
Algorithm Engineering the Theory

Gerth Stølting Brodal
Aarhus University

ADYN Summer School on Algorithm Engineering for Network Problems, Hasso Plattner Institute, Potsdam, Germany, September 19-22, 2023

Gerth Stølting Brodal

Research
Data structures 1993 –

Teaching
Algorithms and Data Structures 2002 –
Introduction to Programming (Python) 2018 –
Bachelor project advising

▪Creating new theory is cool

▪Filling in proof details
less exciting

▪Uncertainty –
have all
cases been
addressed ?
[you prove the
algorithm is correct
but rarely that your proof is correct]

▪Frustrating when errors make
their way into published papers

Algorithms

Theory Implementation

▪Coding is healthy

▪Coding is fun

▪Debugging less so…

▪Procrastinating from
writing the theory ?

▪Document
relevance
of theory

▪ Study theory
vs real world

▪ Identify
shortcomings of theory

▪ Inspire new theory

https://www.commitstrip.com/en/2018/05/09/progress/

▪ Have more celebrations

▪ Make progress on bugs
more frequently

▪ Not necessarily fewer bugs !

Goal

https://www.commitstrip.com/en/2018/05/09/progress/

Computer Science Review 5(2), 119-161, 2011
DOI: doi.org/10.1016/j.cosrev.2010.09.009

Example :
Bipartite graph ?

Algorithm

Graph

Yes No

A B

C E

G
F D

Certificate
= two coloring

A B

C E

G
F D

Certificate
= odd cycle

https://doi.org/10.1016/j.cosrev.2010.09.009

Automatic testing of algorithm
implementation

while True:

x = generate_random_input()

answer, certificate = algorithm(x)

assert verify(x, answer, certificate)

print('.')

▪ Happy when sequence of dots grow

▪ Program crashes – debugger can perhaps help you find the bug

▪ Verification fails – a bug somewhere in the program/algorithm

.

Simplifying failed input (Greedy DFS)

def simplify_bug(failed_input):

for x in simplifications(failed_input):

try:

algorithm(x)

except Bug:

print('YES! - failed on', x)

return simplify_bug(x)

return failed_input

▪ simplifications could e.g. report all ways of removing a
single vertex or edge from a graph

▪ Complex input triggering the bug can sometimes be simplified
to an input of manageable size

Invariants

▪ Invariants are a fundamental tool when designing and analyzing
algorithms and data structures

▪ Capture state of algorithm

▪ Example: AVL tree invariant
1) Search tree

2) ∀ v : |v.left.height – v.right.height | ≤ 1

▪ Invariants can be made assertions in code ֜ ensure code integrity

def validate(tree, min_value=None, max_value=None):

 '''Validate AVL-tree invariants.'''

 if not is_empty(tree):

 assert min_value == None or min_value <= tree.root

 assert max_value == None or tree.root <= max_value

 assert tree.height == 1 + max(tree.left.height, tree.right.height)

 assert abs(tree.left.height - tree.right.height) <= 1

 validate(tree.left, min_value, tree.root)

 validate(tree.right, tree.root, max_value)

def inorder(tree):
'''Generator that yields values in tree in sorted order.'''

if not is_empty(tree):
yield from inorder(tree.left)
yield tree.root
yield from inorder(tree.right)

def test_insertions(n):
 data = random.choices(range(10 * n), k=n)
 tree = empty_tree
 for i, x in enumerate(data):
 tree = insert(tree, x)
 validate(tree)
 assert sorted(data[:i + 1]) == list(inorder(tree))

▪ Write validate and test methods before implementing insert

“Test driven algorithm design”

▪ Formulate invariants as the driving tool for algorithm design

▪ Implement invariants in code as assertions and verifier methods

▪ Automate stress tests

▪ Develop algorithm through failed tests
֜ likely good coverage of special cases

֜ little redundant code

▪ Note: verification methods might slow down code significantly
(asymptotic slower!), but the focus is on developing correct theory

Visual test/debugging of autogenerated figure

def tikz(tree):

 def recurse(tree):

 if tree is empty_tree:

 return '{}'

 else:

 return f'[.{tree.root} {recurse(tree.left)} {recurse(tree.right)}]'

 return r'\Tree ' + recurse(tree)

\Tree [.54 [.42 [.15 {} {}] [.52 {} {}]] [.68 [.67 [.55 {} {}] {}] [.90 [.89 {} {}] [.96 {} {}]]]]

An unexpected journey

▪ Bachelor project = shortest paths on Open Street Map graphs

▪ Students have trouble implementing Dijkstra's algorithm in JavaTM

DOI 10.4230/LIPIcs.FUN.2022.8

http://dx.doi.org/10.4230/LIPIcs.FUN.2022.8

<way id="79388407" visible="true" version="17" changeset="107546769" timestamp="2021-07-07T08:48:29Z" user="KartoffelOS"
uid="10758523">

<nd ref="296937646"/>
<nd ref="926885043"/>
<nd ref="926884234"/>
<nd ref="4868434116"/>
<nd ref="528571257"/>
<tag k="access" v="private"/>
<tag k="bicycle" v="yes"/>
<tag k="delivery" v="yes"/>
<tag k="emergency" v="yes"/>
<tag k="foot" v="yes"/>
<tag k="highway" v="service"/>
<tag k="lit" v="yes"/>
<tag k="maxspeed" v="20"/>
<tag k="name" v="August-Bebel-Straße"/>
<tag k="postal_code" v="14482"/>
<tag k="service" v="parking_aisle"/>
<tag k="surface" v="paving_stones"/>

</way>
<way id="970133467" visible="true" version="7" changeset="135350751" timestamp="2023-04-25T16:12:30Z" user="tecmap15"

uid="4798255">
<nd ref="8977535608"/>
<nd ref="8977535605"/>
<nd ref="8977535606"/>
<nd ref="8977535607"/>
<nd ref="8977535601"/>
<nd ref="8977535602"/>
<nd ref="8977535608"/>
<tag k="addr:city" v="Potsdam"/>
<tag k="addr:country" v="DE"/>
<tag k="addr:housenumber" v="88"/>
<tag k="addr:postcode" v="14482"/>
<tag k="addr:street" v="August-Bebel-Straße"/>
<tag k="addr:suburb" v="Babelsberg"/>
<tag k="building" v="university"/>
<tag k="building:levels" v="3"/>
<tag k="name" v="Haus L"/>
<tag k="roof:levels" v="0"/>
<tag k="roof:shape" v="flat"/>
<tag k="wheelchair" v="yes"/>

</way>

Dijkstra’s algorithm (1956)

▪ Non-negative edge weights

▪ Visits nodes in increasing distance from source

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨6,D⟩

⟨4,D⟩

⟨6,E⟩

0

relax

Fibonacci heaps
(Fredman, Tarjan 1984)
֜ O(m + n ∙ log n)

O(log n) Remove

֜ O(m ∙ log n)

relax

The challenge - Java's builtin binary heap

▪ no decreasekey

▪ remove O(n) time

֜ Dijkstra O(m ∙ n)

▪ comparator function

Repeated insertions

▪ Relax inserts new copies of item

▪ Skip outdated items

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨4,C⟩ ⟨6,D⟩

⟨4,D⟩ ⟨6,D⟩

⟨6,D⟩ ⟨6,E⟩

0

⟨4,C⟩ ⟨4,D⟩ ⟨6,D⟩

outdated ?

relax
= reinsert

⟨6,E⟩

Using a visited set

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨4,C⟩ ⟨6,D⟩

⟨4,D⟩ ⟨6,D⟩

⟨6,D⟩ ⟨6,E⟩

0

⟨4,C⟩ ⟨4,D⟩ ⟨6,D⟩

⟨6,E⟩

bitvector

A shaky idea…

d never used

▪ Q only store nodes
(save space)

▪ Comparator

▪ Key = current distance dist

Heap invariants break

Experimental study

▪ Implemented Dijkstra4 in Python

▪ Stress test on random cliques

▪ Binary heaps failed (default priority queue in Java and Python)

visited = set()

Q = Queue()

Q.insert(Item(0, source))

while not Q.empty():

 u = Q.extract_min().value

 if u not in visited:

 visited.add(u)

 for v in G.out[u]:

 dist_v = dist[u] + G.weights[(u, v)]

 if dist_v < dist[v]:

 dist[v] = dist_v

 parent[v] = u

 Q.insert(Item(dist[v], v))

outdated wrong
placement

not smallest
key

ignored
since visited

Binary heaps using dist in a comparator fails

Experimental study

▪ Implemented Dijkstra4 in Python

▪ Stress test on random cliques

▪ Binary heaps

▪ Skew heaps

▪ Leftist heaps

▪ Pairing heaps

▪ Binomial queues

▪ Post-order heaps

▪ Binary heaps with top-down insertions

failed

worked

worked

worked

worked

worked

worked

(default priority queue in Java and Python)

Implicit (space efficient)

Pointer based

visited = set()

Q = Queue()

Q.insert(Item(0, source))

while not Q.empty():

 u = Q.extract_min().value

 if u not in visited:

 visited.add(u)

 for v in G.out[u]:

 dist_v = dist[u] + G.weights[(u, v)]

 if dist_v < dist[v]:

 dist[v] = dist_v

 parent[v] = u

 Q.insert(Item(dist[v], v))

u
n

ex
p

ec
te

d

Binary heap insertions
 – bottom-up vs top-down

2

3 5

9 4 8 12

10 14 6 20 17 7

2

3 5

9 4 7 12

10 14 6 20 17 8

Insert(7)

bottom-
up

top-down

Definition: Priority queues with decreasing keys

▪ Items = ⟨key, value⟩

▪ Over time keys can decrease – priority queue is not informed

▪ Items are compared w.r.t. their current keys

▪ The original key of an item is the key when it was inserted

Insert(item)

ExtractMin() returns an item with current key less than or equal to
all original keys in the priority queue

Theorem 1

Dijkstra4 correctly computes shortest paths when using dist as
current key and a priority queue supporting decreasing keys

Theorem 2

The following priority queues support decreasing keys (out of the box)

▪ binary heaps with top-down insertions

▪ skew heaps

▪ leftist heaps

▪ pairing heaps

▪ binomial queues

▪ post-order heaps

Proof of Theorem 2 - Basic idea

▪ Decreased heap order

u ancestor of v ֜
current key u ≤ original key v

▪ Root valid item to extract

▪ Top-down merging two paths
preserves decreased heap order

֜ skew heaps and leftist heaps
support decreasing keys

Experimental evaluation of various heaps
▪ Cliques with uniform random weights

▪ With decreasing keys less comparisons (outdated items removed earlier)

⟨key, value⟩ pairs decreasing keys

smaller

Reduction in comparisons

comparisons decreasing keys / comparisons ⟨key, value⟩ pairs

Postorder heap [Harvey and Zatloukal, FUN 2004]

▪ Insert amortized O(1), ExtractMin amortized O(log n)

▪ Implicit (space efficient)

▪ Best implicit comparison performance (and good time performance)

Summary of the unexpected journey

▪ Introduced notion of priority queues with decreasing keys
 … as an approach to deal with outdated items in Dijkstra’s algorithm

▪ Experiments identified priority queues supporting decreasing keys
 … just had to prove it

▪ Builtin priority queues in Java and Python are binary heaps
 … do not support decreasing keys

▪ Binary heaps with top-down insertions do support decreasing keys
 … and also

skew heaps, leftist heaps, pairing heaps,
binomial queues, post-order heaps

The reviewer is always right

”If there was a implementation where the authors
verified that everything did what it was supposed
to, I would be more confident that things were
correct (I am not talking about a practical
implementation, I am talking about one to make
sure all invariants hold).”

Anonymous reviewer

Strict Fibonacci heaps

Binary heap
[Williams 1964]

worst-case

Fibonacci heap
[Fredman, Tarjan 1984]

amortized

Strict Fibonacci heap
[B., Lagogiannis, Tarjan 2012]

worst-case

Insert O(log n) O(1) O(1)

ExtractMin O(log n) O(log n) O(log n)

DecreaseKey O(log n) O(1) O(1)

Meld - O(1) O(1)

Strict Fibonnacci heaps

+ many structural invariants

Python implementation
▪ 1589 lines

▪ 215 assert statements

▪ All claimed invariants turned into assert statements

▪ Validation methods to traverse full structure to verify all claimed invariants

▪ Stress test using random inputs

▪ Supported the theory

www.cs.au.dk/~gerth/strict_fibonacci_heaps.py

Code coverage

▪ Used the Python module coverage

▪ Some code rarely executed

▪ Repeat random test 1.000.000 times

▪ Most code executed at least once

▪ Realized there was code for cases which provably never can occur

▪ Implementation → new invariants discovered

coverage.readthedocs.io

Code coverage

pypi.org/project/coverage

odd_even.py

1 def f(x):

2 if x % 2 == 0:

3 return 'even'

4 elif x % 4 == 0:

5 return 'even more even'

6 elif x % 2 == 1:

7 return 'odd'

8 import random

9 for i in range(10):

10 x = random.randint(0, 10)

11 print(x, f(x))

Shell

> coverage run odd_even.py

| 4 even

| 5 odd

| ...

| 1 odd

> coverage report -m odd_even.py

| Name Stmts Miss Cover Missing

| ---

| odd_even.py 11 1 91% 5

| ---

| TOTAL 11 1 91%

▪ Usually, code coverage is a
measure of the quality of test
cases

▪ …but, can also help to identify
missing logical insights

https://pypi.org/project/coverage/

Branch coverage

▪ Thought code coverage would find all ”logical errors”

▪ Found several if statements with no else part,
where condition provably would always be true

▪ Implementation → new invariants discovered (and assertions added)

coverage.readthedocs.io

always exists

Branch
coverage

pypi.org/project/coverage

odd_even.py

1 def f(x):

2 if x % 2 == 0:

3 return 'even'

4 elif x % 4 == 0:

5 return 'even more even'

6 elif x % 2 == 1:

7 return 'odd'

8 import random

9 for i in range(10):

10 x = random.randint(0, 10)

11 print(x, f(x))

Shell

> coverage run --branch odd_even.py

| 5 odd

| 4 even

| ...

| 8 eve

> coverage report -m odd_even.py

| Name Stmts Miss Branch BrPart Cover Missing

| ---

| odd_even.py 11 1 8 2 84% 5, 6->exit

| ---

| TOTAL 11 1 8 2 84%

https://pypi.org/project/coverage/

”The first main suggestion is to have at least one figure
with a logical diagram of a non-trivial example
structure, […]. This would go a long way in giving some
idea of what the structure is.”

Anonymous reviewer

▪ Hard to manually create a figure that was guaranteed to be a real example

▪ Could use implementation to automatically generate (LaTeX tikz) figures

▪ Generated random inputs

▪ Formalized requirements to figure as a loop condition

▪ Repeat until happy

A question by John Iacono at Dagstuhl
▪ After inserting n random elements into an unbalanced binary search tree,

what is the expected size of the subtree rooted at the minimum?

size ?

Summary

▪ Implementations support stronger theory

▪ Experimentation can identify what to prove

▪ Invariants can be verified and identified using assertions in code

▪ Stress tests and code coverage ensures integrity of code and theory

Theory ImplementationCreating new
theory is cool Coding is fun

	Slide 1: Algorithm Engineering the Theory
	Slide 2: Gerth Stølting Brodal
	Slide 3: Algorithms
	Slide 4: Goal
	Slide 5
	Slide 6: Automatic testing of algorithm implementation
	Slide 7: Simplifying failed input (Greedy DFS)
	Slide 8: Invariants
	Slide 9
	Slide 10: “Test driven algorithm design”
	Slide 11: Visual test/debugging of autogenerated figure
	Slide 12: An unexpected journey
	Slide 13
	Slide 14: Dijkstra’s algorithm (1956)
	Slide 15: The challenge - Java's builtin binary heap
	Slide 16: Repeated insertions
	Slide 17: Using a visited set
	Slide 18: A shaky idea…
	Slide 19: Experimental study
	Slide 20: Binary heaps using dist in a comparator fails
	Slide 21: Experimental study
	Slide 22: Binary heap insertions – bottom-up vs top-down
	Slide 23: Definition: Priority queues with decreasing keys
	Slide 24
	Slide 25: Proof of Theorem 2 - Basic idea
	Slide 26: Experimental evaluation of various heaps
	Slide 27: Reduction in comparisons
	Slide 28: Postorder heap [Harvey and Zatloukal, FUN 2004]
	Slide 29: Summary of the unexpected journey
	Slide 30: The reviewer is always right
	Slide 31
	Slide 32: Strict Fibonacci heaps
	Slide 33: Strict Fibonnacci heaps
	Slide 34: Python implementation
	Slide 35: Code coverage
	Slide 36: Code coverage
	Slide 37: Branch coverage
	Slide 38: Branch coverage
	Slide 39
	Slide 40
	Slide 41: A question by John Iacono at Dagstuhl
	Slide 42: Summary

