
Gerth Stølting Brodal

University of Aarhus

Monday June 9, 2008, IT University of Copenhagen, Denmark

International PhD School in
Algorithms for Advanced Processor Architectures - AFAPA

Lecture Material

Background...

 Computer word sizes have increased over time

 (4 bits, 8 bits, 12 bits, 16 bits, 32 bits, 64 bits, 128 bits, ...GPU...)

 What is the power and limitations of

 word computations?

 How can we exploit word parallellism?

Overview

 Word RAM model

 Words as sets

 Bit-manipulation on words

 Trees

 Searching

 Sorting

 Word RAM results

Word RAM Model

Word RAM (Random Access Machine)

 Unlimited memory

 Word = n bits

 CPU, O(1) registers

 CPU, read & write memory words

• set[i,v], get[i]

 CPU, computation:

• Boolean operations

• Arithmetic operations: +, -, (*)

• Shifting: x<<k = x∙2k , x>>k = x/ 2k

 Operations take O(1) time

011001101

101111101

001011101

100101000

101111101

001011101

100101000

101111101

001011101

100101000

101111101

001011101

100101000

101111101

001011101

100101000

011001101

011001101

011001101

011001101

0110011

111000

01101

1111

01

n
0
1
2

3
4
5
6

7 …

CPU

i

Word RAM – Boolean operations

AND 0 1

0 0 0

1 0 1

OR 0 1

0 0 1

1 1 1

XOR 0 1

0 0 1

1 1 0

0 0 1 1 1 0 1 0 1 1 1 1
AND 0 1 1 1 0 1 1 1 0 1 1 1

0 0 1 1 0 0 1 0 0 1 1 1

0 = False, 1 = True

x ~ x

0 1

1 0

Corresponding word operations work on all
n bits in one or two words in parallel.

Example: Clear a set of bits using AND

The first tricks...

Exercise 1

Consider a double-linked list, where each node
has three fields: prev, next, and an element.

Usually prev and next require one word each.

Question. Describe how prev and next for a
node can be combined into one word, such that
navigation in a double-linked list is still possible.

x1 x4 x3 x2

next prev

p prev(p)

Exercise 2

Question.
How can we pack an array of N 5-bit
integers into an array of 64-bit words,
such that

a) we only use N∙5/64 words, and

b) we can access the i’th 5-bit integer efficiently ?

01011

01011

01011

01011

01011

01011

01011

01011

01011

01011

how not to do it

64 bits

Words as Sets

Words as Sets

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0

Would like to store subsets of {0,1,2,...,n-1} in
an n-bit word.

The set {2,5,7,13} can e.g. be represented by
the following word (bit-vector):

Exercise 3

Question.
How can we perform the following set operations
efficiently, given two words representing S1 and S2:

a) S3 = S1 S2
b) S3 = S1 S2

c) S3 = S1 \ S2

Exercise 4

Question.
How can we perform the following set queries,
given words representing the sets:

a) x S ?
b) S1 S2 ?

c) Disjoint(S1, S2) ?
d) Disjoint(S1, S2,..., Sk) ?

Exercise 5

Question.
How can we perform compute |S|, given S as
a word (i.e. numer of bits = 1)?

a) without using multiplication
b) using multiplication

S
 |S|= 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0

Bit-manipulations
on Words

Exercise 6

Question.
Describe how to efficiently reverse a word S.

S

reverse(S)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0

Exercise 7

Question.
How can we efficiently compute the zipper

yn/2-1xn/2-1...y2x2y1x1y0x0

of two half-words xn/2-1...x2x1x0 and yn/2-1...y2y1y0 ?

Whitcomb Judson developed
the first commercial zipper

(named the Clasp Locker) in 1893.

Exercise 8

Question.
Describe how to compress a subset of the bits
w.r.t. an arbitrary set of bit positions ik>∙∙∙>i2>i1:

 compress(xn-1,...,x2,x1,x0) = 0....0xik
...xi2

xi1

 compress(x)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

i4=14, i3=7, i2=5, i1=2

Exercise 9

Question.
a) Describe how to remove the rightmost 1
b) Describe how to extract the rightmost 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

remove

extract

Exercise 10

Question.
Describe how to compute the position ρ(x) of
the rightmost 1 in a word x

a) without using multiplication
b) using multiplication
c) using integer-to-float conversion

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 x
 ρ(x) = 4

Exercise 11

Let λ(x) be the position of the leftmost 1 in a
word x (i.e. λ(x) = log2(x)).

Question.
Describe how to test if λ(x)= λ(y),
without actually computing λ(x) and λ(y).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x
 λ(x) = 11

Exercise 12*

Question.
Describe how to compute the position λ(x) of
the leftmost 1 in a word x (i.e. λ(x) = log2(x))

a) without using multiplication
b) using multiplication
c) using integer-to-float conversion

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x
 λ(x) = 11

Fredman & Willard
Computation of λ(x) in O(1) steps using 5 multiplications

n = g∙g, g a power of 2

Exercise 13

Question.
Describe how to compute the length of the
longest common prefix of two words

xn-1...x2x1x0 and yn-1...y2y1y0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0

lcp(x,y) = 6

x

y

Trees

Exercise 14

Question.
Consider the nodes of a complete binary tree
being numbered level-by-level and the root being
numbered 1.

a) What are the numbers of
 the children of node i ?

b) What is the number of
 the parent of node i ?

5

3 2

4 6 7

8 10 9 11 15 14 13 12

1

Exercise 15

Question.

a) How can the height of the tree be
computed from a leaf number?

b) How can LCA(x,y) of two
 leaves x and y be computed
 (lowest common ancestor)?

5

3 2

4 6 7

8 10 9 11 15 14 13 12

1

x y

LCA(x,y)

Exercise 16*

Question.

Describe how to assign O(1) words
to each node in an arbitrary tree,
such that LCA(x,y) queries can
be answered in O(1) time.

x

y

LCA(x,y)

Searching

Exercise 17

Question. Consider a n-bit word x storing k
n/k-bit values v0,...,vk-1

a) Describe how to decide if all vi are non-zero
b) Describe how to find the first vi equal to zero
c) Describe how implement Search(x,u), that
 returns a i such that vi=u (if such a vi exists)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0
v3 v2 v1 v0

x

Sorting :
Sorting Networks

Exercise 18

Question. Construct a comparison network that
outputs the minimum of 8 input lines.

What is the number of comparators and the depth
of the comparison network?

x1

x2

x5

x4

x3

minimum

x6

x7

x8

Exercise 19

Question. Construct a comparison network that
outputs the minimum and maximum of 8 input lines.
What is the number of comparators and the depth of
the comparison network?

x1

x2

x5

x4

x3

x6

x7

x8 minimum

maximum

Odd-even merge sort for N=8.

Size O(N∙(log N)2) and depth O((log N)2)

Fact. At each depth all compators have equal length

[Ajtai, Komlós, Szemerédi 1983: depth O(log N), size O(N∙log N)]

Odd-Even Merge Sort
K.E. Batcher 1968

Sorting :
Word RAM implementations of

Sorting Networks

Exercise 20

Question.

Descibe how to sort two sub-words stored in a
single word on a Word RAM ― without using
branch-instructions

(implementation of a comparator)
x

1 0 0 1 1 1 0 1

y

1 1 0 1 1 0 0 1

min(x,y) max(x,y)

input

output

Exercise 21

Question.

Consider a n-bit word x storing n/k-bit values
v0,...,vk-1.

Describe a Word RAM implementation of odd-even
merge sort with running O((log k)2).

Odd-even merge sort for N=8.

More about
Sorting & Searching

Sorting N words

More about Sorting & Searching

Randomized O(N ∙ (loglog N)1/2) Han & Thorup 2002

Deterministic O(N ∙ loglog N) Han 2002

Randomized AC0 O(N ∙ loglog N) Thorup 1997

Deterministic AC0 O(N ∙ (loglog N)1+ε) Han & Thorup 2002

Dynamic dictionaries storing N words

Deterministic O((log N/loglog N)1/2) Andersson & Thorup
 2001 Deterministic AC0 O((log N)3/4+o(1))

Summary

Summary

 Many operations on words can be efficiently

 without using multiplication

 λ(x) and ρ(x) can be computed in O(1) time using
multiplication, and O(loglog n) time without mult.

 Parallellism can be achieved by packing several
elements into one word

 The great (theory) question:

 Can N words be sorted on a Word RAM in O(N) time?

