I

JIM! Tl Hull || 1’
ﬂ_ **_4,1,[.,‘”1 “'l Al ‘ ﬂ “ II | [
W’ w1 UL}_* ORI 0 RO

A0 /T

e g

ﬁ‘ﬁrfh Stglting Brodal NS

Aarhus University

R

ADYN Summer School on Algorithm Engineering for Network Problems, Hasso Plattner Institute, Potsdam, Germany, September 19-22, 2023

Gerth Stglting Brodal

Research
Data structures 1993 —

Teaching

Algorithms and Data Structures 2002 —
Introduction to Programming (Python) 2018 —
Bachelor project advising

Algorithms o
= Coding is healthy

= Creating new theory is cool " Coding is fun
e . = Debugging less so...
" Filling in proof details > gf, gt. ;

- = Procrastinating from
£33 exujcmg /-\ writing the theory ?
. Jncertlzlzunty — = Document
nave a relevance
cases been Implementation of theory
addressed ? = Study theory
[you prove the vs real world

algorithm is correct \/ = ld if
but rarely that your proof is correct] entity

shortcomings of theory
" Inspire new theory

=" Frustrating when errors make
their way into published papers

Booom! Look at that!
Who's the Jedi master here?!

Goal

= Have more celebrations

= Make progress on bugs
more frequently

" The bug is still there, .
J but now the eror message I = Not necessarily fewer bugs !

is different

...and he fixed it?
Well done

Ahn!! It feels
great to finally
make Orogre,ss'

No no
not a,unte

CommitStrip.com
https://www.commitstrip.com/en/2018/05/09/progress/

https://www.commitstrip.com/en/2018/05/09/progress/

Certifying algorithms

R.M. McConnell?, K. Mehlhorn?*, S. Niher®, P. Schweitzer?

@ Computer Science Department, Colorado State University Fort Collins, USA

b Max Planck Institute for Informatics and Saarland University, Saarbriicken, Germany

€ Fachbereich Informatik, Universitdt Trier, Trier, Germany

d College of Engineering and Computer Science, Australian National University, Canberra, Australia

ABSTRACT

A certifying algorithm is an algorithm that produces, with each output, a certificate or
witness (easy-to-verify proof) that the particular output has not been compromised by a
bug. A user of a certifying algorithm inputs x, receives the output y and the certificate w,
and then checks, either manually or by use of a program, that w proves that y is a correct
output for input x. In this way, he/she can be sure of the correctness of the output without
having to trust the algorithm.

We put forward the thesis that certifying algorithms are much superior to non-
certifying algorithms, and that for complex algorithmic tasks, only certifying algorithms
are satisfactory. Acceptance of this thesis would lead to a change of how algorithms are
taught and how algorithms are researched. The widespread use of certifying algorithms
would greatly enhance the reliability of algorithmic software.

We survey the state of the art in certifying algorithms and add to it. In particular, we
start a theory of certifying algorithms and prove that the concept is universal.

Example :
Bipartite graph ?
Graph

Algorithm

i

Certificate Certificate
= two coloring = odd cycle

Computer Science Review 5(2), 119-161, 2011
DOI: doi.org/10.1016/j.cosrev.2010.09.009

https://doi.org/10.1016/j.cosrev.2010.09.009

Automatic testing of algorithm
implementation

while True:
X = generate random input ()
answer, certificate = algorithm(x)
assert verifv(x, answer, certificate)
print('.")

" Happy when sequence of dotsgrow
" Program crashes — debugger can perhaps help you find the bug
= Verification fails — a bug somewhere in the program/algorithm

Simplifying failed input (Greedy DFS)

def simplify bug(falled input):
for x 1n simplifications(failed 1input):
try:
algorithm(x)
except Bug:
print ('YES! - failed on', x)
return simplify bug(x)
return failed 1input

"simplifications could e.g. report all ways of removing a
single vertex or edge from a graph

" Complex input triggering the bug can sometimes be simplified
to an input of manageable size

Invariants

" [nvariants are a fundamental tool when designing and analyzing
algorithms and data structures

= Capture state of algorithm

=" Example: AVL tree invariant

1) Search tree
2) Vv:|v.left.height —v.right.height | £1

" [nvariants can be made assertions in code = ensure code integrity

def validate (tree, min value=None, max value=None) :
'''Validate AVL-tree invariants.'''

1f not 1s empty(tree):

assert min value == None or min value <= tree.root
assert max value == None or tree.root <= max value
assert tree.height == 1 + max(tree.left.height, tree.right.height)

assert abs(tree.left.height - tree.right.height) <=1
validate (tree.left, min value, tree.root)
validate (tree.right, tree.root, max value)

def inorder (tree):
'''Generator that yields wvalues in tree 1n sorted order.''"'

1f not 1s empty(tree):
yield from inorder (tree.left)
yield tree.root
yield from inorder (tree.right)

def test insertions (n):
data = random.choices (range (10 * n), k=n)
tree = empty tree
for i, x in enumerate (data) :
tree = insert (tree, x)
validate (tree)
assert sorted(datal[:1i + 1]) == list (inorder (tree))

= Write validate and test methods before implementing insert

“Test driven algorithm design”

" Formulate invariants as the driving tool for algorithm design
" Implement invariants in code as assertions and verifier methods
= Automate stress tests

= Develop algorithm through failed tests
= likely good coverage of special cases

= little redundant code

= Note: verification methods might slow down code significantly
(asymptotic slower!), but the focus is on developing correct theory

Visual test/debugging of autogenerated figure

def tikz (tree):
def recurse (tree):

1f tree 1s empty tree:
return '{}'
else:

return f£'[.{tree.root} {recurse(tree.left)} {recurse(tree.right)} 1
return r'\Tree ' + recurse (tree)

(54,
(12 (68)
1) G2 67 (90;
o000 (s O (89 (96

L L L L
\Tree [.54 [.42 [.15 {} {}] [.52 (} {} 1] [.68 [.67 [.55 {} {} 1 {3} 1 [.90 [.89 {} {}] [.96 (} (} 1 1 1]

An unexpected journey

Bachelor project = shortest paths on Open Street Map graphs

= Students have trouble implementing Dijkstra's algorithm in Java™
T X

x| +

GPS Traces User Diaries Communities Copyright Help About ‘ Log In ’ Sign Up ‘

140 ’

» Export | OpenStreetMap
&~ C O [9] https://www.openstreetmap.org/export#map=17/52.39313/13.12833
2 OpenStreetMap
P W
—— Griebnitzsee
Search = -,
=2
=
P R o =
Exp O rt X Prof,-Dr.~H0'me“'S"aBe Grieby Ix see
&
52.39430 2
at
2 |
13.12338 13.13329 & i
3
&
<
52.39197 I
PAugust-BebeLSI(Bﬁe P “1u” Rulkul:.[::,l:n“v
3 un
Haus Rotk z_ur er
r 5 unag
Haus

Manually select a different area

Licence
OpenStreetMap data is licensed under the Open

Data Commons Open Database License (ODbL).

P

HPI HOFSL +

=
L]
<itset K
. i Ve : -
* i M o o 2
Net 3 HP]
Haus B
Haus Hasso-Plattner-
K Institut
-
=
.
/ 1
/ ,
/4
Gy

- L
Studentendorf & /f /
o /4 s ’
Ry 4 .
7 s
// s
‘4 W v

Griebnitzsee
¥

-~

S Y AP 4
> >

Mikadoplat2 (
ydopla) 46

© OpenStreetMap contributors ¥ Make a Donation. Website and API termi

DOI 10.4230/LIPIcs.FUN.2022.8

http://dx.doi.org/10.4230/LIPIcs.FUN.2022.8

<way 1d="79388407" visible="true" version="17" changeset="107546769" timestamp="2021-07-07T08:48:29Z" user="KartoffelOS"
uid="10758523">

<nd ref="296937646"/>

<nd ref="926885043"/>

<nd ref="926884234"/>

<nd ref="4868434116"/>

<nd ref="528571257"/>

<tag k="access" v="private"/>

<tag k="bicycle" v="yes"/>

<tag k="delivery" v="yes"/>

<tag k="emergency" v="yes"/>

<tag k="foot" v="yes"/>

<tag k="highway" v="service"/>

<tag k="1lit" v="yes"/>

<tag k="maxspeed" v="20"/>

<tag k="name" v="August-Bebel-Strake"/>
<tag k="postal code" v="14482"/>

<tag k="service" v="parking aisle"/>
<tag k="surface" v="paving stones"/>
</way> N
<way 1d="970133467" visible="true" version="7" changeset="135350751" timestamp="2023-04-25T16:12:302" user="tecmapl5"

uid="4798255">

<nd ref="8977535608"/>

<nd ref="8977535605"/>

<nd ref="8977535606"/>

<nd ref="8977535607"/>

<nd ref="8977535601"/>

<nd ref="8977535602"/>

<nd ref="8977535608"/>

<tag k="addr:city" v="Potsdam"/>

<tag k="addr:country" v="DE"/>

<tag k="addr:housenumber" v="88"/>
<tag k="addr:postcode" v="14482"/>
<tag k="addr:street" v="August-Bebel-Strale"/>
<tag k="addr:suburb" v="Babelsberg"/>
<tag k="building" v="university"/>
<tag k="building:levels" v="3"/>

<tag k="name" v="Haus L"/>

<tag k="roof:levels" v="0"/>

<tag k="roof:shape" v="flat"/>

<tag k="wheelchair" v="yes"/>
</way>

Dijkstra’s algorithm (1956)

source

= Non-negative edge weights
= Visits nodes in increasing distance from source

proc Dijkstra,(V, E, 4, s) N
dist[v] = +oc for all v € V' \ {s} proc Dijkstra,(V, E, 9, s) E f
dist[s] = 0 dist|v] = +oco for all v € V' \ {s} '
Insert(Q, (dist[s], s)) dist[s] = 0 72N

while Q # () do Insert(Q, <di8t[8], 8))
while Q # 0 do

Fibonacci heaps (d,u) = ExtractMin(Q) |
(Fredman, Tarjan 1984) for (u,v) € EN({u} x V) do (d,u) = ExtractMin(Q)
= O(m + n - log n) (if dist[u] + 6(u,v) < dist[v] then fo‘f‘ (ua.”U) c En({uf x V) do
\ dist[v] = dist[u] + d(u,v) if dist[u] + 6(u,v) < dist[v] then
rolax <\if v € Q then dist[v] = dist[u] + §(u,v) O(log n) Remove
DecreaseKey(Q, v, dist[v]) if v€ Q then / = O(m - log n)
else Remove(Q, v)
| Insert(Q, (v, dist[v])) Insert(Q, (dist[v],v))

return dist return dist

The challenge - Java's builtin binary heap

"no decreasekey
" remove O(n) time
= Dijkstra O(m - n)

= comparator function

o Java SE 18 & JDK 18

SEARCH: |2, Search X

N

Implementation note: this implementation provides O(log(n)) time for the enqueuing and
dequeuing methods (offer, poll, remove() and add); linear time for the remove(Object)

and contains(0Object) methods; and constant time for tEe Detrieval metﬁoas IpeeE,
etement, ana 51zei.

This class is a member of the Java Collections Framework.

Since:
1.5 .
— Java SE 18 & JDK 18
SEARCH: |2, Search X
PriorityQueue(int initialCapacity) Creates a PriorityQueue with the “
specified initial capacity that orders its
elements according to their natural
. —
ordering.
G
PriorityQueue(int initialCapacity, Creates a PriorityQueue with the
Comparator<? super E> comparator) specified initial capacity that orders its
elements according to the specified

comparatorn .
<

Repeated insertions

source

= Relax inserts new copies of item
= Skip outdated items

proc Dijkstra,(V, E, 9, s)
dist[v] = +oo for all v € V' \ {s}
dist[s] =0
Insert(Q), (dist|s], s))
while Q # () do
(d,u) = ExtractMin(Q)
outdated ? — if d = dist|u| then
for (u,v) €e EN ({u} x V) do
if dist|u] + 0(u,v) < dist|v] then
dist[v] = dist[u] + d(u,v)

relax)
_ reinsert > Insert(Q, (dist|v],v))

return dist

Using a visited set

source
proc Dijkstra,(V, E,J,s)
dist[v] = 400 for all v € V' \ {s}
dist|s] =0
visited = ()
Insert(Q), (dist|s], s))
while QQ # () do
(d,u) = ExtractMin(Q)
bitvector — if u & visited then
visited = visited U {u}
for (u,v) € EN({u} xV) do
if dist|u] + 0(u,v) < dist|v] then
dist|v] = dist|u] + d(u,v)
Insert(Q, (dist|v],v))
return dist

A shaky idea...

= Q only store nodes

proc Dijkstra,(V, E,J,s)
(save space)

dist[v] = 400 for all v € V' \ {s}
dist[s] =0 = Comparator
visited = ()
Insert(Q), (dist|s], s))
while QQ # () do

d never used —» M’U) = ExtractMin(Q)

= Key = current distance dist

if u & visited then a1 by
visited = wvisited U {u} dr/ \C extract ay dr/ \(,
for (u,v) € EN ({u} x V) do A
if dZSt[’LL] + (5(’&,’0) < d’LSt[’U] then bs eq bg €6

dist|v] = dist|u] + d(u,v)
Insert(Q, (d>KT], v)) Heap invariants break \

return dist

Experimental study

" Implemented Dijkstra, in Python

= Stress test on random cliques
" Binary heaps

visited = set ()

Q = Queue()

Q.insert (Item (0, source))
while not Q.empty () :

u = Q.extract min() .value

if u not in visited:
visited.add (u)
for v in G.out[u]:

dist v = dist[u]
if dist v < distl[v]:
dist[v] = dist v

parent [v]

= u

+ G.weights[(u, V)]

Q.insert (Item(dist([v], Vv))

failed (default priority queue in Java and Python)

Binary heaps using dist in a comparator fails

.
OO OnuOnsO

S0 > a > b: > >)
(extract sg 1 extract aq E extract bo d5 extract ds bﬁ
insert ai / \ insert bo / \ insert cs / \ not smallest / \
insert b ds ¢y ds c7 by 3 key (3 3
insert cry / / — — —
insert dsx \ \ / \ /
insert eg bS €6 bg €6 cg C3 €6
wron
outdated &
placement
> C3 > (3 > d4 > € >
extract bo extract cj3 extract c3 extract dy extract eg
€6 C3 E¢ : .
= 6 o4 €6 since visited

unexpected

_A

Experimental study

" Implemented Dijkstra, in Python

= Stress test on random cliques
" Binary heaps

[= Skew heaps worked
= | eftist heaps worked
= Pairing heaps worked
" Binomial queues worked
" Post-order heaps worked

. " Binary heaps with top-down insertions

visited = set ()
Q = Queue()
Q.insert (Item (0, source))
while not Q.empty () :
u = Q.extract min() .value
if u not in visited:
visited.add (u)
for v in G.out[u]:

if dist v < dist([v]:
dist[v] = dist v
parent[v] = u
Q.insert (Item(dist([v], Vv))

dist v = dist[u] + G.weights[(u, V)]

failed (default priority queue in Java and Python)

'\

> Pointer based

VAN

> Implicit (space efficient)

worked |

Binary heap insertions
— bottom-up vs top-down

Definition: Priority queues with decreasing keys

" [tems = (key, value)
= Over time keys can decrease — priority queue is not informed
" |tems are compared w.r.t. their current keys

" The original key of an item is the key when it was inserted

Insert (item)

ExtractMin () returns an item with current key less than or equal to
all original keys in the priority queue

Theorem 1

Dijkstra, correctly computes shortest paths when using dist as
current key and a priority queue supporting decreasing keys

Theorem 2

The following priority queues support decreasing keys (out of the box)
" binary heaps with top-down insertions

= skew heaps

= |eftist heaps

" pairing heaps

" binomial queues

= post-order heaps

Proof of Theorem 2 - Basic idea

" Decreased heap order

u ancestor of v =
current key u < original key v

= Root valid item to extract

=" Top-down merging two paths
preserves decreased heap order

= skew heaps and leftist heaps
support decreasing keys

T1 Uo 3 merge(T1,Tg) Vo 2
/ \ /N
ur lg 4 uo 3 15
/N / N\
uz2 8 7 214 ur lg 4
/ \ \
V1 5 7 214
To vy 2 /\
/ \ V2 29 413
U1 5 15 /
/\ uz
V2 29 413

comparisons / n

140 -

120 =

100 -

80

60 -

40

20 A

Experimental evaluation of various heaps

= Cligues with uniform random weights
= With decreasing keys less comparisons (outdated items removed earlier)

(key, value) pairs

BinaryHeapTopdownHeapify
BinaryHeapTopdown
BinaryHeap

PostOrderHeap
BinaryHeapHeapifyBottomup
SkewHeap
LeftistHeap
PairingHeap
BinomialQueue

150 200 250

Nodes n

50 100

comparisons / n

decreasing keys

120 A

100 A

80 A

60

40 -

20 A

- smaller

"
e

50

150 200 250

Nodes n

100

Reduction in comparisons

comparisons decreasing keys / comparisons (key, value) pairs

1.0 -
0.9 A
—e— BinaryHeapTopdownHeapify
BinaryHeapTopdown
0.8 —eo— PostOrderHeap
' —e— SkewHeap
LeftistHeap
—e— PairingHeap
0.7 - BinomialQueue
0.6 A
0.5

0 50 100 150 200 250
Nodes n

Postorder heap [Harvey and Zatloukal, FUN 2004]

10/1\3 2

/N /N /N
13 20 14 19 6 4 7 5

/ \ / N\ / \ / N\ / \ / \ / \ / \
16 21 23 25 24 18 28 26 2¢v 8 17 12 11 15 9 22

16({21(13]23(25]20|10(24|1814|28(26{19| 3 [1 |27| 8 | 6 |17|12(4 [2 |11|15] 7|9 |22|5

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

" ITnsert amortized O(1), ExtractMin amortized O(log n)
" Implicit (space efficient)
= Best implicit comparison performance (and good time performance)

Summary of the unexpected journey

" Introduced notion of priority queues with decreasing keys
... as an approach to deal with outdated items in Dijkstra’s algorithm

= Experiments identified priority queues supporting decreasing keys
... just had to prove it

= Builtin priority queues in Java and Python are binary heaps
... do not support decreasing keys

" Binary heaps with top-down insertions do support decreasing keys
... and also

skew heaps, leftist heaps, pairing heaps,
binomial queues, post-order heaps

The reviewer is always right

”If there was a implementation where the authors
verified that everything did what it was supposed
to, | would be more confident that things were
correct (I am not talking about a practical
implementation, | am talking about one to make
sure all invariants hold).”

Anonymous reviewer

Strict Fibonacci heaps

Binary heap Fibonacci heap Strict Fibonacci heap
[Williams 1964] [Fredman, Tarjan 1984] [B., Lagogiannis, Tarjan 2012]
worst-case amortized worst-case
Insert O(log n) O(1) O(1)
ExtractMin O(log n) O(log n) O(log n)
DecreaseKey O(log n) O(1) O(1)
Meld - O(1) O(1)

Strict Fibonnacci heaps

heap record

active
size
heap-record root -
maximum _ rank-list 1
rank -

next prev

P B gy B gy ey g B I L

. free-multiple

A free-single

- - loss-zero

loss-one-multiple
loss-one-single

P /:f :, . loss-two

PR f/—___f~”('(~— /prev J”next\)
y left-child \Q‘L—QH - N O e O O

prev - - — ~— - - N o J

(1) passive (2) multiple (3) single (4) loss zero (5) multiple (6) single (7) loss > 2
hd / N /
free nodes N loss one)
N
fixed nodes)
~

fix-list (node records)

+ many structural invariants

Python implementation

= 1589 lines

= 215 assert statements

= All claimed invariants turned into assert statements

= Validation methods to traverse full structure to verify all claimed invariants

= Stress test using random inputs

= Supported the theory

)
/s
|7
parent\,
— -
left,

y " left-child
pl‘GV

assive

heap record

active
size
root
rank-list 1
passive
free-multiple
free-single
loss-zero
loss-one-multipl
loss-one-single
loss-two
—
DO O
\/ | R —
(2) multiple (3) single (4) loss zero (5) multiple (6) single (7) loss = 2
-
free nodes loss one
fixed nod

fix-list (node records)

www.cs.au.dk/~gerth/strict_fibonacci_heaps.py

Code coverage

= Used the Python module coverage

= Some code rarely executed
= Repeat random test 1.000.000 times
= Most code executed at least once

= Realized there was code for cases which provably never can occur
" Implementation - new invariants discovered

coverage.readthedocs.io

odd even.py

1l def f(x):

2 ifms2=o: Code coverage

3 return 'even'

4 elif x $ 4 == 0:

5 return 'even more even'

6 elif x % 2 == 1:

7 return 'odd' .
s s = Usually, code coverage is a

9 for i in range(10): measure of the quality of test
10 X = random.randint (0, 10)

11 print(x, £(x)) cases

n
o g
(0]
=
[

> coverage run odd even.py

: 4 even = ..but, can also help to identify
5 odd .«

L missing logical insights

| 1 odd

> coverage report -m odd even.py

| Name Stmts Miss Cover Missing

| m e

| odd even.py 11 1 91% 5

| m e o

| TOTAL 11 1 91%

pypi.org/project/coverage

https://pypi.org/project/coverage/

Branch coverage

" Thought code coverage would find all “logical errors”

" Found several if statements with no else part,
where condition provably would always be true

" Implementation - new invariants discovered (and assertions added)

heap-record

always exists

maximum
rank next prev

(ra;akn’rce;i?:ds) (===

coverage.readthedocs.io

odd even.py

1l def f(x):

2 if x & 2 ==
return 'even'

elif x $ 4 == 0:
return 'even more even' E; r]

elif x % 2 == 1: ranc
return 'odd'

8 import random COVe rage

9 for i in range(10):
10 X = random.randint (0, 10)
11 print (x, f£(x))

oy O bW

n
o g
(0]
=
[

> coverage run --branch odd even.py

| 5 odd

| 4 even

| ...

| 8 eve

> coverage report -m odd even.py

| Name Stmts Miss Branch BrPart Cover Missing
| S e
| odd even.py 11 1 8 2 84% 5, 6->exit
| Smmm e e e e e e e e e e e e e e e e — e e e e e
| TOTAL 11 1 8 2 84%

pypi.org/project/coverage

https://pypi.org/project/coverage/

“The first main suggestion is to have at least one figure
with a logical diagram of a non-trivial example
structure, [...]. This would go a long way in giving some
idea of what the structure is.”

Anonymous reviewer

=" Hard to manually create a figure that was guaranteed to be a real example
" Could use implementation to automatically generate (LaTeX tikz) figures

= Generated random inputs

=" Formalized requirements to figure as a loop condition

= Repeat until happy

A question by John lacono at Dagstuhl

" After inserting n random elements into an unbalanced binary search tree,
what is the expected size of the subtree rooted at the minimum?

7 4 —e— simulation

n _.--""_
(61 -e- =32 -
i

—
-
—
-
-

w-
(53) (76) g
o
c
c
e
(27) 58) (65 77) g5
©
Q
g
O 0O C . 5
S 4
n
y—
] 0 [N 6
N
n 3 -
HanE HemE 0 T e I I I~
©

0 100 200 300 400 500

Summary

N

Implementation

"—

" Implementations support stronger theory

" Experimentation can identify what to prove

" |nvariants can be verified and identified using assertions in code

= Stress tests and code coverage ensures integrity of code and theory

Creating new

theory is cool Coding is fun

	Slide 1: Algorithm Engineering the Theory
	Slide 2: Gerth Stølting Brodal
	Slide 3: Algorithms
	Slide 4: Goal
	Slide 5
	Slide 6: Automatic testing of algorithm implementation
	Slide 7: Simplifying failed input (Greedy DFS)
	Slide 8: Invariants
	Slide 9
	Slide 10: “Test driven algorithm design”
	Slide 11: Visual test/debugging of autogenerated figure
	Slide 12: An unexpected journey
	Slide 13
	Slide 14: Dijkstra’s algorithm (1956)
	Slide 15: The challenge - Java's builtin binary heap
	Slide 16: Repeated insertions
	Slide 17: Using a visited set
	Slide 18: A shaky idea…
	Slide 19: Experimental study
	Slide 20: Binary heaps using dist in a comparator fails
	Slide 21: Experimental study
	Slide 22: Binary heap insertions – bottom-up vs top-down
	Slide 23: Definition: Priority queues with decreasing keys
	Slide 24
	Slide 25: Proof of Theorem 2 - Basic idea
	Slide 26: Experimental evaluation of various heaps
	Slide 27: Reduction in comparisons
	Slide 28: Postorder heap [Harvey and Zatloukal, FUN 2004]
	Slide 29: Summary of the unexpected journey
	Slide 30: The reviewer is always right
	Slide 31
	Slide 32: Strict Fibonacci heaps
	Slide 33: Strict Fibonnacci heaps
	Slide 34: Python implementation
	Slide 35: Code coverage
	Slide 36: Code coverage
	Slide 37: Branch coverage
	Slide 38: Branch coverage
	Slide 39
	Slide 40
	Slide 41: A question by John Iacono at Dagstuhl
	Slide 42: Summary

