
Soft Sequence Heaps

Gerth Stølting Brodal
Aarhus University

SIAM Symposium on Simplicity in Algorithms (SOSA), January 11, 2021

EXTRACTMIN

= lowest intersected line
value

time

Heap

1

INSERT(x)
EXTRACTMIN()

(other operations not discussed in this talk MAKEHEAP, MELD, FINDMIN, DELETE)

1

2

3

4

5

1

value

time

5 4 1 2 3 3 4 2 5

5

5

4

4

1

1

2

2

3

3 2 3 4 5

Soft Heap

2 4 New corruptions
(created by EXTRACTMIN)

Car-pooling
equal values

Soft heap properties
 EXTRACTMIN can increase

values (corruptions)
Returns new corruptions

 ≤ 𝜀N corrupted elements
in soft heap, 0 ≤ 𝜀 ≤ ½,
N = # insertions

Soft heap results

Soft heaps INSERT / EXTRACTMIN Reference Applications

Introduced car-pooling
Binomial trees

O(log
1

𝜀
) / O(1)

Chazelle ESA98*/JACM00
*2018 ESA Test-of-Time award

Selection
MST O(m∙α(m, n))

Pettie, Ramachandran JACM02
MST optimal
Unknown complexity

“A simpler … soft heaps”
Balanced binary trees

O(log
1

𝜀
) / O(1) Kaplan, Zwick SODA09

“Soft heaps simplified”
Balanced binary trees

O(1) / O(log
1

𝜀
) Kaplan, Tarjan, Zwick SICOMP13

Report corruptions
Tag corrupted reported items
Corruptions only EXTRACTMIN

O(1) / O(log
1

𝜀
) Kaplan, Kozma, Zamir, Zwick SOSA19

Heap selection (and related)
Simplifying Frederickson JCSS93

Soft sequence heaps O(log
1

𝜀
) / O(1) Brodal SOSA21

Time bounds are all amortized

Application of Soft Heaps – O(n) Selection

function select(A, k)

if k = 1 then

return min(A)

Q = softheap(1/3)

for a ∈ A do

Q.INSERT(a)

for i = 1 to |A|/3 do

pivot = Q.EXTRACTMIN()

small, large = partition(A, pivot)

if k ≤ |small| then

return select(small, k)

return select(large, k - |small|)

Chazelle JACM00

pivot rank ∈
𝐴

3
,
2 𝐴

3

(pivot is the increased value)

T(n) ≤ T(2n/3) + O(n)

use soft heap
to find pivot

21 47 18 50 4 7 19 16 23 13 36

8th smallest ?

A

partition(A, pivot)

largesmall

4 7 18 16 13 21 47 50 19 23 36

recurse 3rd smallest ?

Application of Soft Heaps – O(k) Heap Selection

function select(root, k)

S = {root}

Q = softheap(1/4)

Q.INSERT(root)

for i = 1 to k - 1 do

(e, C) = Q.EXTRACTMIN()

if e not corrupted then

C = C ∪ {e}

for e ∈ C do

Q.INSERT(e.left)

Q.INSERT(e.right)

S = S ∪ {e.left, e.right}

return select(S, k)

3

4 11

12 1442 6

15 1619 24

42

uncorrupted boundary

Q

Kaplan, Kozma, Zamir, Zwick SOSA19

Sequence Heaps

15 INSERT

1 7 10 12

2

3 4 5 7 9 11 14 16 17 18 19 20

13 25

0

1

2

4

rank

3

2 15

2 13 15 25

1 2 7 10 12 13 15 25

EXTRACTMIN

Sequence heap properties
 Sorted lists, each list a rank
 Two lists rank r ⟹ merge, rank r+1
 Rank r list ≤ 2r values
 N INSERT ⟹ rank ≤ log N
 INSERT and EXTRACTMIN amortized O(log N)

INSERT(x)

Create rank 0 list containing x

while two list have equal rank do

merge the two lists

EXTRAXTMIN()

Find list with smallest head element e

Remove and return e

Soft Sequence Heap

3 10 14 15 20 24

4 7 18 19 21 23

3

3

3 4 7 10 14 15 18 19 20 21 23 244

merge

4 10 15 19 21

12

13 16

6

12 613 16
pruned values
(corruptions,
car-pooling) C(18)

Soft Sequence Heap properties
 Sorted lists, each list a rank
 Prune every 2nd element of a new list

of even rank > log
1

𝜀

 x pruned ⟹ { x } ∪ C(x) added to C(y)
where y successor of x

 Rank r list ⟹ size ≤ 2r/𝜀

INSERT(x)

Create rank 0 list containing x

while two list have equal rank r do

merge the two lists

if r even and r > log 1/ε then

prune list

EXTRAXTMIN()

Find list with smallest head element e

if |C(x)| = 0 then

Remove and return e

else

Remove and return an element from C(e)

How can this work ?

 Only O(𝑛/𝜀) elements are not pruned
Solution
 Not all pruned elements need to be considered corrupted

x y

Suffix-min pointers

Suffix-min

3 20 24

15

4 7 18 19 21 23

12 14

0

1

2

rank

3
6

13 16

W(7)
witness-set

16 13

6

 Each non-pruned element has a
corruption set C(e) and witness-set W(e)

 x ∈ C(e)⟹ x ≤ e
x ∈ W(e) ⟹ e ≤ x

 x corrupted ⟺ x ∈ C(e’) for some e’
and x ∉ W(e’’) for any e’’

 When EXTRACTMIN removes e,
W(e) is reported as corrupted

∙∙∙ e’’ e e’ ∙∙∙

C(e’’)
W(e’’)

C(e)
W(e)

C(e’)
W(e’)

C(e’’)
W(e’’) ∪ { e } ∪ W(e)

C(e’) ∪ { e } ∪ C(e)
W(e’)

∙∙∙ e’’ e e’ ∙∙∙

prune

and witness sets

C(21)

r

Analysis – corruptions ≤ 𝜀n

Bounded
“width”

Corrupted
elements

Pruned
elements

Partial order

 C(e) doubles when pruning ⟹ |C(e)| ≤ 2(r−log1
ε)/2 ≤ 2r/𝜀

 ”width” doubles when merging + increases by 2r/𝜀 when pruning ⟹ ”width” ≤ 𝜀n

Summary - Soft Sequence Heaps

 At most 𝜀n corruptions in heap

 INSERT and EXTRACTMIN amortized time O(log
1

𝜀
)

 Witness-sets used in analysis and for reporting corruptions
 can be removed from construction if reporting not needed

 only n/𝜀 elements are not in corruption sets (previous constructions Θ(n))

Further results in paper

 Discuss how to remove buffering insertions from previous constructions

Open problems

 I/O & cache oblivious soft heaps with O(B) operations taking O(1) I/Os ?

 Other applications of soft heaps ?

