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Outline of Talk

� Cache-oblivious model

� Basic cache-oblivious techniques

� Cache-oblivious string algorithms

� Cache-oblivious string dictionaries

– Cache-oblivious tries and blind tries
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Hierarchical Memory Models
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Hierarchical Memory
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I/O Model
Aggarwal and Vitter 1988
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= problem size
= memory size

�

= I/O block size

� One I/O moves
�

consecutive records from/to disk

� Complexity measure = number of I/Os
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Ideal Cache Model — no parameters!?
Frigo, Leiserson, Prokop, Ramachandran 1999

� Program with only one memory

� Analyze in the I/O model for
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� Optimal off-line cache replacement
strategy arbitrary

�

and

Advantages

Optimal on arbitrary level optimal on all levels

Portability, and not hard-wired into algorithm

Dynamic changing (and )
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Cache-Oblivious Preliminaries
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Cache-Oblivious Scanning
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�
� I/Os

Corollary Cache-oblivious selection requires I/Os
Hoare 1961 / Blum et al. 1973
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Cache-Aware B-trees
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Static Cache-Oblivious B-Tree
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Recursive layout of binary tree � van Emde Boas layout
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Static Cache-Oblivious B-Tree

Each green tree has height between and

Searches visit between and green trees,
i.e. perform at most I/Os (misalignment)
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Static Cache-Oblivious B-Tree

� � �

� � �

� � �� � �

� � � � � �

� � �� � �

� � �

� � �� � �

� � � � � �

� Each green tree has height between

� � � � �

� � ��

and

� � ��

�

� Searches visit between

� � � � �

and

� � � � � �

green trees,
i.e. perform at most

� � � � � �

I/Os (misalignment)

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ $



Summary Cache-Oblivious Tools

Scanning :

� � � � � �
B-tree searching :

� � � � � � � �

Sorting

�

:

�

�
�

� � � � � �
�

�

�

requires a tall cache assumption

� � �� �

Frigo, Leiserson, Prokop, Ramachandran 1999
Brodal and Fagerberg 2002, 2003
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Cache-Oblivious String Algorithms
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Knuth-Morris-Pratt String Matching
Knuth, Morris, Pratt 1977
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� Time

� �� �� �

� Scans text left-to-right

� Accesses the pattern (and failure function) like a stack

KMP is cache-oblivious and uses I/Os
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Suffix Tree/Suffix Array Construction
Farach et al. 2000

b
$a

abacdacabab$
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b$ cdacabab$
abab$ dacabab$
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b

$
$dacabab$

cdacabab$b$
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abab$ dacabab$

aabacdacabab$

� Reduces to sorting, i.e.

� �� � � � �

I/Os
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String Dictionaries

��� � ��� � 	
� ��
 ��� � � ��� ��� � � � �� ��� � � � �� � $ �



Tries vs Blind Tries
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Blind trie

Searches take

� �� �� �

time in internal memory for constant sized
alphabets and

� � � � � 
 � � �� �

time for comparison based alphabets
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The Trouble Starts...

– Tries cannot be stored cache-aware to support top-down
searches in

� � � � � � � � � �� � � �

I/Os Demaine et al 2004

– Can construct suffix trees cache-obliviously using

� � � �� � � � � �

I/Os, but cannot search in it efficiently...

+ Cache-aware string B trees support searches in a set of
strings in

� � � � � � 
 � � �� � � �
I/Os Ferragina and Grossi 1999
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String Dictionary
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Queries: Search blind trie + Verify one string
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String Dictionary
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Suffix Tree
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Queries: Search blind trie + Verify one suffix
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Suffix Tree
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Queries: Search blind trie + Verify prefix of one path
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Verifying a Prefix of a Path in a Tree
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Verifying Paths in Giraffe Trees is Easy
Definition

A tree is a giraffe tree if all root-to-leaf paths share at least half
of the nodes of the tree (long neck)

A prefix of length of a path in a giraffe tree using a BFS
layout can be traversed in I/Os
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Giraffe Cover of a Tree

Uses space and can be constructed greedily from
left-to-right using I/Os by an Euler traversal of

BFS layout of each giraffe

A prefix of length of a path in a known giraffe can be
traversed in I/Os
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Summary so far...

String dictionary search

Suffix tree search

Trie search

�
����

�
�����

reduce to blind trie search

Query : Blind trie search +

� � �
� ��

� I/Os
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Cache-Oblivious (Blind) Tries
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Cache-Oblivious (Blind) Tries
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� Partition input trie

�

into components (generalization of
heavy paths)
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= collapse components in
�

into high degree nodes and
replace by weight balanced trees

� Apply van Emde Boas layout out to

� �

Search: I/O — ignoring searching inside components
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Decomposition into Components
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Storing and Searching Components
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� � �
� � �

� � �
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� Store each layer

� �
� separately

� Make a giraf-decompostition of

� �
�

� For

� �
� have a blind trie

of size

� � � �� 2 �

(using BFS layout)
to select the right giraffe-tree

� Search:

� �
� search the blind trie +

search in one giraffe-tree

� Distribute

� �
� �

� �
� �

� �
� � � � �

in the van Emde Boas layout of

� �

� Analysis:
– Search in blind trie for

� �� �
� dominated by the matched

characters in
� �

�
– Space in van Emde Boas layout for a subtree of size

�

becomes
� � � � �
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Cache-Oblivious Tries

There exists a cache-oblivious trie supporting prefix
queries in

� � � � � �
� 
� � � �� � � �

I/Os �

where

�

is the query string, and 
 is the number of
leaves in the trie.

It can be constructed in

� � � �� � � � � �

time, where

�

is
the total number of characters in the input.

The space required is
� � � �

.

The structure assumes

� � � � �

.
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Conclusion

� A string dictionary (trie data structure) was presented that
supports queries in

� � � � � � 
 � � �� � � �

I/Os. The data
structure uses

� � � �

space and can be constructed using

� � � �� � � � � �

I/Os.

� Lookahead in the query string is crucial
(both cache-aware and cache-oblivious)

� A giraffe cover is a simple construction allowing topdown
path traversals in a tree using

� �� �� � � �

I/Os

��� � ��� � 	
� ��
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Open problems

� Prove a lower bound trade-off between the number of I/Os
required for a query and the lookahead used

� Implementation: compare with string B-trees, tries, ternary
trees, different trie layouts, ...

��� � ��� � 	
� ��
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The End

��� � ��� � 	
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