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Lecture Material  



Background... 

 Computer word sizes have increased over time 

 (4 bits, 8 bits, 12 bits, 16 bits, 32 bits, 64 bits, 128 bits, ...GPU...) 

 

 What is the power and limitations of 

 word computations? 

 

 How can we exploit word parallellism? 



Overview 

 Word RAM model 

 Words as sets 

 Bit-manipulation on words 

 Trees 

 Searching 

 Sorting 

 Word RAM results 



Word RAM Model 



Word RAM (Random Access Machine) 

 Unlimited memory 

 Word = n bits 

 CPU, O(1) registers 

 CPU, read & write memory words 

• set[i,v], get[i] 

 CPU, computation: 

• Boolean operations 

• Arithmetic operations: +, -, (*) 

• Shifting: x<<k = x∙2k ,  x>>k = x/ 2k 

 Operations take O(1) time 
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Word RAM – Boolean operations 

AND 0 1 

0 0 0 

1 0 1 

OR 0 1 

0 0 1 

1 1 1 

XOR 0 1 

0 0 1 

1 1 0 

0 0 1 1 1  0 1 0 1 1 1 1 
AND 0 1 1 1 0 1 1 1 0 1 1 1 

0 0 1 1 0  0 1 0 0 1 1 1 

0 = False,  1 = True 

x ~ x  

0 1 

1 0 

Corresponding word operations work on all  
n bits in one or two words in parallel. 
 
Example: Clear a set of bits using AND 



The first tricks... 



Exercise 1 

Consider a double-linked list, where each node 
has three fields: prev, next, and an element. 

Usually prev and next require one word each. 

 

Question. Describe how prev and next for a 
node can be combined into one word, such that 
navigation in a double-linked list is still possible. 

 

x1 x4 x3 x2 

next prev 

p prev(p) 



Exercise 2 

Question.  
How can we pack an array of N 5-bit  
integers into an array of 64-bit words,  
such that 
 
a) we only use  N∙5/64 words, and  

 
b) we can access the i’th 5-bit integer efficiently ? 
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01011 

01011 

01011 

01011 

01011 

01011 

01011 

01011 

01011 

how not to do it 

64 bits 



Words as Sets 



Words as Sets 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 

Would like to store subsets of {0,1,2,...,n-1} in 
an n-bit word. 
 
The set {2,5,7,13} can e.g. be represented by 
the following word (bit-vector): 



Exercise 3 

Question.  
How can we perform the following set operations 
efficiently, given two words representing S1 and S2:  

a)  S3 = S1  S2 
b)  S3 = S1  S2 

c)  S3 = S1 \ S2 



Exercise 4 

Question.  
How can we perform the following set queries, 
given words representing the sets:  

a)  x  S ? 
b)  S1  S2 ? 

c)  Disjoint(S1, S2) ? 
d)  Disjoint(S1, S2,..., Sk ) ? 

 
 



Exercise 5 

Question.  
How can we perform compute |S|, given S as 
a word (i.e. numer of bits = 1)? 
 
a) without using multiplication 
b) using multiplication 

S 
     |S|= 4 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 



Bit-manipulations  
on Words 



Exercise 6 

Question.  
Describe how to efficiently reverse a word S. 
 

S 
 
 
 

reverse(S) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 



Exercise 7 

Question.  
How can we efficiently compute the zipper  
 

yn/2-1xn/2-1...y2x2y1x1y0x0 

 
of two half-words xn/2-1...x2x1x0 and yn/2-1...y2y1y0 ? 

Whitcomb Judson developed  
the first commercial  zipper  

(named the Clasp Locker) in 1893.  



Exercise 8 

Question.  
Describe how to compress  a subset of the bits 
w.r.t. an arbitrary set of bit positions ik>∙∙∙>i2>i1: 

   compress(xn-1,...,x2,x1,x0) = 0....0xik
...xi2

xi1 

  compress(x) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

i4=14,  i3=7,  i2=5,   i1=2  



Exercise 9 

Question.  
a) Describe how to remove the rightmost 1 
b) Describe how to extract the rightmost 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

remove 
 

extract 



Exercise 10 

Question.  
Describe how to compute the position ρ(x) of  
the rightmost 1 in a word x 

a) without using multiplication 
b) using multiplication 
c) using integer-to-float conversion 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 x 
 ρ(x) = 4 



Exercise 11 

Let λ(x)  be the position of  the leftmost 1 in a 
word x (i.e. λ(x) = log2(x)). 

 

 
 
 
Question.  
Describe how to test if λ(x)= λ(y), 
without actually computing λ(x) and λ(y). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x 
 λ(x) = 11 



Exercise 12* 

Question.  
Describe how to compute the position λ(x) of  
the leftmost 1 in a word x (i.e. λ(x) = log2(x)) 

a) without using multiplication 
b) using multiplication 
c) using integer-to-float conversion 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 x 
 λ(x) = 11 



Fredman & Willard 
Computation of  λ(x) in O(1) steps using 5 multiplications 

n = g∙g,  g a power of 2 



Exercise 13 

Question.  
Describe how to compute the length of the 
longest common prefix of two words  

xn-1...x2x1x0   and   yn-1...y2y1y0  

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 

lcp(x,y) = 6 

x 
 
 
 
 

y 



Trees 



Exercise 14 

Question.  
Consider the nodes of a complete binary tree 
being numbered level-by-level and the root being 
numbered 1. 
 
a) What are the numbers of 
 the children of node i ? 
 
b) What is the number of  
 the parent of node i ? 

5 

3 2 

4 6 7 

8 10 9 11 15 14 13 12 

1 



Exercise 15 

Question.  
 

a) How can the height of the tree be 
computed from a leaf number? 
 

b) How can LCA(x,y) of two  
 leaves x and y be computed 
 (lowest common ancestor)? 

5 

3 2 

4 6 7 

8 10 9 11 15 14 13 12 

1 

x             y 

LCA(x,y) 



Exercise 16* 

Question.  
 
Describe how to assign O(1) words 
to each node in an arbitrary tree,  
such that LCA(x,y) queries can  
be answered in O(1) time. 
 

x 

y 

LCA(x,y) 



Searching 



Exercise 17 

Question. Consider a n-bit word x storing k 
n/k-bit values v0,...,vk-1 
 
 
 
 
a) Describe how to decide if all vi are non-zero 
b) Describe how to find the first vi equal to zero 
c) Describe how implement Search(x,u), that 
 returns a i such that vi=u (if such a vi exists) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 
v3 v2 v1 v0 

x 



Sorting : 
Sorting Networks 



Exercise 18 

Question. Construct a comparison network that 
outputs the minimum of 8 input lines.  

What is the number of comparators and the depth 
of the comparison network? 

x1 

x2 

x5 

x4 

x3 

minimum 

x6 

x7 

x8 



Exercise 19 

Question. Construct a comparison network that 
outputs the minimum and maximum of 8 input lines. 
What is the number of comparators and the depth of 
the comparison network? 

x1 

x2 

x5 

x4 

x3 

x6 

x7 

x8 minimum 

maximum 



Odd-even merge sort for N=8. 

 

Size O(N∙(log N)2) and depth O((log N)2) 

 

Fact. At each depth all compators have equal length 

 
[ Ajtai, Komlós, Szemerédi 1983: depth O(log N), size O(N∙log N) ] 

Odd-Even Merge Sort 
K.E. Batcher 1968 



Sorting : 
Word RAM implementations of 

Sorting Networks 



Exercise 20 

Question.  

Descibe how to sort two sub-words stored in a 
single word on a Word RAM ― without using 
branch-instructions  

(implementation of a comparator)  
x 

1 0  0 1 1 1 0 1 

y 

1 1 0 1 1 0 0 1 

min(x,y) max(x,y) 

input 

output 



Exercise 21 

Question.   

Consider a n-bit word x storing n/k-bit values 
v0,...,vk-1. 

Describe a Word RAM implementation of odd-even 
merge sort with running O((log k)2). 

 

Odd-even merge sort for N=8. 



More about 
Sorting & Searching 



Sorting N words 

More about Sorting & Searching 

Randomized O(N ∙ (loglog N)1/2) Han & Thorup 2002 

Deterministic O(N ∙ loglog N) Han 2002 

Randomized AC0 O(N ∙ loglog N) Thorup 1997 

Deterministic AC0 O(N ∙ (loglog N)1+ε) Han & Thorup 2002 

Dynamic dictionaries storing N words 

Deterministic O((log N/loglog N)1/2) Andersson & Thorup 
 2001 Deterministic AC0 O((log N)3/4+o(1)) 



Summary 



Summary 

 Many operations on words can be efficiently  

 without using multiplication 

 

 λ(x) and ρ(x) can be computed in O(1) time using 
multiplication, and O(loglog n) time without mult. 

 

 Parallellism can be achieved by packing several 
elements into one word 

 

 The great (theory) question:  

 Can N words be sorted on a Word RAM in O(N) time? 


