Fast Meldable Priority Queues

Gerth S. Brodal gerth@daimi.aau.dk

BRICS Computer Science Department University of Aarhus Aarhus, Denmark

August 1995

*Assumes that it is known where the element e is stored in Q.

Gerth S. Brodal

Known And New Time Bounds								
	[W64]	[SS85]	[DGST88]	[V78]	[B95]			
	Heaps	Merging Heaps	Relaxed Heaps	${f Binomial} \ {f Queues}^{m *}$	New Result			
FindMin	O(1)	O(1)	O(1)	O(1)	O(1)			
INSERT	$O(\log n)$	$O(\log n)$	O(1)	O(1)	O(1)			
Meld	$\mathrm{O}(n)$	$\mathrm{O}(\log^2 n)$	$O(\log n)$	O(1)	O(1)			
Delete(Min)	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$			
	;	*Amortised	bounds					

- A priority queue is represented by a heap ordered tree where each node contains an element and has a rank assigned.
- A node of rank r has at most one son of type I and one, two or three sons of type II of rank i for i = 0, ..., r 1.

Gerth S. Brodal

Gerth S. Brodal

Gerth S. Brodal

Gerth S. Brodal

Optimality

Theorem:

If MELD can be performed in worst case time o(n) then DELETEMIN cannot be performed in worst case time $o(\log n)$.

Proof:

For $n = 2^k$ we otherwise by contradiction get

$$\begin{split} \mathbf{T}_{\text{Sorting}}(n) \\ &= n \mathbf{T}_{\text{MakeQueue}} + \sum_{i=0}^{k-1} 2^{k-1-i} \mathbf{T}_{\text{Meld}}(2^i) + \sum_{i=1}^{n} \mathbf{T}_{\text{DeleteMin}}(i) \\ &= \mathbf{o}(n \log n). \end{split}$$

Double-Ended	Priority	Queues	
	[ASSS86] Min May	[DW93] Dolawad	[B93] Now
	Heaps	Min-Max Heaps [*]	Result
INSERT	$O(\log n)$	O(1)	O(1)
FindMin/FindMax	O(1)	O(1)	O(1)
DeleteMin/DeleteMax	$O(\log n)$	$O(\log n)$	$O(\log n)$
Meld		O(1)	O(1)
Delete		$O(\log n)$	$O(\log n)$
DecreaseKey/IncreaseKey		$O(\log n)$	$O(\log n)$

*Amortised bounds

	[W64] Heaps	[DGST88] Relaxed Heaps	[FT84] Fibonacci Queues [*]	[B95] New Result	[B95b] Recent Result
FindMin	O(1)	O(1)	O(1)	O(1)	O(1)
INSERT	$O(\log n)$	O(1)	O(1)	O(1)	O(1)
Meld	$\mathrm{O}(n)$	$\mathrm{O}(\log n)$	O(1)	O(1)	O(1)
Delete(Min)	$O(\log n)$	$O(\log n)$	$\mathrm{O}(\log n)$	$O(\log n)$	$O(\log n)$
DecreaseKey	$O(\log n)$	O(1)	O(1)	$O(\log n)$	O(1)