.

Example 2. Consider the following function fac for computing the factorial n! = n · (n− 1) · (n− 2) ·
· · · · 2 · 1 · 1 of a number:

def fac(n: Int): Int =

if (n == 0) 1 else n * fac(n - 1)

To argue that this program is correct, we will do induction on n. �e property we need to prove is

fac(n) = n!

Basis: If n = 0 then fac(n) = fac(0) and

fac(0) = if (0 == 0) 1 else n * fac(0 - 1) (def. of fac)

= 1 (eval. of conditonal)

= 0! (def. of !).

3



Hence, the basis is shown.

Induction step: �e induction hypothesis states that fac(n) = n!. We need to show that fac(n + 1) =
(n+ 1)!. As

fac(n + 1) = if ((n + 1) == 0) 1 else (n + 1) * fac((n + 1) - 1) (def. of fac)

= (n + 1) * fac((n + 1) - 1) (eval. of conditional)

= (n + 1) * fac(n) (property of addition)

= (n + 1) * n! (I.H.)

= (n + 1)! (def. of !)

the property follows by the principle of mathematical induction. �

2 Structural Induction

�e importance of recursion and induction is not limited to functions de�ned over the natural numbers.
Rather, the concept of mathematical induction over the natural numbers is an instance of the more general
notion of structural induction over values of an inductively de�ned type. �e following theorem presents
the generalized version of �eorem 1.

�eorem 2 (�e Principle of Structural Induction). For each value t of an inductive data type T , let
P (t) be a statement. If

1. For all of T ’s atomic structures t, P (t) holds.

2. For all of T ’s composites structures t, if P holds for the immediate substructures of t, then P (t) holds.

then P (t) holds for all values of the inductive data type T

Example 3. �e natural numbers, viewed as an inductively de�ned type, may be represented in Scala
using the following case class de�nition:

sealed abstract class Nat

case object Zero extends Nat

case class Succ(n: Nat) extends Nat

Given n ∈ Nat, we know that n is either Zero or Succ(m) for some m ∈ N. Suppose we would like to prove
that a property P holds for every n ∈ Nat: we �rst prove that P (Zero) holds, and then we prove that
assuming P (m) then P (Succ(m)) for every m ∈ Natn.

Consider the following recursive program for addition and multiplication of natural numbers, repre-
sented as an inductively de�ned type:

def add(n: Nat , m: Nat) = n match {

case Zero => m

case Succ(p) => Succ(add(p, m))

}

4



To show that for all n ∈ Nat

add(n, Zero) = n

we will do induction on n.

Basis: For the basis, assume n = Zero. We need to show that add(Zero, Zero) = Zero. �is follow
directly from the de�nition of add.

Induction step: Assume n = Succ(p) and the induction hypothesis add(p, Zero) = p. We need to
show that add(Succ(p), Zero) = Succ(p). As

add(Succ(p), Zero) = Succ(add(p, Zero)) (def. of add)

= Succ(p) (I.H.)

the property follows by the principle of structural induction. �

Example 4. Lists of integers, viewed as an inductively de�ned type, may be represented in Scala using
the following case class de�nition:

sealed abstract class IntList

case object Nil extends IntList

case class Cons(x: Int , xs: IntList) extends IntList

Consider the following recursive functions for concatenating lists and determining the length of lists:

def concat(xs: IntList , ys: IntList): IntList = xs match {

case Nil => ys

case Cons(z, zs) => Cons(z, concat(zs, ys))

}

def length(xs: IntList): Int = xs match {

case Nil => 0

case Cons(_, ys) => 1 + length(ys)

}

To show that the length function distributes over concat we need to show that

length(concat(xs, ys)) = length(xs) + length(ys)

for all IntLists xs and ys. �e proof goes by structural induction on xs.

Basis: Assume xs = Nil. As

length(concat(xs, ys)) = length(concat(Nil, ys)) (from xs = Nil)

= length(ys) (def. of concat)

= 0 + length(ys) (property of +)

= length(xs) + length(ys) (def. of length)

the basis is shown.

5



Induction step: Assume xs = Cons(z, zs) and the induction hypothesis length(concat(zs, ys)) =
length(zs) + length(ys). As

length(concat(Cons(z, zs), ys)) = length(Cons(z, concat(zs, ys))) (def. of concat)

= 1 + length(concat(zs, ys)) (def. of length)

= 1 + length(zs) + length(ys) (I.H.)

= length(Cons(z, zs)) + length(ys) (def. of length)

the property follows by the principle of structural induction. �

6


