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Fast Meldable Priority Queues

Priority Queue Operations

MAKEQUEUE
FINDMIN(Q)
INSERT(Q), €)

MELD(Q1, Q2)
DELETEMIN(Q)

DELETE(Q, e)*

* Assumes that it is known where the element e is stored in Q.

Gerth S. Brodal 2



Fast Meldable Priority Queues

Known And New Time Bounds

[W64] [SS85] [DGSTS| (V78] [B95]
Heaps Merging Relaxed Binomial New

Heaps Heaps Queues>|< Result

FINDMIN O(1) O(1) O(1) O(1) O(1)
INSERT O(logn)  O(logn) O(1) O(1) O(1)
MELD O(n) O(log®n)  O(logn) O(1) O(1)
DELETE(MIN) O(logn) O(logn) O(logn) O(logn) O(logn)

* Amortised bounds
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Fast Meldable Priority Queues

The Data Structure

<— Son of type I

e A priority queue is represented by a heap ordered tree where

each node contains an element and has a rank assigned.

e A node of rank r has at most one son of type I and one, two or
three sons of type II of rank ¢z for ¢ =0,...,r — 1.

Gerth S. Brodal 4



Fast Meldable Priority Queues

Linking

Two trees of equal rank r can be linked to one tree of rank r + 1 in
worst case time O(1).
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Fast Meldable Priority Queues

Linking

Example
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Fast Meldable Priority Queues

The Invariant
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Between two ranks where three sons of type II have equal rank there
is a rank of which there only is one son of type II.
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Fast Meldable Priority Queues

Implementation of MELD

€1 €2 €1

el e, es

> Link sons
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How to perform MELD in worst case time O(1).

/ /
The case e; < es < e] <es;.
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Implementation of DELETEMIN
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How to perform DELETEMIN in worst case time O(logn).

e1,es and ez are the three smallest elements.
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Fast Meldable Priority Queues

Implementation Details

Element

Leftmost Son Type
ther Rank

Next Triple

Each node is stored as a record having seven fields.
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Fast Meldable Priority Queues

Optimality

Theorem:
If MELD can be performed in worst case time o(n) then DELETEMIN

cannot be performed in worst case time o(logn).

Proof:
For n = 2% we otherwise by contradiction get

T'sorTinG <n>
k—1

= n'T'ymakeqQueve + Z 2k_1_iTMELD(2i> T Z Toeieramm (i)
i=0 =1

= o(nlogn).
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Fast Meldable Priority Queues

The Result

We have presented priority queues which

support MAKEQUEUE, FINDMIN, INSERT and MELD in worst

case time O(1),

support DELETE(MIN) in worst case time O(logn),
require linear space and

can be implemented on a pointer machine.
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Fast Meldable Priority Queues

Double—Ended Priority Queues

[ASSS86]  [DW93]  [B93]

Min-Max  Relaxed New
Heaps Min-Max  Result
Heaps>|<

INSERT O(logn) O(1) O(1)
FINDMIN/FINDMAX O(1) O(1) O(1)
DELETEMIN/DELETEMAX O(logn)  O(logn) O(logn)
MELD — O(1) O(1)
DELETE — O(logn)  Of(logn)

DECREASEKEY/INCREASEKEY — O(logn)  Of(logn)

* Amortised bounds
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Priority Queues with DECREASEKEY

[DGSTSS]  [FT84] [B95b)]

Relaxed Fibonacci Recent
Heaps Queues>|< Result

FINDMIN O(1) O(1) O(1)
INSERT O(1) O(1) O(1)
MELD O(logn) O(1) O(1)
DELETE(MIN) O(logn) O(logn) O(logn)
DECREASEKEY O(1) O(1) O(1)

* Amortised bounds
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