Cache-Oblivious Dynamic Dictionaries with Update/Query Tradeoff

Gerth Stølting Brodal Erik D. Demaine Jeremy T. Fineman John Iacono Stefan Langerman J. Ian Munro

Result presented at SODA 2010

Dynamic Dictionary

Search(k)

Insert(e) Delete(k)

I/O Model

[Aggarwal, Vitter 88]

Cost: the number of *block transfers* (I/Os)

Cache-Oblivious Algorithms

[Frigo, Leiserson, Prokop, Ramachandran 99]

- Algorithms not parameterized by *M* or *B*
- Analyze in *ideal-cache model* I/O model, except optimal replacement policy is assumed

Cache-Oblivious Dynamic Dictionaries

Cache-Aware	Search	Insert
B-tree [BM72]	<i>O</i> (log _B N)	O(log _B N)
Buffered B-tree [BF03]	$O((1/\varepsilon)\log_B N)$	$O((1/\varepsilon B^{1-\varepsilon})\log_B N)^*$

Cache-Oblivious	Search	Insert
CO B-tree [BDF-00, BDIW04,BFJ02]	$O(\log_B N)$	<i>O</i> (log _{<i>B</i>} <i>N</i> +)
COLA [BFF-CFKN07]	O(log ₂ N)	<i>O</i> ((1/ <i>B</i>)log ₂ <i>N</i>)*
Shuttle Tree [BFF-CFKN07]	Ø(log _₿ N)	O((1/B ^{Ω(1/(log log B)²)})log _B N +)*
xDict [this paper]	$O((1/\varepsilon)\log_B N)$	Ο((1/εB^{1-ε})log_BN)* †

* amortized

⁺ assumes $M = \Omega(B^2)$

Building an xDict (
$$\varepsilon = 1/2$$
)
 $2^{2^{1}-box}$
 $2^{2^{2}-box}$
 $2^{2^{1}-box}$

IglgN x-boxes of squaring capacities

Insert: insert into smallest box

- When a box reaches capacity, Flush it and Batch-Insert into the next box
- $\mathcal{O}((1/\sqrt{B}) \log_B x)$ cost is dominated by largest box $\rightarrow \mathcal{O}((1/\sqrt{B}) \log_B N)$

Search: search in each x-box

• $\mathcal{O}(\log_B x)$ cost is dominated by largest box $\mathcal{O}(\log_B N)$

Batch-Insert(*D*,*A*): insert $\Theta(x)$ presorted objects - cost $O((1/\sqrt{B})\log_B x)$ per element

Search(D,κ): - cost is $O(\log_B x)$

Flush(D): produce a size-x² sorted array A containing all the elements in the x-box D — cost is O(1/B) per element

Theorem: An *x*-Box uses at most *cx*² space

(within constant factor of capacity/output buffer)

Fractional Cascading within x-Box

Propagate samples upwards + Lookahead pointers

Describe searches by the recurrence $S(x) = 2S(\sqrt{x}) + O(1)$ with base case $S(\sqrt{B}) = 0$ Solves to $O(\log_B N)$

Flush

- Moves all real elements to the output buffer in sorted order.
- Lookahead pointers are rebuilt to facilitate searches. Most subboxes remain empty.

1. Merge sorted input into input buffer.

- 1. Merge sorted input into input buffer.
- 2. If input buffer is "full enough," Batch-Insert into upper-level subboxes (in chunks of $\Theta(\sqrt{x})$)

- 1. Merge sorted input into input buffer.
- 2. If input buffer is "full enough," Batch-Insert into upper-level subboxes (in chunks of $\Theta(\sqrt{x})$)
- 3. Whenever a subbox is near capacity, Flush it, then split it into two subboxes → → → →

- 1. Merge sorted input into input buffer.
- 2. If input buffer is "full enough," Batch-Insert into upper-level subboxes (in chunks of $\Theta(\sqrt{x})$)
- 3. Whenever a subbox is near capacity, Flush it, then split it into two subboxes → → → → →
- 4. If no empty subboxes remain, Flush all of them and merge output buffers into middle buffer.

Generalizing to $O((1/\epsilon B^{1-\epsilon})\log_B N)$

Parameterize by $0 < \alpha \leq 1$, where $\alpha = \varepsilon/(1-\varepsilon)$

 $1/\epsilon$ overhead comes from geometric sum in xDict

Results Summary

Cache-Aware	Search	Insert
B-tree [BM72]	O(log _B N)	O(log _B N)
Buffered B-tree [BF03]	$O((1/\varepsilon)\log_B N)$	$O((1/\varepsilon B^{1-\varepsilon})\log_B N)^*$

Cache-Oblivious	Search	Insert
CO B-tree [BDF-00, BDIW04,BFJ02]	$O(\log_B N)$	<i>O</i> (log _{<i>B</i>} <i>N</i> +)
COLA [BFF-CFKN07]	O(log ₂ N)	<i>O</i> ((1/ <i>B</i>)log ₂ <i>N</i>)*
Shuttle Tree [BFF-CFKN07]	Ø(log _₿ N)	O((1/B ^{Ω(1/(log log B)²)})log _B N +)*
xDict [this paper]	$O((1/\varepsilon)\log_B N)$	Ο((1/εB^{1-ε})log_BN)* †

* amortized

⁺ assumes $M = \Omega(B^2)$