Fast Meldable Priority Queues

Gerth Stglting Brodal*

BRICS™
Department of Computer Science, University of Aarhus

Ny Munkegade, DK-8000 Arhus C, Denmark

Abstract. We present priority queues that support the operations FIND-
MmN, INSERT, MAKEQUEUE and MELD in worst case time O(1) and
DELETE and DELETEMIN in worst case time O(log n). They can be im-
plemented on the pointer machine and require linear space. The time
bounds are optimal for all implementations where MELD takes worst
case time o(n).

To our knowledge this is the first priority queue implementation that sup-
ports MELD in worst case constant time and DELETEMIN in logarithmic
time.

Introduction

We consider the problem of implementing meldable priority queues. The opera-
tions that should be supported are:

MAKEQUEUE Creates a new empty priority queue.

FINDMIN(Q) Returns the minimum element contained in priority queue Q.

INSERT(Q),e) Inserts element e into priority queue Q.

MELD(Q1,Q2) Melds the priority queues @1 and (2 to one priority queue
and returns the new priority queue.

DELETEMIN(Q) Deletes the minimum element of ¢ and returns the element.

DELETE(Q,e) Deletes element e from priority queue @ provided that it is
known where e is stored in @ (priority queues do not support
the searching for an element).

The implementation of priority queues is a classical problem in data structures.

A few references are [14, 13,8, 7, 5, 6, 10].

* This work was partially supported by the ESPRIT II Basic Research Actions Pro-
gram of the EC under contract no. 7141 (project ALCOM II) and by the Danish
Natural Science Research Council (Grant No. 9400044).

** Basic Research in Computer Science, Centre of the Danish National Research

Foundation.

In the amortised sense, [11], the best performance is achieved by binomial heaps
[13]. They support DELETE and DELETEMIN in amortised time O(logn) and
all other operations in amortised constant time. If we want to perform INSERT
in worst case constant time a few efficient data structures exist. The priority
queue of van Leeuwen [12], the implicit priority queues of Carlsson and Munro [2]
and the relaxed heaps of Driscoll et al. [5], but neither of these support MELD
efficiently. However the last two do support MAKEQUEUE, FINDMIN and INSERT
in worst case constant time and DELETE and DELETEMIN in worst case time

O(log n).

Our implementation beats the above by supporting MAKEQUEUE, FINDMIN,
INSERT and MELD in worst case time O(1l) and DELETE and DELETEMIN in
worst case time O(logn). The computational model is the pointer machine and
the space requirement is linear in the number of elements contained in the pri-
ority queues.

We assume that the priority queues contain elements from a totally ordered
universe. The only allowed operation on the elements is the comparisons of two
elements. We assume that comparisons can be performed in worst case constant
time. For simplicity we assume that all priority queues are nonempty. For a given
operation we let n denote the size of the priority queue of maximum size involved
in the operation.

In Sect. 1 we describe the data structure and in Sect. 2 we show how to imple-
ment the operations. In Sect. 3 we show that our construction is optimal. Section
4 contains some final remarks.

1 The Data Structure

Our basic representation of a priority queue is a heap ordered tree where each
node contains one element. This is slightly different from binomial heaps [13] and
Fibonacci heaps [8] where the representation is a forest of heap ordered trees.

With each node we associate a rank and we partition the sons of a node into
two types, type I and type 11. The heap ordered tree must satisfy the following
structural constraints.

a) A node has at most one son of type 1. This son may be of arbitrary rank.

b) The sons of type 11 of a node of rank have all rank less than r.

¢) For a fixed node or rank r, let n; denote the number of sons of type 11 that
have rank . We maintain the regularity constraint that

i) Vi:(0<i<r=1<n; <3),
it) Vi,j:(i<jAni=n;=3=>3k:i<k<jAng=1),
i1%) Vi:(ni=3=3k:k<inn,=1).

d) The root has rank zero.

The heap order implies that the minimum element is at the root. Properties
a), b) and ¢) bound the degree of a node by three times the rank of the node
plus one. The size of the subtree rooted at a node is controlled by property
¢). Lemma 1 shows that the size is at least exponential in the rank. The last
two properties are essential to achieve MELD in worst case constant time. The
regularity constraint c) is a variation of the regularity constraint that Guibas et
al. [9] used in their construction of finger search trees. The idea is that between
two ranks where three sons have equal rank there 1s a rank of which there only
is one son. Figure 1 shows a heap ordered tree that satisfies the requirements a)
to d) (the elements contained in the tree are omitted).

Fig.1. A heap ordered tree satisfying the properties a) to d). A box denotes a son of
type 1, a circle denotes a son of type 11, and the numbers are the ranks of the nodes.

Lemmal. Any subtree rooted at a node of rank v has size > 27.

Proof. The proof is a simple induction in the structure of the tree. By c.i) leaves
have rank zero and the lemmais true. For a node of rank r property c.i) implies
that the node has at least one son of each rank less than . By induction we get
that the size is at least 1+ ij_ol 20 =27,

Corollary 2. The only son of the root of a tree containing n elements has rank
at most |log(n — 1)].

We now describe the details of how to represent a heap ordered tree. A son of
type I is always the rightmost son. The sons of type II appear in increasing rank
order from right to left. See Fig. 1 and Fig. 2 for examples.

A node consists of the following seven fields: 1) the element associated with the
node, 2) the rank of the node, 3) the type of the node, 4) a pointer to the father
node, 5) a pointer to the leftmost son and 6) a pointer to the next sibling to the
left. The next sibling pointer of the leftmost son points to the rightmost son in

next triple

Fig. 2. The arrangement of the sons of a node.

the list. This enables the access to the rightmost son of a node in constant time
too. Field 7) is used to maintain a single linked list of triples of sons of type 11
that have equal rank (see Fig. 2). The nodes appear in increasing rank order.
We only maintain these pointers for the rightmost son and for the rightmost son
in a triple of sons of equal rank. Figure 2 shows an example of how the sons of
a node are arranged.

In the next section we describe how to implement the operations. There are
two essential transformations. The first transformation is to add a son of rank
r to a node of rank r. Because we have a pointer to the leftmost son of a node
(that has rank » — 1 when r > 0) this can be done in constant time. Notice
that this transformation cannot create three sons of equal rank. The second
transformation is to find the smallest rank 7 where three sons have equal rank.
Two of the sons are replaced by a son of rank :4 1. Because we maintain a single
linked list of triples of nodes of equal rank we can also do this in constant time.

2 Operations

In this section we describe how to implement the different operations. The basic
operation we use is to link two nodes of equal rank 7. This is done by comparing
the elements associated with the two nodes and making the node with the largest
element a son of the other node. By increasing the rank of the node with the
smallest element to » 4+ 1 the properties a) to d) are satisfied. The operation is
illustrated in Fig. 3. This is similar to the linking of trees in binomial heaps and
Fibonacci heaps [13, 8].

We now describe how to implement the operations.

— MAKEQUEUE is trivial. We just return the NULL pointer.

— FINDMIN(Q) returns the element located at the root of the tree representing
Q.

— INSERT(Q, €) is equal to MELD) with a priority queue only consisting of a
rank zero node containing e.

Fig. 3. The linking of two nodes of equal rank.

— MELD(Q1,@2) can be implemented in two steps. In the first we insert one
of the heap ordered trees into the other heap ordered tree. This can violate
property ¢) at one node because the node gets one additional son of rank
zero. In the second step we reestablish property ¢) at the node. Figure 4
shows an example of the first step.

€1 €2 €1

Th 1 Th

Fig.4. The first step of a MELD operation (the case e1 < ez < €] < e3).

Let e; and es denote the roots of the trees representing)7 and (2 and let
e} and e} denote the only sons of e¢; and e;. Assume w.l.o.g. that ey is the
smallest element. If e5 > ¢] we let ea become a rank zero son of e}, otherwise
ez < €. If e}, < e} we can interchange the subtrees rooted at e}, and e}, so
w.l.o.g. we assume e; < ey < €] < e},. In this case we make ey a rank zero
son of €] and swap the elements e} and ey (see Fig. 4). We have assumed
that the sizes of ()1 and @), are at least two, but the other cases are just
simplified cases of the general case.

The only invariants that can be violated now are the invariants b) and ¢) at
the son of the root because it has got one additional rank zero son. Let v
denote the son of the root. If v had rank zero we can satisfy the invariants
by setting the rank of v to one. Otherwise only ¢) can be violated at v. Let
n; denote the number of sons of v that have rank . By linking two nodes of

rank ¢ where ¢ is the smallest rank where n; = 3 it is easy to verify that ¢)
can be reestablished. The linking reduces n; by two and increments n;41 by
one.

If we let (ny_1,...,np) be a string in {1,2,3}* the following table shows
that ¢) is reestablished after the above described transformations. We let x
denote a string in {1,2,3}" and y; strings in {1,2}". The table shows all the
possible cases. Recall that ¢) states that between every two n; = 3 there is
at least one n; = 1. The different cases are also considered in [9].

nl >oy2
y213y11 > y221y,2
Y223y11 > y231y12
x3y213y11 > 23y221y12
x3ysly223y11 > 23yslya31y:2
12 > oy 21
Y122 > 13l
3112 > 23121
x3y211122 > 23y21ly131

After the linking only b) can be violated at v because a son of rank » has
been created. This problem can be solved by increasing the rank of v by one.
Because of the given representation MELD can be performed in worst case
time O(1).

DELETEMIN(Q) removes the root ey of the tree representing). The problem
is that now property d) can be violated because the new root e; can have
arbitrary rank. This problem is solved by the following transformations.
First we remove the root es. This element later on becomes the new root
of rank zero. At most O(logn) trees can be created by removing the root.
Among these trees the root that contains the minimum element es is found
and removed. This again creates at most O(logn) trees. We now find the
root e4 of maximum rank among all the trees and replaces it by the element
e3. A rank zero node containing ey is created.

The tree of maximum rank and with root e3 is made the only son of e5. All
other trees are made sons of the node containing es. Notice that all the new
sons of ez have rank less than the rank of e3. By iterated linking of sons of
equal rank where there are three sons with equal rank, we can guarantee that
n; € {1,2} for all i less than the rank of es. Possibly, we have to increase
the rank of es.

Finally, we return the element e;.

Because the number of trees is at most O(logn) DELETEMIN can be per-
formed in worst case time O(logn). Figure 5 illustrates how DELETEMIN is
performed.

DELETE(Q,) can be implemented similar to DELETEMIN. If e is the root
we just perform DELETEMIN. Otherwise we start by bubbling e upwards
in the tree. We replace e with its father until the father of e has rank less
than or equal to the rank of e. Now, e i1s the arbitrarily ranked son of its

e1 Oez €2 €2
Qe

AR o e
A

Fig.5. The implementation of DELETEMIN.

€3

father. This allows us to replace e with an arbitrary ranked node, provided
that the heap order is still satisfied. Because the rank of e increases for each
bubble step, and the rank of a node is bounded by |log(n — 1)], this can be
performed in time O(logn).

We can now replace e with the meld of the sons of e as described in the
implementation of DELETEMIN. This again can be performed in worst case
time O(logn).

To summarise, we have the theorem:

Theorem 3. There exists an implementation of priority queues that supports
DELETE and DELETEMIN in worst case time O(logn) end MAKEQUEUE, FIND-
MIN, INSERT and MELD in worst case time O(1). The implementation requires
linear space and can be implemented on the pointer machine.

3 Optimality

The following theorem shows that if MELD is required to be nontrivial, i.e. to take
worst case sublinear time, then DELETEMIN must take worst case logarithmic
time. This shows that the construction described in the previous sections is
optimal among all implementations where MELD takes sublinear time.

If MELD is allowed to take linear time it is possible to support DELETEMIN in
worst case constant time by using the finger search trees of Dietz and Raman [3].
By using their data structure MAKEQUEUE, FINDMIN, DELETEMIN, DELETE
can be supported in worst case time O(1), INSERT in worst case time O(logn)
and MELD in worst case time O(n).

Theorem4. If MELD can be performed in worst case time o(n) then DELETE-
MIN cannot be performed in worst case time o(logn).

Proof. The proof is by contradiction. Assume MELD takes worst case time o(n)
and DELETEMIN takes worst cast time o(logn). We show that this implies a
contradiction with the £2(nlogn) lower bound on comparison based sorting.

Assume we have n elements that we want to sort. Assume w.l.o.g. that n is a
power of 2, n = 2F. We can sort the elements by the following list of priority
queue operations. First, create n priority queues each containing one of the n
elements (each creation takes worst case time O(1)). Then join the n priority
queues to one priority queue by n—1 MELD operations. The MELD operations are
done bottom-up by always melding two priority queues of smallest size. Finally,
perform n DELETEMIN operations. The elements are now sorted.

The total time for this sequence of operations is:

k-1

nTMakeQueue + Z Qk_l_iTMeld(Qi) + Z TDeleteMin(i) = O(n log 77,)
i=0 i=1

This contradicts the lower bound on comparison based sorting.

4 Conclusion

We have presented an implementation of meldable priority queues where MELD
takes worst case time O(1) and DELETEMIN worst case time O(logn).

Another interesting operation to consider is DECREASEKEY. Our data structure
supports DECREASEKEY in worst case time O(logn), because DECREASEKEY
can be implemented in terms of a DELETE operation followed by an INSERT
operation. Relaxed heaps [5] support DECREASEKEY in worst case time O(1) but
do not support MELD. But it is easy to see that relaxed heaps can be extended
to support MELD in worst case time O(logn). The problem to consider is if it
is possible to support both DECREASEKEY and MELD simultaneously in worst
case constant time.

As a simple consequence of our construction we get a new implementation of
meldable double ended priority queues, which is a data type that allows both
FINDMIN/FINDMAX and DELETEMIN/DELETEMAX [1, 4]. For each queue we
just have to maintain two heap ordered trees as described in section 1. One tree
ordered with respect to minimum and the other with respect to maximum. If
we let both trees contain all elements and the elements know their positions in
both trees we get the following corollary.

Corollary 5. An implementation of meldable double ended priority queues exists
that supports MAKEQUEUE, FINDMIN, FINDMAX, INSERT and MELD in worst
case time O(1) and DELETEMIN, DELETEMAX, DELETE, DECREASEKEY and
INCREASEKEY in worst case time O(logn).

References

1.

2.

10.

11.

12.

13.

14.

M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max heaps and
generalized priority queues. Communications of the ACM, 29(10):996-1000, 1986.
Svante Carlsson, Patricio V. Poblete, and J. lan Munro. An implicit binomial
queue with constant insertion time. In Proc. 1st Scandinavian Workshop on Algo-
rithm Theory (SWAT), volume 318 of Lecture Notes in Computer Science, pages
1-13. Springer Verlag, Berlin, 1988.

. Paul F. Dietz and Rajeev Raman. A constant update time finger search tree. In

Advances in Computing and Information - ICCI ’90, volume 468 of Lecture Notes
in Computer Science, pages 100-109. Springer Verlag, Berlin, 1990.

Yuzheng Ding and Mark Allen Weiss. The relaxed min-max heap. ACTA Infor-
matica, 30:215-231, 1993.

. James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Re-

laxed heaps: An alternative to fibonacci heaps with applications to parallel com-
putation. Communications of the ACM, 31(11):1343-1354, 1983.

. Michael J. Fischer and Michael S. Paterson. Fishspear: A priority queue algorithm.

Journal of the ACM, 41(1):3-30, 1994.

Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.
The pairing heap: A new form of self-adjusting heap. Algorithmica, 1:111-129,
1986.

. Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. In Proc. 25rd Ann. Symp. on Founda-
tions of Computer Science (FOCOS), pages 338-346, 1984.

. Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A

new representation for linear lists. In Proc. 9thAnn. ACM Symp. on Theory of
Computing (STOC), pages 4960, 1977.

Peter Hoyer. A general technique for implementation of efficient priority queues.
Technical Report IMADA-94-33, Odense University, 1994.

Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic and Discrete Methods, 6:306-318, 1985.

Jan van Leeuwen. The composition of fast priority queues. Technical Report
RUU-CS-78-5, Department of Computer Science, University of Utrecht, 1978.
Jean Vuillemin. A data structure for manipulating priority queues. Communica-
tions of the ACM, 21(4):309-315, 1978.

J. W, J. Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347-348, 1964.

This article was processed using the IATRpX macro package with LLNCS style

