International PhD School in Algorithms for Advanced Processor Architectures - AFAPA

Word RAM Algorithms

Gerth Stølting Brodal

University of Aarhus

Monday June 9, 2008, IT University of Copenhagen, Denmark

Lecture Material

DONALD E. KNUTH

Stanford University

THE ART OF COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 1A

A DRAFT OF SECTION 7.1.3: BITWISE TRICKS AND TECHNIQUES

Background...

- Computer word sizes have increased over time (4 bits, 8 bits, 12 bits, 16 bits, 32 bits, 64 bits, 128 bits, ...GPU...)
- What is the power and limitations of word computations?
- How can we exploit word parallellism?

Overview

- Word RAM model
- Words as sets
- Bit-manipulation on words
- Trees
- Searching
- Sorting
- Word RAM results

Word RAM Model

Word RAM (Random Access Machine)

Word RAM – Boolean operations

AND	0	1	OR	0	1	XOR	0	1	x	~ x
0	0	0	0	0	1	0	0	1	0	1
1	0	1	1	1	1	1	1	0	1	0

0 = False, 1 = True

Corresponding word operations work on all *n* bits in one or two words in parallel.

Example: Clear a set of bits using AND

The first tricks...

Consider a double-linked list, where each node has three fields: prev, next, and an element. Usually prev and next require one word each.

Question. Describe how prev and next for a node can be combined into *one word*, such that navigation in a double-linked list is still possible.

Question.

How can we pack an array of N 5-bit integers into an array of 64-bit words, such that

a) we only use $\approx N.5/64$ words, and

b) we can access the *i*'th 5-bit integer efficiently ?

Words as Sets

Words as Sets

Would like to store *subsets* of {0,1,2,...,*n*-1} in an *n*-bit word.

The set {2,5,7,13} can e.g. be represented by the following word (bit-vector):

Question.

How can we perform the following set operations efficiently, given two words representing S_1 and S_2 :

a)
$$S_3 = S_1 \cap S_2$$

b) $S_3 = S_1 \cup S_2$
c) $S_3 = S_1 \setminus S_2$

Question.

How can we perform the following set queries, given words representing the sets:

a)
$$x \in S$$
?
b) $S_1 \subseteq S_2$?
c) Disjoint (S_1, S_2) ?
d) Disjoint $(S_1, S_2, ..., S_k)$?

Question.

How can we perform compute |S|, given S as a word (i.e. numer of bits = 1)?

a) without using multiplicationb) using multiplication

Bit-manipulations on Words

Question. Describe how to efficiently *reverse* a word *S*.

Question. How can we efficiently compute the *zipper*

$y_{n/2-1}x_{n/2-1}...y_2x_2y_1x_1y_0x_0$

of two half-words $x_{n/2-1}...x_2x_1x_0$ and $y_{n/2-1}...y_2y_1y_0$?

Whitcomb Judson developed the first commercial zipper (named the Clasp Locker) in 1893.

Question.

Describe how to *compress* a subset of the bits w.r.t. an arbitrary set of bit positions $i_k > \cdots > i_2 > i_1$:

compress(
$$x_{n-1},...,x_2,x_1,x_0$$
) = 0....0 $x_{i_k}...x_{i_2}x_{i_1}$

Question.

- a) Describe how to remove the rightmost 1
- b) Describe how to extract the rightmost 1

Question.

Describe how to compute the *position* $\rho(x)$ of the rightmost 1 in a word x

- a) without using multiplication
- b) using multiplication
- c) using integer-to-float conversion

Let $\lambda(x)$ be the *position* of the leftmost 1 in a word x (i.e. $\lambda(x) = \lfloor \log_2(x) \rfloor$).

Question.

Describe how to test if $\lambda(x) = \lambda(y)$, without actually computing $\lambda(x)$ and $\lambda(y)$.

Exercise 12*

Question.

Describe how to compute the *position* $\lambda(x)$ of the leftmost 1 in a word x (i.e. $\lambda(x) = \lfloor \log_2(x) \rfloor$)

- a) without using multiplication
- b) using multiplication
- c) using integer-to-float conversion

Fredman & Willard

Computation of $\lambda(x)$ in O(1) steps using 5 multiplications

 $n = g \cdot g$, g a power of 2

$$\begin{split} t_1 &\leftarrow h \& (x \mid ((x \mid h) - l)), & \text{where } h = 2^{g-1}l \text{ and } l = (2^n - 1)/(2^g - 1); \\ y &\leftarrow (((a \bullet t_1) \mod 2^n) \gg (n - g)) \bullet l, & \text{where } a = (2^{n-g} - 1)/(2^{g-1} - 1); \\ t_2 &\leftarrow h \& (y \mid ((y \mid h) - b)), & \text{where } b = (2^{n+g} - 1)/(2^{g+1} - 1); \\ m &\leftarrow (t_2 \ll 1) - (t_2 \gg (g - 1)), & m \leftarrow m \oplus (m \gg g); \\ z &\leftarrow (((l \bullet (x \& m)) \mod 2^n) \gg (n - g)) \bullet l; \\ t_3 &\leftarrow h \& (z \mid ((z \mid h) - b)); \\ \lambda &\leftarrow ((l \bullet ((t_2 \gg (2g - \lg g - 1)) + (t_3 \gg (2g - 1)))) \mod 2^n) \gg (n - g). \end{split}$$

Question.

Describe how to compute the length of the longest common prefix of two words

Question.

Consider the nodes of a complete binary tree being numbered level-by-level and the root being numbered 1.

- a) What are the numbers of the children of node *i* ?
- b) What is the number of the parent of node *i* ?

1

5

11

10

4

9

LCA(x,y)

7

14

V

15

3

6

12

X

13

Question.

- a) How can the height of the tree be computed from a leaf number?
- b) How can LCA(*x*,*y*) of two leaves *x* and *y* be computed ² (lowest common ancestor)?

Exercise 16*

Question.

Describe how to assign O(1) words to each node in an *arbitrary tree*, such that LCA(x,y) queries can be answered in O(1) time.

Searching

Question. Consider a *n*-bit word *x* storing *k* n/k-bit values $v_0, ..., v_{k-1}$

- a) Describe how to decide if all v_i are non-zero
- b) Describe how to find the first v_i equal to zero
- c) Describe how implement Search(x,u), that returns a *i* such that $v_i = u$ (if such a v_i exists)

Sorting : Sorting Networks

Question. Construct a comparison network that outputs the *minimum* of 8 input lines.

What is the number of comparators and the depth of the comparison network?

Question. Construct a comparison network that outputs the *minimum* and *maximum* of 8 input lines. What is the number of comparators and the depth of the comparison network?

Odd-Even Merge Sort

K.E. Batcher 1968

Size $O(N \cdot (\log N)^2)$ and depth $O((\log N)^2)$

Fact. At each depth all compators have equal length

[Ajtai, Komlós, Szemerédi 1983: depth O(log N), size O(N·log N)]

Sorting : Word RAM implementations of Sorting Networks

Question.

Descibe how to sort two sub-words stored in a single word on a Word RAM — without using branch-instructions

(implementation of a comparator)

Question.

Consider a *n*-bit word *x* storing n/k-bit values V_0, \dots, V_{k-1} .

Describe a Word RAM implementation of odd-even merge sort with running $O((\log k)^2)$.

More about Sorting & Searching

More about Sorting & Searching

Sorting N words

Randomized	$O(N \cdot (\log \log N)^{1/2})$	Han & Thorup 2002
Deterministic	$O(N \cdot \log \log N)$	Han 2002
Randomized AC ⁰	$O(N \cdot \log \log N)$	Thorup 1997
Deterministic AC ⁰	$O(N \cdot (\log \log N)^{1+\epsilon})$	Han & Thorup 2002

Dynamic dictionaries storing N words

Deterministic	$O((\log N / \log \log N)^{1/2})$	Andersson & Thorup
Deterministic AC ⁰	$O((\log N)^{3/4+o(1)})$	2001

Summary

- Many operations on words can be efficiently without using multiplication
- λ(x) and ρ(x) can be computed in O(1) time using multiplication, and O(loglog n) time without mult.
- Parallellism can be achieved by packing several elements into one word
- The great (theory) question: Can N words be sorted on a Word RAM in O(N) time?