Fast Meldable Priority Queues

Gerth S. Brodal
gerth@daimi.aau.dk

BRICS

Computer Science Department
University of Aarhus

Aarhus, Denmark

August 1995

Fast Meldable Priority Queues

Priority Queue Operations

MAKEQUEUE
FINDMIN(Q)
INSERT(Q), €)

MELD(Q1, Q2)
DELETEMIN(Q)

DELETE(Q, e)*

* Assumes that it is known where the element e is stored in Q.

Gerth S. Brodal 2

Fast Meldable Priority Queues

Known And New Time Bounds

[W64] [SS85] [DGSTS| (V78] [B95]
Heaps Merging Relaxed Binomial New

Heaps Heaps Queues>|< Result

FINDMIN O(1) O(1) O(1) O(1) O(1)
INSERT O(logn) O(logn) O(1) O(1) O(1)
MELD O(n) O(log®n) O(logn) O(1) O(1)
DELETE(MIN) O(logn) O(logn) O(logn) O(logn) O(logn)

* Amortised bounds

Gerth S. Brodal 3

Fast Meldable Priority Queues

The Data Structure

<— Son of type I

e A priority queue is represented by a heap ordered tree where

each node contains an element and has a rank assigned.

e A node of rank r has at most one son of type I and one, two or
three sons of type II of rank ¢z for ¢ =0,...,r — 1.

Gerth S. Brodal 4

Fast Meldable Priority Queues

Linking

Two trees of equal rank r can be linked to one tree of rank r + 1 in
worst case time O(1).

Gerth S. Brodal 5

Fast Meldable Priority Queues

Linking

Example

Gerth S. Brodal 6

Fast Meldable Priority Queues

The Invariant

Link
L6

N
olCNCEoRO RO RO RORORO

Between two ranks where three sons of type II have equal rank there
is a rank of which there only is one son of type II.

Gerth S. Brodal 7

Fast Meldable Priority Queues

Implementation of MELD

€1 €2 €1

el e, es

> Link sons
if necessary
/
€1
T
/

€9

How to perform MELD in worst case time O(1).

/ /
The case e; < es < e] <es;.

Gerth S. Brodal 8

Fast Meldable Priority Queues

Implementation of DELETEMIN

Oez
Oes

A NN
> AAA » >

: AAAAAAD-

i

How to perform DELETEMIN in worst case time O(logn).

e1,es and ez are the three smallest elements.

Gerth S. Brodal 9

Fast Meldable Priority Queues

Implementation Details

Element

Leftmost Son Type
ther Rank

Next Triple

Each node is stored as a record having seven fields.

Gerth S. Brodal 10

Fast Meldable Priority Queues

Optimality

Theorem:
If MELD can be performed in worst case time o(n) then DELETEMIN

cannot be performed in worst case time o(logn).

Proof:
For n = 2% we otherwise by contradiction get

T'sorTinG <n>
k—1

= n'T'ymakeqQueve + Z 2k_1_iTMELD(2i> T Z Toeieramm (i)
i=0 =1

= o(nlogn).

Gerth S. Brodal 11

Fast Meldable Priority Queues

The Result

We have presented priority queues which

support MAKEQUEUE, FINDMIN, INSERT and MELD in worst

case time O(1),

support DELETE(MIN) in worst case time O(logn),
require linear space and

can be implemented on a pointer machine.

Gerth S. Brodal 12

Fast Meldable Priority Queues

Double—Ended Priority Queues

[ASSS86] [DW93] [B93]

Min-Max Relaxed New
Heaps Min-Max Result
Heaps>|<

INSERT O(logn) O(1) O(1)
FINDMIN/FINDMAX O(1) O(1) O(1)
DELETEMIN/DELETEMAX O(logn) O(logn) O(logn)
MELD — O(1) O(1)
DELETE — O(logn) Of(logn)

DECREASEKEY/INCREASEKEY — O(logn) Of(logn)

* Amortised bounds

Gerth S. Brodal 13

Fast Meldable Priority Queues

Priority Queues with DECREASEKEY

[DGSTSS] [FT84] [B95b)]

Relaxed Fibonacci Recent
Heaps Queues>|< Result

FINDMIN O(1) O(1) O(1)
INSERT O(1) O(1) O(1)
MELD O(logn) O(1) O(1)
DELETE(MIN) O(logn) O(logn) O(logn)
DECREASEKEY O(1) O(1) O(1)

* Amortised bounds

Gerth S. Brodal 14

