
Priority Queues with 
Decreasing Keys

Gerth Stølting Brodal

Aarhus University

11th FUN with Algorithms, Island of Favignana, Sicily, Italy, May 30-June 3, 2022



Background

▪ Bachelorproject = shortest paths on Open Street Map graphs

▪ Students have trouble implementing Dijkstra's algorithm in JavaTM



<way id="106231197" visible="true" version="8" changeset="90539127" timestamp="2020-09-
07T15:29:03Z" user="vbertola" uid="4347030">
<nd ref="1222984792"/>
<nd ref="6789155595"/>
<nd ref="1222984775"/>
<nd ref="1222984838"/>
...
<nd ref="4439326163"/>
<nd ref="4439326143"/>
<nd ref="1222984725"/>
<nd ref="6789155593"/>
<nd ref="1222984792"/>
<tag k="addr:city" v="Favignana"/>
<tag k="addr:housenumber" v="29"/>
<tag k="addr:postcode" v="91023"/>
<tag k="addr:street" v="Via Giovanni Amendola"/>
<tag k="contact:facebook" v="www.facebook.com/exstabilimentofloriofavignana"/>
<tag k="description" v="Museo regionale di storia - apertura stagionale marzo-

novembre"/>
<tag k="heritage:website" 

v="http://pti.regione.sicilia.it/portal/page/portal/PIR_PORTALE/PIR_LaStrutturaRegionale
/PIR_AssBeniCulturali/PIR_BeniCulturaliAmbientali"/>
<tag k="name" v="Ex stabilimento Florio delle tonnare di Favignana e Formica"/>
<tag k="operator" v="Regione siciliana"/>
<tag k="operator:type" v="public"/>
<tag k="tourism" v="museum"/>
<tag k="website" v="http://www.visitsicily.info/ex-stabilimento-florio-tonnara-

favignana/"/>
</way>



Dijkstra’s algorithm

▪ Non-negative edge weights

▪ Visits nodes in increasing distance from source

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨6,D⟩

⟨4,D⟩

⟨6,E⟩

0

relax

Fibonacci heaps
⇒ O(m + n ∙ log n)

O(log n) Remove

⇒ O(m ∙ log n)

relax



The Challenge - Java's builtin binary heap

▪ no decreasekey

▪ remove O(n) time 

⇒ Dijkstra O(m ∙ n)

▪ comparator function



Repeated insertions
▪ Relax inserts new copies of item

▪ Skip outdated items

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨4,C⟩ ⟨6,D⟩

⟨4,D⟩ ⟨6,D⟩

⟨6,D⟩ ⟨6,E⟩

0

⟨4,C⟩ ⟨4,D⟩ ⟨6,D⟩

outdated ?

relax
= reinsert

⟨6,E⟩



Using a visited set
source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨4,C⟩ ⟨6,D⟩

⟨4,D⟩ ⟨6,D⟩

⟨6,D⟩ ⟨6,E⟩

0

⟨4,C⟩ ⟨4,D⟩ ⟨6,D⟩

⟨6,E⟩

use bitvector



A shaky idea…

d never used

▪ Only store nodes in Q
(save space)

▪ Comparator

▪ Key = current distance dist

Heap invariants break



Experimental study

▪ Implemented Dijkstra4 in Python

▪ Stress test on random cliques

▪ Binary heaps

▪ Skew heaps

▪ Leftist heaps

▪ Pairing heaps

▪ Binomial queues

▪ Post-order heaps

▪ Binary heaps with top-down insertions

failed

worked

worked

worked

worked

worked

worked

(default priority queue in Java and Python)

Implicit (space efficient)

Pointer based

visited = set()

Q = Queue()

Q.insert(Item(0, source))

while not Q.empty():

u = Q.extract_min().value

if u not in visited:

visited.add(u)

for v in G.out[u]:

dist_v = dist[u] + G.weights[(u, v)]

if dist_v < dist[v]:

dist[v] = dist_v

parent[v] = u

Q.insert(Item(dist[v], v))



Binary heap insertions
– bottom-up vs top-down

2

3 5

9 4 8 12

10 14 6 20 17 7

2

3 5

9 4 7 12

10 14 6 20 17 8

Insert(7)

bottom-
up

top-down



outdated wrong 
placement

not smallest 
key

ignored
since visited

Binary heaps using dist by a comparator fails



Definition
Priority Queues with Decreasing Keys

▪ Items = ⟨key, value⟩

▪ Over time keys can decrease – priority queue is not informed

▪ Items are compared w.r.t. their current keys

▪ The original key of an item is the key when it was inserted

Insert(item)

ExtractMin() returns an item with current key less than or equal to 
all original keys in the priority queue



Theorem 1

Dijkstra4 correctly computes shortest paths when using dist as 
current key and a priority queue supporting decreasing keys

Theorem 2

The following priority queues support decreasing keys (out of the box)

▪ binary heaps with top-down insertions

▪ skew heaps

▪ leftist heaps

▪ pairing heaps

▪ binomial queues

▪ post-order heaps



Proof of Theorem 2 - Basic idea

▪ Decreased heap order

u ancestor of v ⇒
current key u ≤ original key v

▪ Root valid item to extract

▪ Top-down merging two paths 
preserves decreased heap order 

⇒ skew heaps and leftist heaps
support decreasing keys



Experimental evaluation of various heaps
▪ Cliques with uniform random weights

▪ With decreasing keys less comparisons (outdated items removed earlier)
⟨key, value⟩ pairs decreasing keys

im
p

licit
p

o
in

ter



Reduction in comparisons
comparisons decreasing keys / comparisons ⟨key, value⟩ pairs



Postorder heap [Harvey and Zatloukal, FUN 2004]

▪ Insert amortized O(1), ExtractMin amortized O(log n)

▪ Implicit (space efficient)

▪ Best implicit comparison performance (and good time performance)



Conclusion

▪ Introduced notion of priority queues with decreasing keys
… as an approach to deal with outdated items in Dijkstra’s algorithm

▪ Experiments identified priority queues supporting decreasing keys
… just had to prove it

▪ Builtin priority queues in Java and Python are binary heaps
… do not support decreasing keys

▪ Binary heaps with top-down insertions do support decreasing keys
… and also

skew heaps, leftist heaps, pairing heaps, 
binomial queues, post-order heaps


