
Cache-Oblivious Dynamic Dictionaries
with Update/Query Tradeoff

Gerth Stølting Brodal
Erik D. Demaine

Jeremy T. Fineman
John Iacono

Stefan Langerman
J. Ian Munro

Result presented at SODA 2010

Dynamic Dictionary

Search(k)

Insert(e)

Delete(k)

I/O Model
[Aggarwal, Vitter 88]

CPU
Fast

Memory
block

M/B

B

Slow Memory

B

Cost: the number of block transfers (I/Os)

Cache-Oblivious Algorithms
[Frigo, Leiserson, Prokop, Ramachandran 99]

• Algorithms not parameterized by M or B

• Analyze in ideal-cache model — I/O model,
except optimal replacement policy is assumed

CPU
Fast

Memory
block

M/B

B

Slow Memory

B

Cache-Oblivious Dynamic Dictionaries

Cache-Aware Search Insert

B-tree [BM72] O(logBN) O(logBN)

Buffered B-tree [BF03] O((1/)logBN) O((1/B1-)logBN)*

Cache-Oblivious Search Insert

CO B-tree [BDF-00,
BDIW04,BFJ02]

O(logBN) O(logBN + …)

COLA [BFF-CFKN07] O(log2N) O((1/B)log2N)*

Shuttle Tree
[BFF-CFKN07]

O(logBN)
O((1/BΩ(1/(log

log

B)2))logBN

+ …)*

xDict [this paper] O((1/)logBN) O((1/B1-)logBN)*†

* amortized † assumes M = Ω(B2)

Building an xDict ( = 1/2)

lglgN x-boxes of squaring capacities

Insert: insert into smallest box

• When a box reaches capacity, Flush it and Batch-
Insert into the next box

• O((1/√B) logB x) cost is dominated by largest box
 O((1/√B) logB N)

Search: search in each x-box

• O(logB x) cost is dominated by largest box O(logB N)

221
-box 222

-box

22lglgN
-box

 …

x-Box = dictionary with capacity x2

Batch-Insert(D,A): insert Θ(x) presorted objects

 — cost O((1/√B)logB x) per element

Search(D,κ):

 — cost is O(logB x)

Flush(D): produce a size-x2 sorted array A containing
all the elements in the x-box D

 — cost is O(1/B) per element

size-x input buffer

Recursive x-Box

size-x2 output buffer

size-x3/2 middle buffer

√x-box

√x-box

Upper level: at most
x1/2/4 subboxes

Lower level: at most
x/4 subboxes

input middle … … output

subboxes stored contiguously
in arbitrary order

Unused (currently empty)
subboxes are preallocated

…

…

size-x input buffer

x-Box Space Usage

size-x2 output buffer

size-x3/2 middle buffer

√x-box

√x-box

Upper level: at most
x1/2/4 subboxes

Lower level: at most
x/4 subboxes

…

…

Theorem: An x-Box uses at most cx2 space

(within constant factor of capacity/output buffer)

Fractional Cascading within x-Box

size-x input buffer

size-x2 output buffer

size-x3/2 middle buffer

√x-box

√x-box

Upper level: at most
x1/2/4 subboxes

Lower level: at most
x/4 subboxes

Propagate samples upwards + Lookahead pointers

Searching in an x-Box

Describe searches by the recurrence

 S(x) = 2S(√x) + O(1)

 with base case S(<√B) = 0

Solves to O(logB N)

√x-box

√x-box

Upper level: at most
x1/2/4 subboxes

Lower level: at most
x/4 subboxes

size-x input buffer

size-x3/2 middle buffer

size-x2 output buffer

Flush

• Moves all real elements to the output buffer
in sorted order.

size-x2 output buffer

√x-box

√x-box

Upper level: at most
x1/2/4 subboxes

• Lookahead pointers are rebuilt to facilitate
searches. Most subboxes remain empty.

size-x input buffer

size-x3/2 middle buffer

Lower level: at most
x/4 subboxes

Batch-Insert

1. Merge sorted input into input buffer.

+

input buffer

middle buffer

output buffer

Batch-Insert

1. Merge sorted input into input buffer.
2. If input buffer is “full enough,” Batch-Insert into

upper-level subboxes (in chunks of Θ(√x))

middle buffer

output buffer

Batch-Insert

1. Merge sorted input into input buffer.
2. If input buffer is “full enough,” Batch-Insert into

upper-level subboxes (in chunks of Θ(√x))
3. Whenever a subbox is near capacity, Flush it, then

split it into two subboxes

input buffer

middle buffer

output buffer

Batch-Insert

1. Merge sorted input into input buffer.
2. If input buffer is “full enough,” Batch-Insert into

upper-level subboxes (in chunks of Θ(√x))
3. Whenever a subbox is near capacity, Flush it, then

split it into two subboxes
4. If no empty subboxes remain, Flush all of them and

merge output buffers into middle buffer.

input buffer

middle buffer

output buffer

Generalizing to O((1/εB 1-ε)logBN)

Parameterize by 0 < α ≤ 1, where α = ε/(1-ε)

size-x input buffer

size-x 1+α output buffer

size-x 1+α/2 middle buffer

√x-box

√x-box

Upper level: at most
x1/2/4 subboxes

Lower level: at most
x1/2+α/2/4 subboxes

2(1+α)
1
 2(1+α)

2
-box

2(1+α)

i
-box

1/ε overhead comes from geometric sum in xDict

Results Summary

Cache-Aware Search Insert

B-tree [BM72] O(logBN) O(logBN)

Buffered B-tree [BF03] O((1/)logBN) O((1/B1-)logBN)*

Cache-Oblivious Search Insert

CO B-tree [BDF-00,
BDIW04,BFJ02]

O(logBN) O(logBN + …)

COLA [BFF-CFKN07] O(log2N) O((1/B)log2N)*

Shuttle Tree
[BFF-CFKN07]

O(logBN)
O((1/BΩ(1/(log

log

B)2))logBN

+ …)*

xDict [this paper] O((1/)logBN) O((1/B1-)logBN)*†

* amortized † assumes M = Ω(B2)

