Finger Search Trees

Gerth Stølting Brodal
Finger Search Trees

A finger search tree is a data structure to store a sorted list of elements. Fingers are pointers to particular elements in the list. Operations are done relative to the fingers.

Operations:

- `search (S, x, f)`
- `insert (S, x, f)`
- `delete (S, x, f)`
- `create-finger (S, x)`
- `destroy-finger (S, f)`

\[
S = \text{join} (S_1, S_2) \\
(S_1, S_2) = \text{split} (S, x, f)
\]

Let \(d \) denote the distance of \(x \) from \(f \) in the list. The operations should take the following time:

- `search, insert, delete`: \(O(\log d) \)
- `create-finger, destroy-finger`: \(O(1) \)
- `join, split`: \(O(\log d + \log \min\{151, 13d\}) \)
Adaptive Sorting
- an application of finger search trees

The Problem:
Input: X a vector of elements
Output: X sorted
Algorithm: Should be adaptive to the presortedness of X.

Measures of presortedness:

\[\text{Inv}(X) = \# \text{pairwise inversions in } X \]

\[\text{SMS}(X) = \min \{ k | X \text{ can be partitioned into } k \text{ monotone sequences} \} \]

(SMS = Shuffled Monotone Subsequence)

Optimally adaptive algorithms with respect to a measure of presortedness match the corresponding lower bound for the number of comparisons within a constant factor.
Merge sort

[Moffat, Petersson, Wormald]

14 15 13 6 1 4 5 10 12 16 8 3 7 9

Divide

14 15 13 6 1 4 5

10 12 16 8 3 7 9

Recursion

1 4 5 6 13 14 15

3 7 8 9 10 12 16

Merge

1 3 4 5 6 7 8 9 10 12 13 14 15 16
Merge sort

[Moffat, Petersson, Wormald]

14 15 13 6 1 4 5 10 12 16 8 3 7 9

Divide

14 15 13 6 1 4 5
10 12 16 8 3 7 9

Recursion

1 4 5 6 13 14 15
3 7 8 9 10 12 16

Merge

1 3 4 5 6 7 8 9 10 12 13 14 15 16

Merge can be done in worst case time:

\(O \left(\sum_{i=1}^{n} \log |x_i| \right) \)

when representing the lists as finger search trees with fingers at the leftmost elements.

Theorem: Mergesort is SMS-optimally adaptive, and runs in time:

\(O(1x1 \log \text{SMS}(X)) \).

[MPW 92]
(2, 3) - tree

12, 17

7, 10

6, 7, 8, 9, 10, 11, 12

11

13

14

15, 16

18, 19, 20, 21, 22

20

18, 19
Level-linked \((2,3)\)-tree
Level-linked (2, 3)-tree

Search (5, 17, 13).
Transition system for $(2,3)$-trees

Split:

- $x_1x_2x_3$ (left)
- x_2 (right)

Fusion:

- x_2 (center)
- x_1 (left)
- x_1x_2 (right)

Sharing:

- x_3 (center)
- x_1x_2 (left)
- x_2 (right)
Finger Search Trees

Guibas, McCreight, Plass and Roberts 1977:
B-trees + Finger Paths + Regularity condition
Central property:
Updates on the finger paths can be done in constant time because of the regularity condition.

Brown and Tarjan 1980:
(2, 3)-trees + Level linking
Central property:
Simple.

Huddleston and Mehlhorn 1982:
(2, 4)-trees + Level linking
Central property:
Updates can be done in amortized constant time—and simple.
Finger Search Trees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>$O(\log d)$</td>
<td>$O(\log n)$</td>
<td>$O(\log d)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(f + \log d)$</td>
<td>$O(\log n)$</td>
<td>$O(\log d)^*$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(f + \log d)$</td>
<td>$O(\log n)$</td>
<td>$O(\log d)^*$</td>
</tr>
<tr>
<td>Create Finger</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Destroy Finger</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Join Δ</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Split Δ</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log \min{\log s, 1, \log n})^*$</td>
</tr>
</tbody>
</table>

* = Amortized.
Worst case is $O(\log n)$.

Δ = Join and split are not considered in the articles!
Balanced Search Trees
with $O(1)$ Update Time

Operations:
Insert, Delete, Search

Requirement:
The update times for insert and delete should be worst case $O(1)$ once the position of the element is known.

Levcopoulos and Overmars 1988:
Search Tree + Bucketing (size $O(\log^2 n)$)
+ Global Rebuilding

Fleischer 1992:
Reduces the bucket size to $O(\log n)$.
Top Level 2-3 Tree

Buckets of size $\Theta(\log^2 n)$

Linked list of elements.
Finger Search Trees
with O(1) Update Time - RAM

Dietz and Raman 1990:

(2,3)-trees + Level linking
+ Bucketing (size $O(\log^* n)$)
+ Sets of size $\log n / \log \log n$ can be represented by a single word.

Join and split not supported.
A two player game related to finger search trees.

The game:

Player A: Can insert/delete an element from one of the leaves of a tree.

Player B: Can do one of the actions:
 i) Split an internal node
 ii) Fusion an internal node with one of its brothers.
 iii) Move a number of sons from an internal node to its neighbour brother.

Theorem:

A strategy for player B exists that results in trees with internal nodes of degrees between \(a \) and \(b \) where \(2 \leq a < b \) and \(a, b \) are constants.

Problem:

How to find the place to do the update in \(O(1) \) time!