Soft Sequence Heaps

Gerth Stølting Brodal

Aarhus University

SIAM Symposium on Simplicity in Algorithms (SOSA), January 11, 2021

Heap

Soft Heap

Soft heap properties

- EXTRACTMIN can increase values (corruptions)
 Returns new corruptions
- ≤ εN corrupted elements in soft heap, 0 ≤ ε ≤ ½,
 N = # insertions

- ↑ INSERT(x)
- + EXTRACTMIN()

(other operations not discussed in this talk MAKEHEAP, MELD, FINDMIN, DELETE)

Soft heap results

Soft heaps	INSERT / EXTRACTMIN	Reference	Applications
Introduced car-pooling Binomial trees	$O(\log \frac{1}{\varepsilon}) / O(1)$	Chazelle ESA98*/JACM00 *2018 ESA Test-of-Time award	Selection MST O($m \cdot \alpha(m, n)$)
		Pettie, Ramachandran JACM02	MST optimal Unknown complexity
"A simpler soft heaps" Balanced binary trees	$O(\log \frac{1}{\varepsilon}) / O(1)$	Kaplan, Zwick SODA09	
"Soft heaps simplified" Balanced binary trees	$O(1) / O(\log \frac{1}{\varepsilon})$	Kaplan, Tarjan, Zwick SICOMP13	
Report corruptions Tag corrupted reported items Corruptions only EXTRACTMIN	$O(1) / O(\log \frac{1}{\varepsilon})$	Kaplan, Kozma, Zamir, Zwick SOSA19	Heap selection (and related) Simplifying Frederickson JCSS93
Soft sequence heaps	$O(\log \frac{1}{\varepsilon}) / O(1)$	Brodal SOSA21	

Time bounds are all amortized

Application of Soft Heaps -O(n) Selection

Chazelle JACM00

Application of Soft Heaps -O(k) Heap Selection

```
function select(root, k)
  S = \{root\}
  Q = \text{softheap}(1/4)
  Q.INSERT (root)
  for i = 1 to k - 1 do
     (e, C) = Q.EXTRACTMIN()
     if e not corrupted then
        C = C U \{e\}
     for e \in C do
       Q.INSERT (e.left)
       Q.INSERT (e.right)
       S = S U \{e.left, e.right\}
  return select(S, k)
```


Sequence Heaps

Sequence heap properties

- Sorted lists, each list a rank
- Two lists rank $r \Rightarrow$ merge, rank r+1
- Rank *r* list $\leq 2^r$ values
- N INSERT \implies rank $\le \log N$
- INSERT and EXTRACTMIN amortized O(log N)

INSERT(x)
Create rank 0 list containing x
while two list have equal rank do
 merge the two lists

EXTRAXTMIN() Find list with smallest head element e Remove and return e

Soft Sequence Heap

How can this work ?

• Only O($\sqrt{n/\varepsilon}$) elements are not pruned

Solution

Not all pruned elements need to be considered corrupted

Soft Sequence Heap properties

- Sorted lists, each list a rank
- Prune every 2nd element of a new list of even rank > $\log \frac{1}{\varepsilon}$
- x pruned \Rightarrow { x } \cup C(x) added to C(y) where y successor of x
- Rank *r* list \Rightarrow size $\leq \sqrt{2^r/\varepsilon}$

```
Insert(x)
Create
```

Create rank 0 list containing x
while two list have equal rank r do
 merge the two lists
 if r even and r > log 1/ε then
 prune list

EXTRAXTMIN()

Find list with smallest head element e

if |C(x)| = 0 **then**

Remove and return e

else

Remove and return an element from C(e)

Suffix-min pointers and witness sets

- Each non-pruned element has a corruption set C(e) and witness-set W(e)
- $x \in C(e) \Longrightarrow x \le e$ $x \in W(e) \Longrightarrow e \le x$
- x corrupted ⇔ x ∈ C(e') for some e' and x ∉ W(e'') for any e''
- When EXTRACTMIN removes *e*,
 W(*e*) is reported as corrupted

Analysis – corruptions $\leq \epsilon n$

Partial order

- C(e) doubles when pruning $\implies |C(e)| \le 2^{(r \log \frac{1}{\varepsilon})/2} \le \sqrt{2^r/\varepsilon}$
- "width" doubles when merging + increases by $\sqrt{2^r/\varepsilon}$ when pruning \implies "width" $\le \varepsilon n$

Summary - Soft Sequence Heaps

- At most *ɛn* corruptions in heap
- INSERT and EXTRACTMIN amortized time $O(\log \frac{1}{c})$
- Witness-sets used in analysis and for reporting corruptions
 - can be removed from construction if reporting not needed
 - only $\sqrt{n/\varepsilon}$ elements are not in corruption sets (previous constructions $\Theta(n)$)

Further results in paper

Discuss how to remove buffering insertions from previous constructions

Open problems

- I/O & cache oblivious soft heaps with O(B) operations taking O(1) I/Os ?
- Other applications of soft heaps ?