Bottom-up Rebalancing Binary Search Trees by Flipping a Coin

Gerth Stølting Brodal

Aarhus University

12th International Conference on Fun with Algorithms (FUN 2024), Island of La Maddalena, Sardinia, Italy, June 4-8, 2024

Review

The paper considers an important problem...

The paper fails to solve the problem...

Unbalanced binary search trees – Insertions

1) Locate insertion point (empty leaf)

2) Create new leaf node

Unbalanced binary search trees

Inserting 1 2 3 4 5 6

increasing sequence gives linear depth

Inserting 3 5 2 4 1 6

random permutation gives expected logarithmic depth [Hilbard 1962]

Balanced binary search trees

- Structural invariants implying logarithmic depth
- Rebalance using rotations

Balanced binary search tree insertions : rebalancing cost

Reference	Name	Time	Rotations	Random bits	Space pr node
[AVL62]	AVL-trees	<i>O_A</i> (1)	O(1)	0	2
[GS78]	Red-black trees	<i>O</i> _A (1)	O(1)	0	1
[B79]	Encoded 2-3 trees	0(lg n)	0(lg n)	0	0
[ST85]	Splay trees	$O_A(\lg n)$	$O_A(\lg n)$	0	0
[A89,GR93]	Scapegoat	0(lg n)	0(lg n)	0	global O(lg n)
[SA96]	Treaps	<i>O_E</i> (1)	<i>O_E</i> (1)	<i>O_E</i> (1)	<i>O_E</i> (1)
[MR98]	Randomized BST	$O_E(\lg n)$	<i>O_E</i> (1)	$O_E(\lg^2 n)$	0(lg n) 👸
[S09]	Seidel	$O_E(\lg^2 n)$	<i>O_E</i> (1)	$O_E(\lg^3 n)$	0
	Open problem	<i>O_E</i> (1)	O(1)	<i>O_E</i> (1)	0

random BST

Question asked in this paper

Does there exists a randomized rebalancing scheme satisfying...

- 1. No balance information stored
- 2. Worst-case O(1) rotations
- **3.** Most rotations near the insertion
- 4. Local information only
- 5. Expected O(1) time
- 6. O(1) random bits per insertion
- 7. Nodes expected depth O(lg *n*)

Algorithm RebalanceZig

Rebalance $\operatorname{Zig}(v)$

while $v.p \neq \text{NIL}$ and coin flip is tail do $v \leftarrow v.p$ if $v.p \neq \text{NIL}$ then ROTATEUP(v)

Fact 1 REBALANCEZIG takes expected O(1) time and performs ≤ 1 rotation

Theorem 1 REBALANCEZIG on **increasing** sequence each node expected depth O(lg n), for 0 < *p* < 1 (p = Pr[tail])

Algorithm RebalanceZig extreme probabilities

REBALANCEZIG(v)

while $v.p \neq \text{NIL}$ and coin flip is tail do $v \leftarrow v.p$ if $v.p \neq \text{NIL}$ then ROTATEUP(v)

- Pr[tail] = 1 never performs rotation i.e. unbalanced binary search tree
- Pr[tail] = 0 always rotates up new leaf i.e. tree is always a path

3

5

6

Different insertion sequences

Why ReblanceZig is bad on convering

"Proof" of Theorem 2

• For each pair the depth of the insertion point increases by ≥ 1 with probability $\geq p(1-p)$:

If inserting *u* rotates a (strict) ancestor of *u* up, and inserting *v* rotates *v* up, then depth of insertion point * increases by inserting the pair

 $\begin{array}{c} 1 \ 6 \ 2 \ 5 \ 3 \ 4 \\ \text{(converging)} \end{array}$

Why ReblanceZig is bad on pairs

 $2\ 1\ 4\ 3\ 6\ 5$ (pairs)

"Proof" of Theorem 3

- p < ½, odd numbers tend to be rotated on rightmost path, right path expected Θ(n) nodes
- p > ½, rightmost path tends to contain O(1) nodes, left path expected Θ(n) nodes

RebalanceZig (n = 1024)

Algorithm RebalanceZigZag

Rebalance $\operatorname{ZigZag}(v)$

while $v.p \neq \text{NIL}$ and coin flip is tail do $v \leftarrow v.p$ if $v.p \neq \text{NIL}$ and $v.p.p \neq \text{NIL}$ then if (v=v.p.l and v.p=v.p.p.l) or (v=v.p.r and v.p=v.p.p.r) then ROTATEUP $(v.p) \Rightarrow zig-zig \text{ or } zag-zag \text{ case}$ else ROTATEUP $(v) \Rightarrow zig-zag \text{ or } zag-zig \text{ case}$ ROTATEUP $(v) \Rightarrow zig-zag \text{ or } zag-zig \text{ case}$

ROTATEUP(v.p)

ROTATEUP(v)

ROTATEUP(v)

RebalanceZigZag (n = 1024)

Summary

Bottom-up Rebalancing Binary Search Trees by Flipping a Coin

Bottom-up Rebalancing Balanced Binary Search Trees ? by Flipping a Coin