
Lectures on Streaming Algorithms

Qin Zhang

May 13, 2011

1 Models and Motivations

1.1 Models

• Standard stream model: m elements from universe of size n, come one by
one.

Goal: compute a function of stream.

Constraints: (1) Limited space (working memory), sublinear in n and m.
(2) Access data sequentially. (3) Process each element quickly.

Two variants: (1) Cash register (2) Turnstile.

• Graph stream: elements of the stream are edges. Let n be the number of
vertices. We have m = O(n2). To be able to handle interesting functions,
we typically allow space O(n logO(1) n).

• Sliding windows: (1) Sequence-based sliding window: only interested in the
last w elements. (2) Time-based sliding window: only interested in elements
that arrive in the last w time steps.

1.2 Motivations

• Practical Appeal: Network monitoring (#distinct(sourse, destination) pairs,
top-k heaviest flows), query planning, I/O efficiency for massive data, sensor
networks aggregation

• Theoretical Appeal: Easy to state problems but hard to solve. Links to com-
munication complexity, compressed sensing, embeddings, pseudo-random
generators, approximation

1

2 Samplings

2.1 Motivation

Sampling is a general technique for tackling massive amounts of data. For ex-
ample, to compute the median packet size of some IP packets, we could just
sample some and use the median of the sample as an estimate for the true me-
dian. Statistical arguments relate the size of the sample to the accuracy of the
estimate.

2.2 Standard Sampling

• Q: Sampling from a stream of unknown length

• A: Reservoir Sampling

1. Initially s = x1

2. On seeing the t-th element, set s to be xt with probability 1/t.

• Q: Sampling from a sliding window (last w items).

• A: Algorithm:

1. For each xi we pick a random value vi ∈ (0, 1).

2. In a window 〈xj−w+1; . . . ;xj〉 return value xi with smallest vi.

How? Maintain a set of all elements in the sliding window whose value
is minimal among subsequent values.

Cost: O(log n logw) space expected.

• Q: Can we make space optimal (O(log n)) and worst case?

• A: Yes. See Optimal sampling from sliding windows by Braverman et. al.
PODS 2009.

2.3 AMS Sampling

• Q: Want to compute some function
∑

i∈[n] g(fi) where fi = |{j : xj = i}| is

the frequency of i and g is an arbitrary function with g(0) = 0.

• A: Algorithm:

1. Pick J uniformly at random from [m].

2. Compute R = |{j ≥ J : aj = aJ}|.
3. Let X = m(g(R)− g(R− 1))

Cost: O(logm+ log n) space (1-run) guarantees E[X] =
∑

i∈[n] g(fi).

2

2.3.1 Analysis

E[X] =
∑
i

E[X | aJ = i]Pr[aJ = i]

=
∑
i

E[g(R)− g(R− 1) | aJ = i]fi

=
∑
i

(
g(1)− g(0)

fi
+ . . .+

g(fi)− g(fi − 1)

fi

)
fi

=
∑
i

g(fi)

3 Heavy Hitters

• Q: Let fi = |{j : aj = i}|. How to maintain for each i ∈ [n] an estimate f̃i
s.t. fi ≤ f̃i ≤ fi + εm?

• A: Algorithm [CR-Precis]: Let p1, p2, . . . , pt be the first t prime numbers and
define hash functions hj(x) = x mod pj. Next, maintain ptt = O(t2 log t)
counters ci,j which are initially 0. When a new item e comes, increment
each of cj,hj(e) for j ∈ [t].

At the end, we set f̃i = minj cj,hj(i).

Cost: set t = O(ε−1 log n) and the space cost is O(ε−2 log2 n(log 1/ε +
log log n)).

• Q: Can we do better?

• A: Sure. Algorithm[Space-saving, by Metwally et. al. An integrated effi-
cient solution for computing frequent and top-k elements in data streams.
TODS 2006]: We construct an array with 1/ε cells. Each cell is of the form
(e, f(e)), where f(e) denotes the estimated frequency of the item e.

When a new item e comes, we have two cases.

1. If e is not in the array, we create a new tuple (e, MIN + 1) where
MIN = min{f(ei) : ei is in the array}. We always keep the array sorted
according to f(ei), and then MIN is just the estimated frequency of the
last item. If the length array is larger than 1/ε, we delete the last
tuple.

2. If e is already in the array. We just increment f(e) by 1 and reinsert
the (e, f(e)) into the array.

Cost: O(1/ε).

3

• A: So what is the merit of the first (cumbersome) algorithm?

• Q: It is useful since it is an linear mapping; it can handle deletions.

Linear mapping is one technique to perform sketching. The basic idea of sketching
is to apply a linear projection “on the fly” that takes high-dimensional data to a
smaller dimensional space. Post-process lower dimensional image to estimate the
quantities of interest. Since it is a linear mapping, it can support “deletions”.

3.1 Analysis of CR-Precis

For any i′ 6= i, there are at most log n functions hj under which i, i′ collide, by
the Chinese Remainder Theorem. Hence, we deduce that,

∑
j

cj,hj(i) ≤ tfi +

(∑
i′ 6=i

fi′

)
log n.

Thus f̃i ≤ fi + (m log n)/t.

4 Distinct Elements

• Q: Compute d = |{j : fj > 0}|. The number of distinct elements.

• A: Algorithms [FM, Flajoet and Martin, FOCS 1983]: let zeros(p) =
max{i : 2i divides p}.

1. Choose a random hash function h : [n]→ [n] from a 2-universal family.
Set z = 0.

2. For each new coming item e, if zeros(h(e)) > z, then set z = zeros(h(e));

3. Output 2z+0.5.

Cost: we should repeat it log(1/δ) times (i.e. maintain log(1/δ) hash func-
tions in parallel) and then take the median to get a successful probability
of 1− δ. Thus need O(log(1/δ) log n) space.

• Q: Can we do better in terms of approximation ratio?

• A: Yes. Algorithm [BJKST]

1. Choose a random hash function h : [n]→ [n] from a 2-universal family.
Set z = 0, B = ∅. Choose a secondary 2-universal hash function
g : [n]→ [O(log n/ε2)].

2. For each new coming item e, if zeros(h(e)) ≥ z, then

4

(a) set B = B ∪ {g(e)};
(b) if |B| > c/ε2 then set z = z + 1 and rehash B.

3. Output |B| 2z.

Cost: O(log n+ 1/ε2 · (log 1/ε) + log log n).

• Q: Can we do better?

• A: Yes. See the optimal algorithm in An Optimal Algorithm for the Distinct
Elements Problem by Kane et. al. PODS 2010.

4.1 Analysis

[FM] Basic intuition is that we expect 1 out of the d distinct elements to hit
zeros(h(j)) > log d, and we don’t expect any elements to hit zeros(h(j))� log d.
For details, see [LN], page 9.

The median trick. Suppose we know that for a random variable X, with
probability no more than 1/3 (could be replaced by any constant < 1/2), X ≤ a;
and with probability no more than 1/3, X ≥ b. Now if we run k copies of the
algorithm in parallel, thus get k Xis, and then take the median of Xis, say, X̄.
We have that X̄ ∈ [a, b] with probability at least 1− 2−Ω(k).

[BJKST] The algorithm is in the same spirit of [FM], except that at the high
end of the “FM hit-array”, they introduced a “buffer” to get a finer estimation.
For details, see [LN], pages 17-18.

5 AMS Estimator for Fk

• Q: How to compute Fk =
∑

j |fj|
k where fj is the frequency of item j in

the stream?

• A: Use AMS sampling introduced before (Homework).

• Q: Better bounds?

• A: Yes. See the optimal algorithm in Optimal Approximations of the Fre-
quency Moments of Data Streams by Indyk and Woodruff. STOC 2005.

• Q: Can we do even faster for F2?

• A: Yes. Algorithm: let fi = |{j : aj = i}|.

1. For 1 ≤ i ≤ s1 = 16
λ2

and 1 ≤ j ≤ s2 = 2 log(1/ε), generate Xi,j as
follows:

5

(a) Choose a random {−1,+1} vector v = {ε1, . . . , εn} from a 4-wise
{−1,+1} vectors family, compute Z =

∑
i εifi.

(b) Let X = Z2.

2. Let Yj =
∑

iXi,j/s1

3. Output the median of Yjs.

• Q: Why this works? Any general techniques?

• A: Yes. The p-stable distributions. A distribution is p-stable ifX1, X2, . . . , Xn ∼
µ i.i.d. and ~a = (a1, . . . , an) ∈ Rn, then a1X1 +a2X2 + . . .+anXn ∼ ‖~a‖pX
where X ∼ µ.

For example, let X1, X2, . . . , Xn ∼ N(0, 1). Then we have a1X1 + a2X2 +
. . .+ anXn ∼

√
a2

1 + a2
2 + . . .+ a2

nX where X ∼ N(0, 1)

Cauchy distribution is 1-stable where the Cauchy pdf is 2
π

1
1+x2

.

For details, see P. Indyk Stable Distributions, Pseudo-random Generators,
Embeddings and Data Stream Computation. STOC 2006.

• Q: Then why {+1,−1} works?

• A: Because if Y1, . . . , Yn ∈R {+1,−1}, then ~Y = {Y1, . . . , Yn} is “close” to
~Z = {Z1, . . . , Zn} where Zi ∈ N(0, 1) for n→∞.

5.1 Analysis of AMS Estimator for F2

Note that E[εi] = 0 for all i.

E[X] = E[(
∑
i

εifi)
2] =

∑
i

f 2
i E[ε2i] + 2

∑
i,j

fifjE[εi]E[εj] =
∑
i

m2
i = F2.

Var[X] = E[X2]− (E[X])2 = 4
∑
i,j

m2
i ,m

2
j ≤ 2F 2

2 .

Now plug in average + median.

Pr[|Yi − F2| > λF2] ≤ Var(Yi)

λ2F 2
2

≤ 1/8.

6 Graph Algorithms

6.1 Connectivity

• Q: Decide whether a graph is connected in small space.

• A: Algorithm:

6

1. Maintain label `(u) for each node u where labels are initially distinct

2. On seeing edge (u; v) with `(u) 6= `(v), set `(w) for all `(u) for all w
with `(w) = `(v).

3. The graph is connected iff every node ends up with the same label.

6.2 Test Bipartite Graphs

• Q: Decide whether a graph is connected or not in O(n log n) space.

• A: The algorithm is similar as connectivity, except that when a cycle is
detected, if it is odd, then we output “No”.

6.3 Spanners

• Q: An α-spanner of a graph G = (V ;E) is a subgraph H = (V ;E ′) such
that for all u, v, dG(u, v) ≤ dH(u, v) ≤ dG(u, v). Can we compute a graph
spanner is small space?

• A: Algorithm:

1. Let E ′ be initially empty.

2. On seeing (u, v), set E ′ = E ′ ∪ (u; v) if dH(u, v) > 2t− 1.

• Q: Can we get faster running time?

• A: Yes. Will talk about it next time.

7 K-center

Problem: Cluster a set of points X = (x1, x2, . . . , xm) to clusters c1, c2, . . . , ck
with representatives r1 ∈ c1, r2 ∈ c2, . . . , rk ∈ ck to minimize maxi minj d(xi, rj).

Solution: We illustrate the algorithm in four steps.

1. First, a doubling algorithm (not necessary in the streaming setting):

(a) When we see (k + 1)-st point in the input stream, suppose that the
minimum pairwise distance is 1, by rescaling the distances.

(b) Then at this point, we know that OPT ≥ 1, where OPT = cost of
optimum clustering

(c) The algorithm now proceeds in phases. At the start of the ith phase,
we know that OPT ≥ di/2 (d1 = 1).

(d) Phase i does the following:

7

i. Choose each point as the new representative if its distance from
all other representatives > 2di.

ii. If we are about to choose the (k + 1)-st representative, stop this
phase, and let di+1 = 2di.

iii. If the algorithm ends with w < k clusters, we are good. and we
can just add in some arbitrary cluster. This additional cluster
could be empty or not.

2. The concept of summary. A summary of a stream σ = 〈x1, x2, ...〉 with
xi ∈ U is any set S ⊆ U . The cost of a summary is

∆(σ, S) = max
x∈σ

min
y∈S

d(x, y)

.

We say ∆ is a metric cost if for any streams σ, σ ◦ π and their respective
summaries, S, T , we have:

∆(S ◦ π, T)−∆(σ, S) ≤ ∆(σ ◦ π, T) ≤ ∆(S ◦ π, T) + ∆(σ, S)

(The more precise notation for ∆(S ◦ π, T) should be ∆(σ(S) ◦ π, T) where
σ(S) is the input where every input x ∈ σ is replaced by the corresponding
]hatx generated from S which best represents x).

3. The concept of threshold algorithm. For a summarization cost function ∆,
∆ has an α-approximate threshold algorithm A, such that A takes as input
an estimate t and a stream σ, and

(a) Either produces a summary S (where |S| = k) s.t. ∆(σ, S) ≤ αt

(b) Or fail, proving that ∀T (where |T | = k), ∆(σ, T) > t

Note that the doubling algorithm is a constant-approximate threshold al-
gorithm. Let α be this constant.

4. Guha’s (2009) k-center algorithm:

(a) Keep p (such that (1 + ε)p = α/ε) instances of the A algorithm with
contiguous geometrically increasing thresholds of the form (1 + ε)i

running in parallel.

(b) Whenever q ≤ p of instances fail, start up next q instances of A us-
ing the summaries from the failed instances the “replay” the stream.
When an instance fails, kill all the other instances with a lower thresh-
old. (Note that the threshold goes up from (1 + ε)i → (1 + ε)i+p.

(c) At the end of input, output the summary from the lowest threshold
alive instances of A.

8

7.1 Analysis

Idea: we run multiple copies (but controlled in number) of the algorithm corre-
sponding to different estimates of the final cost and we use a “stream-strapping”
procedure to use partially completed summarization for a certain estimate to
create summarization for a different estimate of cost.

Suppose the final threshold, say, t, has been raised by j times. Let σi and Si
be the i-th portion of the stream and the summary of σi in phase i, respectively.
Let T be the final summary. The cost of the final output =

∆(σ1 ◦ σ2 ◦ . . . ◦ σj ◦ π, T) ≤ ∆(Sj ◦ π, T) + ∆(σ1 ◦ σ2 ◦ . . . , Sj)
≤ αt+ ∆(σ1 ◦ σ2 ◦ . . . ◦ σj, Sj)
≤ αt+ ∆(Sj−1 ◦ σj, Sj) + ∆(σ1 ◦ σ2 ◦ . . . ◦ σj−1, Sj−1)

≤ αt+ εt+ ε2t+ . . .

≤ αt+ (ε/(1− ε))t.

On the other hand, OPT > t/(1 + ε).

8 Edit Distances

8.1 Edit Distance to Monotonicity

Problem: Compute the minimum #elements to delete such that the rest is a
monotonically increasing sequence.

First talk about the method used in [GJKK07], without analysis. And then
talk about the improved method used in [EJ08], with analysis.

Intuition: for each element e, if there are quite a lot elements in a certain
range before it are inverse of it, then probably e should be deleted. To further
improve this, we should not not count such “reverse” caused by a (big) element
that is actually been deleted (use an example in the [GJKK07] paper). That is
why in [EJ08] whether e ∈ R also depends on previous elements in R.

8.1.1 The first algorithm

Define a set Rδ containing all indices i that are the right endpoints of an interval
where more than a δ-fraction of the elements lie in inv(i). Let R = R1/2.

Thm: |R| is a good estimate of ED, that is, for all δ ≤ 1/2,

ed(σ)/2 ≤ |R| ≤ ed(σ)/δ.

Show two examples showing that this Thm is tight in terms of the estimator
R we choose.

9

8.1.2 The second algorithm

The algorithm. We define a new estimator R:

1. i− 1 ∈ inv(i), or,

2. there is an interval I = [j, i− 1] such that |inv(i) ∩ I| > |R ∩ I|.

We say R is total if ∀i 6∈ R, i does not have a witness. We have the following
theorem
Thm: |R| ≤ ed(σ). Moreover if R is total then |R| ≥ 1

2
ed(σ).

Proof idea: For the left side, show that if we link each item in R to its witness,
the resulting graph will be a set of decreasing paths which can lower bound the
ED.

For the right side, we can show that we can delete 2 |R| elements to get a
monotonic increasing sequence by deleting [j + 1, i − 1] where i ∈ R, i − 1 6∈ R
and j is the largest index such that j < i and j 6∈ R ∪ inv(i).

The analysis. Direct comparing |inv(i) ∩ I| and |R ∩ I| is very difficult. We
need a novel method to test majority: to compute the approximate median! Let
A(S, kφ) be an ε-approximation for the φ-quantile of the k-most recent elements
in stream S. The algorithm is as follows:

RedTest(j, i)

1. Let a = A(σ, i− j, 1
2
− ε).

2. If a ≤ σ(i) return FALSE.

3. Let a′ = A(R′, i− j, 1
2

+ ε).

4. If a′ = 0 then return TRUE otherwise return FALSE.

Note that we do not actually find a total R, but close to.
Finally, we don’t have to test for all intervals [j, i] but only those with length

1, 2, . . . , (1 + ε′), (1 + ε′)2, . . . , n.

8.2 Embedding Ulam distance

Idea: turns “count”, “there exists” and “majority” to `1, `∞ and (`2)2. Our host

space:
⊕d

(lp)p

⊕O(log d)
l∞

l2d1 where p = 1 + ε.

Definition.

1. Pak: the k symbols that appear in the k positions before a.

10

2. ϕak: the 0/1 incidence vector of Pak scaled by 1/2k.

3. ϕa =
⊕

k∈K ϕak(P) where K = {(1 + γ)i} (0 ≤ i ≤ log1+γ d).

4. ϕ =
⊕

a∈[d] ϕa(P)

dpp,∞,1(ϕ(P), ϕ(Q)) =
∑
a∈[d]

(d∞,1(ϕa(P), ϕa(Q)))p =
∑
a∈[d]

(
max
k∈K
‖ϕak(P), ϕak(Q)‖1

)p

Definition: For P,Q ∈ Ulamd, and 0 < δ ≤ 1/2. Let Tδ be the set of all a ∈ Σ for
which there exists k ∈ [d] such that the symmetric difference |Pak∆Qak| > 2δk.

Lem:
1

2
ed(P,Q) ≤ |Tδ| ≤

4

δ
ed(P,Q)

.
Thm: ϕ is an embedding with constant distortion.

Proof:

1. For each a ∈ T1/2, there exists k ∈ [d] such that Pak∆Qak > 2 ·1/2 ·k. Thus
there exist k′ such that ‖ϕak′(P), ϕak′(Q)‖1 = 1

2k′
|Pak′∆Qak′| = Ω(1).

2. On the other hand,

dpp,∞,1(ϕ(P), ϕ(Q)) =
∑
a∈[d]

(
max
k∈K
‖ϕak(P), ϕak(Q)‖1

)p
≤

∑
a∈[d]

max
k∈[d]
‖ϕak′(P), ϕak′(Q)‖1+ε

1

(relax k ∈ K to k ∈ [d])

=
∑
a∈[d]

max
k∈[d]

[
1

2k
|Pak∆Qak|

]1+ε

≤ 1 +

log d∑
j=1

(2−j+1)1+ε · |T2−j |

(break the contribution of a ∈ Σ into buckets of the form [2−j, 2−j+1])

≤ 1 +

log d∑
j=1

(2−j+1)1+ε · 2j+2ed(P,Q)

≤ 1/ε · ed(P,Q)

11

9 Lower Bounds

9.1 ST-connectivity

• Q: Given an input graph stream, are two specific vertices s and t connected?
What is the minimum space needed?

• A: Ω(n). By reduction from DISJ. Let (x, y) be an instance of DISJ. Con-
struct an instance of CONN on a graph with vertex set (s, t, v1, v2, . . . , vn−2),
and edges A = {(s, v) : v ∈ x} and B = {(v, t) : v ∈ x}. It is easy to see
that DISJ(x, y) = 1 iff s, t are connected in the graph.

9.2 Perfect Matching

• Q: Given an input graph stream, does it have a perfect matching of size
n/2?

• A: Ω(n2). By reduction from INDEX. Let (x, k) (x ∈ {0, 1}n2
, k ∈ [n2])

be an instance of INDEX. Construct an instance of PM on a graph with
vertex set ∪ni=1(ai, bi, ui, vi), and edges A = {(ui, vj) for each xf(i,j) = 1}
where f(i, j) = (n − 1)i + j and B = {(al, ul) for each l 6= i∗} ∪ {(bl, vl)
for each l 6= j∗} ∪ {ai∗ , bj∗} where f(i∗, j∗) = k. It is easy to see that
INDEX(x, k) = 1 iff the graph has a perfect matching.

9.3 Fk

• Q: What is the space lower bounds to estimate Fk?

• A: Ω(n1−(2+γ)/k) for arbitrarily small γ. By reduction from miltiparty DISJ
(the promised version).

Let A be an s-space data stream algorithm that approximates Fk within
1± ε multiplicative error with confidence 1− δ (0 < δ < 1/4). We use A to
construct a δ-error one-way protocol for DISJn,t, where t = ((1 + 3ε)n)1/k

by partitioning the stream to t parts and feeding each player one part. If
there exists an intersection, then Fk ≥ tk = (1 + 3ε)n. Otherwise Fk ≤ n.
So a (1 + ε) estimation of Fk can solve DISJn,t. Therefore we get a protocol
that solves DISJn,t with communication s(t − 1) + 1. On the other hand
we know that any protocol that solves DISJn,t has communication at least
n/t1+γ. Thus we have that s = Ω(n1−(2+γ)/k).

10 Some Other Topics

1. Histograms: The input is 〈x1, x2, . . . , xm〉 ∈ [n]m. Goal: Determine B
bucket histogram H : [m]→ R minimizing

∑
i∈[m](xi −H(i))2.

12

Result: (1 + ε) estimation in Õ(B2ε−1) space. See the paper Fast, Small-
Space Algorithms for Approximate Histogram Maintenance by Gilbert et.
al.

2. Transpositions: The input is 〈x1, x2, . . . , xm〉 ∈ [n]m. Goal is to estimate
number of transpositions |{i < j : xi > xj}|.
Result: (1 + ε) estimation in Õ(ε−1) space. See the paper Counting in-
versions in lists by A. Gupta and F. Zane. And an improvement by G.
Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-
efficient deterministic algorithms for biased quantiles over data streams.
PODS 2006.

13

