
Cache-Oblivious String Dictionaries

Gerth Stølting Brodal
University of Aarhus

Joint work with Rolf Fagerberg

���� ��� � �� �	
� ��
 � � � 	 � � � �� � � ��� �� �� ��� ��� �� 	
 �� � �� �� �
 � � �	 �� � � ! � � �#" $

Outline of Talk

� Cache-oblivious model

� Basic cache-oblivious techniques

� Cache-oblivious string algorithms

� Cache-oblivious string dictionaries

– Cache-oblivious tries and blind tries

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Hierarchical Memory Models

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Hierarchical Memory

� � � �� �� �
�

�

�
	 ��
� � �	 �

� � �
 � � � � �

� 	 � �� � �

��

���

���

���

���

� � � �

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

I/O Model
Aggarwal and Vitter 1988

�� � ��� �� �	
 �

�
 �

� � � � ��� � �
�� �

�

= problem size
= memory size

�

= I/O block size

� One I/O moves
�

consecutive records from/to disk

� Complexity measure = number of I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Ideal Cache Model — no parameters!?
Frigo, Leiserson, Prokop, Ramachandran 1999

� Program with only one memory

� Analyze in the I/O model for

�� �

�

�

� ��

�
�

�
�

�

�
��
�

�
��
�

� Optimal off-line cache replacement
strategy arbitrary

�

and

Advantages

Optimal on arbitrary level optimal on all levels

Portability, and not hard-wired into algorithm

Dynamic changing (and)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � 	

Ideal Cache Model — no parameters!?
Frigo, Leiserson, Prokop, Ramachandran 1999

� Program with only one memory

� Analyze in the I/O model for

�� �

�

�

� ��

�
�

�
�

�

�
��
�

�
��
�

� Optimal off-line cache replacement
strategy arbitrary

�

and

Advantages

� Optimal on arbitrary level � optimal on all levels

� Portability,

�

and not hard-wired into algorithm

� Dynamic changing (and

�

)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � 	

Cache-Oblivious Preliminaries

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Cache-Oblivious Scanning

�

�

�

�	 � � � �

�

�
� I/Os

Corollary Cache-oblivious selection requires I/Os
Hoare 1961 / Blum et al. 1973

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Cache-Oblivious Scanning

�

�

�

�	 � � � �

�

�
� I/Os

Corollary Cache-oblivious selection requires

� � � � � �

I/Os
Hoare 1961 / Blum et al. 1973

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Cache-Aware B-trees

�
���

���

� � 	
 � �

� �� �

�
� � � � � � � �

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Static Cache-Oblivious B-Tree

���

�

���

� ��� ���

�

� � �� 	

 � �� �

Recursive layout of binary tree � van Emde Boas layout

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $

Static Cache-Oblivious B-Tree

Each green tree has height between and

Searches visit between and green trees,
i.e. perform at most I/Os (misalignment)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ $

Static Cache-Oblivious B-Tree

� � �

Each green tree has height between and

Searches visit between and green trees,
i.e. perform at most I/Os (misalignment)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ $

Static Cache-Oblivious B-Tree

� � �

� � �

� � �� � �

Each green tree has height between and

Searches visit between and green trees,
i.e. perform at most I/Os (misalignment)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ $

Static Cache-Oblivious B-Tree

� � �

� � �

� � �� � �

� � � � � �

� � �� � �

� � �

� � �� � �

� � � � � �

Each green tree has height between and

Searches visit between and green trees,
i.e. perform at most I/Os (misalignment)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ $

Static Cache-Oblivious B-Tree

� � �

� � �

� � �� � �

� � � � � �

� � �� � �

� � �

� � �� � �

� � � � � �

� Each green tree has height between

� � � � �

� � ��

and

� � ��

�

� Searches visit between

� � � � �

and

� � � � � �

green trees,
i.e. perform at most

� � � � � �

I/Os (misalignment)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ $

Summary Cache-Oblivious Tools

Scanning :

� � � � � �
B-tree searching :

� � � � � � � �

Sorting

�

:

�

�
�

� � � � � �
�

�

�

requires a tall cache assumption

� � �� �

Frigo, Leiserson, Prokop, Ramachandran 1999
Brodal and Fagerberg 2002, 2003

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

Cache-Oblivious String Algorithms

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

Knuth-Morris-Pratt String Matching
Knuth, Morris, Pratt 1977

� � � � � � � � � � � � � � �� � � �� � ��
� � � � � � ��

� � � � � � �

� � � � � � �

� � � � � � �

� Time

� �� �� �

� Scans text left-to-right

� Accesses the pattern (and failure function) like a stack

KMP is cache-oblivious and uses I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

Knuth-Morris-Pratt String Matching
Knuth, Morris, Pratt 1977

� � � � � � � � � � � � � � �� � � �� � ��
� � � � � � ��

� � � � � � �

� � � � � � �

� � � � � � �

� Time

� �� �� �

� Scans text left-to-right

� Accesses the pattern (and failure function) like a stack

� KMP is cache-oblivious and uses

� �� �� � � �

I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

Suffix Tree/Suffix Array Construction
Farach et al. 2000

b
$a

abacdacabab$
a

b$ cdacabab$
abab$ dacabab$

c a
b

$
$dacabab$

cdacababb

c
abab$ dacabab$

aabacdacabab$

� Reduces to sorting, i.e.

� �� � � � �

I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ 	

String Dictionaries

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

Tries vs Blind Tries

�

�
�

�

� �
��

�

�

�

Trie
�

� �

�

��
�

�

�
�

� �
�

�

�
�

�

	
�

�

Blind trie

Searches take

� �� �� �

time in internal memory for constant sized
alphabets and

� � � � �
 � � �� �

time for comparison based alphabets

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

The Trouble Starts...

– Tries cannot be stored cache-aware to support top-down
searches in

� � � � � � � � � �� � � �

I/Os Demaine et al 2004

– Can construct suffix trees cache-obliviously using

� � � �� � � � � �

I/Os, but cannot search in it efficiently...

+ Cache-aware string B trees support searches in a set of
strings in

� � � � � �
 � � �� � � �
I/Os Ferragina and Grossi 1999

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �

String Dictionary

� � � � � �� �
��
�

�
�

�
� �

� � � � �

� � � � � �

� � �
�

��
�

� � � � � � ���

���

�

�
�

� ��

�

�
�

�

�
�

�

Queries: Search blind trie + Verify one string

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

String Dictionary

� � � � � �� �
��
�

�
�

�
� �

� � � � �

� � � � � �

� � �
�

��
�

� � � � � � ���

���

�

�
�

� ��

�

�
�

�

�
�

�

Queries: Search blind trie + Verify one string

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Suffix Tree

���
� �

�
�

���
�

�
�

���
�

	
�

�

��
�

�

�

�

�

	
�

� ��
�

��
�

	
�

�

��
�

	
�

� ��
�

�

�

��
�

��
� �
�

�

���
� �

�� � 	 � � � � � � 	 � 	
�

�

� � ���� � � � � �

� � � �

�

�

��

�

�

�

�

�

��� �

� �

��

Queries: Search blind trie + Verify one suffix

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � $

Suffix Tree

���
� �

�
�

���
�

�
�

���
�

	
�

�

��
�

�

�

�

�

	
�

� ��
�

��
�

	
�

�

��
�

	
�

� ��
�

�

�

��
�

��
� �
�

�

���
� �

�� � 	 � � � � � � 	 � 	
�

�

� � ���� � � � � �

� � � �

�

�

��

�

�

�

�

�

��� �

� �

��

Queries: Search blind trie + Verify one suffix

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � $

Tries

1

2

3

3

21

�

� � � � � � � ��

�
�

�

� �
��

�

�

�

��
�

�

�
�

� �
�

�

�
�

�

	
�

�

Queries: Search blind trie + Verify prefix of one path

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Tries

1

2

3

3

21

�

� � � � � � � ��

�
�

�

� �
��

�

�

�

��
�

�

�
�

� �
�

�

�
�

�

	
�

�

Queries: Search blind trie + Verify prefix of one path

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Verifying a Prefix of a Path in a Tree

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Verifying Paths in Giraffe Trees is Easy
Definition

A tree is a giraffe tree if all root-to-leaf paths share at least half
of the nodes of the tree (long neck)

A prefix of length of a path in a giraffe tree using a BFS
layout can be traversed in I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Verifying Paths in Giraffe Trees is Easy
Definition

A tree is a giraffe tree if all root-to-leaf paths share at least half
of the nodes of the tree (long neck)

� A prefix of length � of a path in a giraffe tree using a BFS
layout can be traversed in

� �

�
� � �

I/Os��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Giraffe Cover of a Tree

Uses space and can be constructed greedily from
left-to-right using I/Os by an Euler traversal of

BFS layout of each giraffe

A prefix of length of a path in a known giraffe can be
traversed in I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Giraffe Cover of a Tree

� Uses space

� � � �

and can be constructed greedily from
left-to-right using

� � � � � �

I/Os by an Euler traversal of

�

� BFS layout of each giraffe

� A prefix of length � of a path in a known giraffe can be
traversed in

� �

�
� � �

I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Summary so far...

String dictionary search

Suffix tree search

Trie search

�
����

�
�����

reduce to blind trie search

Query : Blind trie search +

� � �
� ��

� I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � 	

Cache-Oblivious (Blind) Tries

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Cache-Oblivious (Blind) Tries
� �� �� � �

�	�
��
� �
	� �� �
��

� �

�
� ���� ���

� �� �� � �

� Partition input trie

�

into components (generalization of
heavy paths)

� � �

= collapse components in
�

into high degree nodes and
replace by weight balanced trees

� Apply van Emde Boas layout out to

� �

Search: I/O — ignoring searching inside components

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Cache-Oblivious (Blind) Tries
� �� �� � �

�	�
��
� �
	� �� �
��

� �

�
� ���� ���

� �� �� � �

� Partition input trie

�

into components (generalization of
heavy paths)

� � �

= collapse components in
�

into high degree nodes and
replace by weight balanced trees

� Apply van Emde Boas layout out to

� �

Search:

� � � � � �
 �

I/O

— ignoring searching inside components

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Cache-Oblivious (Blind) Tries
� �� �� � �

�	�
��
� �
	� �� �
��

� �

�
� ���� ���

� �� �� � �

� Partition input trie

�

into components (generalization of
heavy paths)

� � �

= collapse components in
�

into high degree nodes and
replace by weight balanced trees

� Apply van Emde Boas layout out to

� �

Search:

� � � � � �
 �

I/O — ignoring searching inside components

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Decomposition into Components

$ $
�

�
�

�

$

$
� � �

$
�

�
�

�
	

�
�

�
$

$ �
$ $

$ �

$ �
$ �

$ 	
$ �

$ �

�� �
 � ��� � � � � � �� � �

$

� �

$ �
$ �

$
� $

�

$ $ $
�

�
�

�

	
	

	
	

$ � � �
��

�$
$ �

$ �
$ ��

$ 	
$ 	

$ 	 $
$ �

$ �

� $

�

� $ $ �

$ �

$
�

�

� � �
� �	�

� � �
� � �

 � � �

 � � � $

 � � � �

 � � � �

� �
 � ��� � � � �
 � ��� � � � � ��

� �
� � � � ! � �

� � "# $ �� � � � "# $ � % � & ')(* � + �� � , ')(* � + �% � - � � .0/

� �
� � � � ! � �

� � "# $ � % � , � "# $ �� � - 1 � �

& � � 243 � 5 '(* � + �� � , '(* � + � % � - � � 2/

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Storing and Searching Components

$ $
�

�
�

�

$

$
� � �

$
�

�
�

�
	

�
��

$

$ �

$ $
$ �

$ �
$ �

$ 	
$ �

$ �

�� �
 � �� � � � � � �� � �

$

� �

$ �
$ �

$
� $

�

$ $ $
�

�
�

�

	
	
	

	
$ � � �

��

�$
$ �

$ �
$ ��

$ 	
$ 	

$ 	 $
$ �

$ �

� $
�

� $ $ �

$ �

$
�

�

� � �
� � �

� � �
� � �

� Store each layer

� �
� separately

� Make a giraf-decompostition of

� �
�

� For

� �
� have a blind trie

of size

� � � �� 2 �

(using BFS layout)
to select the right giraffe-tree

� Search:

� �
� search the blind trie +

search in one giraffe-tree

� Distribute

� �
� �

� �
� �

� �
� � � � �

in the van Emde Boas layout of

� �

� Analysis:
– Search in blind trie for

� �� �
� dominated by the matched

characters in
� �

�
– Space in van Emde Boas layout for a subtree of size

�

becomes
� � � � �

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � �

Cache-Oblivious Tries

There exists a cache-oblivious trie supporting prefix
queries in

� � � � � �
�
� � � �� � � �

I/Os �

where

�

is the query string, and
 is the number of
leaves in the trie.

It can be constructed in

� � � �� � � � � �

time, where

�

is
the total number of characters in the input.

The space required is
� � � �

.

The structure assumes

� � � � �

.

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � $

Conclusion

� A string dictionary (trie data structure) was presented that
supports queries in

� � � � � �
 � � �� � � �

I/Os. The data
structure uses

� � � �

space and can be constructed using

� � � �� � � � � �

I/Os.

� Lookahead in the query string is crucial
(both cache-aware and cache-oblivious)

� A giraffe cover is a simple construction allowing topdown
path traversals in a tree using

� �� �� � � �

I/Os

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

Open problems

� Prove a lower bound trade-off between the number of I/Os
required for a query and the lookahead used

� Implementation: compare with string B-trees, tries, ternary
trees, different trie layouts, ...

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

The End

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � � �

	
	Outline of Talk
	
	Hierarchical Memory
	I/O Model
	Ideal Cache Model {small gray --- no parameters!?}
	
	Cache-Oblivious Scanning
	Cache-Aware B-trees
	Static Cache-Oblivious B-Tree
	Static Cache-Oblivious B-Tree
	Summary Cache-Oblivious Tools
	
	Knuth-Morris-Pratt String Matching
	Suffix Tree/Suffix Array Construction
	
	
	Tries vs Blind Tries
	The Trouble Starts...
	String Dictionary
	Suffix Tree
	Tries
	
	Verifying Paths in Giraffe Trees is Easy
	Giraffe Cover of a Tree
	Summary so far...
	
	Cache-Oblivious (Blind)
Tries
	Decomposition into Components
	Storing and Searching Components
	Cache-Oblivious Tries
	Conclusion
	Open problems
	

