
Path Minima Queries in
Dynamic Weighted Trees

Gerth Stølting Brodal1, Pooya Davoodi1, S. Srinivasa Rao2

1 MADALGO?, Department of Computer Science, Aarhus University.
E-mail: {gerth,pdavoodi}@cs.au.dk

2 School of Computer Science and Engineering, Seoul National University, S. Korea.
E-mail: ssrao@cse.snu.ac.kr

Abstract. In the path minima problem on trees each tree edge is as-
signed a weight and a query asks for the edge with minimum weight
on a path between two nodes. For the dynamic version of the problem
on a tree, where the edge-weights can be updated, we give comparison-
based and RAM data structures that achieve optimal query time. These
structures support inserting a node on an edge, inserting a leaf, and con-
tracting edges. When only insertion and deletion of leaves in a tree are
needed, we give two data structures that achieve optimal and significantly
lower query times than when updating the edge-weights is allowed. One
is a semigroup structure for which the edge-weights are from an arbitrary
semigroup and queries ask for the semigroup-sum of the edge-weights on
a given path. For the other structure the edge-weights are given in the
word RAM. We complement these upper bounds with lower bounds for
different variants of the problem.

1 Introduction

We study variants of the path minima problem on weighted unrooted trees,
where each edge is associated with a weight. The problem is to maintain a data
structure for a collection of trees (a forest) supporting the query operation:
– pathmin(u,v): return the edge with minimum weight on the path between

two given nodes u and v.
In the dynamic setting, a subset of the following update operations is provided:
– make-tree(v): make a single-node tree containing the node v.
– update(e,w): change the weight of the edge e to w.
– insert(e,v,w): split the edge e = (u1, u2) by inserting the node v along it. The

new edge (u1, v) has weight w, and (u2, v) has the old weight of e.
– insert-leaf(u,v,w): add the node v and the edge (u, v) with weight w.
– contract(e): delete the edge e = (u, v), and contract u and v to one node.
– delete-leaf(v): delete both the leaf v and the edge incident to it.
– link(u,v,w): add the edge (u, v) with weight w to the forest, where u and v

are in two different trees.

? Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

– cut(e): delete the edge e from the forest, splitting a tree into two trees.

We present path minima data structures to maintain trees under either up-
dating leaf edges or updating arbitrary edge-weights. Additionally, we study the
complexity of path minima queries on forests that can be updated by link and
cut.

We define three different models depending on how data the algorithms can
operate on the edge-weights: (1) the comparison-based model, where the only
allowed operation on the edge-weights are comparisons; (2) the RAM model,
where any standard RAM operation is allowed on the edge-weights; and (3) the
semigroup model, in which the edge-weights are from an arbitrary semigroup
and queries ask to compute the semigroup-sum of the edge-weights along a path
(notice that a data structure over the semigroup (R,max) can be used to make
a comparison-based structure for the path minima problem). Except for the
computation on the edge-weights, our algorithms are in the unit-cost word RAM
with word size Θ(log n) bits, where n is the total number of nodes in the input
trees.

1.1 Previous work

Static weighted trees. The minimum spanning tree verification problem on
a spanning tree of a graph can be solved by asking a sequence of offline path
minima queries in the tree, which can be supported using amortized O(1) com-
parisons for each query [17]. In the online setting, Pettie proved that Ω(α(n))
amortized comparisons are required to answer each query [21], which is a tight
lower bound due to [8].

For online queries, Alon and Sheiber [1] considered trade-offs between the
preprocessing time and the query time in the semigroup model. They presented
a data structure that supports queries in at most 4k − 1 semigroup operations
with O(nkαk(n)) preprocessing time and space for a parameter k ≥ 1, where
αk(n) is a function in the inverse-Ackermann hierarchy (defined in Section 1.3).
They also proved that Ω(nα2k(n)) preprocessing time is required to obtain such
a query time in the worst case. Notice that α2k(n) = o(αk(n)) for k > 1 (Section
1.3). Similar trade-offs are known in the comparison-based model [21].
Dynamic weighted trees. In the comparison-based model, Demaine, Landau,
and Weimann [10] showed how to maintain an input tree under inserting and
deleting leaves in O(log n) amortized time and supporting queries in O(1) time
using linear space. In the RAM model, O(1) amortized update time with the
same query time and space can be achieved [2, 15].

Tarjan was interested in maintaining a collection of rooted trees under the
operation link (incremental trees) to support a class of path minima queries,
where a root is one of the end points of the query paths [23, Section 6]. In the
semigroup model, for a sequence of m offline queries and updates, he obtained
O((m + n) · α(m + n, n)) time using O(m + n) space. In the RAM model, this
running time can be improved to O(1) for each online query and amortized O(1)
for each offline update [14]. Alstrup and Holm showed that arbitrary queries can

be supported in O(α(n)) time while online updates are performed in constant
amortized time in the RAM model [2]. Finally, Kaplan and Shafrir generalized
this result to arbitrary links in unrooted trees [15].

Dynamic trees (link-cut trees) of Sleator and Tarjan support many operations
including pathmin, link, cut, root, and evert in O(log n) amortized time, in the
semigroup model [22]. The operation root finds the root of the tree containing
a given node, and evert changes the root of the tree containing a given node
such that the given node becomes the root, by turning the tree “inside out”.
Essentially, this data structure can solve all the variants of the dynamic path
minima problem.
Relation to range minimum queries. A special case of the path minima
problem, is the one-dimensional range minimum query (1D-RMQ) problem,
where the input tree is a path. In this problem, we are given an array con-
taining n elements, and we have to find the position of the minimum element
within a query range.

The following lower bounds are derived from known lower bounds by reduc-
tion from the 1D-RMQ problem: (1) In the semigroup model, with linear space,
Ω(α(n)) semigroup operations are required to answer a path minima query [25];
(2) In the RAM model, using O(n/c) bits of additional space, the number of cell
probes required to answer a path minima query is at least Ω(c), for a parameter
1 ≤ c ≤ n [7] (here, we assume that the edge-weights are given in a read-only
array); (3) In the RAM model, if we want to update the edge-weights in polyloga-
rithmic time, Ω(log n/ log log n) cell probes are required to support path minima
queries [3, Section 2.2]; (4) In the comparison-based model, if we want to answer
a path minima query in polylogarithmic time, Ω(log n) comparisons are required
to update the edge-weights [6]; (5) In the semigroup model, logarithmic time to
support path minima queries implies Ω(log n) time to update the edge-weights,
and vice versa [20].

Cartesian trees [24] are a standard structure that along with lowest common
ancestor structures can support range minimum queries in constant time with
linear space and preprocessing time [13]. Cartesian trees can be also defined for
weighted trees as follows: The Cartesian tree TC of a weighted tree T is a binary
tree, where the root of TC corresponds to the edge e of T with minimum weight,
and the two children of the root in TC correspond to the Cartesian trees of the
two components made by deleting e from T . The internal nodes of TC are the
edges of T , and the leaves of TC are the nodes of T .

Similar to range minimum queries, Cartesian trees can be used to support
path minima queries inO(1) time using linear space [18, Section 3.3.2], [5, Section
2], and [10, Theorem 2]. But constructing a Cartesian tree requires Ω(n log n)
comparisons derived by a reduction from sorting [10]. This lower bound implies
a logarithmic lower bound to maintain the Cartesian tree under inserting new
leaves in the original tree, which is tight due to the following lemma.

Lemma 1. ([10]) The Cartesian tree of a tree with n nodes can be maintained
in a linear space data structure that can be constructed in O(n log n) time, and
supports path minima queries in O(1) time and inserting leaves in O(log n) time.

1.2 Our results

In Section 2, we present a comparison-based data structure that supports path
minima queries in Θ(log n/ log log n) time, and supports updates to the edge-
weights in Θ(log n) amortized time. In the RAM model, the update time is
improved to O(log n/ log log n) amortized. Both data structures support the op-
erations insert, insert-leaf, and contract with the same update times.

In Section 3, we dynamize the data structure of Alon and Shieber [1] in the
semigroup model, to support path minima queries in at most 7k − 4 semigroup
operations using O(nαk(n)) space, while supporting insertions and deletions of
leaves in O(αk(n)) amortized time. Using Lemma 1, we can obtain a RAM
structure that supports path minima queries in constant time and inserting and
deleting leaves in constant amortized time, giving an alternative approach to
achieve a known result [2, 15].

In Section 4, we provide cell probe lower bounds for query-update trade-offs
when data structures are served by the operations pathmin, link and cut, in the
RAM model. We prove that if we want polylogarithmic update time, we cannot
hope for answering path minima queries in faster than Ω(log n/ log log n) time.
We also show that with logarithmic update time, Θ(log n) query time achieved
by the dynamic trees of Sleator and Tarjan is the best possible. Furthermore, we
prove that with sub-logarithmic query time, obtaining logarithmic update time
is impossible.

1.3 Preliminaries

In Sections 2 and 3, we design our data structures for rooted trees, though every
unrooted tree can be transformed to a rooted tree by choosing an arbitrary
node as the root. Notice that all the update operations except link play the
same role on rooted trees, whereas link in rooted trees is restricted to add new
edges between a root and another node. Moreover, we transform rooted trees to
binary trees using a standard transformation [11]: Each node u with d children is
represented by a path with max{1, d} nodes connected by +∞ weighted edges.
Each child of u becomes the left child of one of the nodes. Then, the operations
in rooted trees translate to a constant number of operations in binary trees.

Since we make our data structures for rooted trees, we can divided each path
minima query into two subqueries as follows. Every pathmin(u, v) is reduced to
two subqueries pathmin(c, u) and pathmin(c, v), where c is the lowest common
ancestor (LCA) of u and v. It is possible to maintain a tree under inserting
leaves and internal nodes, deleting leaves and internal nodes with one child, and
determining the LCA of any two nodes all in worst-case O(1) time [9]. Therefore,
we only consider queries pathmin(u, v), where u is an ancestor of v.

In our data structures, we utilize a standard decomposition of binary trees
denoted by micro-macro decompositions [4]. Given a binary tree T with n nodes
and a parameter x, where 1 ≤ x ≤ n, the set of nodes in T is decomposed into
O(n/x) disjoint subsets, each of size at most x, where each subset is a connected
subtree of T called a micro tree. Furthermore, the division is constructed such

that at most two nodes in a micro tree are adjacent to nodes in other micro
trees. These nodes are denoted by boundary nodes. The root of every micro tree
is a boundary node except for the micro tree that contains the root of T . The
macro tree is a tree of size O(n/x) consisting of all the boundary nodes, such
that it contains an edge between two nodes if either they are in the same micro
tree or there is an edge between them in T .

We use a variant of the inverse-Ackermann function α defined in [10, 19].
First, we define the inverse-Ackermann hierarchy for integers n ≥ 1: α0(n) =
dn/2e, αk(1) = 0, and αk(n) = 1 + αk(αk−1(n)), for k ≥ 1. Note that α1(n) =
log n, α2(n) = log∗ n, and α3(n) = log∗∗ n. Indeed for k ≥ 2, αk(n) = log∗∗···∗ n,
where the ∗ is repeated k − 1 times in the superscript. In other words, αk(n) =

min{j | α(j)
k−1(n) ≤ 1}, where α

(1)
k (n) = αk(n), and α

(j)
k (n) = αk(α

(j−1)
k (n)) for

j ≥ 2. The inverse-Ackermann function is defined as: α(n) = min{k | αk(n) ≤
3}. The two-parameter version of the inverse-Ackermann function for integers
m,n ≥ 1 is defined as follows: α(m,n) = min{k : αk(n) ≤ 3 + m/n}. This
definition of the function satisfies α(m,n) ≤ α(n) for every m and n.

2 Data structures for dynamic weights

In this section, we present two path minima data structures that support all
the update operations except link and cut in an input tree. The first data struc-
ture is in the comparison-based model and achieves Θ(log n/ log log n) query
time, Θ(log n) time for update, and O(log n) amortized time for insert, insert-
leaf, and contract. The second data structure improves the update time to
O(log n/ log log n) in the RAM model. Both the structures are similar to the
ones in [15]. In the following, we first describe the comparison-based structure,
and then we explain how to convert it to the RAM structure.

2.1 Comparison-based data structure

We decompose the input binary tree T into micro trees of size O(logε n) with
the maximum limit 3 logε n, for some constant ε, where 0 < ε < 1, using the
micro-macro decomposition (Section 1.2). In our data structure, we do not use
macro trees. Each micro tree contracts to a super-node, and a new tree T ′ is
built containing these super-nodes. If there is an edge in T between two micro
trees, then there is an edge in T ′ between their corresponding super-nodes. The
weight of this edge is the minimum weight along the path between the root of
the child micro tree and the root of the parent micro tree. We binarize T ′, and
then we recursively decompose it into micro trees of the same size O(logε n).

Consider a path minima query between the nodes u and v, where u is an
ancestor of v. If u and v do not lie within the same micro tree, the query is
divided into at most four subqueries of three different types: (1) an edge that is
between two micro trees; (2) a query that is within a micro tree; and (3) a query
that is between the root of the micro tree containing v and a boundary node
of the micro tree containing u. Queries of type 1 are trivial, since we store the

edge-weights in all the levels of the decomposition. To support queries of type 2
efficiently, we precompute the answer of all possible queries within all possible
micro trees. Queries of type 3 are divided into subqueries recursively. There are
at most one subquery of type 3 at each level, and thus the overall query time is
determined by the number of levels.

Updating edge-weights and insertions are performed in the appropriate micro
tree in the first level, and if it is required we propagate them to the next levels
recursively. To support updates within each micro tree, we precompute the result
of all possible updates within all possible micro trees. We maintain the edge-
weights of each micro tree in sorted order in a balanced binary search tree that
supports insertions and deletions of new edge-weights in O(log(logε n)) time.
Additionally, we assign a local ID to each node within a micro tree, which is the
insertion time of the node.

We set the size of each micro tree in all the levels to O(logε n), thus the
number of levels is O(log n/ log log n).
Data structure. Let T0 denote an input tree, and for i ≥ 1, let Ti be the tree
that is built of super-nodes (to which micro trees contract) in the level i of the
decomposition. The data structure consists of the following parts:

– We explicitly store Ti in all the levels of the decomposition, including T0.
– For each node in Ti, we store a pointer to the micro tree in Ti that contains

the node. We also store the local ID of the node.
– We represent each micro tree µ with the tuple (sµ, pµ, rµ, |µ|) of size o(log n)

bits, where sµ, pµ, and rµ are arrays defined as follows. The array sµ is the
binary encoding of the topology of µ. The array pµ maintains the local IDs
of the nodes within µ, and enables us to find a given node inside µ. The
array rµ maintains the rank of the edge-weights according to the preorder
traversal of µ.

– For each micro tree µ, we store a balanced binary search tree containing all
the edge-weights of µ. This allows us to find the rank of a new edge-weight
within µ in O(log(logε n)) time.

– For each micro tree µ in Ti, we store an array of pointers that point to the
original nodes in Ti given the local IDs.

Precomputed tables. We precompute and store in a table all possible results
of performing each of the following operations within all possible micro trees:
pathmin, update, insert, insert-leaf, contract, LCA, root and child-ancestor. For
a micro tree µ, root returns the local ID of the root of µ, LCA returns the
local ID of the LCA of two given nodes in µ, and child-ancestor(u, v) returns
the local ID of the child of u that is also an ancestor of v (if such a child
does not exist, returns null). Each precomputed table is indexed by the tuples
(sµ, pµ, rµ, |µ|) and the arguments of the corresponding operation. To perform
update, insert, and insert-leaf within µ, we find the rank of the new edge-weight
among the existing edge-weights of µ using its balanced binary search tree in
O(log |µ|) = O(log log n) time. This rank becomes an index for the corresponding
tables. Using appropriate tables, we can achieve the following lemma.

Lemma 2. Within a micro tree of size O(logε n), we can support pathmin, LCA,
root, child-ancestor, and moving a subtree inside the tree in O(1) time. The op-
erations update, insert, insert-leaf, and contract can be supported in O(log log n)
time using the balanced binary search tree of the micro tree and precomputed
tables of total size o(n) bits that can be constructed in o(n) time.

Proof. Let µ be the micro tree. In the table used to perform pathmin, each entry
is a pointer to an edge of µ which can be stored using O(log log n) bits. The
index to the table consists of (i) (sµ, pµ, rµ, |µ|), and (ii) two indexes in the
range [1 · · · |µ|] which represent two query nodes. The number of different arrays
sµ is 2|µ|. The number of different arrays pµ and rµ is O(|µ|!). Therefore, the
table is stored in O(2|µ| · |µ|! · |µ|3 · log |µ|) = o(n) bits.

In the table used for update, each entry is an array rµ which maintains the
rank of the edge-weights of µ after updating an edge-weight. The index to the
table consists of (i) (sµ, pµ, rµ, |µ|), (ii) an index in the range [1 · · · |µ|] which
represents an edge to be updated, and (iii) the rank of the new edge-weight.
Therefore, the table can be stored in O(2|µ| · |µ|! · |µ|4 · log |µ|) = o(n) bits.

In the table used for insert-leaf, each entry is the tuple (sµ, pµ, rµ, |µ|) which
represents µ after adding the new leaf. The index to the table consists of (i)
(sµ, pµ, rµ, |µ|), (ii) an index in the range [1 · · · |µ|] which represents the node that
a new leaf is adjacent to, and (iii) the rank of the new edge-weight. Therefore,
the table can be stored in O(2|µ| · |µ|! · |µ|4 · log |µ|) = o(n) bits.

The sizes of the other tables used for LCA, root, child-ancestor, moving a
subtree, insert, and contract are analyzed similarly. Since the total number of
entries in all the tables is less than o(2|µ|

2

) and each entry can be computed in
time O(|µ|), all the tables can be constructed in o(n) time.

To compute the rank of the new edge-weight, which is part of the index to
the tables for updates, we search and then update the balanced binary search
tree of µ in O(log log n) time. ut

Query time. Each path minima query is divided into subqueries, and at most
one subquery is divided recursively into subqueries. The division continues for
O(log n/ log log n) levels, and at each level all subqueries (of types 1 and 2) are
supported in constant time. Therefore, the query time is O(log n/ log log n).
Update. We perform update(e, w) by updating the data structure in all the `
levels. W.l.o.g. assume that e = (u, v), where u is the parent of v. Let µ be
the micro tree in T0 that contains v. We start to update from the first level,
where the tree is T : (1) Update the weight of e in T . (2) If v is not the root
of µ, then we update µ using Lemma 2. If v is the root of µ, i.e., e connects µ
to its parent micro tree, we do not need to update any micro tree. (3) Perform
check-update(µ) which recursively updates the edge-weights in T1 between µ and
its child micro trees as follows. We check if pathmin along the path between the
root of µ and the root of each child micro tree of µ needs to be updated. We can
check this using pathmin within µ. If this is the case, for each one, we go to the
next level and perform the three-step procedure on T1 recursively. Since each
micro tree has at most one boundary node that is not the root, then at most

one of the child micro trees of µ can propagate the update to the next level,
and therefore the number of updates does not grow exponentially. Step 2 takes
O(log log n) time, and thus update takes totally O(log n) time in the worst case.
Insertion. We perform insert(e, v, w) using a three-step procedure similar to
update. Let µ be the micro tree in T that contains u2, where e = (u1, u2) and
u1 is the parent of u2. We start from the first level, where the tree is T : (1) To
handle insert in the transformed binary tree, we first insert v along e in µ. Note
that if u2 is the root of µ, then v is inserted as the new root of µ. This can be
done in O(log log n) time using Lemma 2. (2) If |µ| exceeds the maximum limit
3 logε n, then we split µ, in linear time, into k ≤ 4 new micro trees, each of size
at most 2 logε n + 1 such that each new micro tree has at most two boundary
nodes including the old boundary nodes of µ. These k micro trees are contracted
to nodes that should be in T1. One of the new micro trees that contains the root
of µ corresponds to the node that is already in T1 for µ. The other k−1 new micro
trees are contracted and inserted into T1 with appropriate edge-weights, using
insert recursively. Let µ′ be the new micro tree that contains the boundary node
of µ which is not the root of µ. We perform check-update(µ′) to recursively update
the edge-weights in T1 between µ′ and its child micro trees. (3) Otherwise, i.e.,
if |µ| does not exceed the maximum limit, we do check-update(µ) to recursively
update the edge-weights in T1 between µ and its child micro trees, which takes
O(log n) time.

To perform insert-leaf(u, v, w), we use the algorithm of insert with the fol-
lowing changes. In step (1), we insert v as a child of u. This can be done in
O(log log n) time. The step (3) is not required.

A sequence of n insertions into T0, can at most create O(n/ logε n) micro trees
(since any created micro tree needs at least logε n node insertions before it splits
again). Since the number of nodes in T0, T1, . . . , T` is geometrically decreasing,
the total number of micro tree splits is O(n/ logε n). Because each micro tree
split takes O(logε n) time, the amortized time per insertion is O(1) for handling
micro tree splits. Thus, both insert and insert-leaf can be performed in O(log n)
amortized time.
Edge contraction. We perform contract(e) by marking v as contracted and
updating the weight of e to ∞ by performing update. When the number of
marked edges exceeds half of all the edges, we build the whole structure from
scratch using insert-leaf for the nodes that are not marked and the edges that do
not have weight of∞. Thus, the amortized deletion time is the same as insertion
time.

Theorem 1. There exists a dynamic path minima data structure for an in-
put tree of n nodes in the comparison-based model, supporting pathmin in
O(log n/ log log n) time, update in O(log n) time, insert, insert-leaf, and contract
in O(log n/ log log n) amortized time using O(n) space.

2.2 RAM structure

In this section, we improve the update time of the the structure of Theorem 1 to
O(log n/ log log n) in the RAM model. The bottleneck in our comparison-based

data structure is that we maintain a balanced binary search tree for the edge-
weights of each micro tree to find the rank of new edge-weights in O(log log n)
time. We improve this by using a Q-heap structure [12] to maintain the edge-
weights of each micro tree to find the rank of new edge-weights under insertions
and deletions in O(1) time with linear space and preprocessing time. The fol-
lowing theorem states our result.

Theorem 2. There exists a dynamic path minima data structure for an in-
put tree of n nodes in the RAM model, which supports pathmin and update in
O(log n/ log log n) time, and insert, insert-leaf and contract in O(log n/ log log n)
amortized time using O(n) space.

3 Data structures for dynamic leaves

In this section, we first present a semigroup structure that supports path minima
queries, and leaf insertions/deletions but no updates to edge-weights. We then
describe a RAM structure supporting the same operations.

3.1 Optimal semigroup structure

Alon and Schieber [1] presented two static data structures to support path min-
ima queries in the semigroup model. We observe that their structures can be
made dynamic. The following theorems summarize our result. To prove this we
need an additional restricted operation insert(e,v,w), where w is larger than the
weight of e.

Theorem 3. There exists a semigroup data structure of size O(nαk(n)) to
maintain a tree containing n nodes, that supports path minima queries with
at most 7k − 4 semigroup operations and leaf insertions/deletions in O(αk(n))
amortized time, for a parameter k, where 1 ≤ k ≤ α(n).

By substituting k with α(n), we obtain the following.

Corollary 1. There exists a path minima data structure in the semigroup model
using O(n) space, that supports pathmin in O(α(n)) time, insert-leaf and delete-
leaf in amortized O(1) time.

3.2 RAM structure

We also present a RAM structure that supports path minima queries and leaf
insertions/deletions. This structure does not give a new result (due to [2, 15])
but is a another approach to solve the problem.

We decompose a tree into micro trees of size O(log n) and each micro tree
into micro-micro trees of size O(log log n) using the micro-macro decomposition
(see Section 1.3). Decomposition of the tree into micro trees generates a macro-
macro tree of size O(n/ log n), and decomposition of each micro tree into micro-
micro trees generates O(n/ log n) macro trees, each of size O(log n/ log log n).

The operations within each micro-micro tree is supported using precomputed
tables and Q-heaps [12]. We do not store any representation for the micro trees.
We represent the macro-macro tree and each macro tree with a Cartesian tree.

The query can be solved in O(1) time by dividing it according to the three
levels of the decomposition. A new leaf is inserted into the appropriate micro-
micro tree. When the size of a micro-micro tree exceeds its maximum limit, we
split it, and insert the new boundary nodes into the appropriate macro tree,
and split this macro if exceeds its maximum limit. Our main observation is the
following.

Lemma 3. When a micro tree splits, we can insert the new boundary nodes by
performing insert-leaf using the Cartesian tree of the corresponding macro tree.

We represent each Cartesian tree using Lemma 1. Thus, Lemma 3 allows us
to achieve the following.

Theorem 4. There exists a dynamic path minima data structure for an input
tree of n nodes using O(n) space that supports pathmin in O(1) time, and supports
insert-leaf and delete-leaf in amortized O(1) time.

4 Lower bounds

We consider the path minima problem with the update operations link and cut.
Let tq denote the query time, and tu denote the maximum of the running time
of link, and cut. In the cell probe model, we prove that if we want to support link
and cut in a time within a constant factor of the query time, then tq = Ω(log n).
Moreover, if we want a fast query time tq = o(log n), then one of link or cut
cannot be supported in O(log n) time, e.g., if tq = O(log n/ log log n), then tu =
Ω(log1+ε n) for some ε > 0. We also show that O(log n/ log log n) query time
is the best achievable for polylogarithmic update time, e.g., a faster query time
O(log n/(log log n)2) causes tu to blow-up to (log n)Ω(log logn).

We reduce the fully dynamic connectivity and boolean union-find problems
to the path minima problem with link and cut.

The fully dynamic connectivity problem on forests is to maintain a forest
of undirected trees under the three operations connect, link, and cut, where
connect(x,y) returns true if there exists a path between the nodes x and y, and
returns false otherwise. Let tcon be the running time of connect, and tupdate be
the maximum of the running times of link and cut. Pǎtraşcu and Demaine [20]
proved the lower bound tcon log(2 + tupdate/tcon) = Ω(log n) in the cell probe
model. This problem is reduced to the path minima by putting a dummy root
r on top of the forest, and connect r to an arbitrary node of each tree with an
edge of weight −∞. Thus the forest becomes a tree. For this tree, we construct
a path minima data structure. The answer to connect(x,y) is false iff the an-
swer to pathmin(x,y) is an edge of weight −∞. To perform link(x,y), we first
run pathmin(x,r) to find the edge e of weight −∞ on the path from r to x.
Then we remove e and insert the edge (x, y). To perform cut(x,y), we first run

pathmin(x,r) to find the edge e of weight −∞. Then we change the weight of e
to zero, and the weight of (x, y) to −∞. Now, by performing pathmin(x,r), we
figure out that x is connected to r through y, or y is connected to r through
x. W.l.o.g. assume that x is connected to r through y. Therefore, we delete the
edge (x, y), insert (x, r) with weight −∞, and change the weight of e back to
−∞. Thus, we obtain the trade-off tq log

tq+tu
tq

= Ω(log n). From this, we e.g.,

conclude that if tq = O(log n/ log log n), then tu = Ω(log1+ε n), for some ε > 0.
We can also show that if tu = O(tq), then tq = Ω(log n).

The boolean union-find problem is to maintain a collection of disjoint sets
under the operations: find(x,A): returns true if x ∈ A, and returns false oth-
erwise; union(A,B): returns a new set containing the union of the disjoint sets
A and B. Kaplan et al. [16] proved the trade-off tfind = Ω(logn

log tunion
) for this

problem in the cell probe model, where tfind and tunion are the running time of
find and union. The incremental connectivity problem is the fully dynamic con-
nectivity problem without the operation cut. The boolean union-find problem
is trivially reduced to the incremental connectivity problem. The incremental
connectivity problem is reduced to the path minima problem with the same re-
duction used above. Therefore, we obtain tq = Ω(logn

log(tq+tu)). We can conclude

that when tq = O(log n/(log log n)2), slightly less than O(log n/ log log n), then
the running time of tu blows-up to (log n)Ω(log logn).

References

1. N. Alon and B. Schieber. Optimal preprocessing for answering on-line product
queries. Technical report, Department of Computer Science, School of Mathemat-
ical Sciences, Tel Aviv University, 1987.

2. S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dy-
namic trees. In Proc. 27th International Colloquium on Automata, Languages and
Programming, pages 73–84. Springer-Verlag, 2000.

3. S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th
Annual Symposium on Foundations of Computer Science, page 534, Washington,
DC, USA, 1998. IEEE Computer Society.

4. S. Alstrup, J. Secher, and M. Spork. Optimal on-line decremental connectivity in
trees. Information Processing Letters, 64(4):161–164, 1997.

5. P. Bose, A. Maheshwari, G. Narasimhan, M. Smid, and N. Zeh. Approximat-
ing geometric bottleneck shortest paths. Computational Geometry, 29(3):233–249,
2004.

6. G. S. Brodal, S. Chaudhuri, and J. Radhakrishnan. The randomized complexity
of maintaining the minimum. Nordic Journal of Computing, 3(4):337–351, 1996.

7. G. S. Brodal, P. Davoodi, and S. S. Rao. On space efficient two dimensional range
minimum data structures. Algorithmica, Special issue on ESA 2010, 2011. In press.

8. B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algo-
rithmica, 2:337–361, 1987.

9. R. Cole and R. Hariharan. Dynamic lca queries on trees. SIAM Journal on
Computing, 34(4):894–923, 2005.

10. E. D. Demaine, G. M. Landau, and O. Weimann. On cartesian trees and range
minimum queries. In Proc. 36th International Colloquium on Automata, Languages
and Programming, volume 5555 of LNCS, pages 341–353. Springer-Verlag, 2009.

11. G. N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal on Computing, 14(4):781–798, 1985.

12. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. Journal of Computer and System Sciences,
48(3):533–551, 1994.

13. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In Proc. 16th annual ACM symposium on Theory of comput-
ing, pages 135–143. ACM Press, 1984.

14. D. Harel. A linear time algorithm for finding dominators in flow graphs and related
problems. In Proc. 17th Annual ACM Symposium on Theory of Computing, pages
185–194. ACM Press, 1985.

15. H. Kaplan and N. Shafrir. Path minima in incremental unrooted trees. In Proc.
16th Annual European Symposium on Algorithms, volume 5193 of LNCS, pages
565–576. Springer-Verlag, 2008.

16. H. Kaplan, N. Shafrir, and R. E. Tarjan. Meldable heaps and boolean union-find.
In Proc. 34th annual ACM symposium on Theory of computing, pages 573–582.
ACM Press, 2002.

17. V. King. A simpler minimum spanning tree verification algorithm. Algorithmica,
18(2):263–270, 1997.

18. D. M. Neto. Efficient cluster compensation for lin-kernighan heuristics. PhD thesis,
University of Toronto, Toronto, Ontario, Canada, Canada, 1999.

19. G. Nivasch. Inverse ackermann without pain. http://www.yucs.org/ gni-
vasch/alpha/, 2009.

20. M. Pǎtraşcu and E. D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006.

21. S. Pettie. An inverse-ackermann type lower bound for online minimum spanning
tree verification. Combinatorica, 26(2):207–230, 2006.

22. D. Sleator and R. Endre Tarjan. A data structure for dynamic trees. Journal of
computer and system sciences, 26(3):362–391, 1983.

23. R. E. Tarjan. Applications of path compression on balanced trees. J. ACM,
26(4):690–715, 1979.

24. J. Vuillemin. A unifying look at data structures. Communications of the ACM,
23(4):229–239, 1980.

25. A. C.-C. Yao. Space-time tradeoff for answering range queries (extended abstract).
In Proc. 14th annual ACM symposium on Theory of computing, pages 128–136.
ACM Press, 1982.

