

Gerth Stølting Brodal

BRICS Basic Research in Computer Science

Outline

- The Algorithms Group
- ALCOM ST
- Upcoming Algorithm Events
- Algorithm Expertise within BRICS
- © CCI Europe
- Dynamic Convex Hull
- External Memory Algorithms

The Algorithms Group

Sven Skyum
Algorithms, Complexity Theory

Erik Meineche Schmidt Algorithms, Complexity Theory

Ivan Bjerre Damgaard *Cryptology*

Peter Bro Miltersen
Complexity Theory, Data Structures

Gudmund Skovbjerg Frandsen
Algebraic Algorithms, Dynamic Algorithms

Christian Nørgaard Storm Pedersen Bioinformatics, String Algorithms

Gerth Stølting Brodal
Data Structures, External Memory

Rolf Fagerberg

Data structures, External Memory

Mary Cryan
Learning of Distributions

Anders Yeo
Graph Theory, Graph Algorithms

Peter Høyer Quantum Computations

PhD students

Jakob Pagter Time-Space Trade-Offs

Riko Jacob Optimization, Computational Geometry

Rasmus Pagh
Data Structures, Hashing

Alex Rune Berg Graph Theory

Jesper Makholm Nielsen Complexity Theory

Bjarke Skjernaa *Algorithms*

Algorithms and Complexity – Future Technologies

The ALCOM-FT project is a joint effort between ten of the leading groups in algorithms research in Europe. The aim of the project is to discover new algorithmic concepts, identify key algorithmic problems in important applications, and contribute to the accelerated transfer of advanced algorithmic techniques into commercial systems.

The project takes place from June 2000 to June 2003. It is supported by the European Commission under the Information Society Technologies programme of the Fifth Framework, as project number IST-1999-14186.

- ALCOM-FT is a continuation of ALCOM, ALCOM-II, ALCOM-IT
- BRICS is the coordinator of ALCOM-FT

ALCOM-FT Sites

BRICS Erik Meineche Schmidt

Barcelona Josep Díaz

Cologne Michael Jünger

INRIA Rocquencourt Philippe Flajolet

Max-Planck-Institut für Informatik Kurt Mehlhorn

Paderborn Burkhard Monien

Friedhelm Meyer auf der Heide

Patras Paul Spirakis

Rome "La Sapienza" Giorgio Ausiello

Utrecht Jan van Leeuwen

Warwick Mike Paterson

Upcoming Algorithm Events

August 28-31, 2001

ESA 2001 – 9th Annual European Symposium on Algorithms WAE 2001 – 5th Workshop on Algorithm Engineering

Summer 2002

Summer school on "External Memory Algorithms"

Ongoing

Alcom seminar

BRICS Basic Research in Computer Science

Algorithm Expertise within BRICS

- Algorithms in general
- Data structures
- Dynamic algorithms
- External memory algorithms
- Algorithm engineering / experimental algorithmics

CCI Europe

- Domain specific project
- "Automatic layout of JyllandsPosten's JobSection"
- Problem \approx 2D bin packing
- 2-approximation?
- Enumeration + heuristics
- BRICS people
 - Kristian Høgsberg
 - Riko Jacob
 - Anders Yeo
 - Gerth Stølting Brodal
 - Erik Meineche Schmidt

Dynamic Convex Hull

Insert(p), Delete(p) Insert/delete a point p

 $Query(\vec{v})$

Find extreme point on CH in direction $ec{v}$

External Memory Algorithms

I/O model [Aggarwal and Vitter]

M = Internal memory size

N =Problem size

B = Block size

Complexity = # block I/Os to solve a problem

Examples

$$Scan(N) = O(\frac{N}{B})$$

$$Sort(N) = O(\frac{N}{B} \cdot \log_{M/B} \frac{N}{M})$$

Minimum Spanning Tree (MST)

Compute the MST of a weighted graph with V vertices and E edges

Internal	External
Chazelle 1999	Arge, Brodal, Toma 2000
$O(E \cdot \alpha(E, V))$	$O(Sort(E) \cdot \log \log rac{V \cdot B}{E})$

Minimum Spanning Tree

Prim's algorithm

Grow a single tree by iteratively including a minimum weight incident edge

Minimum weight incident edge

Priority queue on incident edges

ullet Internal $O(E \cdot \log E)$

ightharpoonup External $O(V + \mathsf{Sort}(E))$

buttleneck if $V \cdot B = \Omega(E)$

Kruskal's algorithm

In $O(\log V)$ phases grow independent MST trees by picking minimum weight incident edges

Using "superphases" $V o rac{V}{k}$ requires $O(\mathsf{Sort}(E) \cdot \log \log k)$ I/Os

Let $k = \frac{V \cdot B}{E}$ and switch to Prim implies the external result

"However, because of the size of the routing data, we have to use heuristics when planning routes (i.e., we find "close to optimum" routes rather than optimum routes). As a result, sometimes a Favor Highways route will be slightly faster than the Fastest route. This is particularly true for routes longer than about 100 miles. ...

Our routing will continually improve as the quality of our data improves and as we invent better routing algorithms."