1.1

1.2

Lectures on Streaming Algorithms

Qin Zhang
May 13, 2011

Models and Motivations

Models

Standard stream model: m elements from universe of size n, come one by
one.

Goal: compute a function of stream.

Constraints: (1) Limited space (working memory), sublinear in n and m.
(2) Access data sequentially. (3) Process each element quickly.

Two variants: (1) Cash register (2) Turnstile.

Graph stream: elements of the stream are edges. Let n be the number of
vertices. We have m = O(n?). To be able to handle interesting functions,
we typically allow space O(nlog®Y n).

Sliding windows: (1) Sequence-based sliding window: only interested in the
last w elements. (2) Time-based sliding window: only interested in elements
that arrive in the last w time steps.

Motivations

Practical Appeal: Network monitoring (#distinct(sourse, destination) pairs,
top-k heaviest flows), query planning, I /0O efficiency for massive data, sensor
networks aggregation

Theoretical Appeal: Fasy to state problems but hard to solve. Links to com-
munication complexity, compressed sensing, embeddings, pseudo-random
generators, approximation

2 Samplings

2.1 Motivation

Sampling is a general technique for tackling massive amounts of data. For ex-
ample, to compute the median packet size of some IP packets, we could just
sample some and use the median of the sample as an estimate for the true me-
dian. Statistical arguments relate the size of the sample to the accuracy of the
estimate.

2.2 Standard Sampling
e Q: Sampling from a stream of unknown length
e A: Reservoir Sampling
1. Initially s = x4
2. On seeing the t-th element, set s to be x; with probability 1/t.
e Q: Sampling from a sliding window (last w items).

e A: Algorithm:

1. For each x; we pick a random value v; € (0,1).
2. In a window (x;_y41;...;2;) return value x; with smallest v;.

How? Maintain a set of all elements in the sliding window whose value
is minimal among subsequent values.

Cost: O(lognlogw) space expected.
e (Q: Can we make space optimal (O(logn)) and worst case?

e A: Yes. See Optimal sampling from sliding windows by Braverman et. al.
PODS 20009.

2.3 AMS Sampling

e Q: Want to compute some function ., 9(fi) where f; = [{j : z; = i}| is
the frequency of 7 and ¢ is an arbitrary function with ¢g(0) = 0.

e A: Algorithm:

1. Pick J uniformly at random from [m)].
2. Compute R=|{j > J :a; = as}|
3. Let X =m(g(R) —g(R—1))

Cost: O(logm + logn) space (1-run) guarantees E[X] =", 9(fi).

2.3.1 Analysis
E[X] = ZE[X | ay = i|Prfa; = i]
= ZE[Q(R) —g(R=1)[a;=1lf;
- g9(1) — g(0) g(fi) —g(fi—-1\ ,
= Z(—f +oF 7)fz

= Zg(fi)

3 Heavy Hitters

e Q: Let fi = |{j : a; = i}|. How to maintain for each i € [n] an estimate fi

e A: Algorithm [CR-Precis]: Let py, po, ..., p be the first ¢ prime numbers and
define hash functions h;(z) = x mod p;. Next, maintain p;t = O(t*logt)
counters ¢; ; which are initially 0. When a new item e comes, increment
each of ¢; () for j € [t].

At the end, we set f; = ming ¢, (s)-

Cost: set t = O(e 'logn) and the space cost is O(e 2log”n(log1/e +
loglogn)).

e (Q: Can we do better?

e A: Sure. Algorithm[Space-saving, by Metwally et. al. An integrated effi-
cient solution for computing frequent and top-k elements in data streams.
TODS 2006]: We construct an array with 1/e cells. Each cell is of the form
(e, f(e)), where f(e) denotes the estimated frequency of the item e.

When a new item e comes, we have two cases.

1. If e is not in the array, we create a new tuple (e,MIN + 1) where
MIN = min{ f(e;) : €; is in the array}. We always keep the array sorted
according to f(e;), and then MIN is just the estimated frequency of the
last item. If the length array is larger than 1/e, we delete the last
tuple.

2. If e is already in the array. We just increment f(e) by 1 and reinsert
the (e, f(e)) into the array.

Cost: O(1/e).

e A: So what is the merit of the first (cumbersome) algorithm?

e Q: It is useful since it is an linear mapping; it can handle deletions.

Linear mapping is one technique to perform sketching. The basic idea of sketching
is to apply a linear projection “on the fly” that takes high-dimensional data to a
smaller dimensional space. Post-process lower dimensional image to estimate the
quantities of interest. Since it is a linear mapping, it can support “deletions”.

3.1 Analysis of CR-Precis

For any ¢ # 14, there are at most logn functions h; under which 4,7’ collide, by
the Chinese Remainder Theorem. Hence, we deduce that,

ch,hj(i) <tfi+ (Z fz’) log n.

i

J

Thus f; < f; + (mlogn)/t.

4 Distinct Elements

e Q: Compute d = [{j : f; > 0}|. The number of distinct elements.

e A: Algorithms [FM, Flajoet and Martin, FOCS 1983]: let zeros(p) =
max{i : 2 divides p}.

1. Choose a random hash function & : [n| — [n] from a 2-universal family.
Set z = 0.
2. For each new coming item e, if zeros(h(e)) > z, then set z = zeros(h(e));
3. Output 2°705,
Cost: we should repeat it log(1/6) times (i.e. maintain log(1/d) hash func-

tions in parallel) and then take the median to get a successful probability
of 1 — 4. Thus need O(log(1/d)logn) space.

e (): Can we do better in terms of approximation ratio?
e A: Yes. Algorithm [BJKST)]

1. Choose a random hash function & : [n] — [n] from a 2-universal family.
Set z = 0,B = (). Choose a secondary 2-universal hash function
g: [n] = [O(logn/e?)].

2. For each new coming item e, if zeros(h(e)) > z, then

4

(a) set B = BU{g(e)};
(b) if |B] > ¢/€? then set z = 2z + 1 and rehash B.
3. Output |B] 2%

Cost: O(logn + 1/€*- (log1/¢) + loglogn).
e (Q: Can we do better?

e A: Yes. See the optimal algorithm in An Optimal Algorithm for the Distinct
Elements Problem by Kane et. al. PODS 2010.

4.1 Analysis

[FM] Basic intuition is that we expect 1 out of the d distinct elements to hit
zeros(h(j)) > logd, and we don’t expect any elements to hit zeros(h(j)) > logd.
For details, see [LN], page 9.

The median trick. Suppose we know that for a random variable X, with
probability no more than 1/3 (could be replaced by any constant < 1/2), X < q;
and with probability no more than 1/3, X > b. Now if we run k copies of the

algorithm in parallel, thus get & X;s, and then take the median of X;s, say, X.
We have that X € [a,b] with probability at least 1 — 27%®),

[BJKST]| The algorithm is in the same spirit of [FM], except that at the high
end of the “FM hit-array”, they introduced a “buffer” to get a finer estimation.
For details, see [LN], pages 17-18.

5 AMS Estimator for Fj

e Q: How to compute Fy = . |f]|k
the stream?

where f; is the frequency of item j in

e A: Use AMS sampling introduced before (Homework).
e QQ: Better bounds?

e A: Yes. See the optimal algorithm in Optimal Approximations of the Fre-
quency Moments of Data Streams by Indyk and Woodruff. STOC 2005.

e (): Can we do even faster for F3?
o A: Yes. Algorithm: let f; = |{j : a; = i}|.

1. For 1 <i<s =43 and 1 <j < sy = 2log(1/e), generate X;; as
follows:

(a) Choose a random {—1,+1} vector v = {€y,...,€,} from a 4-wise
{—1, 41} vectors family, compute Z = _. € f;.
(b) Let X = Z2.
2. Let Y; = Zz Xi7j/81
3. Output the median of Yjs.

e Q: Why this works? Any general techniques?

e A:Yes. The p-stable distributions. A distribution is p-stable if X1, Xo,..., X, ~
piid. and @ = (ay,...,a,) € R, then a1 X7 + a2 Xo+ ...+ a, X, ~ [|d]|,X
where X ~ p.

For example, let X, Xs,..., X, ~ N(0,1). Then we have a1 X; + a2 X5 +
oot @ X ~ a} 4+ a4+ ...+ a2X where X ~ N(0,1)

Cauchy distribution is 1-stable where the Cauchy pdf is

2 1
T 142"

For details, see P. Indyk Stable Distributions, Pseudo-random Generators,
Embeddings and Data Stream Computation. STOC 2006.

e Q: Then why {+1, —1} works?

e A: Because if Y3,...,Y, €r {+1,—1}, then Y = {Y1,...,Y,} is “close” to
Z=A{%,...,Z,} where Z; € N(0,1) for n — oo.

5.1 Analysis of AMS Estimator for F;
Note that E[¢;] = 0 for all i.

EIX] = BlQ_af)] =) fEIG]+2) fifiBla]Eleg] =) m}=F.

7 7 %

Var[X] = E[X’] - (E[X])>=4) m] m} <2F;.

Z'7j

Now plug in average + median.

Pr([Y; — | > AR < V()

—= < 1/8.

6 Graph Algorithms

6.1 Connectivity

e (Q: Decide whether a graph is connected in small space.

e A: Algorithm:

1. Maintain label ¢(u) for each node u where labels are initially distinct

2. On seeing edge (u;v) with £(u) # £(v), set £(w) for all (u) for all w
with ¢(w) = £(v).

3. The graph is connected iff every node ends up with the same label.

6.2 Test Bipartite Graphs

e Q: Decide whether a graph is connected or not in O(nlogn) space.

e A: The algorithm is similar as connectivity, except that when a cycle is
detected, if it is odd, then we output “No”.

6.3 Spanners

e Q: An a-spanner of a graph G = (V; E) is a subgraph H = (V; E’) such
that for all u,v, dg(u,v) < dg(u,v) < dg(u,v). Can we compute a graph
spanner is small space?

o A: Algorithm:

1. Let E’ be initially empty.
2. On seeing (u,v), set ' = E' U (u;v) if dy(u,v) > 2t — 1.

e (Q: Can we get faster running time?

e A: Yes. Will talk about it next time.

7 K-center
Problem: Cluster a set of points X = (z1,z9,...,2,,) to clusters ¢, ¢, ..., ¢
with representatives ry € ¢1,r9 € ¢a,..., 7% € ¢, to minimize max; min; d(z;, ;).

Solution: We illustrate the algorithm in four steps.
1. First, a doubling algorithm (not necessary in the streaming setting):
(a) When we see (k + 1)-st point in the input stream, suppose that the

minimum pairwise distance is 1, by rescaling the distances.

(b) Then at this point, we know that OPT > 1, where OPT = cost of
optimum clustering

(c) The algorithm now proceeds in phases. At the start of the ith phase,
we know that OPT > d;/2 (d; = 1).

(d) Phase i does the following:

i. Choose each point as the new representative if its distance from
all other representatives > 2d;.
ii. If we are about to choose the (k + 1)-st representative, stop this
phase, and let d; ;1 = 2d;.
iii. If the algorithm ends with w < k clusters, we are good. and we
can just add in some arbitrary cluster. This additional cluster
could be empty or not.

2. The concept of summary. A summary of a stream o = (x1,zs,...) with
x; € U is any set S C U. The cost of a summary is

A(o,S) = maxmind(z,y)

T€T y€eES

We say A is a metric cost if for any streams 0,0 o 7 and their respective
summaries, S, T, we have:

A(Som,T)—A(0,5) <A(conm, T) < A(Som,T)+ Ao, S)

(The more precise notation for A(S o7, T') should be A(o(S) o, T') where
0(.S) is the input where every input x € o is replaced by the corresponding
|hatx generated from S which best represents x).

3. The concept of threshold algorithm. For a summarization cost function A,
A has an a-approximate threshold algorithm A, such that A takes as input
an estimate ¢ and a stream o, and

(a) Either produces a summary S (where |S| = k) s.t. A(0,5) < at
(b) Or fail, proving that VI (where |T'| = k), A(0,T) >t

Note that the doubling algorithm is a constant-approximate threshold al-
gorithm. Let a be this constant.

4. Guha’s (2009) k-center algorithm:

(a) Keep p (such that (1 + €)? = a/e) instances of the A algorithm with
contiguous geometrically increasing thresholds of the form (1 + ¢)°
running in parallel.

(b) Whenever ¢ < p of instances fail, start up next ¢ instances of A us-
ing the summaries from the failed instances the “replay” the stream.
When an instance fails, kill all the other instances with a lower thresh-
old. (Note that the threshold goes up from (1 + €)* — (1 + €)**?.

(c) At the end of input, output the summary from the lowest threshold
alive instances of A.

7.1 Analysis

Idea: we run multiple copies (but controlled in number) of the algorithm corre-
sponding to different estimates of the final cost and we use a “stream-strapping”
procedure to use partially completed summarization for a certain estimate to
create summarization for a different estimate of cost.

Suppose the final threshold, say, t, has been raised by j times. Let o; and .S;
be the i-th portion of the stream and the summary of o; in phase 7, respectively.
Let T be the final summary. The cost of the final output =

A(Sjom,T)+ A(or0090...,5;)

at + Aoy 0090...00;,5;)

at +A(S;—100;,8;)+A(o10030...00j-1,5;_1)
at+et+ Xt +. ..

at + (e/(1 —e))t.

A(oyo0o90...00;0m,T)

IAIA N IACIA

On the other hand, OPT > t/(1 + ¢).

8 Edit Distances

8.1 Edit Distance to Monotonicity

Problem: Compute the minimum #elements to delete such that the rest is a
monotonically increasing sequence.

First talk about the method used in [GJKKO07], without analysis. And then
talk about the improved method used in [EJ08], with analysis.

Intuition: for each element e, if there are quite a lot elements in a certain
range before it are inverse of it, then probably e should be deleted. To further
improve this, we should not not count such “reverse” caused by a (big) element
that is actually been deleted (use an example in the [GJKKO07] paper). That is
why in [EJO8] whether e € R also depends on previous elements in R.

8.1.1 The first algorithm

Define a set R containing all indices ¢ that are the right endpoints of an interval
where more than a J-fraction of the elements lie in inv(i). Let R = Ry s.

Thm: |R| is a good estimate of ED, that is, for all § < 1/2,
ed(0)/2 < |R| < ed(0)/d.

Show two examples showing that this Thm is tight in terms of the estimator
R we choose.

8.1.2 The second algorithm

The algorithm. We define a new estimator R:
1. i—1€inv(i), or,
2. there is an interval I = [j,7 — 1] such that |inv(i) N I| > |RNI|.

We say R is total if Vi ¢ R, ¢ does not have a witness. We have the following
theorem
Thm: |R| < ed(o). Moreover if R is total then |R| > fed(o).

Proof idea: For the left side, show that if we link each item in R to its witness,
the resulting graph will be a set of decreasing paths which can lower bound the
ED.

For the right side, we can show that we can delete 2|R| elements to get a
monotonic increasing sequence by deleting [j + 1,7 — 1] where : € R,i — 1 € R
and j is the largest index such that j < i and j & R U inv(i).

The analysis. Direct comparing |inv(i) N I| and |[RN 1| is very difficult. We
need a novel method to test majority: to compute the approximate median! Let
A(S, k¢) be an e-approximation for the ¢-quantile of the k-most recent elements
in stream S. The algorithm is as follows:

RedTest(j, 1)
1. Let a = A(o,i — j, % —€).
2. If a < o(i) return FALSE.
3. Let @/ = A(R',i—j,3 +e).
4. If ' = 0 then return TRUE otherwise return FALSE.

Note that we do not actually find a total R, but close to.

Finally, we don’t have to test for all intervals [,] but only those with length
L2,...,(14+€),(1+)2 ... n.
8.2 Embedding Ulam distance

Idea: turns “count”, “there exists” and “majority” to f1,{s and (f5)% Our host
space: @Ellp)p @Zﬁbgd) 124 where p = 1 + €.

Definition.

1. P, the k symbols that appear in the k positions before a.

10

2. @uk: the 0/1 incidence vector of P,y scaled by 1/2k.
3. Yo = Pek Par(P) where K = {(1+7)'} (0 <i <log,,. d).
4. Y = @ae[d] QDG(P)

dpp@o,l(go(P)?%O(Q)) = Z(doo,l(@a(P>790a(Q)))p = Z <maX||90ak(P)7(pak(Q>Hl)

keK
a€ld] a€ld]

Definition: For P,Q € Ulamgy, and 0 < § < 1/2. Let Ts be the set of all a € X for
which there exists k € [d] such that the symmetric difference |PrAQuk| > 20k.

Lem:] 4
Sed(P,Q) < T3] < 5ed(P,Q)

Thm: ¢ is an embedding with constant distortion.

Proof:

1. For each a € T}/, there exists k € [d] such that P,xAQar > 2-1/2-k. Thus
there exist &’ such that ||§0ak’(P>, Qpak’(Q)Hl = % |Pak’AQak’| = Q(l)

2. On the other hand,

Qo (9(P), 9(Q)) = Z(maxugoak(P),%k(Q)ul)p

keK
a€(d]

<) max||ar (P), par Q)1
acld] ke(d]

(relax k € K to k € [d))

1 1+4€
= ey Pa A a
Igé‘([lj]({2k| RAQ k|]
a€ld)
logd
L D@ Ty
j=1
(break the contribution of a € 3 into buckets of the form [277 271])
logd
1+ Z(zfjJrl)lJre . 2j+26d<P, Q)
j=1

1/e-ed(P,Q)

IN

IN

IA

11

9.1

9.2

9.3

10

Lower Bounds

ST-connectivity

Q: Given an input graph stream, are two specific vertices s and ¢ connected?
What is the minimum space needed?

A: Q(n). By reduction from DISJ. Let (x,y) be an instance of DISJ. Con-
struct an instance of CONN on a graph with vertex set (s,t, vy, v, ..., Vn_2),
and edges A = {(s,v) : v € z} and B = {(v,t) : v € x}. It is easy to see
that DISJ(z,y) = 1 iff s, are connected in the graph.

Perfect Matching

Q: Given an input graph stream, does it have a perfect matching of size
n/27

A: Q(n?). By reduction from INDEX. Let (z,k) (z € {0,1}",k € [n?])
be an instance of INDEX. Construct an instance of PM on a graph with
vertex set U, (a;, b;, u;,v;), and edges A = {(u;,v;) for each x;; ;) = 1}
where f(i,7) = (n —1)i +j and B = {(a;,w) for each I # i*} U {(b, v)
for each I # j*} U {a;,bj«} where f(i*,5%) = k. It is easy to see that
INDEX(z, k) = 1 iff the graph has a perfect matching.

Fy
Q: What is the space lower bounds to estimate F}?

A: Q(n'=C+)/F) for arbitrarily small v. By reduction from miltiparty DISJ
(the promised version).

Let A be an s-space data stream algorithm that approximates F) within
1 £ e multiplicative error with confidence 1 —6 (0 < § < 1/4). We use A to
construct a d-error one-way protocol for DISJ,, ;, where t = ((1 + 3¢)n)'/*
by partitioning the stream to t parts and feeding each player one part. If
there exists an intersection, then Fy > t* = (1 + 3¢)n. Otherwise F}, < n.
So a (14 ¢€) estimation of Fy can solve DISJ, ;. Therefore we get a protocol
that solves DISJ, ; with communication s(t — 1) + 1. On the other hand
we know that any protocol that solves DISJ,, ; has communication at least
n/t'77. Thus we have that s = Q(n!'~Z+/k),

Some Other Topics

. Histograms: The input is (z1,22,...,2,) € [n|™. Goal: Determine B

bucket histogram H : [m] — R minimizing 3=, (v — H(i))*.

12

Result: (1 + €) estimation in O(B2%!) space. See the paper Fast, Small-
Space Algorithms for Approzimate Histogram Maintenance by Gilbert et.
al.

. Transpositions: The input is (z1,2Z2,...,2,) € [n|™. Goal is to estimate
number of transpositions [{i < j: x; > z;}|.

Result: (1 4 €) estimation in O(e™') space. See the paper Counting in-
versions in lists by A. Gupta and F. Zane. And an improvement by G.
Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-
efficient deterministic algorithms for biased quantiles over data streams.
PODS 2006.

13

