
Fast Meldable Priority QueuesGerth St�lting Brodal?BRICS??Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, DenmarkAbstract. We present priority queues that support the operations Find-Min, Insert, MakeQueue and Meld in worst case time O(1) andDelete and DeleteMin in worst case time O(log n). They can be im-plemented on the pointer machine and require linear space. The timebounds are optimal for all implementations where Meld takes worstcase time o(n).To our knowledge this is the �rst priority queue implementation that sup-ports Meld in worst case constant time and DeleteMin in logarithmictime.IntroductionWe consider the problem of implementing meldable priority queues. The opera-tions that should be supported are:MakeQueue Creates a new empty priority queue.FindMin(Q) Returns the minimumelement contained in priority queue Q.Insert(Q; e) Inserts element e into priority queue Q.Meld(Q1; Q2) Melds the priority queues Q1 and Q2 to one priority queueand returns the new priority queue.DeleteMin(Q) Deletes the minimum element of Q and returns the element.Delete(Q; e) Deletes element e from priority queue Q provided that it isknown where e is stored in Q (priority queues do not supportthe searching for an element).The implementation of priority queues is a classical problem in data structures.A few references are [14, 13, 8, 7, 5, 6, 10].? This work was partially supported by the ESPRIT II Basic Research Actions Pro-gram of the EC under contract no. 7141 (project ALCOM II) and by the DanishNatural Science Research Council (Grant No. 9400044).?? Basic Research in Computer Science, Centre of the Danish National ResearchFoundation.

In the amortised sense, [11], the best performance is achieved by binomial heaps[13]. They support Delete and DeleteMin in amortised time O(logn) andall other operations in amortised constant time. If we want to perform Insertin worst case constant time a few e�cient data structures exist. The priorityqueue of van Leeuwen [12], the implicit priority queues of Carlsson and Munro [2]and the relaxed heaps of Driscoll et al. [5], but neither of these support Melde�ciently. However the last two do supportMakeQueue, FindMin and Insertin worst case constant time and Delete and DeleteMin in worst case timeO(logn).Our implementation beats the above by supporting MakeQueue, FindMin,Insert and Meld in worst case time O(1) and Delete and DeleteMin inworst case time O(logn). The computational model is the pointer machine andthe space requirement is linear in the number of elements contained in the pri-ority queues.We assume that the priority queues contain elements from a totally ordereduniverse. The only allowed operation on the elements is the comparisons of twoelements. We assume that comparisons can be performed in worst case constanttime. For simplicity we assume that all priority queues are nonempty. For a givenoperation we let n denote the size of the priority queue of maximumsize involvedin the operation.In Sect. 1 we describe the data structure and in Sect. 2 we show how to imple-ment the operations. In Sect. 3 we show that our construction is optimal. Section4 contains some �nal remarks.1 The Data StructureOur basic representation of a priority queue is a heap ordered tree where eachnode contains one element. This is slightly di�erent from binomial heaps [13] andFibonacci heaps [8] where the representation is a forest of heap ordered trees.With each node we associate a rank and we partition the sons of a node intotwo types, type i and type ii. The heap ordered tree must satisfy the followingstructural constraints.a) A node has at most one son of type i. This son may be of arbitrary rank.b) The sons of type ii of a node of rank r have all rank less than r.c) For a �xed node or rank r, let ni denote the number of sons of type ii thathave rank i. We maintain the regularity constraint thati) 8i : (0 � i < r) 1 � ni � 3);ii) 8i; j : (i < j ^ ni = nj = 3) 9k : i < k < j ^ nk = 1);iii) 8i : (ni = 3) 9k : k < i ^ nk = 1):d) The root has rank zero.

The heap order implies that the minimum element is at the root. Propertiesa), b) and c) bound the degree of a node by three times the rank of the nodeplus one. The size of the subtree rooted at a node is controlled by propertyc). Lemma 1 shows that the size is at least exponential in the rank. The lasttwo properties are essential to achieve Meld in worst case constant time. Theregularity constraint c) is a variation of the regularity constraint that Guibas etal. [9] used in their construction of �nger search trees. The idea is that betweentwo ranks where three sons have equal rank there is a rank of which there onlyis one son. Figure 1 shows a heap ordered tree that satis�es the requirements a)to d) (the elements contained in the tree are omitted).3h0 hh hhhhhhh hhh hh hh h��HH���� HHXXXX������ ((((((01100001 000 01 1 012 20 10Fig. 1. A heap ordered tree satisfying the properties a) to d). A box denotes a son oftype i, a circle denotes a son of type ii, and the numbers are the ranks of the nodes.Lemma1. Any subtree rooted at a node of rank r has size � 2r.Proof. The proof is a simple induction in the structure of the tree. By c.i) leaveshave rank zero and the lemma is true. For a node of rank r property c.i) impliesthat the node has at least one son of each rank less than r. By induction we getthat the size is at least 1 +Pr�1i=0 2i = 2r.Corollary2. The only son of the root of a tree containing n elements has rankat most blog(n � 1)c.We now describe the details of how to represent a heap ordered tree. A son oftype i is always the rightmost son. The sons of type ii appear in increasing rankorder from right to left. See Fig. 1 and Fig. 2 for examples.A node consists of the following seven �elds: 1) the element associated with thenode, 2) the rank of the node, 3) the type of the node, 4) a pointer to the fathernode, 5) a pointer to the leftmost son and 6) a pointer to the next sibling to theleft. The next sibling pointer of the leftmost son points to the rightmost son in

6

father

0111234445 9

next triple
next

leftmost sonFig. 2. The arrangement of the sons of a node.the list. This enables the access to the rightmost son of a node in constant timetoo. Field 7) is used to maintain a single linked list of triples of sons of type iithat have equal rank (see Fig. 2). The nodes appear in increasing rank order.We only maintain these pointers for the rightmost son and for the rightmost sonin a triple of sons of equal rank. Figure 2 shows an example of how the sons ofa node are arranged.In the next section we describe how to implement the operations. There aretwo essential transformations. The �rst transformation is to add a son of rankr to a node of rank r. Because we have a pointer to the leftmost son of a node(that has rank r � 1 when r > 0) this can be done in constant time. Noticethat this transformation cannot create three sons of equal rank. The secondtransformation is to �nd the smallest rank i where three sons have equal rank.Two of the sons are replaced by a son of rank i+1. Because we maintain a singlelinked list of triples of nodes of equal rank we can also do this in constant time.2 OperationsIn this section we describe how to implement the di�erent operations. The basicoperation we use is to link two nodes of equal rank r. This is done by comparingthe elements associated with the two nodes and making the node with the largestelement a son of the other node. By increasing the rank of the node with thesmallest element to r + 1 the properties a) to d) are satis�ed. The operation isillustrated in Fig. 3. This is similar to the linking of trees in binomial heaps andFibonacci heaps [13, 8].We now describe how to implement the operations.{ MakeQueue is trivial. We just return the null pointer.{ FindMin(Q) returns the element located at the root of the tree representingQ.{ Insert(Q; e) is equal to Meld Q with a priority queue only consisting of arank zero node containing e.

CCCC���� """���� CCCC ���� CCCC ���� CCCCr >r r + 1rFig. 3. The linking of two nodes of equal rank.{ Meld(Q1; Q2) can be implemented in two steps. In the �rst we insert oneof the heap ordered trees into the other heap ordered tree. This can violateproperty c) at one node because the node gets one additional son of rankzero. In the second step we reestablish property c) at the node. Figure 4shows an example of the �rst step.h h h h���� CCCC ���� CCCC bbb���� CCCC ���� CCCCT1 T2 e02e2e01e1 > e2T1 e1T2 e02e01Fig. 4. The �rst step of a Meld operation (the case e1 � e2 < e01 � e02).Let e1 and e2 denote the roots of the trees representing Q1 and Q2 and lete01 and e02 denote the only sons of e1 and e2. Assume w.l.o.g. that e1 is thesmallest element. If e2 � e01 we let e2 become a rank zero son of e01, otherwisee2 < e01. If e02 < e01 we can interchange the subtrees rooted at e02 and e01, sow.l.o.g. we assume e1 � e2 < e01 � e02. In this case we make e2 a rank zeroson of e01 and swap the elements e01 and e2 (see Fig. 4). We have assumedthat the sizes of Q1 and Q2 are at least two, but the other cases are justsimpli�ed cases of the general case.The only invariants that can be violated now are the invariants b) and c) atthe son of the root because it has got one additional rank zero son. Let vdenote the son of the root. If v had rank zero we can satisfy the invariantsby setting the rank of v to one. Otherwise only c) can be violated at v. Letni denote the number of sons of v that have rank i. By linking two nodes of

rank i where i is the smallest rank where ni = 3 it is easy to verify that c)can be reestablished. The linking reduces ni by two and increments ni+1 byone.If we let (nr�1; : : : ; n0) be a string in f1; 2; 3g� the following table showsthat c) is reestablished after the above described transformations. We let xdenote a string in f1; 2; 3g� and yi strings in f1; 2g�. The table shows all thepossible cases. Recall that c) states that between every two ni = 3 there isat least one ni = 1. The di�erent cases are also considered in [9].y11 > y12y213y11 > y221y12y223y11 > y231y12x3y213y11 > x3y221y12x3y31y223y11 > x3y31y231y12y112 > y121y122 > y131x3y112 > x3y121x3y21y122 > x3y21y131After the linking only b) can be violated at v because a son of rank r hasbeen created. This problem can be solved by increasing the rank of v by one.Because of the given representation Meld can be performed in worst casetime O(1).{ DeleteMin(Q) removes the root e1 of the tree representing Q. The problemis that now property d) can be violated because the new root e2 can havearbitrary rank. This problem is solved by the following transformations.First we remove the root e2. This element later on becomes the new rootof rank zero. At most O(logn) trees can be created by removing the root.Among these trees the root that contains the minimum element e3 is foundand removed. This again creates at most O(logn) trees. We now �nd theroot e4 of maximum rank among all the trees and replaces it by the elemente3. A rank zero node containing e4 is created.The tree of maximum rank and with root e3 is made the only son of e2. Allother trees are made sons of the node containing e3. Notice that all the newsons of e3 have rank less than the rank of e3. By iterated linking of sons ofequal rank where there are three sons with equal rank, we can guarantee thatni 2 f1; 2g for all i less than the rank of e3. Possibly, we have to increasethe rank of e3.Finally, we return the element e1.Because the number of trees is at most O(logn) DeleteMin can be per-formed in worst case time O(logn). Figure 5 illustrates how DeleteMin isperformed.{ Delete(Q; e) can be implemented similar to DeleteMin. If e is the rootwe just perform DeleteMin. Otherwise we start by bubbling e upwardsin the tree. We replace e with its father until the father of e has rank lessthan or equal to the rank of e. Now, e is the arbitrarily ranked son of its

hh h h h h hhTTT,,, lll������ BBB ���.....................TTT.....................��� BBB.. ��� BBBPP ��� AAAe4 e3e3e2e1 e4e3e2 e2e3 e4 e2> > >Fig. 5. The implementation of DeleteMin.father. This allows us to replace e with an arbitrary ranked node, providedthat the heap order is still satis�ed. Because the rank of e increases for eachbubble step, and the rank of a node is bounded by blog(n� 1)c, this can beperformed in time O(logn).We can now replace e with the meld of the sons of e as described in theimplementation of DeleteMin. This again can be performed in worst casetime O(logn).To summarise, we have the theorem:Theorem3. There exists an implementation of priority queues that supportsDelete and DeleteMin in worst case time O(logn) and MakeQueue, Find-Min, Insert and Meld in worst case time O(1). The implementation requireslinear space and can be implemented on the pointer machine.3 OptimalityThe following theorem shows that ifMeld is required to be nontrivial, i.e. to takeworst case sublinear time, then DeleteMin must take worst case logarithmictime. This shows that the construction described in the previous sections isoptimal among all implementations where Meld takes sublinear time.If Meld is allowed to take linear time it is possible to support DeleteMin inworst case constant time by using the �nger search trees of Dietz and Raman [3].By using their data structure MakeQueue, FindMin, DeleteMin, Deletecan be supported in worst case time O(1), Insert in worst case time O(logn)and Meld in worst case time O(n).Theorem4. If Meld can be performed in worst case time o(n) then Delete-Min cannot be performed in worst case time o(logn).

Proof. The proof is by contradiction. Assume Meld takes worst case time o(n)and DeleteMin takes worst cast time o(logn). We show that this implies acontradiction with the
(n logn) lower bound on comparison based sorting.Assume we have n elements that we want to sort. Assume w.l.o.g. that n is apower of 2, n = 2k. We can sort the elements by the following list of priorityqueue operations. First, create n priority queues each containing one of the nelements (each creation takes worst case time O(1)). Then join the n priorityqueues to one priority queue by n�1Meld operations. TheMeld operations aredone bottom-up by always melding two priority queues of smallest size. Finally,perform n DeleteMin operations. The elements are now sorted.The total time for this sequence of operations is:nTMakeQueue + k�1Xi=0 2k�1�iTMeld(2i) + nXi=1 TDeleteMin(i) = o(n logn):This contradicts the lower bound on comparison based sorting.4 ConclusionWe have presented an implementation of meldable priority queues where Meldtakes worst case time O(1) and DeleteMin worst case time O(logn).Another interesting operation to consider is DecreaseKey. Our data structuresupports DecreaseKey in worst case time O(logn), because DecreaseKeycan be implemented in terms of a Delete operation followed by an Insertoperation. Relaxed heaps [5] support DecreaseKey in worst case time O(1) butdo not support Meld. But it is easy to see that relaxed heaps can be extendedto support Meld in worst case time O(logn). The problem to consider is if itis possible to support both DecreaseKey and Meld simultaneously in worstcase constant time.As a simple consequence of our construction we get a new implementation ofmeldable double ended priority queues, which is a data type that allows bothFindMin/FindMax and DeleteMin/DeleteMax [1, 4]. For each queue wejust have to maintain two heap ordered trees as described in section 1. One treeordered with respect to minimum and the other with respect to maximum. Ifwe let both trees contain all elements and the elements know their positions inboth trees we get the following corollary.Corollary 5. An implementation of meldable double ended priority queues existsthat supports MakeQueue, FindMin, FindMax, Insert and Meld in worstcase time O(1) and DeleteMin, DeleteMax, Delete, DecreaseKey andIncreaseKey in worst case time O(logn).

References1. M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max heaps andgeneralized priority queues. Communications of the ACM, 29(10):996{1000, 1986.2. Svante Carlsson, Patricio V. Poblete, and J. Ian Munro. An implicit binomialqueue with constant insertion time. In Proc. 1st Scandinavian Workshop on Algo-rithm Theory (SWAT), volume 318 of Lecture Notes in Computer Science, pages1{13. Springer Verlag, Berlin, 1988.3. Paul F. Dietz and Rajeev Raman. A constant update time �nger search tree. InAdvances in Computing and Information - ICCI '90, volume 468 of Lecture Notesin Computer Science, pages 100{109. Springer Verlag, Berlin, 1990.4. Yuzheng Ding and Mark Allen Weiss. The relaxed min-max heap. ACTA Infor-matica, 30:215{231, 1993.5. James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Re-laxed heaps: An alternative to �bonacci heaps with applications to parallel com-putation. Communications of the ACM, 31(11):1343{1354, 1988.6. Michael J. Fischer and Michael S. Paterson. Fishspear: A priority queue algorithm.Journal of the ACM, 41(1):3{30, 1994.7. Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.The pairing heap: A new form of self{adjusting heap. Algorithmica, 1:111{129,1986.8. Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses inimproved network optimization algorithms. In Proc. 25rd Ann. Symp. on Founda-tions of Computer Science (FOCS), pages 338{346, 1984.9. Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. Anew representation for linear lists. In Proc. 9thAnn. ACM Symp. on Theory ofComputing (STOC), pages 49{60, 1977.10. Peter H�yer. A general technique for implementation of e�cient priority queues.Technical Report IMADA-94-33, Odense University, 1994.11. Robert Endre Tarjan. Amortized computational complexity. SIAM Journal onAlgebraic and Discrete Methods, 6:306{318, 1985.12. Jan van Leeuwen. The composition of fast priority queues. Technical ReportRUU-CS-78-5, Department of Computer Science, University of Utrecht, 1978.13. Jean Vuillemin. A data structure for manipulating priority queues. Communica-tions of the ACM, 21(4):309{315, 1978.14. J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,7(6):347{348, 1964.
This article was processed using the LaTEX macro package with LLNCS style

