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▪Creating new theory is cool

▪Filling in proof details 
less exciting

▪Uncertainty –
have all 
cases been 
addressed ?
[you prove the 
algorithm is correct 
but rarely that your proof is correct]

▪Frustrating when errors make 
their way into published papers

Algorithms

Theory Implementation

▪Coding is healthy

▪Coding is fun

▪Debugging less so…

▪Procrastinating from 
writing the theory ?

▪Document 
relevance 
of theory

▪ Study theory 
vs real world

▪ Identify 
shortcomings of theory

▪ Inspire new theory



https://www.commitstrip.com/en/2018/05/09/progress/

▪ Have more celebrations

▪ Make progress on bugs 
more frequently

▪ Not necessarily fewer bugs !

Goal

https://www.commitstrip.com/en/2018/05/09/progress/


Computer Science Review 5(2), 119-161, 2011
DOI: doi.org/10.1016/j.cosrev.2010.09.009

Example : 
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https://doi.org/10.1016/j.cosrev.2010.09.009


Automatic testing of algorithm 
implementation

while True:

x = generate_random_input()

answer, certificate = algorithm(x)

assert verify(x, answer, certificate)

print('.')

▪ Happy when sequence of dots grow

▪ Program crashes – debugger can perhaps help you find the bug

▪ Verification fails – a bug somewhere in the program/algorithm

. . . . . . . . . . . . . . . . . . . .



Simplifying failed input (Greedy DFS)

def simplify_bug(failed_input):

for x in simplifications(failed_input):

try:

algorithm(x)

except Bug:

print('YES! - failed on', x)

return simplify_bug(x)

return failed_input

▪ simplifications could e.g. report all ways of removing a 
single vertex or edge from a graph

▪ Complex input triggering the bug can sometimes be simplified 
to an input of manageable size



Invariants

▪ Invariants are a fundamental tool when designing and analyzing 
algorithms and data structures

▪ Capture state of algorithm

▪ Example: AVL tree invariant
1) Search tree

2) ∀ v : |v.left.height – v.right.height | ≤ 1

▪ Invariants can be made assertions in code  ֜ ensure code integrity 



def validate(tree, min_value=None, max_value=None):

    '''Validate AVL-tree invariants.'''

    

    if not is_empty(tree):

        assert min_value == None or min_value <= tree.root

        assert max_value == None or tree.root <= max_value

        assert tree.height == 1 + max(tree.left.height, tree.right.height)

        assert abs(tree.left.height - tree.right.height) <= 1

        validate(tree.left, min_value, tree.root)

        validate(tree.right, tree.root, max_value)

def inorder(tree):
'''Generator that yields values in tree in sorted order.'''

if not is_empty(tree):
yield from inorder(tree.left)
yield tree.root
yield from inorder(tree.right)

def test_insertions(n):
    data = random.choices(range(10 * n), k=n)
    tree = empty_tree
    for i, x in enumerate(data):
        tree = insert(tree, x)
        validate(tree)
        assert sorted(data[:i + 1]) == list(inorder(tree))

▪ Write validate and test methods before implementing insert



“Test driven algorithm design”

▪ Formulate invariants as the driving tool for algorithm design

▪ Implement invariants in code as assertions and verifier methods

▪ Automate stress tests

▪ Develop algorithm through failed tests
֜ likely good coverage of special cases

֜ little redundant code

▪ Note: verification methods might slow down code significantly 
(asymptotic slower!), but the focus is on developing correct theory



Visual test/debugging of autogenerated figure

def tikz(tree):

    def recurse(tree):

        if tree is empty_tree:

            return '{}'

        else:

            return f'[.{tree.root} {recurse(tree.left)} {recurse(tree.right)} ]'

    return r'\Tree ' + recurse(tree)

\Tree [.54 [.42 [.15 {} {} ] [.52 {} {} ] ] [.68 [.67 [.55 {} {} ] {} ] [.90 [.89 {} {} ] [.96 {} {} ] ] ] ]



An unexpected journey

▪ Bachelor project = shortest paths on Open Street Map graphs

▪ Students have trouble implementing Dijkstra's algorithm in JavaTM

DOI 10.4230/LIPIcs.FUN.2022.8

http://dx.doi.org/10.4230/LIPIcs.FUN.2022.8


<way id="79388407" visible="true" version="17" changeset="107546769" timestamp="2021-07-07T08:48:29Z" user="KartoffelOS" 
uid="10758523">

<nd ref="296937646"/>
<nd ref="926885043"/>
<nd ref="926884234"/>
<nd ref="4868434116"/>
<nd ref="528571257"/>
<tag k="access" v="private"/>
<tag k="bicycle" v="yes"/>
<tag k="delivery" v="yes"/>
<tag k="emergency" v="yes"/>
<tag k="foot" v="yes"/>
<tag k="highway" v="service"/>
<tag k="lit" v="yes"/>
<tag k="maxspeed" v="20"/>
<tag k="name" v="August-Bebel-Straße"/>
<tag k="postal_code" v="14482"/>
<tag k="service" v="parking_aisle"/>
<tag k="surface" v="paving_stones"/>

</way>
<way id="970133467" visible="true" version="7" changeset="135350751" timestamp="2023-04-25T16:12:30Z" user="tecmap15" 

uid="4798255">
<nd ref="8977535608"/>
<nd ref="8977535605"/>
<nd ref="8977535606"/>
<nd ref="8977535607"/>
<nd ref="8977535601"/>
<nd ref="8977535602"/>
<nd ref="8977535608"/>
<tag k="addr:city" v="Potsdam"/>
<tag k="addr:country" v="DE"/>
<tag k="addr:housenumber" v="88"/>
<tag k="addr:postcode" v="14482"/>
<tag k="addr:street" v="August-Bebel-Straße"/>
<tag k="addr:suburb" v="Babelsberg"/>
<tag k="building" v="university"/>
<tag k="building:levels" v="3"/>
<tag k="name" v="Haus L"/>
<tag k="roof:levels" v="0"/>
<tag k="roof:shape" v="flat"/>
<tag k="wheelchair" v="yes"/>

</way>



Dijkstra’s algorithm (1956)

▪ Non-negative edge weights

▪ Visits nodes in increasing distance from source
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Fibonacci heaps
(Fredman, Tarjan 1984)
֜ O(m + n ∙ log n)

O(log n) Remove

֜ O(m ∙ log n)

relax



The challenge - Java's builtin binary heap

▪ no decreasekey

▪ remove O(n) time 

֜ Dijkstra O(m ∙ n)

▪ comparator function



Repeated insertions

▪ Relax inserts new copies of item

▪ Skip outdated items

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩ 

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨4,C⟩ ⟨6,D⟩

⟨4,D⟩ ⟨6,D⟩

⟨6,D⟩ ⟨6,E⟩

0

⟨4,C⟩ ⟨4,D⟩ ⟨6,D⟩

outdated ?

relax
= reinsert

⟨6,E⟩



Using a visited set
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A shaky idea…

d never used

▪ Q only store nodes
(save space)

▪ Comparator

▪ Key = current distance dist

Heap invariants break



Experimental study

▪ Implemented Dijkstra4 in Python

▪ Stress test on random cliques

▪ Binary heaps failed (default priority queue in Java and Python)

visited = set()

Q = Queue()

Q.insert(Item(0, source))

while not Q.empty():

    u = Q.extract_min().value

    if u not in visited:

        visited.add(u)

        for v in G.out[u]:

            dist_v = dist[u] + G.weights[(u, v)]

            if dist_v < dist[v]:

                dist[v] = dist_v

                parent[v] = u

                Q.insert(Item(dist[v], v))



outdated wrong 
placement

not smallest 
key

ignored
since visited

Binary heaps using dist in a comparator fails



Experimental study

▪ Implemented Dijkstra4 in Python

▪ Stress test on random cliques

▪ Binary heaps

▪ Skew heaps

▪ Leftist heaps

▪ Pairing heaps

▪ Binomial queues

▪ Post-order heaps

▪ Binary heaps with top-down insertions

failed

worked

worked

worked

worked

worked

worked

(default priority queue in Java and Python)

Implicit (space efficient)

Pointer based

visited = set()

Q = Queue()

Q.insert(Item(0, source))

while not Q.empty():

    u = Q.extract_min().value

    if u not in visited:

        visited.add(u)

        for v in G.out[u]:

            dist_v = dist[u] + G.weights[(u, v)]

            if dist_v < dist[v]:

                dist[v] = dist_v

                parent[v] = u

                Q.insert(Item(dist[v], v))
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Binary heap insertions
 – bottom-up vs top-down

2

3 5

9 4 8 12

10 14 6 20 17 7

2

3 5

9 4 7 12

10 14 6 20 17 8

Insert(7)

bottom-
up

top-down



Definition: Priority queues with decreasing keys

▪ Items = ⟨key, value⟩

▪ Over time keys can decrease – priority queue is not informed

▪ Items are compared w.r.t. their current keys

▪ The original key of an item is the key when it was inserted

Insert(item) 

ExtractMin() returns an item with current key less than or equal to 
all original keys in the priority queue



Theorem 1

Dijkstra4 correctly computes shortest paths when using dist as 
current key and a priority queue supporting decreasing keys

Theorem 2

The following priority queues support decreasing keys (out of the box)

▪ binary heaps with top-down insertions

▪ skew heaps

▪ leftist heaps

▪ pairing heaps

▪ binomial queues

▪ post-order heaps



Proof of Theorem 2 - Basic idea

▪ Decreased heap order

u ancestor of v ֜
current key u ≤ original key v

▪ Root valid item to extract

▪ Top-down merging two paths 
preserves decreased heap order 

֜ skew heaps and leftist heaps 
support decreasing keys



Experimental evaluation of various heaps
▪ Cliques with uniform random weights

▪ With decreasing keys less comparisons (outdated items removed earlier)

⟨key, value⟩ pairs decreasing keys

smaller



Reduction in comparisons

comparisons decreasing keys / comparisons ⟨key, value⟩ pairs



Postorder heap [Harvey and Zatloukal, FUN 2004]

▪ Insert amortized O(1), ExtractMin amortized O(log n)

▪ Implicit (space efficient)

▪ Best implicit comparison performance (and good time performance)



Summary of the unexpected journey

▪ Introduced notion of priority queues with decreasing keys
 … as an approach to deal with outdated items in Dijkstra’s algorithm

▪ Experiments identified priority queues supporting decreasing keys
 … just had to prove it

▪ Builtin priority queues in Java and Python are binary heaps
 … do not support decreasing keys

▪ Binary heaps with top-down insertions do support decreasing keys
 … and also 

skew heaps, leftist heaps, pairing heaps,  
binomial queues, post-order heaps  



The reviewer is always right



”If there was a implementation where the authors 
verified that everything did what it was supposed 
to, I would be more confident that things were 
correct (I am not talking about a practical 
implementation, I am talking about one to make 
sure all invariants hold).”

Anonymous reviewer



Strict Fibonacci heaps

Binary heap
[Williams 1964]

worst-case

Fibonacci heap
[Fredman, Tarjan 1984]

amortized

Strict Fibonacci heap
[B., Lagogiannis, Tarjan 2012]

worst-case

Insert O(log n) O(1) O(1)

ExtractMin O(log n) O(log n) O(log n)

DecreaseKey O(log n) O(1) O(1)

Meld - O(1) O(1)



Strict Fibonnacci heaps

+ many structural invariants 



Python implementation
▪ 1589 lines

▪ 215 assert statements

▪ All claimed invariants turned into assert statements

▪ Validation methods to traverse full structure to verify all claimed invariants

▪ Stress test using random inputs

▪ Supported the theory

www.cs.au.dk/~gerth/strict_fibonacci_heaps.py



Code coverage

▪ Used the Python module coverage

▪ Some code rarely executed

▪ Repeat random test 1.000.000 times

▪ Most code executed at least once

▪ Realized there was code for cases which provably never can occur

▪ Implementation → new invariants discovered

coverage.readthedocs.io



Code coverage

pypi.org/project/coverage

odd_even.py

1 def f(x):

2 if x % 2 == 0: 

3 return 'even'

4 elif x % 4 == 0:

5 return 'even more even'

6 elif x % 2 == 1:

7 return 'odd'

8 import random

9 for i in range(10):

10 x = random.randint(0, 10)

11 print(x, f(x))

Shell

> coverage run odd_even.py

| 4 even

| 5 odd

| ...

| 1 odd

> coverage report -m odd_even.py

| Name          Stmts Miss  Cover   Missing

| -------------------------------------------

| odd_even.py      11      1    91%  5

| -------------------------------------------

| TOTAL            11      1    91%

▪ Usually, code coverage is a 
measure of the quality of test 
cases

▪ …but, can also help to identify 
missing logical insights

https://pypi.org/project/coverage/


Branch coverage

▪ Thought code coverage would find all ”logical errors”

▪ Found several if statements with no else part, 
where condition provably would always be true

▪ Implementation → new invariants discovered (and assertions added)

coverage.readthedocs.io

always exists



Branch 
coverage

pypi.org/project/coverage

odd_even.py

1 def f(x):

2 if x % 2 == 0: 

3 return 'even'

4 elif x % 4 == 0:

5 return 'even more even'

6 elif x % 2 == 1:

7 return 'odd'

8 import random

9 for i in range(10):

10 x = random.randint(0, 10)

11 print(x, f(x))

Shell

> coverage run --branch odd_even.py

| 5 odd

| 4 even

| ...

| 8 eve

> coverage report -m odd_even.py

| Name          Stmts Miss Branch BrPart Cover   Missing

| ---------------------------------------------------------

| odd_even.py      11      1      8      2    84%   5, 6->exit

| ---------------------------------------------------------

| TOTAL            11      1      8      2    84%

https://pypi.org/project/coverage/


”The first main suggestion is to have at least one figure 
with a logical diagram of a non-trivial example 
structure, […]. This would go a long way in giving some 
idea of what the structure is.”

Anonymous reviewer



▪ Hard to manually create a figure that was guaranteed to be a real example

▪ Could use implementation to automatically generate (LaTeX tikz) figures

▪ Generated random inputs

▪ Formalized requirements to figure as a loop condition

▪ Repeat until happy



A question by John Iacono at Dagstuhl
▪ After inserting n random elements into an unbalanced binary search tree, 

what is the expected size of the subtree rooted at the minimum?

size ?



Summary

▪ Implementations support stronger theory

▪ Experimentation can identify what to prove

▪ Invariants can be verified and identified using assertions in code

▪ Stress tests and code coverage ensures integrity of code and theory

Theory ImplementationCreating new 
theory is cool Coding is fun
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