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Abstract. In 1989 Driscoll, Sarnak, Sleator, and Tarjan presented gen-
eral space-efficient transformations for making ephemeral data structures
persistent. The main contribution of this paper is to adapt this transfor-
mation to the functional model. We present a general transformation of
an ephemeral, linked data structure into an offline, partially persistent,
purely functional data structure with additive O(n logn) construction
time and O(n) space overhead; with n denoting the number of ephemeral
updates. An application of our transformation allows the elegant slab-
based algorithm for planar point location by Sarnak and Tarjan 1986
to be implemented space efficiently in the functional model using linear
space.
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1 Introduction

The functional model has many well-known advantages such as modulation,
shared resources, no side effects, and easier formal verification [4,14]. These ad-
vantages are given by restricting the model to only use functions and immutable
data. As all data are immutable, side effects in functions are not possible, allow-
ing modules to work independently of the context they are used in and reducing
the complexity of formal verification [14].

In 1999 Okasaki [19] gave a seminal work on techniques for designing efficient
(purely) functional data structures, and our result follows this line of research.
Adapting existing data structures to the functional model is non-trivial since
modifications are prohibited. However, it also means that updates do not de-
stroy earlier versions of the data structure making functional data structures
inherently persistent, but not necessarily space efficient. The focus of this paper
is to adapt existing imperative techniques for persistence to the functional model
in a space-efficient manner.

We introduce a purely functional framework that adapts classical tree struc-
tures to support offline partial persistence with an additive overhead. By offline
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Table 1: Previous and new results for planar point location, where † are expected
bounds and ∗ are results based on persistent data structures.

Reference Construction Query Space Model

David Kirkpatrick [17] O(n logn) O(logn) O(n) Imperative

Seidel [26] O(n logn) O(logn) O(n) Imperative†

Dobkin and Munro [11] O(n logn) O
(
log2 n

)
O(n logn) Imperative∗

Richard Cole [8] O
(
n2

)
O(logn) O(n) Imperative∗

Sarnak and Tarjan [24] O(n logn) O(logn) O(n) Imperative∗

Sarnak and Tarjan [24] O(n logn) O(logn) O(n logn) Functional∗

New O(n logn) O(logn) O(n) Functional∗

partial persistence, we mean that all updates are made before queries. This re-
striction allows us to store update information without immediately being able
to handle queries efficiently. A data structure that is not persistent, i.e., does
not support queries and updates in previous versions, is said to be ephemeral.
We show that by recording when an ephemeral tree structure is updated, we can
build a query structure that can efficiently answer queries to previous versions
of the structure. In the imperative paradigm, it is possible to efficiently inter-
weave updates and queries [12,24], but in the functional paradigm, it incurs a
multiplicative logarithmic space overhead, which we show how to circumvent, in
the offline setting.

Planar point location is a classic computational geometry problem [13,17,24].
Given a planar straight-line graph with n edges (interchangeably line segments)
and report the region containing a query point q. The task is to create a data
structure that supports these queries while minimizing the construction time,
query time, and space of the data structure. Sarnak and Tarjan [24] showed
that the planar point location problem can be solved elegantly using partially-
persistent sorted sets, that in the functional setting can be solved with balanced
search trees using path copying resulting in a space usage of O(n log n). As an
application of our technique, we show how the algorithm of Sarnak and Tarjan
can be implemented in the functional model to only use space O(n). For an
overview of results for the planer point location problem see Table 1.

Below we state sufficient conditions for a functional or imperative data struc-
ture to be augmented with a functional support structure that supports offline
partial persistence queries.

Definition 1 (TUNA conditions).

T: The data structure forms a rooted tree of constant degree d.
U: Updates create O(1) new edges and nodes.
N: No cycles are created by updates when considering the edges that have been

created across all versions.
A: Attribute values of nodes are static, i.e., the information stored in a node is

not changed after its insertion. This does not include fields pointing to the
children.
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This definition is not too restrictive, we show that binary search trees (BST),
Treaps [3], Red/Black Trees [5], and Functional Random Access Arrays [18]
all can be modified to satisfy Definition 1, without asymptotically significant
overhead. In Section 5 we discuss how some of these requirements can be relaxed
or generalized further.

Theorem 1. For any ephemeral, linked data structure that satisfies the TUNA

conditions, an equivalent, functional, offline-partially-persistent data structure
preserving the asymptotic update and query times, can be created, with an addi-
tive construction overhead of time O(n log n) and space O(n) for a series of n
updates.

The main idea behind Theorem 1 is to store the update information in a list,
including edge insertion and deletion timestamps. After all the updates have
been applied, a bottom-up topological sort produces a directed acyclic graph
(DAG) that supports queries to any previous version of the data structure. This
is essentially implementing the node copying approach of [24], while carefully
avoiding the creation of cycles.

Building upon [24], Theorem 1 immediately implies a state-of-the-art func-
tional planar point location solution, summarised in the following corollary.

Corollary 1. There exists a purely functional solution to the planar point loca-
tion problem with construction time O(n log n), query time O(log n), and space
O(n).

We implemented unbalanced binary search trees in the purely functional
programming language Haskell and report on some experiments in Section 6.

1.1 Persistence

A data structure is said to be persistent if it is possible to query previous versions
of it and ephemeral if it is only the current version that is available. A partially-
persistent data structure is persistent and allows updates only to the latest
version. The stronger notion of full persistence implies that any version can
be both queried and updated. An update to a persistent data structure never
changes an existing version, but instead creates a new version derived from the
version the update is applied to. In this way, the different versions of the partial
persistent structure form a version list, whereas full persistence forms a version
tree. General transformations to make data structures persistent were studied
by Driscoll et al. [12] and Overmars [21,22]. In this paper, we focus on offline
partial persistence for linked data structures, where all updates are performed
before all queries, which was also explored in [11].

A naive idea to achieve partial persistence is to store a copy of every previous
version. If the underlying structure is a list, then this approach generates an
overhead of Ω(n2) space for n insertions into an initially empty list. To improve
upon this, the crucial observation is that when structures have a large overlap
between updates, it is possible to reuse large parts of the previous versions and
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greatly reduce space usage. To achieve linear space, the notions of fat nodes
and timestamps were introduced by Driscoll et al. [12], where each pointer field
in a node is replaced by a list of pointers and each pointer in the list has an
associated timestamp, denoting when the pointer was updated. Specifically, for
a binary search tree, each node will, instead of containing a pointer to the left
and right subtree, contain a list of timestamped left pointers and a list of
timestamped right pointers. An update to a given pointer now adds a new
pointer to the pointer list with the current timestamp, resulting in O(1) space
overhead per update. As the pointer in the version is the last in the list, there
is no overhead in finding the active pointer in the current version. To locate the
correct pointer at a given older timestamp, a binary search on the list of pointers
can be performed, which then imposes a multiplicative O(log n) overhead on
queries.

In [24] the notion of path copying was introduced for BSTs, where all nodes
on the path to the node being updated are copied. Any existing pointer along
the path can then point freely to parts of the old structure. For BSTs, this has
a space overhead of the length of the path, i.e., for balanced BSTs an O(log n)
space overhead per update. It does however impose no overhead on the query
time, apart from initially finding the correct root to query.

Thus, the fat node technique has a query time overhead, whereas path copy-
ing has a space overhead. By combining these two techniques, it is possible to
have no overhead on query time and space. In [12,24] the authors achieve this by
introducing the node copying technique for partially-persistent general pointer-
based data structures. Here nodes are allowed to hold a constant number of
additional time-stamped pointers. When some operation requires a node to up-
date a pointer, the timestamp of the old pointer is updated to end at the current
time. We denote a pointer that has ended as expired. If the pointer is replaced
by a new pointer, then the new pointer is placed in one of the free extra pointer
slots of the node, with a timestamp starting at the current time. If there is no
free pointer slot node copying is performed, where the non-expired pointers and
the new pointer are copied to a new node. Any pointer in another node to the
copied node at the current time must be split, which may cause node copying
to cascade up the structure. However, an amortization argument [24] shows that
this technique only has an additive O(n) overhead in space, when the indegree
of every node in the underlying structure is constant. Finally, as the number of
pointers in each node is constant the overhead on the query time is also constant.

1.2 Persistence and the functional model

The functional programming paradigm is well suited for persistence as stated by
Okasaki: “A distinctive property of functional data structures is that they are al-
ways persistent” [19]. In purely functional programming, there are no side effects
and variables are immutable, meaning that any modifications to a structure S
are obtained by creating a new structure S′ without altering S. In this new
structure S′, substructures may be references to (immutable) old substructures
from S.
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Purely functional data structures are consequently particularly interesting
when persistence is critical, and it is natural that they are less efficient than
imperative data structures, since they inherently solve a more general problem.
We note that there has been some work in describing to what degree mutability
increases the capabilities (efficiency) of a language, and Pippenger [23] gave an
example of a problem with a logarithmic-factor separation under certain condi-
tions. However, for many data structure problems, purely functional solutions
have been developed that match their imperative counterparts with only con-
stant overhead. Examples include optimal confluently persistent deques which
were developed over a number of papers [7,9,16] and optimal priority queues [6].

1.3 Functional vs. space efficient imperative persistence

The fat node and node copying persistence techniques mentioned in Section 1.1
rely upon the imperative paradigm’s ability to modify pointers in the nodes in a
graph structure where nodes can have multiple ingoing edges. As the functional
model cannot mutate pointers, directly translating these solutions leads to sig-
nificant overhead in the update time, as, even with path copying, all ancestors of
an updated node must be remade to point to the newly created node(s). For this
reason, we focus our attention on data structures with a tree structure where
ancestors appear on a single path to the root.

1.4 Planar point location

Dobkin and Lipton [10] solved the planar point location problem by drawing
vertical lines through every node resulting in vertical slabs. For every slab, the
line segments spanning the slab are stored in a BST. This method allows effi-
cient queries by performing a binary search horizontally for the slab, and then
a binary search vertically in the slab for the region. This gives an overall query
time of O(log n). The drawback of this method is that each line could potentially
be stored in almost every slab, resulting in Θ

(
n2

)
space. A number of different

results [8,13,17,24], show that the space can be reduced to O(n) (non-functional)
without affecting the query time. The solution by Cole [8] is particularly inter-
esting as it exploits that neighboring slabs are very similar, meaning that the
problem can be reduced to creating persistent, sorted sets. This observation is
vital to the work on persistent search trees by Sarnak and Tarjan [24]. On the
other hand, the approach by Kirkpatrick [17] is completely different and is based
on repeatedly triangulating the graph and removing a constant fraction of the
nodes with degree at most 11. Then a DAG is created bottom-up based on
the overlap between two consecutive triangulations. Since the DAG is created
bottom-up, similarly to our approach described in Section 3.2, we conjecture
that this approach could be adapted to the purely functional model and leave it
as an open problem.
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2 Initial analysis of binary search trees

In this section, we introduce ephemeral (i.e., non-persistent) unbalanced binary
search trees (BSTs) and illustrate how the fat node technique can be adapted
to the functional paradigm. The main obstacle in making the adaptation is to
avoid cycles between nodes. We solve this by making new copies of nodes that
should be moved above their parent. In Section 5 these techniques are extended
to cover balanced search trees.

2.1 Ephemeral binary search trees

Any BST node is either an empty leaf or a node containing an element and two
pointers to a left and right sub-tree, which are in turn also BSTs. Forthwith,
these pointers will be denoted as edges. Likewise, let T and T ′ denote BSTs over
a totally ordered set of elements X and let x ∈ X denote an element. BSTs are
ordered such that all elements in the left subtree are smaller than the element in
the node, and all elements in the right subtree are larger. BSTs support many
operations; we focus on the following three basic operations:

– Insert(T , x): Insert x into T and return the resulting tree T ′.
– Delete(T , x): Delete x from T and return the resulting tree T ′.
– Search(T , x): Return the smallest element x′ in T , such that x ≤ x′.

All operations can be implemented in time linear in the height of the tree.
We call operations that modify the data structure updates (Insert and Delete).
We call operations that query the data structure without changing it queries
(Search). When constructing the data structure, we consider a sequence of n
updates (u1, . . . , un) and for version 0 ≤ t ≤ n updates u1, . . . , ut have been
applied.

2.2 Fat node binary search trees

In this subsection, we describe how to adapt imperative unbalanced BSTs to
adhere to the TUNA conditions (Defnition 1), using fat nodes. Most importantly,
the Delete update is changed slightly from the classic behavior since it can cause
nodes to be reordered in the tree.

When performing Insert, assuming that x is not present in T , a path to
the correct leaf position is found, and a new node, containing x is created at
the position of that leaf. The difference between the old and the new tree is a
single edge at the bottom of the tree. By adding creation timestamps on the
edges to represent creation time, queries can detect if a particular edge should
be considered to exist in a specific version or not.

When performing Delete, if the deleted element x is at the bottom of the
tree, then, in effect, the edge e from its parent p to the deleted node ceases to
exist. We record this by adding an ending timestamp to the edge. If the deleted
element x is in some internal node, see Fig. 1 (Left), then a predecessor or
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Fig. 1: We let a single number above an edge denote its creation time. In the
graphs, the interval above an edge is the living span of the edge. Recall that a
persistent search tree query is a timestamp/version and a value. Left: a deletion
in a BST. Middle: the resulting graph contains the dashed cycle between y and
a. Right: by creating a new copy y′ of y the resulting graph remains a DAG and
is TUNA compliant.

successor y (depending on implementation) in the subtree rooted at x is found
and moved to the deleted spot. This introduces up to four new edges.

When transforming the BST into the functional model, the predecessor can-
not be directly moved and reused, as it might be moved above its parent, which
would create a cycle in the structure when also considering expired edges, as seen
in Fig. 1 (Middle). We avoid creating cycles by replacing x with a copy of its
predecessor which breaks the cycle as seen in Fig. 1 (Right). However, it remains
a crucial issue that b (and c) still have two parents, when also considering the
expired edges, which cannot be updated efficiently in the functional model (see
Section 1.3).

3 Freezer and query structure construction

In this section we present our main contribution: the concept of a Freezer, which
stores update information as it comes in, and how to use it to build a query DAG
after all updates have occurred, using fat nodes and node copying. We give an
amortized analysis argument that the total number of node copies is linear in
the number of updates and from the proof we deduce that the TUNA conditions 1
are sufficient to prove Theorem 1.

3.1 The Freezer

The underlying ephemeral structure forms a tree, but when performing updates
using the TUNA-compliant fat node method (see Fig. 3) to get persistence, then
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the data structure forms a DAG. This is problematic since in the functional
model a DAG cannot be maintained efficiently using path copying, as any node in
the data structure which can reach an updated node would also have to be copied
to reflect the change. Thus, we store all edges not present in the most recent
version of the data structure separately in a list which we call the freezer. That
is, only the most recent version of the data structure is explicitly maintained.
This is sufficient for partial persistence since updates are only allowed in the
most recent version. Finally, after all the updates have been applied, the DAG
is built bottom-up. For this reason, persistence is restricted to offline.

To store the edges in the freezer, a unique id is assigned to each node and
each edge in the freezer is stored as a 5-tuple (id from, id to,field , tstart, tend). The
ids are used to identify the nodes the edge connects, the field denotes which field
of the node with id id from the edge originates from (in the BST this is either
left or right), and the time stamps tstart and tend denote the living span of
the edge as the half-open interval [tstart, tend).

The freezer in addition stores which node is the root at any given time, and
a map from ids to the value contained in the node with the given id. Further,
note that storing the deletion time of an edge can be omitted and instead be
read from the starting time of the next edge in the corresponding field of the
same node, with the modification that empty fields have an edge to a special
Nil leaf.

3.2 Offline construction of the fat node query DAG

In this section, we describe how to construct the fat node DAG structure from
the expired edges in the freezer and the final non-expired structure.

Any edge that ends in the freezer must have been created in some version
of the tree as the result of an update operation. An Insert operation creates
one new edge, and a Delete operation creates at most four new edges. Thus,
after all n updates, the freezer contains O(n) edges. Similarly, each Insert and
Delete creates at most one new node, so the number of nodes is O(n).

Using Kahn’s algorithm [15], which topologically sorts the nodes by repeat-
edly extracting nodes with outdegree zero, we build the DAG bottom-up. The
while loop of the imperative algorithm is replaced by a recursive function in the
functional algorithm, for each iteration calling with the new values needed. As
mentioned, by copying nodes when they were moved around by the updates we
avoid introducing cycles (see Figs. 1 and 3), which is required for Kahn’s algo-
rithm. By having a map from node ids to the values contained in the nodes, it is
possible to explicitly build the DAG over the edges of the freezer. This creates
the DAG of fat nodes.

The construction time of, a non-functional implementation of, Kahn’s algo-
rithm is linear in the number of nodes and edges. This however relies on being
able to effectively fetch the ingoing and outgoing edges of nodes, and reduce the
outdegree of nodes in time O(1). The construction relies on efficient maps from
ids to nodes. As random access is not part of the functional model, maps with
O(1) lookup time and update times do not exist. We instead use balanced trees
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which introduces an overhead of O(log n) for each of the operations, yielding a
DAG construction time of O(n log n). The space usage remains O(n).

3.3 Bounding node outdegree of the query DAG

Having arbitrary outdegree of fat nodes affects the query time, as stated in
Section 1.1. However, by limiting the number of extra pointers in each node,
limited node copying similar to [24] can be implemented to remove the query
overhead, while still maintaining linear space. The difference here is that in [24]
the copy is performed during the update phase as soon as there are too many
pointers in a node. We restrict ourselves to the offline setting and as such do
not need to be able to handle queries before all updates have been applied, this
means that we can allow nodes to become arbitrarily fat in the update phase.

Let d be the degree of the underlying ephemeral structure. After the update
phase, we handle the high degree by recursively splitting the fat nodes into
multiple nodes, each with degrees O(d) by interleaving the node splitting idea
with Kahn’s algorithm. As discussed in Section 3.2 we visit the nodes of the
freezer bottom-up in topological order. Recall that the freezer contains edges,
so nodes are inferred. When visiting a node v, that has an outdegree larger
than d+ e, for a parameter e = O(d) indicating the extra edges we allow every
node to hold, we split it into a left node vl to represent “the past” and a right
node vr to represent “the future”, essentially performing node copying. Note
that some edges will be active in both of these nodes and thus are duplicated,
similar to regular node copying. We perform the split such that the outdegree of
the left node is at most d+e, and that the left and right nodes in total represent
the original node. If the outdegree of vr is larger than d+ e we recursively split
it until v has been split into a number of nodes each of outdegree at most d+ e.
By requiring 1 ≤ e ≤ cd, for some constant c, we ensure that the query time is
proportional to that of the underlying ephemeral structure since the new nodes
will contain Θ(d) edges. We call this procedure node copying and the following
lemma shows that the space remains linear in the number of updates n.

Lemma 1. The number of nodes introduced by node copying is O(n) when 1 ≤
e ≤ cd for some constant c.

Proof. We define the potential function

Φ =
∑
v

max{0, Ov − (d+ e)} ,

where Ov is the number of outgoing edges from the node v, and the terms in the
sum indicate the number of outgoing edges above the threshold d + e. Observe
that the potential is nonnegative and that Φ = O(n) when initializing node
copying due to property U.

We now analyze how the potential changes when we split a node v, which
must have Ov > d + e, into a left node vl and a right node vr. We consider
the edges (consisting of a start and end timestamp) in nondecreasing order by
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f1

fd

timestamp

field

t

Fig. 2: Illustration of the fields of a node over time. The number of fields is
d = 4 and e = 4. Each horizontal line represents one of the fields, with the dots
denoting times when the value of the field change. In other words, the segments
between dots represent time intervals where the field is unaltered. The vertical
dashed lines are the times when the node is split. The dot with the circle around
it is the start of the (d + e + 1)th edge (when counting only edges after the
previous split) introducing the split at time t. This results in s1 = 1, s2 = 2 and
a = 1.

their start timestamp. The split is performed at the (d+ e+ 1)th smallest start
timestamp t. We include all edges with start timestamps strictly less than t in
vl. In vr we include all edges with an end timestamp strictly larger than t.

Expanding on this, at time t we let s1 denote the number of edges with start
timestamp t among the first d+ e edges, and let s2 be the number of edges with
start timestamp t not among the first d+e edges. Together s1+s2 is the number of
edges changing at time t, or equivalently the number of fields updated at time t.
Furthermore, we call an edge active if its living span contains the splitting time,
that is tstart < t < tend, and let a denote the number of active edges at time t.
See Fig. 2 for an example. Since all nodes have degree d exactly1, we have d =
s1+s2+a, where s2 ≥ 1 from the edge where we perform the split. The number of
outgoing edges in vl is Ovl = d+e−s1 ≤ d+e. Likewise, the number of outgoing
edges in vr is Ovr = Ov −Ovl + a = Ov − d− e+ s1 + d− s1 − s2 ≤ Ov − (e+1),
where the inequality follows from s2 ≥ 1.

Finally, at time t there is at most one incoming edge to v from a parent vp,
since the underlying structure forms a tree. This edge must potentially be split
in two which increases the outdegree of the parent by one. The difference in
potential before and after this split is then at most:

∆Φ = ∆Φvp + Φvl + Φvr − Φv

≤ 1 + 0 +max{0, Ov − (e+ 1)− (d+ e)} − (Ov − (d+ e)) .

Now there are two cases depending on which term is larger in the maximum.
We first look at the case when 0 ≤ Ov − (e + 1) − (d + e). We call this case A

1 Each node has exactly d fields and each field always holds an edge to either another
node or to Nil.
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and here we get ∆Φ ≤ −e. The other case we call case B and here we get
∆Φ ≤ 0 since Φv ≥ 1. Furthermore, since Ov − (e + 1) − (d + e) < 0 implies
Ovr ≤ Ov − (e + 1) < e + d then no further splits of vr are needed. We can
now upper bound the number of splits by the number of times these two cases
occur. Since the potential never increases, case A can occur at most O(n/e)
times. Next, since we split nodes bottom-up in the topological order, we never
add edges to a node after it has been split. Thus, as case B only happens when
we perform the last split of a node, it can occur at most O(n) times, once for
each node in the freezer. Combining the two cases we see that the number of
splits is O(n). ⊓⊔

4 Proof of Theorem 1

Let D be a data structure that satisfies the TUNA conditions (Definition 1).
We identify each node by a unique id and store timestamps with each edge
denoting their living span. The freezer, see Section 3.1, stores edges on the form
(id from, id to,field , tstart, tend), where field denotes the outgoing field of the edge
from the node with id id from, and the edge was live in the version interval
[tstart, tend). The freezer further records what id the root of the data structure
has for each time step, as well as what static value is associated with each id.

Applying an update to the structure can be done without saving the old
structure, as condition A ensures that all nodes still present contain the same
value. Furthermore, condition T ensures that the outgoing number of edges is d,
leading to a constant number of updates to the freezer for each node updated,
resulting in updates having unaltered asymptotic running time.

After applying all updates, recording the relevant information in the freezer,
and obtaining tree T , condition U ensures that the freezer contains O(n) edges.
For ease of argument, we then enter all edges from T into the freezer. Note that
the number of elements in the freezer remains O(n).

To build the query DAG, apply a modified version of Kahn’s algorithm [15]
as described in Section 3.2, to perform a bottom-up topological sort of the graph
induced by the edges in the freezer in time O(n log n). Kahn’s algorithm requires
that the graph is acyclic, which condition N ensures. First, give each node, defined
by id, the value stored in the freezer and the edges with matching idfrom. Second,
we employ the fat node technique [12] by allowing nodes to have d + e edges.
A fat node can overflow, if it gets more than d + e edges. When an overflow is
encountered the node is split into two nodes with the same value and the same
parent but only a subset of the edges. Lemma 1 guarantees that splits only cause
limited cascading while keeping nodes of degree O(d) and thus within a constant
factor of their degree in the ephemeral structure as promised by condition T.

We now have a list of roots, sorted by time, that can be used to access
previous versions ofD. For queries, we assume the search starts from the relevant
root. Otherwise, the relevant root can be found in O(log r) time, where r is the
total number of roots. Timestamps on edges represent the versions in which the
edge was present, so it is easy to adapt queries to the DAG to only take into
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Fig. 3: Left: a rotation in a BST. Middle: the resulting graph contains the dashed
cycle between x and y. Right: by creating a new copy y′ of y the resulting graph
remains a DAG and is TUNA compliant. We use the same notation as in Fig. 1.

account the relevant edges among the Θ(d) present edges in the node, leading
to the same asymptotic running time for queries. ⊓⊔

5 Further applications

Okasaki [18] introduces functional random access arrays, achieving, for an array
of size n, worst-case lookup and update time O(min{i, log n}), where i is the
index of the queried element. This data structure easily satisfies the TUNA condi-
tions, and can therefore be made offline partially persistent with only a constant
factor space overhead.

Condition U of Definition 1 ensures that each of the n updates makes O(1)
edges, which then totals to O(n) edges in the final structure. In the analysis of
the space complexity, it is however not important exactly how many edges each
update adds, and in fact, the more general property holds that the space usage
is linear in the number of edges created by the ephemeral structure. Condition U

can therefore be relaxed to each update producing for example amortized or
expected O(1) new edges. This allows for balanced Red-Black trees [5] to fulfill
the TUNA conditions even if the colors should be stored for persistent queries,
as they make amortized O(1) color changes for each update [27]. The simpler
functional implementation of Red-Black trees by Okasaki [20] makes amortized
O(1) changes per insertion by a similar argument. See Fig. 3 on how rotations
can be handled. Similarly, Treaps [3] fulfill the relaxed TUNA conditions, as each
update makes expected O(1) rotations and therefore O(1) new edges.

Condition A ensures that all nodes can be reused and that storing edges is
sufficient to produce the query DAG. The underlying tree is always represented
explicitly, and as updates always operate on the current structure, it is possible
to relax condition A, to allow for dynamic update information in each node.
This information can be altered during the update phase and is not needed to
produce the query DAG. Recall that our structure imposes additive O(n log n)
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construction time independent of original update complexity. This allows for
AVL-trees [1] to fulfill the TUNA conditions, as the balance value (the height of
the subtree rooted at the node) is only used for balancing during the updates,
and updates only perform amortized O(1) rotations [2].

6 Implementation and experiments

The construction described in this chapter has been implemented and tested
in Haskell2. Experiments were performed on WSL Ubuntu 20.04.6 on Windows
10.0.19044, with Processor 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz,
4 Core(s), 8 Logical Processor(s), 16 GB RAM, running ghc haskell compiler ver-
sion 8.6.5, without any compiler flags. Each runtime measurement is the average
of a constant number of runs on the same input. A random input is generated
by providing the algorithm with a seed to a pseudo-random number generator.

For the following, let the version of a data structure made in our offline-
partially-persistent framework be denoted as persistent and the version made in
regular Haskell without necessarily saving the root of the structure be denoted
ephemeral. The implementation uses time intervals for the edges in the freezer,
and not only a start timestamp. Edges in the current structure are therefore
not recorded in the freezer before they are removed from the live structure.
Therefore, if any larger part of the structure is to be removed, it must be done
so recursively, to correctly enter all of the edges into the freezer. Note that this
does not alter the amortized running time of updates.

To test the correctness of the implementation, we apply various deterministic
and random sequences of updates to both an ephemeral and a persistent unbal-
anced binary search tree, saving the roots of the ephemeral versions. We then
construct the query DAG as described in Section 3.2 based on the persistent
version. Then, for each timestamp, we tested if both versions produced the same
tree. The test did not reveal any errors.

To measure space usage of a data structure, Haskell provides the function
recursiveSizeNF which recursively measures the size of the object in bytes,
i.e., traverses the whole pointer structure on the heap. Note that parts of the
structure reachable from multiple places only are counted once. The space of the
persistent data structure is measured after building the query DAG. Note that
due to [25], a sequence of uniformly random insertions in an unbalanced binary
search tree produces expected depth Θ(log n).

The experiments for space usage, runtime of updates, and queries follow the
expected result from the theory, see Figs. 4 and 5a–d. The experiment for the
DAG building runtime appeared to be more than the theoretical O(n log n) from
the plot, see Fig. 5e. We are unable to find an explanation for the overhead. To
ascertain the source of the overhead, we ran a sanity experiment to test if this
overhead occurred on simpler problems. We inserted 1 to n into an unbalanced
ephemeral BST where the insertion order created an almost perfectly balanced

2 Available at https://github.com/Crowton/Persistent-Functional-Trees.

https://github.com/Crowton/Persistent-Functional-Trees
https://github.com/Crowton/Persistent-Functional-Trees
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Fig. 4: Space usage experiments. Elements 1 to n are inserted into a persistent
BST in order to create a path. Element n + 1 was then inserted and deleted n
times, to introduce cascading node splits up the path, for a total of 3n updates.

tree, via careful insertion of elements. Then all elements were queried in random
order. This simple experiment has the clean theoretical runtime of O(n log n) but
similarly turned out not to produce an O(n log n) plot in practice, see Fig. 5f,
leading to the conjecture that the extra overhead in runtime is not from the
program itself, but the Haskell compiler, specific implementations of underlying
structures, and/or the environment the code is executed in.

The runtime experiments of updates and queries showed no issues with extra
logarithmic factors, as only the relative runtime of the ephemeral and persistent
implementation is compared. Here we found a constant factor difference, and
thus the experiments did not disprove Theorem 1.
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(a) Inserting elements 1 to n in random
order.

(b) Inserting and deleting elements 1 to n
in random order.

(c) Relative running time over querying
all elements of a persistent BST in order
at different timestamps. The tree is cre-
ated by inserting elements 1 to 200000 in
random order.

(d) Elements 1 to n are inserted to make
a path. Element n+ 1 is inserted and
deleted n times, for n = 3000. Time mea-
sured for querying element n+ 1 at dif-
ferent timestamps.

(e) DAG building running time experi-
ment. Elements 1 to n were inserted and
deleted from a persistent BST in random
order. Time was measured on the DAG
building alone.

(f) Sanity experiment. Querying all el-
ements of an emphemeral perfectly bal-
anced BST of size n in random order.

Fig. 5: Running time experiments.
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