Cache-Oblivious String Dictionaries

Gerth Stølting Brodal
University of Aarhus

Joint work with Rolf Fagerberg

Outline of Talk

- Cache-oblivious model
- Basic cache-oblivious techniques
- Cache-oblivious string algorithms
- Cache-oblivious string dictionaries
 - Cache-oblivious tries and blind tries

Hierarchical Memory Models

Hierarchical Memory

I/O Model

N = problem size

M = memory size

B = I/O block size

- One I/O moves B consecutive records from/to disk
- Complexity measure = number of I/Os

Ideal Cache Model — no parameters!?

Frigo, Leiserson, Prokop, Ramachandran 1999

- Program with only one memory
- Analyze in the I/O model for
- Optimal off-line cache replacement strategy arbitrary B and M

Ideal Cache Model — no parameters!?

Frigo, Leiserson, Prokop, Ramachandran 1999

- Program with only one memory
- Analyze in the I/O model for
- Optimal off-line cache replacement strategy arbitrary B and M

Advantages

- Optimal on arbitrary level ⇒ optimal on all levels
- ullet Portability, B and M not hard-wired into algorithm
- $D^{y}_{n}a^{m}ic$ changing M (and B)

Cache-Oblivious Preliminaries

Cache-Oblivious Scanning

$$O\left(\frac{N}{B}\right)$$
 I/Os

Cache-Oblivious Scanning

$$O\left(rac{N}{B}
ight)$$
 I/Os

Corollary Cache-oblivious selection requires O(N/B) I/Os

Hoare 1961 / Blum et al. 1973

Cache-Aware B-trees

Recursive layout of binary tree \equiv van Emde Boas layout

- Each green tree has height between $(\log_2 B)/2$ and $\log_2 B$
- Searches visit between $\log_B N$ and $2\log_B N$ green trees, i.e. perform at most $4\log_B N$ I/Os (misalignment)

Summary Cache-Oblivious Tools

Scanning:
$$O(N/B)$$

B-tree searching :
$$O(\log_B N)$$

Sorting*:
$$O\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$$

* requires a tall cache assumption $M \geq B^{1+\varepsilon}$

Frigo, Leiserson, Prokop, Ramachandran 1999 Brodal and Fagerberg 2002, 2003

Cache-Oblivious String Algorithms

Knuth-Morris-Pratt String Matching

Knuth, Morris, Pratt 1977

- Time O(|T|)
- Scans text left-to-right
- Accesses the pattern (and failure function) like a stack

Knuth-Morris-Pratt String Matching

Knuth, Morris, Pratt 1977

- Time O(|T|)
- Scans text left-to-right
- Accesses the pattern (and failure function) like a stack
- KMP is cache-oblivious and uses O(|T|/B) I/Os

Suffix Tree/Suffix Array Construction

Farach et al. 2000

• Reduces to sorting, i.e. Sort(N) I/Os

String Dictionaries

Tries vs Blind Tries

Searches take O(|P|) time in internal memory for constant sized alphabets and $O(\log n + |P|)$ time for comparison based alphabets

The Trouble Starts...

- Tries cannot be stored cache-aware to support top-down searches in $O(\log_B N + |P|/B)$ I/Os Demaine et al 2004

- Can construct suffix trees cache-obliviously using $O(\operatorname{Sort}(N))$ I/Os, but cannot search in it efficiently...

+ Cache-aware string B trees support searches in a set of strings in $O(\log_B n + |P|/B)$ I/Os Ferragina and Grossi 1999

String Dictionary

$$S_1$$
 abbabdb

$$S_2$$
 abbabdca

$$S_3$$
 a b b a

$$P$$
 abcaadcb

Queries: Search blind trie + Verify one string

String Dictionary

Queries: Search blind trie + Verify one string

Suffix Tree

$$T$$
 aabacdacabab $\$$ 12 ··· 13 P acada

Queries: Search blind trie + Verify one suffix

Suffix Tree

$$T$$
 aabacdacabab $\$$ 12 ··· 13

$$P$$
 acada

Queries: Search blind trie + Verify one suffix

Tries

Queries: Search blind trie + Verify prefix of one path

Tries

Queries: Search blind trie + Verify prefix of one path

Verifying a Prefix of a Path in a Tree

Verifying Paths in Giraffe Trees is Easy

Definition

A tree is a giraffe tree if all root-to-leaf paths share at least half of the nodes of the tree (long neck)

Verifying Paths in Giraffe Trees is Easy

Definition

A tree is a giraffe tree if all root-to-leaf paths share at least half of the nodes of the tree (long neck)

• A prefix of length p of a path in a giraffe tree using a BFS layout can be traversed in O(p/B) I/Os

Giraffe Cover of a Tree

Giraffe Cover of a Tree

- Uses space O(N) and can be constructed greedily from left-to-right using O(N/B) I/Os by an Euler traversal of T
- BFS layout of each giraffe
- A prefix of length p of a path in a known giraffe can be traversed in O(p/B) I/Os

Summary so far...

String dictionary search

Suffix tree search

Trie search

reduce to blind trie search

Query : Blind trie search +
$$O\left(1 + \frac{|P|}{B}\right)$$
 I/Os

- ullet Partition input trie T into components (generalization of heavy paths)
- T' = collapse components in T into high degree nodes and replace by weight balanced trees
- Apply van Emde Boas layout out to T'

- Partition input trie T into components (generalization of heavy paths)
- T' = collapse components in T into high degree nodes and replace by weight balanced trees
- Apply van Emde Boas layout out to T'

Search: $O(\log_B n)$ I/O

- ullet Partition input trie T into components (generalization of heavy paths)
- T' = collapse components in T into high degree nodes and replace by weight balanced trees
- Apply van Emde Boas layout out to T'

Search: $O(\log_B n)$ I/O — ignoring searching inside components

Decomposition into Components

$$D_v^0 = \{ u \in T_v \mid \operatorname{rank}(u) = \operatorname{rank}(v) \land \operatorname{depth}(u) - \operatorname{depth}(v) < 2^{2^0} \}$$

$$D_v^i = \{ u \in T_v \mid \operatorname{rank}(v) - \operatorname{rank}(u) < \varepsilon 2^i \}$$

$$\wedge 2^{2^{i-1}} \leq \operatorname{depth}(u) - \operatorname{depth}(v) < 2^{2^i} \}$$

Storing and Searching Components

- Store each layer D_v^i separately
- Make a giraf-decomposition of D_v^i
- For D_v^i have a blind trie of size $O(2^{\varepsilon 2^i})$ (using BFS layout) to select the right giraffe-tree
- Search: D_v^i search the blind trie + search in one giraffe-tree
- Distribute $D_v^0, D_v^1, D_v^2, \dots$ in the van Emde Boas layout of T'

Analysis:

- Search in blind trie for D_v^{i+1} dominated by the matched characters in D_v^i
- Space in van Emde Boas layout for a subtree of size k becomes $O(k^3)$

Cache-Oblivious Tries

There exists a cache-oblivious trie supporting prefix queries in

$$O(\log_B |n| + |P|/B)$$
 I/Os,

where P is the query string, and n is the number of leaves in the trie.

It can be constructed in $O(\operatorname{Sort}(N))$ time, where N is the total number of characters in the input.

The space required is O(N).

The structure assumes $M \geq B^{2+\delta}$.

Conclusion

- A string dictionary (trie data structure) was presented that supports queries in $O(\log_B n + |P|/B)$ I/Os. The data structure uses O(N) space and can be constructed using $O(\operatorname{Sort}(N))$ I/Os.
- Lookahead in the query string is crucial (both cache-aware and cache-oblivious)
- A giraffe cover is a simple construction allowing topdown path traversals in a tree using O(|P|/B) I/Os

Open problems

- Prove a lower bound trade-off between the number of I/Os required for a query and the lookahead used
- Implementation: compare with string B-trees, tries, ternary trees, different trie layouts, ...

The End