Dynamic Planar Convex Hull

Gerth Stølting Brodal ■BRICS

University of Aarhus Denmark

Joint work with Riko Jacob, ≣BRICS

Dagstuhl-Seminar on Data Structures February 28 – March 3, 2000

Outline of Talk –

- Convex hull definitions and results
- Observations on static convex hull
- Deletions-only data structure
- Fully dynamic data structure
 - General dynamization technique
 - Duality: convex hulls and envelopes of lines
 - Dual queries
 - Data structure
- Application
- Conclusion

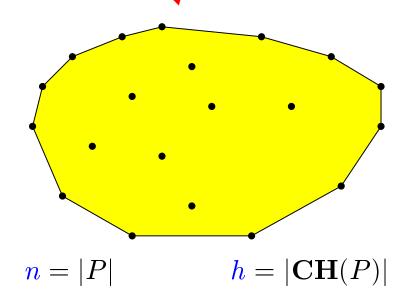
Planar Convex Hull-

Input

A set of points $P \subseteq \mathbb{R}^2$

Output

The points on the convex hull CH(P) in clockwise order



Known results

Optimal $O(n \log n)$

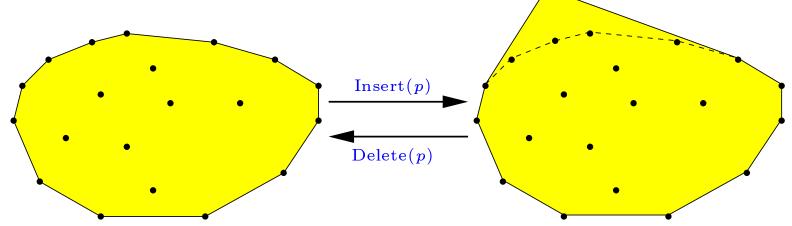
Graham 1972; ...

Output-sensitive $O(n \log h)$ Kirkpatrick, Seidel 1986; Chan 1996

Dynamic Planar Convex Hull

Updates

Insert and delete points



Queries

(a) The extreme point in a direction

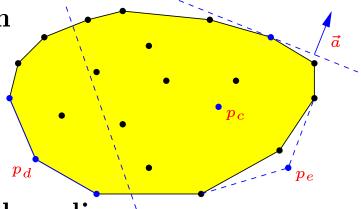
(b) Does a line intersect CH(P)?

(c) Is a point inside CH(P)?

(d) Neighbor points on CH(P)

(e) Tangent points on CH(P)

(f) The edges of CH(P) intersected by a line ℓ_b



■BRIC

Dynamic Planar Convex Hull Results -

Fully dynamic	Update	Query
Overmars, van Leeuwen 1981	$O(\log^2 n)$	$O(\log n)$
Chan 1999	$O_{\rm A}(\log^{1+\epsilon} n)$	$O(\log n)$
Brodal, Jacob 2000	$O_{\mathrm{A}}(\log n \cdot \log \log n)$	$O(\log n)$

Insertions only	Insert	Query
Preparata, Shamos 1985	$O(\log n)$	$O(\log n)$

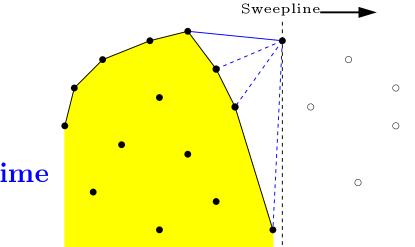
Deletions only	Preprocessing	Delete	Query
Hershberger, Suri 1992	$O_{\mathrm{A}}(n\log n)$	$O_{\mathrm{A}}(\log n)$	$O(\log n)$
Brodal, Jacob 2000	${O_{\mathrm{A}}(n)}^{ullet}$	$O_{\mathrm{A}}(\log n \cdot \log \log n)$	

$$O_A$$
=Amortized time Query=Queries (a)-(e) *=Points presorted

Sweepline Algorithm for Convex Hull

Sufficient to consider the upper hull UH(P)

The lower hull LH(P) is symmetric



If P lexicographically sorted

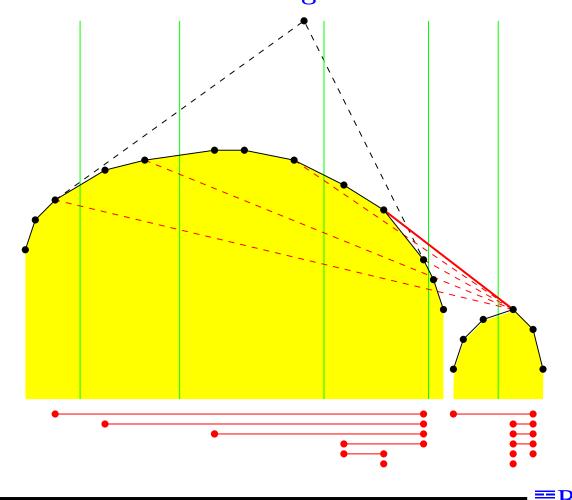
Computing UH(P) takes O(n) time

UH(P)

LH(P)

- Deletions-Only Data Structure

Goal A deletions-only data structure for storing n points $O_{\mathbf{A}}(n)$ preprocessing and $O_{\mathbf{A}}(\log n \cdot \log \log n)$ deletion time Deletions return the changes in the convex hull

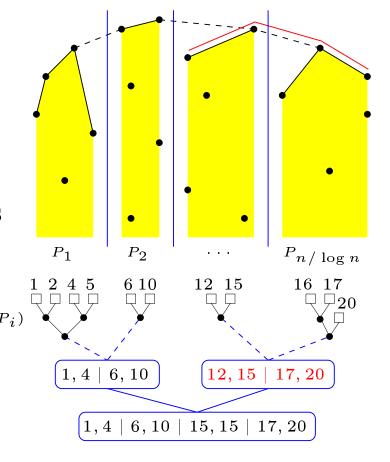


Deletions-Only Data Structure

Goal A deletions-only data structure for storing n points $O_{\mathbf{A}}(n)$ preprocessing and $O_{\mathbf{A}}(\log n \cdot \log \log n)$ deletion time Deletions return the changes in the convex hull

Data structure

- Partition points in $\frac{n}{\log n}$ blocks
- For each block P_i construct a binary tree storing $UH(P_i)$ in $O(\log n)$ time
- Binary tree with blocks at the leaves
- $-\operatorname{UH}(P_v)$ as pointer-pairs to blocks
- $-\frac{n}{\log n}$ pointer-pairs per level UH(P_i)
- Space O(n)
- Preprocessing O(n)



Deletions

Delete point and rebuild $UH(P_i)$

 $O(\log n)$

Update UH(P_v) for each v on the path to the root $O(\log n) \times I$

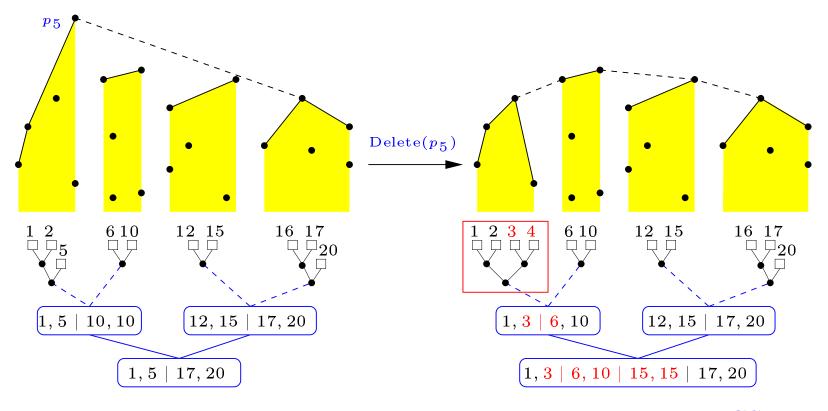
- Delete p — possibly deleting a pointer-pair

O(1)

- Insert/copy x pointer-pairs from the children

O(x)

- Find a new bridge between two blocks



Analysis - Deletions-Only

D deletions

$$O(X + D \cdot \log n \cdot \log \log n)$$

where

$$X = \# \text{ pointer-pairs inserted}$$

 $\leq \frac{n}{\log n} \log n + D \cdot \log n$
 $= n + D \cdot \log n$

Amortized bounds

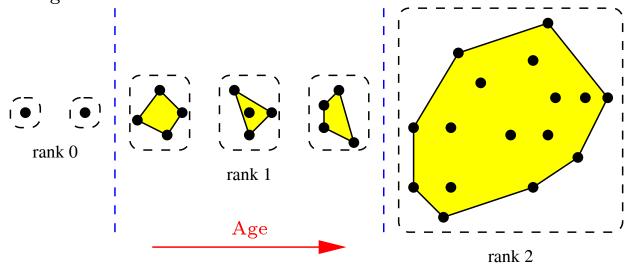
Preprocessing $O_{\mathbf{A}}(n)$

Deletions $O_{\mathbf{A}}(\log n \cdot \log \log n)$

Fully Dynamic Data Structure

General dynamization technique

- Collection \mathcal{C} of sets of points
- Each set has a rank
- Store each set as a deletions-only data structure
- Insertions create new rank 0 sets
- If $\log n$ sets have rank r, merge them to a rank r+1 set
- $-\mathbf{Max} \ \mathbf{rank} = \log_{\log n} n$
- $-|\mathcal{C}| \le \log_{\log n} n \cdot \log n$



Outline of Operations

Insertions

Create new rank 0 sets and merge sets whenever overflowing

 $\mathbf{Merging} \equiv \mathbf{MergeSort} \ \mathbf{using} \ O_{\mathbf{A}}(n) \ \mathbf{preprocessing} \qquad O_{\mathbf{A}}(\log n)$

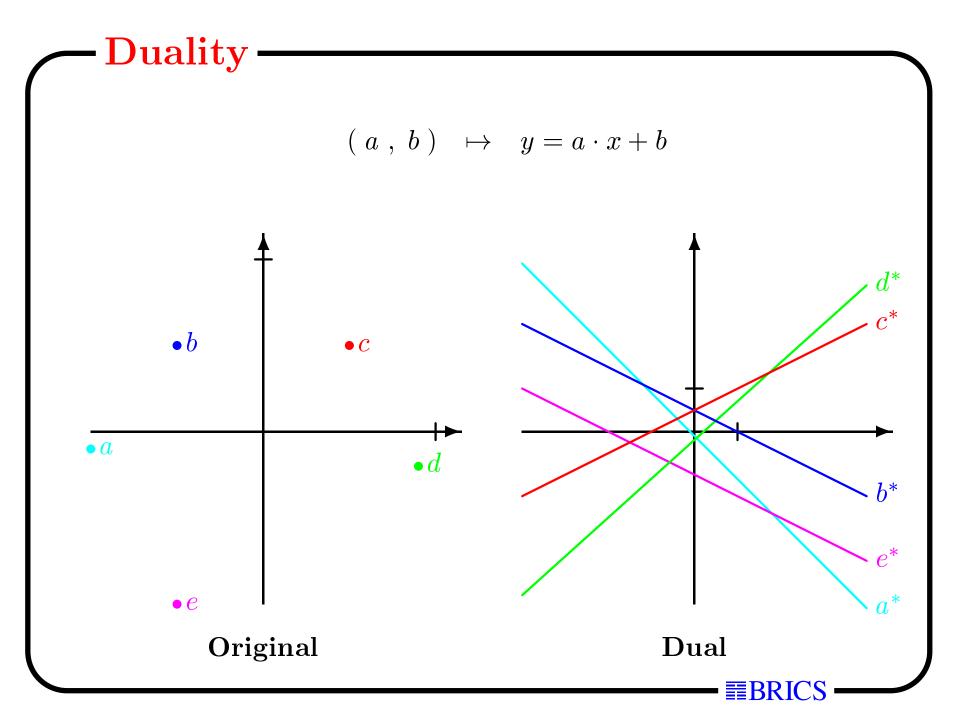
Deletions

Delete point from deletions-only data structure

 $O_{\mathbf{A}}(\log n \cdot \log \log n)$

Queries

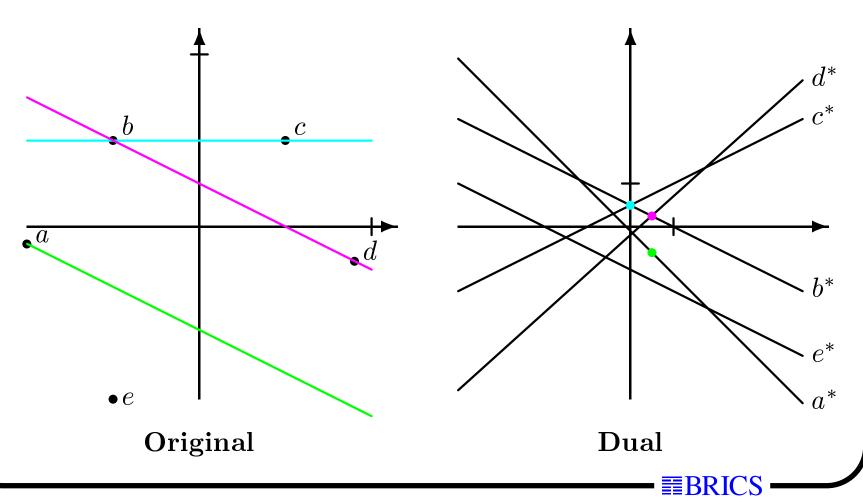
Query the convex hulls of the $O(\log^2 n)$ sets "simultaneously" \Rightarrow additional data structure — for the dual problem



Duality -

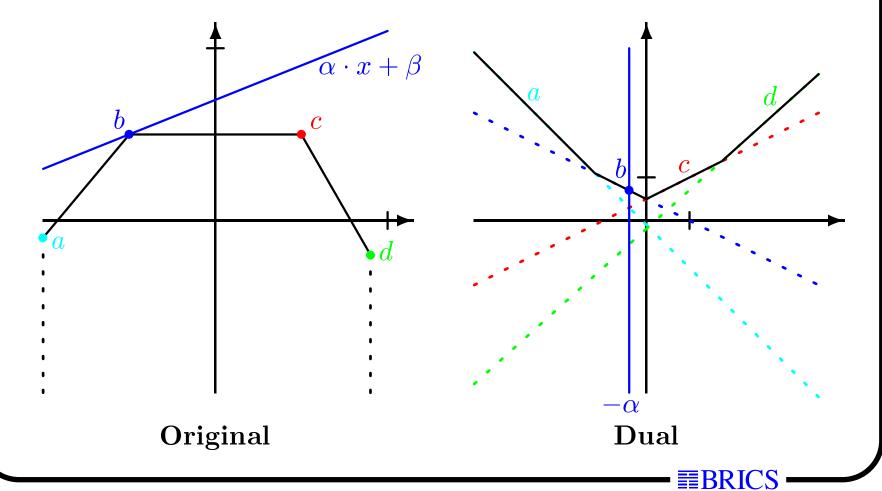
$$(a,b) \mapsto y = a \cdot x + b$$

 $y = a \cdot x + b \mapsto (-a,b)$



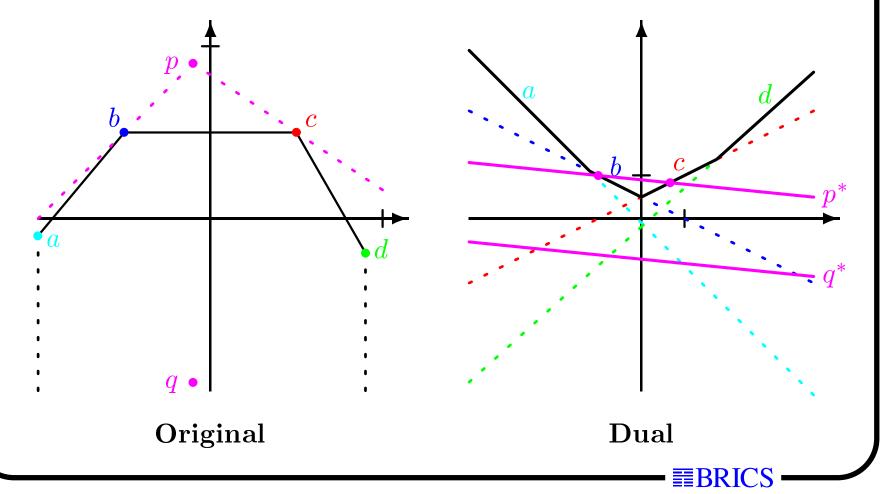
Upper Hulls vs. Upper Envelopes

Tangent with slope $\alpha \mapsto \text{Intersection with } x = -\alpha$



Upper Hulls vs. Upper Envelopes

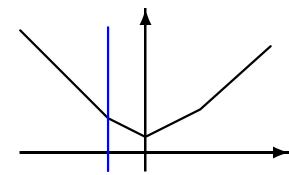
Tangents through a point $p \mapsto \text{Intersections with } p^*$



Dual Queries

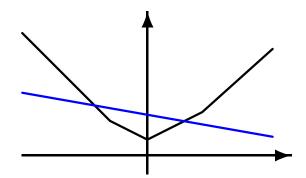
- (a) The extreme point in a direction
- (b) Does a line intersect CH(P)?

Vertical line intersection queries



- (c) Is a point inside CH(P)?
- (d) Neighbor points on CH(P)
- (e) Tangent points on CH(P)

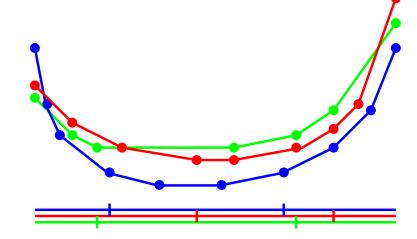
Arbitrary line intersection queries



Unions of Envelopes UH of points on the $O(\log^2 n)$ convex hulls UHthe upper envelope in the dual of the points the upper envelope of $O(\log^2 n)$ upper envelopes

Block Decomposition of Envelopes

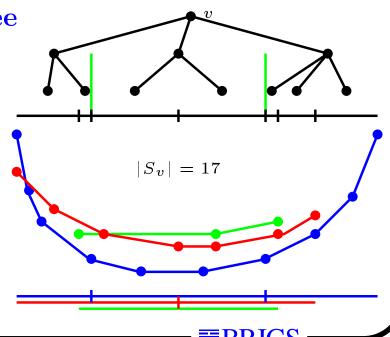
Partition upper envelopes in blocks with $O(\frac{\log n}{\log \log n})$ line segments



Each block covers an x-interval

Store the blocks in an interval tree with degree $O(\log n)$ and height $O(\frac{\log n}{\log \log n})$

 S_v = line segments in blocks where the block interval contains at least one search-key of v(and not for any ancestor of v)



Fully Dynamic Case: Queries

$$|S_v| = O(\log^4 n)$$

Store S_v as secondary data structures using fully dynamic data structures with $O_{\mathbf{A}}(U(n))$ update and $O(\log n)$ query time e.g. $U(n) = \log^2 n$ by Overmars, van Leeuwen 1981

Vertical line queries

One query to a secondary data structure for each level of the interval tree

$$O\left(\frac{\log n}{\log\log n} \cdot \log(\log^4 n)\right) = O(\log n)$$

Fully Dynamic Case: Insertions

Inserting/deleting blocks in the interval tree

Searching + (block size) · (update time secondary structures)

$$O\left(\log n + \frac{\log n}{\log\log n} \cdot U(\log^4 n)\right)$$

 $\Rightarrow O(U(\log^4 n))$ per segment

Insertions

Each point can "pop up" in $\leq \frac{\log n}{\log \log n}$ convex hulls

Total cost for n insertions is bounded by the time for block operations on the interval tree

$$O\left(n \cdot \frac{\log n}{\log \log n} \cdot U(\log^4 n)\right)$$

$$\Rightarrow O_{\mathbf{A}}\left(\frac{\log n}{\log \log n} \cdot U(\log^4 n)\right) \text{ per point}$$

Fully Dynamic Case: Deletions

Deletions

Delete the point from one deletions-only data structure

- + perform O(1) block updates on the interval tree
- + new points may "pop up" on a convex hull

Last two terms can be charged to the insertions The deletion time is inherited from the deletions-only data structure, say denoted D(n)

 $\Rightarrow O_{\mathbf{A}}(D(n))$ per point

Transformation Result

Given a deletions-only CH data structure with $O_{\mathbf{A}}(n)$ preprocessing and $O_{\mathbf{A}}(D(n))$ deletion time, and a fully dynamic CH data structure with $O_{\mathbf{A}}(U(n))$ update time and $O(\log n)$ query time, there exists a CH data structure with

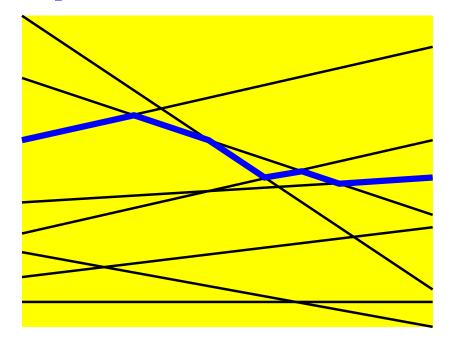
$$egin{array}{ll} \mathbf{Query} & O(\log n) \ \mathbf{Insert} & O_{\mathbf{A}} \left(rac{\log n}{\log \log n} \cdot U(\log^4 n)
ight) \ \mathbf{Delete} & O_{\mathbf{A}}(D(n)) \end{array}$$

Using our deletions-only data structure and the fully dynamic data structure of Overmars and van Leeuwen

Query
$$O(\log n)$$
 $O_{\mathbf{A}}(\log n)$ Insert $O_{\mathbf{A}}(\log n \cdot \log \log n)$ \Longrightarrow $O_{\mathbf{A}}(\log n \cdot \log \log \log n)$ Delete $O_{\mathbf{A}}(\log n \cdot \log \log n)$ $O_{\mathbf{A}}(\log n \cdot \log \log n)$

Application: k-Level Problem

Input n lines and integer kOutput The k-level of the lines



 $O(n \cdot \log n + m \cdot \log^2 n)$ using Overmars and van Leeuwen where m size of output Edelsbrunner, Welzl 1986

Corollary $O(n \cdot \log n + m \cdot \log n \cdot \log \log n)$

Conclusion and Open Problems

Result

Data structure for the dynamic planar convex hull problem

Query $O(\log n)$ Insert $O_{\mathbf{A}}(\log n \cdot \log \log \log n)$ Delete $O_{\mathbf{A}}(\log n \cdot \log \log n)$

Open Problems

- Achieve $O(\log n)$ update time
- Worst-case time bounds
- More advanced queries