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Lecture Material  



Background... 

 Computer word sizes have increased over time 

 (4 bits, 8 bits, 12 bits, 16 bits, 32 bits, 64 bits, 128 bits, ...GPU...) 

 

 What is the power and limitations of 

 word computations? 

 

 How can we exploit word parallellism? 



Overview 

 Word RAM model 

 Words as sets 

 Bit-manipulation on words 

 Trees 

 Searching 

 Sorting 

 Word RAM results 



Word RAM Model 



Word RAM (Random Access Machine) 

 Unlimited memory 

 Word = n bits 

 CPU, O(1) registers 

 CPU, read & write memory words 

• set[i,v], get[i] 

 CPU, computation: 

• Boolean operations 

• Arithmetic operations: +, -, (*) 

• Shifting: x<<k = x∙2k ,  x>>k = x/ 2k 

 Operations take O(1) time 
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Word RAM – Boolean operations 

AND 0 1 

0 0 0 

1 0 1 

OR 0 1 

0 0 1 

1 1 1 

XOR 0 1 

0 0 1 

1 1 0 

0 0 1 1 1  0 1 0 1 1 1 1 
AND 0 1 1 1 0 1 1 1 0 1 1 1 

0 0 1 1 0  0 1 0 0 1 1 1 

0 = False,  1 = True 

x ~ x  

0 1 

1 0 

Corresponding word operations work on all  
n bits in one or two words in parallel. 
 
Example: Clear a set of bits using AND 



The first tricks... 



Exercise 1 

Consider a double-linked list, where each node 
has three fields: prev, next, and an element. 

Usually prev and next require one word each. 

 

Question. Describe how prev and next for a 
node can be combined into one word, such that 
navigation in a double-linked list is still possible. 

 

x1 x4 x3 x2 

next prev 

p prev(p) 



Exercise 2 

Question.  
How can we pack an array of N 5-bit  
integers into an array of 64-bit words,  
such that 
 
a) we only use  N∙5/64 words, and  

 
b) we can access the i’th 5-bit integer efficiently ? 

01011 

01011 

01011 

01011 

01011 

01011 

01011 

01011 

01011 

01011 

how not to do it 

64 bits 



Words as Sets 



Words as Sets 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 

Would like to store subsets of {0,1,2,...,n-1} in 
an n-bit word. 
 
The set {2,5,7,13} can e.g. be represented by 
the following word (bit-vector): 



Exercise 3 

Question.  
How can we perform the following set operations 
efficiently, given two words representing S1 and S2:  

a)  S3 = S1  S2 
b)  S3 = S1  S2 

c)  S3 = S1 \ S2 



Exercise 4 

Question.  
How can we perform the following set queries, 
given words representing the sets:  

a)  x  S ? 
b)  S1  S2 ? 

c)  Disjoint(S1, S2) ? 
d)  Disjoint(S1, S2,..., Sk ) ? 

 
 



Exercise 5 

Question.  
How can we perform compute |S|, given S as 
a word (i.e. numer of bits = 1)? 
 
a) without using multiplication 
b) using multiplication 

S 
     |S|= 4 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 



Bit-manipulations  
on Words 



Exercise 6 

Question.  
Describe how to efficiently reverse a word S. 
 

S 
 
 
 

reverse(S) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 



Exercise 7 

Question.  
How can we efficiently compute the zipper  
 

yn/2-1xn/2-1...y2x2y1x1y0x0 

 
of two half-words xn/2-1...x2x1x0 and yn/2-1...y2y1y0 ? 

Whitcomb Judson developed  
the first commercial  zipper  

(named the Clasp Locker) in 1893.  



Exercise 8 

Question.  
Describe how to compress  a subset of the bits 
w.r.t. an arbitrary set of bit positions ik>∙∙∙>i2>i1: 

   compress(xn-1,...,x2,x1,x0) = 0....0xik
...xi2

xi1 

  compress(x) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

i4=14,  i3=7,  i2=5,   i1=2  



Exercise 9 

Question.  
a) Describe how to remove the rightmost 1 
b) Describe how to extract the rightmost 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

remove 
 

extract 



Exercise 10 

Question.  
Describe how to compute the position ρ(x) of  
the rightmost 1 in a word x 

a) without using multiplication 
b) using multiplication 
c) using integer-to-float conversion 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 x 
 ρ(x) = 4 



Exercise 11 

Let λ(x)  be the position of  the leftmost 1 in a 
word x (i.e. λ(x) = log2(x)). 

 

 
 
 
Question.  
Describe how to test if λ(x)= λ(y), 
without actually computing λ(x) and λ(y). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x 
 λ(x) = 11 



Exercise 12* 

Question.  
Describe how to compute the position λ(x) of  
the leftmost 1 in a word x (i.e. λ(x) = log2(x)) 

a) without using multiplication 
b) using multiplication 
c) using integer-to-float conversion 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x 
 λ(x) = 11 



Fredman & Willard 
Computation of  λ(x) in O(1) steps using 5 multiplications 

n = g∙g,  g a power of 2 



Exercise 13 

Question.  
Describe how to compute the length of the 
longest common prefix of two words  

xn-1...x2x1x0   and   yn-1...y2y1y0  

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 

lcp(x,y) = 6 

x 
 
 
 
 

y 



Trees 



Exercise 14 

Question.  
Consider the nodes of a complete binary tree 
being numbered level-by-level and the root being 
numbered 1. 
 
a) What are the numbers of 
 the children of node i ? 
 
b) What is the number of  
 the parent of node i ? 

5 

3 2 

4 6 7 

8 10 9 11 15 14 13 12 

1 



Exercise 15 

Question.  
 

a) How can the height of the tree be 
computed from a leaf number? 
 

b) How can LCA(x,y) of two  
 leaves x and y be computed 
 (lowest common ancestor)? 

5 

3 2 

4 6 7 

8 10 9 11 15 14 13 12 

1 

x             y 

LCA(x,y) 



Exercise 16* 

Question.  
 
Describe how to assign O(1) words 
to each node in an arbitrary tree,  
such that LCA(x,y) queries can  
be answered in O(1) time. 
 

x 

y 

LCA(x,y) 



Searching 



Exercise 17 

Question. Consider a n-bit word x storing k 
n/k-bit values v0,...,vk-1 
 
 
 
 
a) Describe how to decide if all vi are non-zero 
b) Describe how to find the first vi equal to zero 
c) Describe how implement Search(x,u), that 
 returns a i such that vi=u (if such a vi exists) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 
v3 v2 v1 v0 

x 



Sorting : 
Sorting Networks 



Exercise 18 

Question. Construct a comparison network that 
outputs the minimum of 8 input lines.  

What is the number of comparators and the depth 
of the comparison network? 

x1 

x2 

x5 

x4 

x3 

minimum 

x6 

x7 

x8 



Exercise 19 

Question. Construct a comparison network that 
outputs the minimum and maximum of 8 input lines. 
What is the number of comparators and the depth of 
the comparison network? 

x1 

x2 

x5 

x4 

x3 

x6 

x7 

x8 minimum 

maximum 



Odd-even merge sort for N=8. 

 

Size O(N∙(log N)2) and depth O((log N)2) 

 

Fact. At each depth all compators have equal length 

 
[ Ajtai, Komlós, Szemerédi 1983: depth O(log N), size O(N∙log N) ] 

Odd-Even Merge Sort 
K.E. Batcher 1968 



Sorting : 
Word RAM implementations of 

Sorting Networks 



Exercise 20 

Question.  

Descibe how to sort two sub-words stored in a 
single word on a Word RAM ― without using 
branch-instructions  

(implementation of a comparator)  
x 

1 0  0 1 1 1 0 1 

y 

1 1 0 1 1 0 0 1 

min(x,y) max(x,y) 

input 

output 



Exercise 21 

Question.   

Consider a n-bit word x storing n/k-bit values 
v0,...,vk-1. 

Describe a Word RAM implementation of odd-even 
merge sort with running O((log k)2). 

 

Odd-even merge sort for N=8. 



More about 
Sorting & Searching 



Sorting N words 

More about Sorting & Searching 

Randomized O(N ∙ (loglog N)1/2) Han & Thorup 2002 

Deterministic O(N ∙ loglog N) Han 2002 

Randomized AC0 O(N ∙ loglog N) Thorup 1997 

Deterministic AC0 O(N ∙ (loglog N)1+ε) Han & Thorup 2002 

Dynamic dictionaries storing N words 

Deterministic O((log N/loglog N)1/2) Andersson & Thorup 
 2001 Deterministic AC0 O((log N)3/4+o(1)) 



Summary 



Summary 

 Many operations on words can be efficiently  

 without using multiplication 

 

 λ(x) and ρ(x) can be computed in O(1) time using 
multiplication, and O(loglog n) time without mult. 

 

 Parallellism can be achieved by packing several 
elements into one word 

 

 The great (theory) question:  

 Can N words be sorted on a Word RAM in O(N) time? 


