Sven Skyum's Algorithm for Computing the Smallest Enclosing Circle

Gerth Stølting Brodal

Sven Skyum - farewell celebration, Department of Computer Science, Aarhus University, September 5, 2014

	ISSN 0105-8517
A simple algorit the smallest enc	hm for computing losing circle
Sven Skyum	
DAIMI PB - 314 June 1990	
COMPUTER SCIENCE DEPARTM AARHUS UNIVERSITY Ny Munkegade, Building 540	

Sven Skyum, A Simple Algorithm for Computing the Smallest Enclosing Circle. Information Processing Letters, Volume 37, Issue 3, 18 February 1991, Pages 121–125

History

Year	Result	Authors				
1857	problem posed	Sylvester				
1860	"graphical solution procedure"	Pierce				
1965	quadratic	Lawson		Just because a problem ${\mathcal A}$ can be formulated as a special case of ${\mathcal B}$		
1966	$\int programming \\ \min_{p_0 \in \mathbb{R}^2} \max_i (x_i - x_0)^2 + (y_i - y_0)^2$	Zhukhovitsky, Avdeyeva		is no reason for believing that a general method for solving ${\mathcal B}$ is an efficient way of solving ${\mathcal A}$ - Preparata & Shamos, 1985		
	O(<i>n</i> ⁴)	"The obvio	ous"			
1972	$O(n^3), O(h^3 \cdot n), O(n^2)$	Elzinga, Hearn				
1975	$O(n \cdot \log n)$	Shamos, Hoey				
1977	$O(n \cdot \log n)$	Preparata				
1981	O(n·h)	Chakrabor	raborty, Chaudhuri			
1983	O(<i>n</i>)	Megiddo-	the invo	the involved constants hidden in O(n) are large. - Skyum, 1991		
1991	$O(n \cdot \log n)$	Skyum	However his method is not nearly as easy to describe and to implement, and the dependence of the constant in d falls far behind the one achieved by our method. - Welzl, 1991			
1991	O(n), expected	Welzl				

Convex polygon $S = (p_1, p_2, p_3, \dots, p_n)$

Observations

Rademacher, Toeplitz 1957

```
Algorithm 1.
if |S|≠1 then
  finish := false;
  repeat
  (1) find p in S
         (radius(before(p), p, next(p)), angle(before(p), p, next(p))
      in the lexicographic order;
  (2) if angle(before(p), p, next(p)) \leq \pi/2 then
        finish := true
                                                        next(p)
      else
         remove p from S
      fi
                                            before(p)
  until finish
fi;
{ answer is SEC(before(p), p, next(p)) }
```

Top 20 citing Skyum's algorithm

- 1. Movement-assisted sensor deployment
- 2. Distributed control of robotic networks: a mathematical approach to motion coordination algorithms
- 3. Smallest enclosing disks (balls and ellipsoids)
- 4. Coordination and geometric optimization via distributed dynamical systems
- 5. Design Techniques and Analysis
- 6. Circle formation for oblivious anonymous mobile robots with no common sense of orientation
- 7. Reactive data structures for geographic information systems
- 8. Distributed circle formation for anonymous oblivious robots
- 9. Imaging knee position using MRI, RSA/CT and 3D digitisation
- 10. The organization of mature Rous sarcoma virus as studied by cryoelectron microscopy
- 11. Hyperbolic Voronoi diagrams made easy
- 12. Collaborative area monitoring using wireless sensor networks with stationary and mobile nodes
- 13. Approximating smallest enclosing balls with applications to machine learning
- 14. The deployment algorithms in wireless sensor net works: A survey
- 15. Adaptive and distributed coordination algorithms for mobile sensing networks
- 16. ISOGRID: An efficient algorithm for coverage enhancement in mobile sensor networks
- 17. A novel hybrid approach to ray tracing acceleration based on pre-processing & bounding volumes
- 18. Fast neighborhood search for the nesting problem
- 19. Local strategies for connecting stations by small robotic networks
- 20. Algorithmic problems on proximity and location under metric constraints

