
Gerth Stølting Brodal

University of Aarhus

Monday June 9, 2008, IT University of Copenhagen, Denmark

International PhD School in
Algorithms for Advanced Processor Architectures - AFAPA

Lecture Material

Background...

 Computer word sizes have increased over time

 (4 bits, 8 bits, 12 bits, 16 bits, 32 bits, 64 bits, 128 bits, ...GPU...)

 What is the power and limitations of

 word computations?

 How can we exploit word parallellism?

Overview

 Word RAM model

 Words as sets

 Bit-manipulation on words

 Trees

 Searching

 Sorting

 Word RAM results

Word RAM Model

Word RAM (Random Access Machine)

 Unlimited memory

 Word = n bits

 CPU, O(1) registers

 CPU, read & write memory words

• set[i,v], get[i]

 CPU, computation:

• Boolean operations

• Arithmetic operations: +, -, (*)

• Shifting: x<<k = x∙2k , x>>k = x/ 2k

 Operations take O(1) time

011001101

101111101

001011101

100101000

101111101

001011101

100101000

101111101

001011101

100101000

101111101

001011101

100101000

101111101

001011101

100101000

011001101

011001101

011001101

011001101

0110011

111000

01101

1111

01

n
0
1
2

3
4
5
6

7 …

CPU

i

Word RAM – Boolean operations

AND 0 1

0 0 0

1 0 1

OR 0 1

0 0 1

1 1 1

XOR 0 1

0 0 1

1 1 0

0 0 1 1 1 0 1 0 1 1 1 1
AND 0 1 1 1 0 1 1 1 0 1 1 1

0 0 1 1 0 0 1 0 0 1 1 1

0 = False, 1 = True

x ~ x

0 1

1 0

Corresponding word operations work on all
n bits in one or two words in parallel.

Example: Clear a set of bits using AND

The first tricks...

Exercise 1

Consider a double-linked list, where each node
has three fields: prev, next, and an element.

Usually prev and next require one word each.

Question. Describe how prev and next for a
node can be combined into one word, such that
navigation in a double-linked list is still possible.

x1 x4 x3 x2

next prev

p prev(p)

Exercise 2

Question.
How can we pack an array of N 5-bit
integers into an array of 64-bit words,
such that

a) we only use  N∙5/64 words, and

b) we can access the i’th 5-bit integer efficiently ?

01011

01011

01011

01011

01011

01011

01011

01011

01011

01011

how not to do it

64 bits

Words as Sets

Words as Sets

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0

Would like to store subsets of {0,1,2,...,n-1} in
an n-bit word.

The set {2,5,7,13} can e.g. be represented by
the following word (bit-vector):

Exercise 3

Question.
How can we perform the following set operations
efficiently, given two words representing S1 and S2:

a) S3 = S1  S2
b) S3 = S1  S2

c) S3 = S1 \ S2

Exercise 4

Question.
How can we perform the following set queries,
given words representing the sets:

a) x  S ?
b) S1  S2 ?

c) Disjoint(S1, S2) ?
d) Disjoint(S1, S2,..., Sk) ?

Exercise 5

Question.
How can we perform compute |S|, given S as
a word (i.e. numer of bits = 1)?

a) without using multiplication
b) using multiplication

S
 |S|= 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0

Bit-manipulations
on Words

Exercise 6

Question.
Describe how to efficiently reverse a word S.

S

reverse(S)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0

Exercise 7

Question.
How can we efficiently compute the zipper

yn/2-1xn/2-1...y2x2y1x1y0x0

of two half-words xn/2-1...x2x1x0 and yn/2-1...y2y1y0 ?

Whitcomb Judson developed
the first commercial zipper

(named the Clasp Locker) in 1893.

Exercise 8

Question.
Describe how to compress a subset of the bits
w.r.t. an arbitrary set of bit positions ik>∙∙∙>i2>i1:

 compress(xn-1,...,x2,x1,x0) = 0....0xik
...xi2

xi1

 compress(x)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

i4=14, i3=7, i2=5, i1=2

Exercise 9

Question.
a) Describe how to remove the rightmost 1
b) Describe how to extract the rightmost 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

remove

extract

Exercise 10

Question.
Describe how to compute the position ρ(x) of
the rightmost 1 in a word x

a) without using multiplication
b) using multiplication
c) using integer-to-float conversion

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 x
 ρ(x) = 4

Exercise 11

Let λ(x) be the position of the leftmost 1 in a
word x (i.e. λ(x) = log2(x)).

Question.
Describe how to test if λ(x)= λ(y),
without actually computing λ(x) and λ(y).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x
 λ(x) = 11

Exercise 12*

Question.
Describe how to compute the position λ(x) of
the leftmost 1 in a word x (i.e. λ(x) = log2(x))

a) without using multiplication
b) using multiplication
c) using integer-to-float conversion

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x
 λ(x) = 11

Fredman & Willard
Computation of λ(x) in O(1) steps using 5 multiplications

n = g∙g, g a power of 2

Exercise 13

Question.
Describe how to compute the length of the
longest common prefix of two words

xn-1...x2x1x0 and yn-1...y2y1y0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0

lcp(x,y) = 6

x

y

Trees

Exercise 14

Question.
Consider the nodes of a complete binary tree
being numbered level-by-level and the root being
numbered 1.

a) What are the numbers of
 the children of node i ?

b) What is the number of
 the parent of node i ?

5

3 2

4 6 7

8 10 9 11 15 14 13 12

1

Exercise 15

Question.

a) How can the height of the tree be
computed from a leaf number?

b) How can LCA(x,y) of two
 leaves x and y be computed
 (lowest common ancestor)?

5

3 2

4 6 7

8 10 9 11 15 14 13 12

1

x y

LCA(x,y)

Exercise 16*

Question.

Describe how to assign O(1) words
to each node in an arbitrary tree,
such that LCA(x,y) queries can
be answered in O(1) time.

x

y

LCA(x,y)

Searching

Exercise 17

Question. Consider a n-bit word x storing k
n/k-bit values v0,...,vk-1

a) Describe how to decide if all vi are non-zero
b) Describe how to find the first vi equal to zero
c) Describe how implement Search(x,u), that
 returns a i such that vi=u (if such a vi exists)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0
v3 v2 v1 v0

x

Sorting :
Sorting Networks

Exercise 18

Question. Construct a comparison network that
outputs the minimum of 8 input lines.

What is the number of comparators and the depth
of the comparison network?

x1

x2

x5

x4

x3

minimum

x6

x7

x8

Exercise 19

Question. Construct a comparison network that
outputs the minimum and maximum of 8 input lines.
What is the number of comparators and the depth of
the comparison network?

x1

x2

x5

x4

x3

x6

x7

x8 minimum

maximum

Odd-even merge sort for N=8.

Size O(N∙(log N)2) and depth O((log N)2)

Fact. At each depth all compators have equal length

[Ajtai, Komlós, Szemerédi 1983: depth O(log N), size O(N∙log N)]

Odd-Even Merge Sort
K.E. Batcher 1968

Sorting :
Word RAM implementations of

Sorting Networks

Exercise 20

Question.

Descibe how to sort two sub-words stored in a
single word on a Word RAM ― without using
branch-instructions

(implementation of a comparator)
x

1 0 0 1 1 1 0 1

y

1 1 0 1 1 0 0 1

min(x,y) max(x,y)

input

output

Exercise 21

Question.

Consider a n-bit word x storing n/k-bit values
v0,...,vk-1.

Describe a Word RAM implementation of odd-even
merge sort with running O((log k)2).

Odd-even merge sort for N=8.

More about
Sorting & Searching

Sorting N words

More about Sorting & Searching

Randomized O(N ∙ (loglog N)1/2) Han & Thorup 2002

Deterministic O(N ∙ loglog N) Han 2002

Randomized AC0 O(N ∙ loglog N) Thorup 1997

Deterministic AC0 O(N ∙ (loglog N)1+ε) Han & Thorup 2002

Dynamic dictionaries storing N words

Deterministic O((log N/loglog N)1/2) Andersson & Thorup
 2001 Deterministic AC0 O((log N)3/4+o(1))

Summary

Summary

 Many operations on words can be efficiently

 without using multiplication

 λ(x) and ρ(x) can be computed in O(1) time using
multiplication, and O(loglog n) time without mult.

 Parallellism can be achieved by packing several
elements into one word

 The great (theory) question:

 Can N words be sorted on a Word RAM in O(N) time?

